src/ZF/Constructible/WF_absolute.thy
author paulson
Wed Jul 10 16:54:07 2002 +0200 (2002-07-10)
changeset 13339 0f89104dd377
parent 13324 39d1b3a4c6f4
child 13348 374d05460db4
permissions -rw-r--r--
Fixed quantified variable name preservation for ball and bex (bounded quants)
Requires tweaking of other scripts. Also routine tidying.
paulson@13306
     1
header {*Absoluteness for Well-Founded Relations and Well-Founded Recursion*}
paulson@13306
     2
paulson@13242
     3
theory WF_absolute = WFrec:
paulson@13223
     4
paulson@13251
     5
subsection{*Every well-founded relation is a subset of some inverse image of
paulson@13247
     6
      an ordinal*}
paulson@13247
     7
paulson@13247
     8
lemma wf_rvimage_Ord: "Ord(i) \<Longrightarrow> wf(rvimage(A, f, Memrel(i)))"
paulson@13251
     9
by (blast intro: wf_rvimage wf_Memrel)
paulson@13247
    10
paulson@13247
    11
paulson@13247
    12
constdefs
paulson@13247
    13
  wfrank :: "[i,i]=>i"
paulson@13247
    14
    "wfrank(r,a) == wfrec(r, a, %x f. \<Union>y \<in> r-``{x}. succ(f`y))"
paulson@13247
    15
paulson@13247
    16
constdefs
paulson@13247
    17
  wftype :: "i=>i"
paulson@13247
    18
    "wftype(r) == \<Union>y \<in> range(r). succ(wfrank(r,y))"
paulson@13247
    19
paulson@13247
    20
lemma wfrank: "wf(r) ==> wfrank(r,a) = (\<Union>y \<in> r-``{a}. succ(wfrank(r,y)))"
paulson@13247
    21
by (subst wfrank_def [THEN def_wfrec], simp_all)
paulson@13247
    22
paulson@13247
    23
lemma Ord_wfrank: "wf(r) ==> Ord(wfrank(r,a))"
paulson@13339
    24
apply (rule_tac a=a in wf_induct, assumption)
paulson@13247
    25
apply (subst wfrank, assumption)
paulson@13251
    26
apply (rule Ord_succ [THEN Ord_UN], blast)
paulson@13247
    27
done
paulson@13247
    28
paulson@13247
    29
lemma wfrank_lt: "[|wf(r); <a,b> \<in> r|] ==> wfrank(r,a) < wfrank(r,b)"
paulson@13339
    30
apply (rule_tac a1 = b in wfrank [THEN ssubst], assumption)
paulson@13247
    31
apply (rule UN_I [THEN ltI])
paulson@13247
    32
apply (simp add: Ord_wfrank vimage_iff)+
paulson@13247
    33
done
paulson@13247
    34
paulson@13247
    35
lemma Ord_wftype: "wf(r) ==> Ord(wftype(r))"
paulson@13247
    36
by (simp add: wftype_def Ord_wfrank)
paulson@13247
    37
paulson@13247
    38
lemma wftypeI: "\<lbrakk>wf(r);  x \<in> field(r)\<rbrakk> \<Longrightarrow> wfrank(r,x) \<in> wftype(r)"
paulson@13251
    39
apply (simp add: wftype_def)
paulson@13251
    40
apply (blast intro: wfrank_lt [THEN ltD])
paulson@13247
    41
done
paulson@13247
    42
paulson@13247
    43
paulson@13247
    44
lemma wf_imp_subset_rvimage:
paulson@13247
    45
     "[|wf(r); r \<subseteq> A*A|] ==> \<exists>i f. Ord(i) & r <= rvimage(A, f, Memrel(i))"
paulson@13251
    46
apply (rule_tac x="wftype(r)" in exI)
paulson@13251
    47
apply (rule_tac x="\<lambda>x\<in>A. wfrank(r,x)" in exI)
paulson@13251
    48
apply (simp add: Ord_wftype, clarify)
paulson@13251
    49
apply (frule subsetD, assumption, clarify)
paulson@13247
    50
apply (simp add: rvimage_iff wfrank_lt [THEN ltD])
paulson@13251
    51
apply (blast intro: wftypeI)
paulson@13247
    52
done
paulson@13247
    53
paulson@13247
    54
theorem wf_iff_subset_rvimage:
paulson@13247
    55
  "relation(r) ==> wf(r) <-> (\<exists>i f A. Ord(i) & r <= rvimage(A, f, Memrel(i)))"
paulson@13247
    56
by (blast dest!: relation_field_times_field wf_imp_subset_rvimage
paulson@13247
    57
          intro: wf_rvimage_Ord [THEN wf_subset])
paulson@13247
    58
paulson@13247
    59
paulson@13223
    60
subsection{*Transitive closure without fixedpoints*}
paulson@13223
    61
paulson@13223
    62
constdefs
paulson@13223
    63
  rtrancl_alt :: "[i,i]=>i"
paulson@13251
    64
    "rtrancl_alt(A,r) ==
paulson@13223
    65
       {p \<in> A*A. \<exists>n\<in>nat. \<exists>f \<in> succ(n) -> A.
paulson@13242
    66
                 (\<exists>x y. p = <x,y> &  f`0 = x & f`n = y) &
paulson@13223
    67
                       (\<forall>i\<in>n. <f`i, f`succ(i)> \<in> r)}"
paulson@13223
    68
paulson@13251
    69
lemma alt_rtrancl_lemma1 [rule_format]:
paulson@13223
    70
    "n \<in> nat
paulson@13251
    71
     ==> \<forall>f \<in> succ(n) -> field(r).
paulson@13223
    72
         (\<forall>i\<in>n. \<langle>f`i, f ` succ(i)\<rangle> \<in> r) --> \<langle>f`0, f`n\<rangle> \<in> r^*"
paulson@13251
    73
apply (induct_tac n)
paulson@13251
    74
apply (simp_all add: apply_funtype rtrancl_refl, clarify)
paulson@13251
    75
apply (rename_tac n f)
paulson@13251
    76
apply (rule rtrancl_into_rtrancl)
paulson@13223
    77
 prefer 2 apply assumption
paulson@13223
    78
apply (drule_tac x="restrict(f,succ(n))" in bspec)
paulson@13251
    79
 apply (blast intro: restrict_type2)
paulson@13251
    80
apply (simp add: Ord_succ_mem_iff nat_0_le [THEN ltD] leI [THEN ltD] ltI)
paulson@13223
    81
done
paulson@13223
    82
paulson@13223
    83
lemma rtrancl_alt_subset_rtrancl: "rtrancl_alt(field(r),r) <= r^*"
paulson@13223
    84
apply (simp add: rtrancl_alt_def)
paulson@13251
    85
apply (blast intro: alt_rtrancl_lemma1)
paulson@13223
    86
done
paulson@13223
    87
paulson@13223
    88
lemma rtrancl_subset_rtrancl_alt: "r^* <= rtrancl_alt(field(r),r)"
paulson@13251
    89
apply (simp add: rtrancl_alt_def, clarify)
paulson@13251
    90
apply (frule rtrancl_type [THEN subsetD], clarify, simp)
paulson@13251
    91
apply (erule rtrancl_induct)
paulson@13223
    92
 txt{*Base case, trivial*}
paulson@13251
    93
 apply (rule_tac x=0 in bexI)
paulson@13251
    94
  apply (rule_tac x="lam x:1. xa" in bexI)
paulson@13251
    95
   apply simp_all
paulson@13223
    96
txt{*Inductive step*}
paulson@13251
    97
apply clarify
paulson@13251
    98
apply (rename_tac n f)
paulson@13251
    99
apply (rule_tac x="succ(n)" in bexI)
paulson@13223
   100
 apply (rule_tac x="lam i:succ(succ(n)). if i=succ(n) then z else f`i" in bexI)
paulson@13251
   101
  apply (simp add: Ord_succ_mem_iff nat_0_le [THEN ltD] leI [THEN ltD] ltI)
paulson@13251
   102
  apply (blast intro: mem_asym)
paulson@13251
   103
 apply typecheck
paulson@13251
   104
 apply auto
paulson@13223
   105
done
paulson@13223
   106
paulson@13223
   107
lemma rtrancl_alt_eq_rtrancl: "rtrancl_alt(field(r),r) = r^*"
paulson@13223
   108
by (blast del: subsetI
paulson@13251
   109
	  intro: rtrancl_alt_subset_rtrancl rtrancl_subset_rtrancl_alt)
paulson@13223
   110
paulson@13223
   111
paulson@13242
   112
constdefs
paulson@13242
   113
paulson@13324
   114
  rtran_closure_mem :: "[i=>o,i,i,i] => o"
paulson@13324
   115
    --{*The property of belonging to @{text "rtran_closure(r)"}*}
paulson@13324
   116
    "rtran_closure_mem(M,A,r,p) ==
paulson@13324
   117
	      \<exists>nnat[M]. \<exists>n[M]. \<exists>n'[M]. 
paulson@13324
   118
               omega(M,nnat) & n\<in>nnat & successor(M,n,n') &
paulson@13324
   119
	       (\<exists>f[M]. typed_function(M,n',A,f) &
paulson@13324
   120
		(\<exists>x[M]. \<exists>y[M]. \<exists>zero[M]. pair(M,x,y,p) & empty(M,zero) &
paulson@13324
   121
		  fun_apply(M,f,zero,x) & fun_apply(M,f,n,y)) &
paulson@13324
   122
		  (\<forall>j[M]. j\<in>n --> 
paulson@13324
   123
		    (\<exists>fj[M]. \<exists>sj[M]. \<exists>fsj[M]. \<exists>ffp[M]. 
paulson@13324
   124
		      fun_apply(M,f,j,fj) & successor(M,j,sj) &
paulson@13324
   125
		      fun_apply(M,f,sj,fsj) & pair(M,fj,fsj,ffp) & ffp \<in> r)))"
paulson@13324
   126
paulson@13242
   127
  rtran_closure :: "[i=>o,i,i] => o"
paulson@13324
   128
    "rtran_closure(M,r,s) == 
paulson@13324
   129
        \<forall>A[M]. is_field(M,r,A) -->
paulson@13324
   130
 	 (\<forall>p[M]. p \<in> s <-> rtran_closure_mem(M,A,r,p))"
paulson@13242
   131
paulson@13242
   132
  tran_closure :: "[i=>o,i,i] => o"
paulson@13251
   133
    "tran_closure(M,r,t) ==
paulson@13268
   134
         \<exists>s[M]. rtran_closure(M,r,s) & composition(M,r,s,t)"
paulson@13242
   135
paulson@13324
   136
lemma (in M_axioms) rtran_closure_mem_iff:
paulson@13324
   137
     "[|M(A); M(r); M(p)|]
paulson@13324
   138
      ==> rtran_closure_mem(M,A,r,p) <->
paulson@13324
   139
          (\<exists>n[M]. n\<in>nat & 
paulson@13324
   140
           (\<exists>f[M]. f \<in> succ(n) -> A &
paulson@13324
   141
            (\<exists>x[M]. \<exists>y[M]. p = <x,y> & f`0 = x & f`n = y) &
paulson@13324
   142
                           (\<forall>i\<in>n. <f`i, f`succ(i)> \<in> r)))"
paulson@13324
   143
apply (simp add: rtran_closure_mem_def typed_apply_abs
paulson@13339
   144
                 Ord_succ_mem_iff nat_0_le [THEN ltD], blast) 
paulson@13324
   145
done
paulson@13242
   146
paulson@13242
   147
locale M_trancl = M_axioms +
paulson@13242
   148
  assumes rtrancl_separation:
paulson@13324
   149
	 "[| M(r); M(A) |] ==> separation (M, rtran_closure_mem(M,A,r))"
paulson@13242
   150
      and wellfounded_trancl_separation:
paulson@13323
   151
	 "[| M(r); M(Z) |] ==> 
paulson@13323
   152
	  separation (M, \<lambda>x. 
paulson@13323
   153
	      \<exists>w[M]. \<exists>wx[M]. \<exists>rp[M]. 
paulson@13323
   154
	       w \<in> Z & pair(M,w,x,wx) & tran_closure(M,r,rp) & wx \<in> rp)"
paulson@13242
   155
paulson@13242
   156
paulson@13251
   157
lemma (in M_trancl) rtran_closure_rtrancl:
paulson@13242
   158
     "M(r) ==> rtran_closure(M,r,rtrancl(r))"
paulson@13324
   159
apply (simp add: rtran_closure_def rtran_closure_mem_iff 
paulson@13324
   160
                 rtrancl_alt_eq_rtrancl [symmetric] rtrancl_alt_def)
paulson@13339
   161
apply (auto simp add: nat_0_le [THEN ltD] apply_funtype) 
paulson@13242
   162
done
paulson@13242
   163
paulson@13251
   164
lemma (in M_trancl) rtrancl_closed [intro,simp]:
paulson@13242
   165
     "M(r) ==> M(rtrancl(r))"
paulson@13251
   166
apply (insert rtrancl_separation [of r "field(r)"])
paulson@13251
   167
apply (simp add: rtrancl_alt_eq_rtrancl [symmetric]
paulson@13324
   168
                 rtrancl_alt_def rtran_closure_mem_iff)
paulson@13242
   169
done
paulson@13242
   170
paulson@13251
   171
lemma (in M_trancl) rtrancl_abs [simp]:
paulson@13242
   172
     "[| M(r); M(z) |] ==> rtran_closure(M,r,z) <-> z = rtrancl(r)"
paulson@13242
   173
apply (rule iffI)
paulson@13242
   174
 txt{*Proving the right-to-left implication*}
paulson@13251
   175
 prefer 2 apply (blast intro: rtran_closure_rtrancl)
paulson@13242
   176
apply (rule M_equalityI)
paulson@13251
   177
apply (simp add: rtran_closure_def rtrancl_alt_eq_rtrancl [symmetric]
paulson@13324
   178
                 rtrancl_alt_def rtran_closure_mem_iff)
paulson@13339
   179
apply (auto simp add: nat_0_le [THEN ltD] apply_funtype) 
paulson@13242
   180
done
paulson@13242
   181
paulson@13251
   182
lemma (in M_trancl) trancl_closed [intro,simp]:
paulson@13242
   183
     "M(r) ==> M(trancl(r))"
paulson@13251
   184
by (simp add: trancl_def comp_closed rtrancl_closed)
paulson@13242
   185
paulson@13251
   186
lemma (in M_trancl) trancl_abs [simp]:
paulson@13242
   187
     "[| M(r); M(z) |] ==> tran_closure(M,r,z) <-> z = trancl(r)"
paulson@13251
   188
by (simp add: tran_closure_def trancl_def)
paulson@13242
   189
paulson@13323
   190
lemma (in M_trancl) wellfounded_trancl_separation':
paulson@13323
   191
     "[| M(r); M(Z) |] ==> separation (M, \<lambda>x. \<exists>w[M]. w \<in> Z & <w,x> \<in> r^+)"
paulson@13323
   192
by (insert wellfounded_trancl_separation [of r Z], simp) 
paulson@13242
   193
paulson@13251
   194
text{*Alternative proof of @{text wf_on_trancl}; inspiration for the
paulson@13242
   195
      relativized version.  Original version is on theory WF.*}
paulson@13242
   196
lemma "[| wf[A](r);  r-``A <= A |] ==> wf[A](r^+)"
paulson@13251
   197
apply (simp add: wf_on_def wf_def)
paulson@13242
   198
apply (safe intro!: equalityI)
paulson@13251
   199
apply (drule_tac x = "{x\<in>A. \<exists>w. \<langle>w,x\<rangle> \<in> r^+ & w \<in> Z}" in spec)
paulson@13251
   200
apply (blast elim: tranclE)
paulson@13242
   201
done
paulson@13242
   202
paulson@13242
   203
lemma (in M_trancl) wellfounded_on_trancl:
paulson@13242
   204
     "[| wellfounded_on(M,A,r);  r-``A <= A; M(r); M(A) |]
paulson@13251
   205
      ==> wellfounded_on(M,A,r^+)"
paulson@13251
   206
apply (simp add: wellfounded_on_def)
paulson@13242
   207
apply (safe intro!: equalityI)
paulson@13242
   208
apply (rename_tac Z x)
paulson@13268
   209
apply (subgoal_tac "M({x\<in>A. \<exists>w[M]. w \<in> Z & \<langle>w,x\<rangle> \<in> r^+})")
paulson@13251
   210
 prefer 2
paulson@13323
   211
 apply (blast intro: wellfounded_trancl_separation') 
paulson@13299
   212
apply (drule_tac x = "{x\<in>A. \<exists>w[M]. w \<in> Z & \<langle>w,x\<rangle> \<in> r^+}" in rspec, safe)
paulson@13251
   213
apply (blast dest: transM, simp)
paulson@13251
   214
apply (rename_tac y w)
paulson@13242
   215
apply (drule_tac x=w in bspec, assumption, clarify)
paulson@13242
   216
apply (erule tranclE)
paulson@13242
   217
  apply (blast dest: transM)   (*transM is needed to prove M(xa)*)
paulson@13251
   218
 apply blast
paulson@13242
   219
done
paulson@13242
   220
paulson@13251
   221
lemma (in M_trancl) wellfounded_trancl:
paulson@13251
   222
     "[|wellfounded(M,r); M(r)|] ==> wellfounded(M,r^+)"
paulson@13251
   223
apply (rotate_tac -1)
paulson@13251
   224
apply (simp add: wellfounded_iff_wellfounded_on_field)
paulson@13251
   225
apply (rule wellfounded_on_subset_A, erule wellfounded_on_trancl)
paulson@13251
   226
   apply blast
paulson@13251
   227
  apply (simp_all add: trancl_type [THEN field_rel_subset])
paulson@13251
   228
done
paulson@13242
   229
paulson@13223
   230
text{*Relativized to M: Every well-founded relation is a subset of some
paulson@13251
   231
inverse image of an ordinal.  Key step is the construction (in M) of a
paulson@13223
   232
rank function.*}
paulson@13223
   233
paulson@13223
   234
paulson@13223
   235
(*NEEDS RELATIVIZATION*)
paulson@13268
   236
locale M_wfrank = M_trancl +
paulson@13339
   237
  assumes wfrank_separation:
paulson@13251
   238
     "M(r) ==>
paulson@13339
   239
      separation (M, \<lambda>x. 
paulson@13339
   240
         ~ (\<exists>f[M]. M_is_recfun(M, r^+, x, %mm x f y. y = range(f), f)))"
paulson@13223
   241
 and wfrank_strong_replacement':
paulson@13242
   242
     "M(r) ==>
paulson@13268
   243
      strong_replacement(M, \<lambda>x z. \<exists>y[M]. \<exists>f[M]. 
paulson@13251
   244
		  pair(M,x,y,z) & is_recfun(r^+, x, %x f. range(f), f) &
paulson@13242
   245
		  y = range(f))"
paulson@13242
   246
 and Ord_wfrank_separation:
paulson@13251
   247
     "M(r) ==>
paulson@13251
   248
      separation (M, \<lambda>x. ~ (\<forall>f. M(f) \<longrightarrow>
paulson@13339
   249
                       is_recfun(r^+, x, \<lambda>x. range, f) \<longrightarrow> Ord(range(f))))" 
paulson@13339
   250
paulson@13339
   251
lemma (in M_wfrank) wfrank_separation':
paulson@13339
   252
     "M(r) ==>
paulson@13339
   253
      separation
paulson@13339
   254
	   (M, \<lambda>x. ~ (\<exists>f[M]. is_recfun(r^+, x, %x f. range(f), f)))"
paulson@13339
   255
apply (insert wfrank_separation [of r])
paulson@13339
   256
apply (simp add: is_recfun_iff_M [of concl: _ _ "%x. range", THEN iff_sym])
paulson@13339
   257
done
paulson@13223
   258
paulson@13251
   259
text{*This function, defined using replacement, is a rank function for
paulson@13251
   260
well-founded relations within the class M.*}
paulson@13251
   261
constdefs
paulson@13242
   262
 wellfoundedrank :: "[i=>o,i,i] => i"
paulson@13251
   263
    "wellfoundedrank(M,r,A) ==
paulson@13268
   264
        {p. x\<in>A, \<exists>y[M]. \<exists>f[M]. 
paulson@13251
   265
                       p = <x,y> & is_recfun(r^+, x, %x f. range(f), f) &
paulson@13242
   266
                       y = range(f)}"
paulson@13223
   267
paulson@13268
   268
lemma (in M_wfrank) exists_wfrank:
paulson@13251
   269
    "[| wellfounded(M,r); M(a); M(r) |]
paulson@13268
   270
     ==> \<exists>f[M]. is_recfun(r^+, a, %x f. range(f), f)"
paulson@13251
   271
apply (rule wellfounded_exists_is_recfun)
paulson@13251
   272
      apply (blast intro: wellfounded_trancl)
paulson@13251
   273
     apply (rule trans_trancl)
paulson@13251
   274
    apply (erule wfrank_separation')
paulson@13251
   275
   apply (erule wfrank_strong_replacement')
paulson@13251
   276
apply (simp_all add: trancl_subset_times)
paulson@13223
   277
done
paulson@13223
   278
paulson@13268
   279
lemma (in M_wfrank) M_wellfoundedrank:
paulson@13251
   280
    "[| wellfounded(M,r); M(r); M(A) |] ==> M(wellfoundedrank(M,r,A))"
paulson@13251
   281
apply (insert wfrank_strong_replacement' [of r])
paulson@13251
   282
apply (simp add: wellfoundedrank_def)
paulson@13251
   283
apply (rule strong_replacement_closed)
paulson@13242
   284
   apply assumption+
paulson@13251
   285
 apply (rule univalent_is_recfun)
paulson@13251
   286
   apply (blast intro: wellfounded_trancl)
paulson@13251
   287
  apply (rule trans_trancl)
paulson@13254
   288
 apply (simp add: trancl_subset_times, blast)
paulson@13223
   289
done
paulson@13223
   290
paulson@13268
   291
lemma (in M_wfrank) Ord_wfrank_range [rule_format]:
paulson@13251
   292
    "[| wellfounded(M,r); a\<in>A; M(r); M(A) |]
paulson@13242
   293
     ==> \<forall>f. M(f) --> is_recfun(r^+, a, %x f. range(f), f) --> Ord(range(f))"
paulson@13251
   294
apply (drule wellfounded_trancl, assumption)
paulson@13251
   295
apply (rule wellfounded_induct, assumption+)
paulson@13254
   296
  apply simp
paulson@13254
   297
 apply (blast intro: Ord_wfrank_separation, clarify)
paulson@13242
   298
txt{*The reasoning in both cases is that we get @{term y} such that
paulson@13251
   299
   @{term "\<langle>y, x\<rangle> \<in> r^+"}.  We find that
paulson@13242
   300
   @{term "f`y = restrict(f, r^+ -`` {y})"}. *}
paulson@13242
   301
apply (rule OrdI [OF _ Ord_is_Transset])
paulson@13242
   302
 txt{*An ordinal is a transitive set...*}
paulson@13251
   303
 apply (simp add: Transset_def)
paulson@13242
   304
 apply clarify
paulson@13251
   305
 apply (frule apply_recfun2, assumption)
paulson@13242
   306
 apply (force simp add: restrict_iff)
paulson@13251
   307
txt{*...of ordinals.  This second case requires the induction hyp.*}
paulson@13251
   308
apply clarify
paulson@13242
   309
apply (rename_tac i y)
paulson@13251
   310
apply (frule apply_recfun2, assumption)
paulson@13251
   311
apply (frule is_recfun_imp_in_r, assumption)
paulson@13251
   312
apply (frule is_recfun_restrict)
paulson@13242
   313
    (*simp_all won't work*)
paulson@13251
   314
    apply (simp add: trans_trancl trancl_subset_times)+
paulson@13242
   315
apply (drule spec [THEN mp], assumption)
paulson@13242
   316
apply (subgoal_tac "M(restrict(f, r^+ -`` {y}))")
paulson@13251
   317
 apply (drule_tac x="restrict(f, r^+ -`` {y})" in spec)
paulson@13242
   318
 apply (simp add: function_apply_equality [OF _ is_recfun_imp_function])
paulson@13242
   319
apply (blast dest: pair_components_in_M)
paulson@13223
   320
done
paulson@13223
   321
paulson@13268
   322
lemma (in M_wfrank) Ord_range_wellfoundedrank:
paulson@13251
   323
    "[| wellfounded(M,r); r \<subseteq> A*A;  M(r); M(A) |]
paulson@13242
   324
     ==> Ord (range(wellfoundedrank(M,r,A)))"
paulson@13251
   325
apply (frule wellfounded_trancl, assumption)
paulson@13251
   326
apply (frule trancl_subset_times)
paulson@13242
   327
apply (simp add: wellfoundedrank_def)
paulson@13242
   328
apply (rule OrdI [OF _ Ord_is_Transset])
paulson@13242
   329
 prefer 2
paulson@13251
   330
 txt{*by our previous result the range consists of ordinals.*}
paulson@13251
   331
 apply (blast intro: Ord_wfrank_range)
paulson@13242
   332
txt{*We still must show that the range is a transitive set.*}
paulson@13247
   333
apply (simp add: Transset_def, clarify, simp)
paulson@13293
   334
apply (rename_tac x i f u)
paulson@13251
   335
apply (frule is_recfun_imp_in_r, assumption)
paulson@13251
   336
apply (subgoal_tac "M(u) & M(i) & M(x)")
paulson@13251
   337
 prefer 2 apply (blast dest: transM, clarify)
paulson@13251
   338
apply (rule_tac a=u in rangeI)
paulson@13293
   339
apply (rule_tac x=u in ReplaceI)
paulson@13293
   340
  apply simp 
paulson@13293
   341
  apply (rule_tac x="restrict(f, r^+ -`` {u})" in rexI)
paulson@13293
   342
   apply (blast intro: is_recfun_restrict trans_trancl dest: apply_recfun2)
paulson@13293
   343
  apply simp 
paulson@13293
   344
apply blast 
paulson@13251
   345
txt{*Unicity requirement of Replacement*}
paulson@13242
   346
apply clarify
paulson@13251
   347
apply (frule apply_recfun2, assumption)
paulson@13293
   348
apply (simp add: trans_trancl is_recfun_cut)
paulson@13223
   349
done
paulson@13223
   350
paulson@13268
   351
lemma (in M_wfrank) function_wellfoundedrank:
paulson@13251
   352
    "[| wellfounded(M,r); M(r); M(A)|]
paulson@13242
   353
     ==> function(wellfoundedrank(M,r,A))"
paulson@13251
   354
apply (simp add: wellfoundedrank_def function_def, clarify)
paulson@13242
   355
txt{*Uniqueness: repeated below!*}
paulson@13242
   356
apply (drule is_recfun_functional, assumption)
paulson@13251
   357
     apply (blast intro: wellfounded_trancl)
paulson@13251
   358
    apply (simp_all add: trancl_subset_times trans_trancl)
paulson@13223
   359
done
paulson@13223
   360
paulson@13268
   361
lemma (in M_wfrank) domain_wellfoundedrank:
paulson@13251
   362
    "[| wellfounded(M,r); M(r); M(A)|]
paulson@13242
   363
     ==> domain(wellfoundedrank(M,r,A)) = A"
paulson@13251
   364
apply (simp add: wellfoundedrank_def function_def)
paulson@13242
   365
apply (rule equalityI, auto)
paulson@13251
   366
apply (frule transM, assumption)
paulson@13251
   367
apply (frule_tac a=x in exists_wfrank, assumption+, clarify)
paulson@13293
   368
apply (rule_tac b="range(f)" in domainI)
paulson@13293
   369
apply (rule_tac x=x in ReplaceI)
paulson@13293
   370
  apply simp 
paulson@13268
   371
  apply (rule_tac x=f in rexI, blast, simp_all)
paulson@13242
   372
txt{*Uniqueness (for Replacement): repeated above!*}
paulson@13242
   373
apply clarify
paulson@13242
   374
apply (drule is_recfun_functional, assumption)
paulson@13251
   375
    apply (blast intro: wellfounded_trancl)
paulson@13251
   376
    apply (simp_all add: trancl_subset_times trans_trancl)
paulson@13223
   377
done
paulson@13223
   378
paulson@13268
   379
lemma (in M_wfrank) wellfoundedrank_type:
paulson@13251
   380
    "[| wellfounded(M,r);  M(r); M(A)|]
paulson@13242
   381
     ==> wellfoundedrank(M,r,A) \<in> A -> range(wellfoundedrank(M,r,A))"
paulson@13251
   382
apply (frule function_wellfoundedrank [of r A], assumption+)
paulson@13251
   383
apply (frule function_imp_Pi)
paulson@13251
   384
 apply (simp add: wellfoundedrank_def relation_def)
paulson@13251
   385
 apply blast
paulson@13242
   386
apply (simp add: domain_wellfoundedrank)
paulson@13223
   387
done
paulson@13223
   388
paulson@13268
   389
lemma (in M_wfrank) Ord_wellfoundedrank:
paulson@13251
   390
    "[| wellfounded(M,r); a \<in> A; r \<subseteq> A*A;  M(r); M(A) |]
paulson@13242
   391
     ==> Ord(wellfoundedrank(M,r,A) ` a)"
paulson@13242
   392
by (blast intro: apply_funtype [OF wellfoundedrank_type]
paulson@13242
   393
                 Ord_in_Ord [OF Ord_range_wellfoundedrank])
paulson@13223
   394
paulson@13268
   395
lemma (in M_wfrank) wellfoundedrank_eq:
paulson@13242
   396
     "[| is_recfun(r^+, a, %x. range, f);
paulson@13251
   397
         wellfounded(M,r);  a \<in> A; M(f); M(r); M(A)|]
paulson@13242
   398
      ==> wellfoundedrank(M,r,A) ` a = range(f)"
paulson@13251
   399
apply (rule apply_equality)
paulson@13251
   400
 prefer 2 apply (blast intro: wellfoundedrank_type)
paulson@13242
   401
apply (simp add: wellfoundedrank_def)
paulson@13242
   402
apply (rule ReplaceI)
paulson@13268
   403
  apply (rule_tac x="range(f)" in rexI) 
paulson@13251
   404
  apply blast
paulson@13268
   405
 apply simp_all
paulson@13251
   406
txt{*Unicity requirement of Replacement*}
paulson@13242
   407
apply clarify
paulson@13242
   408
apply (drule is_recfun_functional, assumption)
paulson@13251
   409
    apply (blast intro: wellfounded_trancl)
paulson@13251
   410
    apply (simp_all add: trancl_subset_times trans_trancl)
paulson@13223
   411
done
paulson@13223
   412
paulson@13247
   413
paulson@13268
   414
lemma (in M_wfrank) wellfoundedrank_lt:
paulson@13247
   415
     "[| <a,b> \<in> r;
paulson@13251
   416
         wellfounded(M,r); r \<subseteq> A*A;  M(r); M(A)|]
paulson@13247
   417
      ==> wellfoundedrank(M,r,A) ` a < wellfoundedrank(M,r,A) ` b"
paulson@13251
   418
apply (frule wellfounded_trancl, assumption)
paulson@13247
   419
apply (subgoal_tac "a\<in>A & b\<in>A")
paulson@13247
   420
 prefer 2 apply blast
paulson@13251
   421
apply (simp add: lt_def Ord_wellfoundedrank, clarify)
paulson@13251
   422
apply (frule exists_wfrank [of concl: _ b], assumption+, clarify)
paulson@13247
   423
apply (rename_tac fb)
paulson@13251
   424
apply (frule is_recfun_restrict [of concl: "r^+" a])
paulson@13251
   425
    apply (rule trans_trancl, assumption)
paulson@13251
   426
   apply (simp_all add: r_into_trancl trancl_subset_times)
paulson@13247
   427
txt{*Still the same goal, but with new @{text is_recfun} assumptions.*}
paulson@13251
   428
apply (simp add: wellfoundedrank_eq)
paulson@13247
   429
apply (frule_tac a=a in wellfoundedrank_eq, assumption+)
paulson@13247
   430
   apply (simp_all add: transM [of a])
paulson@13247
   431
txt{*We have used equations for wellfoundedrank and now must use some
paulson@13247
   432
    for  @{text is_recfun}. *}
paulson@13251
   433
apply (rule_tac a=a in rangeI)
paulson@13251
   434
apply (simp add: is_recfun_type [THEN apply_iff] vimage_singleton_iff
paulson@13251
   435
                 r_into_trancl apply_recfun r_into_trancl)
paulson@13247
   436
done
paulson@13247
   437
paulson@13247
   438
paulson@13268
   439
lemma (in M_wfrank) wellfounded_imp_subset_rvimage:
paulson@13251
   440
     "[|wellfounded(M,r); r \<subseteq> A*A; M(r); M(A)|]
paulson@13247
   441
      ==> \<exists>i f. Ord(i) & r <= rvimage(A, f, Memrel(i))"
paulson@13247
   442
apply (rule_tac x="range(wellfoundedrank(M,r,A))" in exI)
paulson@13247
   443
apply (rule_tac x="wellfoundedrank(M,r,A)" in exI)
paulson@13251
   444
apply (simp add: Ord_range_wellfoundedrank, clarify)
paulson@13251
   445
apply (frule subsetD, assumption, clarify)
paulson@13247
   446
apply (simp add: rvimage_iff wellfoundedrank_lt [THEN ltD])
paulson@13251
   447
apply (blast intro: apply_rangeI wellfoundedrank_type)
paulson@13247
   448
done
paulson@13247
   449
paulson@13268
   450
lemma (in M_wfrank) wellfounded_imp_wf:
paulson@13251
   451
     "[|wellfounded(M,r); relation(r); M(r)|] ==> wf(r)"
paulson@13247
   452
by (blast dest!: relation_field_times_field wellfounded_imp_subset_rvimage
paulson@13247
   453
          intro: wf_rvimage_Ord [THEN wf_subset])
paulson@13247
   454
paulson@13268
   455
lemma (in M_wfrank) wellfounded_on_imp_wf_on:
paulson@13251
   456
     "[|wellfounded_on(M,A,r); relation(r); M(r); M(A)|] ==> wf[A](r)"
paulson@13251
   457
apply (simp add: wellfounded_on_iff_wellfounded wf_on_def)
paulson@13247
   458
apply (rule wellfounded_imp_wf)
paulson@13251
   459
apply (simp_all add: relation_def)
paulson@13247
   460
done
paulson@13247
   461
paulson@13247
   462
paulson@13268
   463
theorem (in M_wfrank) wf_abs [simp]:
paulson@13247
   464
     "[|relation(r); M(r)|] ==> wellfounded(M,r) <-> wf(r)"
paulson@13251
   465
by (blast intro: wellfounded_imp_wf wf_imp_relativized)
paulson@13247
   466
paulson@13268
   467
theorem (in M_wfrank) wf_on_abs [simp]:
paulson@13247
   468
     "[|relation(r); M(r); M(A)|] ==> wellfounded_on(M,A,r) <-> wf[A](r)"
paulson@13251
   469
by (blast intro: wellfounded_on_imp_wf_on wf_on_imp_relativized)
paulson@13247
   470
paulson@13254
   471
paulson@13254
   472
text{*absoluteness for wfrec-defined functions.*}
paulson@13254
   473
paulson@13254
   474
(*first use is_recfun, then M_is_recfun*)
paulson@13254
   475
paulson@13254
   476
lemma (in M_trancl) wfrec_relativize:
paulson@13254
   477
  "[|wf(r); M(a); M(r);  
paulson@13268
   478
     strong_replacement(M, \<lambda>x z. \<exists>y[M]. \<exists>g[M].
paulson@13254
   479
          pair(M,x,y,z) & 
paulson@13254
   480
          is_recfun(r^+, x, \<lambda>x f. H(x, restrict(f, r -`` {x})), g) & 
paulson@13254
   481
          y = H(x, restrict(g, r -`` {x}))); 
paulson@13254
   482
     \<forall>x[M]. \<forall>g[M]. function(g) --> M(H(x,g))|] 
paulson@13254
   483
   ==> wfrec(r,a,H) = z <-> 
paulson@13268
   484
       (\<exists>f[M]. is_recfun(r^+, a, \<lambda>x f. H(x, restrict(f, r -`` {x})), f) & 
paulson@13254
   485
            z = H(a,restrict(f,r-``{a})))"
paulson@13254
   486
apply (frule wf_trancl) 
paulson@13254
   487
apply (simp add: wftrec_def wfrec_def, safe)
paulson@13254
   488
 apply (frule wf_exists_is_recfun 
paulson@13254
   489
              [of concl: "r^+" a "\<lambda>x f. H(x, restrict(f, r -`` {x}))"]) 
paulson@13254
   490
      apply (simp_all add: trans_trancl function_restrictI trancl_subset_times)
paulson@13268
   491
 apply (clarify, rule_tac x=x in rexI) 
paulson@13254
   492
 apply (simp_all add: the_recfun_eq trans_trancl trancl_subset_times)
paulson@13254
   493
done
paulson@13254
   494
paulson@13254
   495
paulson@13254
   496
text{*Assuming @{term r} is transitive simplifies the occurrences of @{text H}.
paulson@13254
   497
      The premise @{term "relation(r)"} is necessary 
paulson@13254
   498
      before we can replace @{term "r^+"} by @{term r}. *}
paulson@13254
   499
theorem (in M_trancl) trans_wfrec_relativize:
paulson@13254
   500
  "[|wf(r);  trans(r);  relation(r);  M(r);  M(a);
paulson@13293
   501
     strong_replacement(M, \<lambda>x z. \<exists>y[M]. 
paulson@13293
   502
                pair(M,x,y,z) & (\<exists>g[M]. is_recfun(r,x,H,g) & y = H(x,g))); 
paulson@13254
   503
     \<forall>x[M]. \<forall>g[M]. function(g) --> M(H(x,g))|] 
paulson@13268
   504
   ==> wfrec(r,a,H) = z <-> (\<exists>f[M]. is_recfun(r,a,H,f) & z = H(a,f))" 
paulson@13254
   505
by (simp cong: is_recfun_cong
paulson@13254
   506
         add: wfrec_relativize trancl_eq_r
paulson@13254
   507
               is_recfun_restrict_idem domain_restrict_idem)
paulson@13254
   508
paulson@13254
   509
paulson@13254
   510
lemma (in M_trancl) trans_eq_pair_wfrec_iff:
paulson@13254
   511
  "[|wf(r);  trans(r); relation(r); M(r);  M(y); 
paulson@13293
   512
     strong_replacement(M, \<lambda>x z. \<exists>y[M]. 
paulson@13293
   513
                pair(M,x,y,z) & (\<exists>g[M]. is_recfun(r,x,H,g) & y = H(x,g))); 
paulson@13254
   514
     \<forall>x[M]. \<forall>g[M]. function(g) --> M(H(x,g))|] 
paulson@13254
   515
   ==> y = <x, wfrec(r, x, H)> <-> 
paulson@13268
   516
       (\<exists>f[M]. is_recfun(r,x,H,f) & y = <x, H(x,f)>)"
paulson@13293
   517
apply safe 
paulson@13293
   518
 apply (simp add: trans_wfrec_relativize [THEN iff_sym, of concl: _ x]) 
paulson@13254
   519
txt{*converse direction*}
paulson@13254
   520
apply (rule sym)
paulson@13254
   521
apply (simp add: trans_wfrec_relativize, blast) 
paulson@13254
   522
done
paulson@13254
   523
paulson@13254
   524
paulson@13254
   525
subsection{*M is closed under well-founded recursion*}
paulson@13254
   526
paulson@13254
   527
text{*Lemma with the awkward premise mentioning @{text wfrec}.*}
paulson@13268
   528
lemma (in M_wfrank) wfrec_closed_lemma [rule_format]:
paulson@13254
   529
     "[|wf(r); M(r); 
paulson@13254
   530
        strong_replacement(M, \<lambda>x y. y = \<langle>x, wfrec(r, x, H)\<rangle>);
paulson@13254
   531
        \<forall>x[M]. \<forall>g[M]. function(g) --> M(H(x,g)) |] 
paulson@13254
   532
      ==> M(a) --> M(wfrec(r,a,H))"
paulson@13254
   533
apply (rule_tac a=a in wf_induct, assumption+)
paulson@13254
   534
apply (subst wfrec, assumption, clarify)
paulson@13254
   535
apply (drule_tac x1=x and x="\<lambda>x\<in>r -`` {x}. wfrec(r, x, H)" 
paulson@13254
   536
       in rspec [THEN rspec]) 
paulson@13254
   537
apply (simp_all add: function_lam) 
paulson@13254
   538
apply (blast intro: dest: pair_components_in_M ) 
paulson@13254
   539
done
paulson@13254
   540
paulson@13254
   541
text{*Eliminates one instance of replacement.*}
paulson@13268
   542
lemma (in M_wfrank) wfrec_replacement_iff:
paulson@13268
   543
     "strong_replacement(M, \<lambda>x z. \<exists>y[M]. \<exists>g[M]. 
paulson@13254
   544
                pair(M,x,y,z) & is_recfun(r,x,H,g) & y = H(x,g)) <->
paulson@13254
   545
      strong_replacement(M, 
paulson@13268
   546
           \<lambda>x y. \<exists>f[M]. is_recfun(r,x,H,f) & y = <x, H(x,f)>)"
paulson@13254
   547
apply simp 
paulson@13254
   548
apply (rule strong_replacement_cong, blast) 
paulson@13254
   549
done
paulson@13254
   550
paulson@13254
   551
text{*Useful version for transitive relations*}
paulson@13268
   552
theorem (in M_wfrank) trans_wfrec_closed:
paulson@13254
   553
     "[|wf(r); trans(r); relation(r); M(r); M(a);
paulson@13254
   554
        strong_replacement(M, 
paulson@13268
   555
             \<lambda>x z. \<exists>y[M]. \<exists>g[M].
paulson@13254
   556
                    pair(M,x,y,z) & is_recfun(r,x,H,g) & y = H(x,g)); 
paulson@13254
   557
        \<forall>x[M]. \<forall>g[M]. function(g) --> M(H(x,g)) |] 
paulson@13254
   558
      ==> M(wfrec(r,a,H))"
paulson@13254
   559
apply (frule wfrec_replacement_iff [THEN iffD1]) 
paulson@13254
   560
apply (rule wfrec_closed_lemma, assumption+) 
paulson@13254
   561
apply (simp_all add: wfrec_replacement_iff trans_eq_pair_wfrec_iff) 
paulson@13254
   562
done
paulson@13254
   563
paulson@13254
   564
section{*Absoluteness without assuming transitivity*}
paulson@13254
   565
lemma (in M_trancl) eq_pair_wfrec_iff:
paulson@13254
   566
  "[|wf(r);  M(r);  M(y); 
paulson@13268
   567
     strong_replacement(M, \<lambda>x z. \<exists>y[M]. \<exists>g[M].
paulson@13254
   568
          pair(M,x,y,z) & 
paulson@13254
   569
          is_recfun(r^+, x, \<lambda>x f. H(x, restrict(f, r -`` {x})), g) & 
paulson@13254
   570
          y = H(x, restrict(g, r -`` {x}))); 
paulson@13254
   571
     \<forall>x[M]. \<forall>g[M]. function(g) --> M(H(x,g))|] 
paulson@13254
   572
   ==> y = <x, wfrec(r, x, H)> <-> 
paulson@13268
   573
       (\<exists>f[M]. is_recfun(r^+, x, \<lambda>x f. H(x, restrict(f, r -`` {x})), f) & 
paulson@13254
   574
            y = <x, H(x,restrict(f,r-``{x}))>)"
paulson@13254
   575
apply safe  
paulson@13293
   576
 apply (simp add: wfrec_relativize [THEN iff_sym, of concl: _ x]) 
paulson@13254
   577
txt{*converse direction*}
paulson@13254
   578
apply (rule sym)
paulson@13254
   579
apply (simp add: wfrec_relativize, blast) 
paulson@13254
   580
done
paulson@13254
   581
paulson@13268
   582
lemma (in M_wfrank) wfrec_closed_lemma [rule_format]:
paulson@13254
   583
     "[|wf(r); M(r); 
paulson@13254
   584
        strong_replacement(M, \<lambda>x y. y = \<langle>x, wfrec(r, x, H)\<rangle>);
paulson@13254
   585
        \<forall>x[M]. \<forall>g[M]. function(g) --> M(H(x,g)) |] 
paulson@13254
   586
      ==> M(a) --> M(wfrec(r,a,H))"
paulson@13254
   587
apply (rule_tac a=a in wf_induct, assumption+)
paulson@13254
   588
apply (subst wfrec, assumption, clarify)
paulson@13254
   589
apply (drule_tac x1=x and x="\<lambda>x\<in>r -`` {x}. wfrec(r, x, H)" 
paulson@13254
   590
       in rspec [THEN rspec]) 
paulson@13254
   591
apply (simp_all add: function_lam) 
paulson@13254
   592
apply (blast intro: dest: pair_components_in_M ) 
paulson@13254
   593
done
paulson@13254
   594
paulson@13254
   595
text{*Full version not assuming transitivity, but maybe not very useful.*}
paulson@13268
   596
theorem (in M_wfrank) wfrec_closed:
paulson@13254
   597
     "[|wf(r); M(r); M(a);
paulson@13268
   598
     strong_replacement(M, \<lambda>x z. \<exists>y[M]. \<exists>g[M].
paulson@13254
   599
          pair(M,x,y,z) & 
paulson@13254
   600
          is_recfun(r^+, x, \<lambda>x f. H(x, restrict(f, r -`` {x})), g) & 
paulson@13254
   601
          y = H(x, restrict(g, r -`` {x}))); 
paulson@13254
   602
        \<forall>x[M]. \<forall>g[M]. function(g) --> M(H(x,g)) |] 
paulson@13254
   603
      ==> M(wfrec(r,a,H))"
paulson@13254
   604
apply (frule wfrec_replacement_iff [THEN iffD1]) 
paulson@13254
   605
apply (rule wfrec_closed_lemma, assumption+) 
paulson@13254
   606
apply (simp_all add: eq_pair_wfrec_iff) 
paulson@13254
   607
done
paulson@13254
   608
paulson@13223
   609
end