src/HOL/Map.thy
author nipkow
Fri Jul 25 17:21:22 2003 +0200 (2003-07-25)
changeset 14134 0fdf5708c7a8
parent 14100 804be4c4b642
child 14180 d2e550609c40
permissions -rw-r--r--
Replaced \<leadsto> by \<rightharpoonup>
nipkow@3981
     1
(*  Title:      HOL/Map.thy
nipkow@3981
     2
    ID:         $Id$
nipkow@3981
     3
    Author:     Tobias Nipkow, based on a theory by David von Oheimb
webertj@13908
     4
    Copyright   1997-2003 TU Muenchen
nipkow@3981
     5
nipkow@3981
     6
The datatype of `maps' (written ~=>); strongly resembles maps in VDM.
nipkow@3981
     7
*)
nipkow@3981
     8
nipkow@13914
     9
header {* Maps *}
nipkow@13914
    10
webertj@13908
    11
theory Map = List:
nipkow@3981
    12
webertj@13908
    13
types ('a,'b) "~=>" = "'a => 'b option" (infixr 0)
oheimb@14100
    14
translations (type) "a ~=> b " <= (type) "a => b option"
nipkow@3981
    15
nipkow@3981
    16
consts
oheimb@5300
    17
chg_map	:: "('b => 'b) => 'a => ('a ~=> 'b) => ('a ~=> 'b)"
oheimb@14100
    18
map_add :: "('a ~=> 'b) => ('a ~=> 'b) => ('a ~=> 'b)" (infixl "++" 100)
oheimb@14100
    19
map_image::"('b => 'c)  => ('a ~=> 'b) => ('a ~=> 'c)" (infixr "`>" 90)
oheimb@14100
    20
restrict_map :: "('a ~=> 'b) => 'a set => ('a ~=> 'b)" ("_|'__" [90, 91] 90)
oheimb@5300
    21
dom	:: "('a ~=> 'b) => 'a set"
oheimb@5300
    22
ran	:: "('a ~=> 'b) => 'b set"
oheimb@5300
    23
map_of	:: "('a * 'b)list => 'a ~=> 'b"
oheimb@5300
    24
map_upds:: "('a ~=> 'b) => 'a list => 'b list => 
nipkow@13910
    25
	    ('a ~=> 'b)"		 ("_/'(_[|->]_/')" [900,0,0]900)
oheimb@14100
    26
map_upd_s::"('a ~=> 'b) => 'a set => 'b => 
oheimb@14100
    27
	    ('a ~=> 'b)"			 ("_/'(_{|->}_/')" [900,0,0]900)
oheimb@14100
    28
map_subst::"('a ~=> 'b) => 'b => 'b => 
oheimb@14100
    29
	    ('a ~=> 'b)"			 ("_/'(_~>_/')"    [900,0,0]900)
nipkow@13910
    30
map_le  :: "('a ~=> 'b) => ('a ~=> 'b) => bool" (infix "\<subseteq>\<^sub>m" 50)
nipkow@13910
    31
oheimb@5300
    32
syntax
nipkow@13890
    33
empty	::  "'a ~=> 'b"
oheimb@5300
    34
map_upd	:: "('a ~=> 'b) => 'a => 'b => ('a ~=> 'b)"
nipkow@13910
    35
					 ("_/'(_/|->_')"   [900,0,0]900)
nipkow@3981
    36
wenzelm@12114
    37
syntax (xsymbols)
nipkow@14134
    38
  "~=>"     :: "[type, type] => type"    (infixr "\<rightharpoonup>" 0)
oheimb@14100
    39
  restrict_map :: "('a ~=> 'b) => 'a set => ('a ~=> 'b)" ("_\<lfloor>_" [90, 91] 90)
oheimb@5300
    40
  map_upd   :: "('a ~=> 'b) => 'a      => 'b      => ('a ~=> 'b)"
webertj@13908
    41
					  ("_/'(_/\<mapsto>/_')"  [900,0,0]900)
oheimb@5300
    42
  map_upds  :: "('a ~=> 'b) => 'a list => 'b list => ('a ~=> 'b)"
webertj@13908
    43
				         ("_/'(_/[\<mapsto>]/_')" [900,0,0]900)
oheimb@14100
    44
  map_upd_s  :: "('a ~=> 'b) => 'a set => 'b => ('a ~=> 'b)"
oheimb@14100
    45
				    		 ("_/'(_/{\<mapsto>}/_')" [900,0,0]900)
oheimb@14100
    46
  map_subst :: "('a ~=> 'b) => 'b => 'b => 
oheimb@14100
    47
	        ('a ~=> 'b)"			 ("_/'(_\<leadsto>_/')"    [900,0,0]900)
oheimb@14100
    48
 "@chg_map" :: "('a ~=> 'b) => 'a => ('b => 'b) => ('a ~=> 'b)"
oheimb@14100
    49
					  ("_/'(_/\<mapsto>\<lambda>_. _')"  [900,0,0,0] 900)
oheimb@5300
    50
oheimb@5300
    51
translations
nipkow@13890
    52
  "empty"    => "_K None"
nipkow@13890
    53
  "empty"    <= "%x. None"
oheimb@5300
    54
oheimb@5300
    55
  "m(a|->b)" == "m(a:=Some b)"
oheimb@14100
    56
  "m(x\<mapsto>\<lambda>y. f)" == "chg_map (\<lambda>y. f) x m"
nipkow@3981
    57
nipkow@3981
    58
defs
webertj@13908
    59
chg_map_def:  "chg_map f a m == case m a of None => m | Some b => m(a|->f b)"
nipkow@3981
    60
oheimb@14100
    61
map_add_def:   "m1++m2 == %x. case m2 x of None => m1 x | Some y => Some y"
oheimb@14100
    62
map_image_def: "f`>m == option_map f o m"
oheimb@14100
    63
restrict_map_def: "m|_A == %x. if x : A then m x else None"
nipkow@14025
    64
nipkow@14025
    65
map_upds_def: "m(xs [|->] ys) == m ++ map_of (rev(zip xs ys))"
oheimb@14100
    66
map_upd_s_def: "m(as{|->}b) == %x. if x : as then Some b else m x"
oheimb@14100
    67
map_subst_def: "m(a~>b)     == %x. if m x = Some a then Some b else m x"
nipkow@3981
    68
webertj@13908
    69
dom_def: "dom(m) == {a. m a ~= None}"
nipkow@14025
    70
ran_def: "ran(m) == {b. EX a. m a = Some b}"
nipkow@3981
    71
nipkow@13910
    72
map_le_def: "m1 \<subseteq>\<^sub>m m2  ==  ALL a : dom m1. m1 a = m2 a"
nipkow@13910
    73
berghofe@5183
    74
primrec
berghofe@5183
    75
  "map_of [] = empty"
oheimb@5300
    76
  "map_of (p#ps) = (map_of ps)(fst p |-> snd p)"
oheimb@5300
    77
webertj@13908
    78
oheimb@14100
    79
subsection {* @{term empty} *}
webertj@13908
    80
nipkow@13910
    81
lemma empty_upd_none[simp]: "empty(x := None) = empty"
webertj@13908
    82
apply (rule ext)
webertj@13908
    83
apply (simp (no_asm))
webertj@13908
    84
done
nipkow@13910
    85
webertj@13908
    86
webertj@13908
    87
(* FIXME: what is this sum_case nonsense?? *)
nipkow@13910
    88
lemma sum_case_empty_empty[simp]: "sum_case empty empty = empty"
webertj@13908
    89
apply (rule ext)
webertj@13908
    90
apply (simp (no_asm) split add: sum.split)
webertj@13908
    91
done
webertj@13908
    92
oheimb@14100
    93
subsection {* @{term map_upd} *}
webertj@13908
    94
webertj@13908
    95
lemma map_upd_triv: "t k = Some x ==> t(k|->x) = t"
webertj@13908
    96
apply (rule ext)
webertj@13908
    97
apply (simp (no_asm_simp))
webertj@13908
    98
done
webertj@13908
    99
nipkow@13910
   100
lemma map_upd_nonempty[simp]: "t(k|->x) ~= empty"
webertj@13908
   101
apply safe
webertj@13908
   102
apply (drule_tac x = "k" in fun_cong)
webertj@13908
   103
apply (simp (no_asm_use))
webertj@13908
   104
done
webertj@13908
   105
oheimb@14100
   106
lemma map_upd_eqD1: "m(a\<mapsto>x) = n(a\<mapsto>y) \<Longrightarrow> x = y"
oheimb@14100
   107
by (drule fun_cong [of _ _ a], auto)
oheimb@14100
   108
oheimb@14100
   109
lemma map_upd_Some_unfold: 
oheimb@14100
   110
  "((m(a|->b)) x = Some y) = (x = a \<and> b = y \<or> x \<noteq> a \<and> m x = Some y)"
oheimb@14100
   111
by auto
oheimb@14100
   112
webertj@13908
   113
lemma finite_range_updI: "finite (range f) ==> finite (range (f(a|->b)))"
webertj@13908
   114
apply (unfold image_def)
webertj@13908
   115
apply (simp (no_asm_use) add: full_SetCompr_eq)
webertj@13908
   116
apply (rule finite_subset)
webertj@13908
   117
prefer 2 apply (assumption)
webertj@13908
   118
apply auto
webertj@13908
   119
done
webertj@13908
   120
webertj@13908
   121
webertj@13908
   122
(* FIXME: what is this sum_case nonsense?? *)
oheimb@14100
   123
subsection {* @{term sum_case} and @{term empty}/@{term map_upd} *}
webertj@13908
   124
nipkow@13910
   125
lemma sum_case_map_upd_empty[simp]:
nipkow@13910
   126
 "sum_case (m(k|->y)) empty =  (sum_case m empty)(Inl k|->y)"
webertj@13908
   127
apply (rule ext)
webertj@13908
   128
apply (simp (no_asm) split add: sum.split)
webertj@13908
   129
done
webertj@13908
   130
nipkow@13910
   131
lemma sum_case_empty_map_upd[simp]:
nipkow@13910
   132
 "sum_case empty (m(k|->y)) =  (sum_case empty m)(Inr k|->y)"
webertj@13908
   133
apply (rule ext)
webertj@13908
   134
apply (simp (no_asm) split add: sum.split)
webertj@13908
   135
done
webertj@13908
   136
nipkow@13910
   137
lemma sum_case_map_upd_map_upd[simp]:
nipkow@13910
   138
 "sum_case (m1(k1|->y1)) (m2(k2|->y2)) = (sum_case (m1(k1|->y1)) m2)(Inr k2|->y2)"
webertj@13908
   139
apply (rule ext)
webertj@13908
   140
apply (simp (no_asm) split add: sum.split)
webertj@13908
   141
done
webertj@13908
   142
webertj@13908
   143
oheimb@14100
   144
subsection {* @{term chg_map} *}
webertj@13908
   145
nipkow@13910
   146
lemma chg_map_new[simp]: "m a = None   ==> chg_map f a m = m"
webertj@13908
   147
apply (unfold chg_map_def)
webertj@13908
   148
apply auto
webertj@13908
   149
done
webertj@13908
   150
nipkow@13910
   151
lemma chg_map_upd[simp]: "m a = Some b ==> chg_map f a m = m(a|->f b)"
webertj@13908
   152
apply (unfold chg_map_def)
webertj@13908
   153
apply auto
webertj@13908
   154
done
webertj@13908
   155
webertj@13908
   156
oheimb@14100
   157
subsection {* @{term map_of} *}
webertj@13908
   158
webertj@13908
   159
lemma map_of_SomeD [rule_format (no_asm)]: "map_of xs k = Some y --> (k,y):set xs"
webertj@13908
   160
apply (induct_tac "xs")
webertj@13908
   161
apply  auto
webertj@13908
   162
done
webertj@13908
   163
webertj@13908
   164
lemma map_of_mapk_SomeI [rule_format (no_asm)]: "inj f ==> map_of t k = Some x -->  
webertj@13908
   165
   map_of (map (split (%k. Pair (f k))) t) (f k) = Some x"
webertj@13908
   166
apply (induct_tac "t")
webertj@13908
   167
apply  (auto simp add: inj_eq)
webertj@13908
   168
done
webertj@13908
   169
webertj@13908
   170
lemma weak_map_of_SomeI [rule_format (no_asm)]: "(k, x) : set l --> (? x. map_of l k = Some x)"
webertj@13908
   171
apply (induct_tac "l")
webertj@13908
   172
apply  auto
webertj@13908
   173
done
webertj@13908
   174
webertj@13908
   175
lemma map_of_filter_in: 
webertj@13908
   176
"[| map_of xs k = Some z; P k z |] ==> map_of (filter (split P) xs) k = Some z"
webertj@13908
   177
apply (rule mp)
webertj@13908
   178
prefer 2 apply (assumption)
webertj@13908
   179
apply (erule thin_rl)
webertj@13908
   180
apply (induct_tac "xs")
webertj@13908
   181
apply  auto
webertj@13908
   182
done
webertj@13908
   183
webertj@13908
   184
lemma finite_range_map_of: "finite (range (map_of l))"
webertj@13908
   185
apply (induct_tac "l")
webertj@13908
   186
apply  (simp_all (no_asm) add: image_constant)
webertj@13908
   187
apply (rule finite_subset)
webertj@13908
   188
prefer 2 apply (assumption)
webertj@13908
   189
apply auto
webertj@13908
   190
done
webertj@13908
   191
webertj@13908
   192
lemma map_of_map: "map_of (map (%(a,b). (a,f b)) xs) x = option_map f (map_of xs x)"
webertj@13908
   193
apply (induct_tac "xs")
webertj@13908
   194
apply auto
webertj@13908
   195
done
webertj@13908
   196
webertj@13908
   197
oheimb@14100
   198
subsection {* @{term option_map} related *}
webertj@13908
   199
nipkow@13910
   200
lemma option_map_o_empty[simp]: "option_map f o empty = empty"
webertj@13908
   201
apply (rule ext)
webertj@13908
   202
apply (simp (no_asm))
webertj@13908
   203
done
webertj@13908
   204
nipkow@13910
   205
lemma option_map_o_map_upd[simp]:
nipkow@13910
   206
 "option_map f o m(a|->b) = (option_map f o m)(a|->f b)"
webertj@13908
   207
apply (rule ext)
webertj@13908
   208
apply (simp (no_asm))
webertj@13908
   209
done
webertj@13908
   210
webertj@13908
   211
oheimb@14100
   212
subsection {* @{text "++"} *}
webertj@13908
   213
nipkow@14025
   214
lemma map_add_empty[simp]: "m ++ empty = m"
nipkow@14025
   215
apply (unfold map_add_def)
webertj@13908
   216
apply (simp (no_asm))
webertj@13908
   217
done
webertj@13908
   218
nipkow@14025
   219
lemma empty_map_add[simp]: "empty ++ m = m"
nipkow@14025
   220
apply (unfold map_add_def)
webertj@13908
   221
apply (rule ext)
webertj@13908
   222
apply (simp split add: option.split)
webertj@13908
   223
done
webertj@13908
   224
nipkow@14025
   225
lemma map_add_assoc[simp]: "m1 ++ (m2 ++ m3) = (m1 ++ m2) ++ m3"
nipkow@14025
   226
apply(rule ext)
nipkow@14025
   227
apply(simp add: map_add_def split:option.split)
nipkow@14025
   228
done
nipkow@14025
   229
nipkow@14025
   230
lemma map_add_Some_iff: 
webertj@13908
   231
 "((m ++ n) k = Some x) = (n k = Some x | n k = None & m k = Some x)"
nipkow@14025
   232
apply (unfold map_add_def)
webertj@13908
   233
apply (simp (no_asm) split add: option.split)
webertj@13908
   234
done
webertj@13908
   235
nipkow@14025
   236
lemmas map_add_SomeD = map_add_Some_iff [THEN iffD1, standard]
nipkow@14025
   237
declare map_add_SomeD [dest!]
webertj@13908
   238
nipkow@14025
   239
lemma map_add_find_right[simp]: "!!xx. n k = Some xx ==> (m ++ n) k = Some xx"
nipkow@14025
   240
apply (subst map_add_Some_iff)
webertj@13908
   241
apply fast
webertj@13908
   242
done
webertj@13908
   243
nipkow@14025
   244
lemma map_add_None [iff]: "((m ++ n) k = None) = (n k = None & m k = None)"
nipkow@14025
   245
apply (unfold map_add_def)
webertj@13908
   246
apply (simp (no_asm) split add: option.split)
webertj@13908
   247
done
webertj@13908
   248
nipkow@14025
   249
lemma map_add_upd[simp]: "f ++ g(x|->y) = (f ++ g)(x|->y)"
nipkow@14025
   250
apply (unfold map_add_def)
webertj@13908
   251
apply (rule ext)
webertj@13908
   252
apply auto
webertj@13908
   253
done
webertj@13908
   254
nipkow@14025
   255
lemma map_of_append[simp]: "map_of (xs@ys) = map_of ys ++ map_of xs"
nipkow@14025
   256
apply (unfold map_add_def)
webertj@13908
   257
apply (induct_tac "xs")
webertj@13908
   258
apply (simp (no_asm))
webertj@13908
   259
apply (rule ext)
webertj@13908
   260
apply (simp (no_asm_simp) split add: option.split)
webertj@13908
   261
done
webertj@13908
   262
webertj@13908
   263
declare fun_upd_apply [simp del]
nipkow@14025
   264
lemma finite_range_map_of_map_add:
nipkow@14025
   265
 "finite (range f) ==> finite (range (f ++ map_of l))"
webertj@13908
   266
apply (induct_tac "l")
webertj@13908
   267
apply  auto
webertj@13908
   268
apply (erule finite_range_updI)
webertj@13908
   269
done
webertj@13908
   270
declare fun_upd_apply [simp]
webertj@13908
   271
oheimb@14100
   272
subsection {* @{term map_image} *}
webertj@13908
   273
oheimb@14100
   274
lemma map_image_empty [simp]: "f`>empty = empty" 
oheimb@14100
   275
by (auto simp: map_image_def empty_def)
oheimb@14100
   276
oheimb@14100
   277
lemma map_image_upd [simp]: "f`>m(a|->b) = (f`>m)(a|->f b)" 
oheimb@14100
   278
apply (auto simp: map_image_def fun_upd_def)
oheimb@14100
   279
by (rule ext, auto)
oheimb@14100
   280
oheimb@14100
   281
subsection {* @{term restrict_map} *}
oheimb@14100
   282
oheimb@14100
   283
lemma restrict_in [simp]: "x \<in> A \<Longrightarrow> (m\<lfloor>A) x = m x"
oheimb@14100
   284
by (auto simp: restrict_map_def)
oheimb@14100
   285
oheimb@14100
   286
lemma restrict_out [simp]: "x \<notin> A \<Longrightarrow> (m\<lfloor>A) x = None"
oheimb@14100
   287
by (auto simp: restrict_map_def)
oheimb@14100
   288
oheimb@14100
   289
lemma ran_restrictD: "y \<in> ran (m\<lfloor>A) \<Longrightarrow> \<exists>x\<in>A. m x = Some y"
oheimb@14100
   290
by (auto simp: restrict_map_def ran_def split: split_if_asm)
oheimb@14100
   291
oheimb@14100
   292
lemma dom_valF_restrict [simp]: "dom (m\<lfloor>A) = dom m \<inter> A"
oheimb@14100
   293
by (auto simp: restrict_map_def dom_def split: split_if_asm)
oheimb@14100
   294
oheimb@14100
   295
lemma restrict_upd_same [simp]: "m(x\<mapsto>y)\<lfloor>(-{x}) = m\<lfloor>(-{x})"
oheimb@14100
   296
by (rule ext, auto simp: restrict_map_def)
oheimb@14100
   297
oheimb@14100
   298
lemma restrict_restrict [simp]: "m\<lfloor>A\<lfloor>B = m\<lfloor>(A\<inter>B)"
oheimb@14100
   299
by (rule ext, auto simp: restrict_map_def)
oheimb@14100
   300
oheimb@14100
   301
oheimb@14100
   302
subsection {* @{term map_upds} *}
nipkow@14025
   303
nipkow@14025
   304
lemma map_upds_Nil1[simp]: "m([] [|->] bs) = m"
nipkow@14025
   305
by(simp add:map_upds_def)
nipkow@14025
   306
nipkow@14025
   307
lemma map_upds_Nil2[simp]: "m(as [|->] []) = m"
nipkow@14025
   308
by(simp add:map_upds_def)
nipkow@14025
   309
nipkow@14025
   310
lemma map_upds_Cons[simp]: "m(a#as [|->] b#bs) = (m(a|->b))(as[|->]bs)"
nipkow@14025
   311
by(simp add:map_upds_def)
nipkow@14025
   312
nipkow@14025
   313
nipkow@14025
   314
lemma map_upd_upds_conv_if: "!!x y ys f.
nipkow@14025
   315
 (f(x|->y))(xs [|->] ys) =
nipkow@14025
   316
 (if x : set(take (length ys) xs) then f(xs [|->] ys)
nipkow@14025
   317
                                  else (f(xs [|->] ys))(x|->y))"
nipkow@14025
   318
apply(induct xs)
nipkow@14025
   319
 apply simp
nipkow@14025
   320
apply(case_tac ys)
nipkow@14025
   321
 apply(auto split:split_if simp:fun_upd_twist)
nipkow@14025
   322
done
nipkow@14025
   323
nipkow@14025
   324
lemma map_upds_twist [simp]:
nipkow@14025
   325
 "a ~: set as ==> m(a|->b)(as[|->]bs) = m(as[|->]bs)(a|->b)"
nipkow@14025
   326
apply(insert set_take_subset)
nipkow@14025
   327
apply (fastsimp simp add: map_upd_upds_conv_if)
nipkow@14025
   328
done
nipkow@14025
   329
nipkow@14025
   330
lemma map_upds_apply_nontin[simp]:
nipkow@14025
   331
 "!!ys. x ~: set xs ==> (f(xs[|->]ys)) x = f x"
nipkow@14025
   332
apply(induct xs)
nipkow@14025
   333
 apply simp
nipkow@14025
   334
apply(case_tac ys)
nipkow@14025
   335
 apply(auto simp: map_upd_upds_conv_if)
nipkow@14025
   336
done
nipkow@14025
   337
oheimb@14100
   338
subsection {* @{term map_upd_s} *}
oheimb@14100
   339
oheimb@14100
   340
lemma map_upd_s_apply [simp]: 
oheimb@14100
   341
  "(m(as{|->}b)) x = (if x : as then Some b else m x)"
oheimb@14100
   342
by (simp add: map_upd_s_def)
oheimb@14100
   343
oheimb@14100
   344
lemma map_subst_apply [simp]: 
oheimb@14100
   345
  "(m(a~>b)) x = (if m x = Some a then Some b else m x)" 
oheimb@14100
   346
by (simp add: map_subst_def)
oheimb@14100
   347
oheimb@14100
   348
subsection {* @{term dom} *}
webertj@13908
   349
webertj@13908
   350
lemma domI: "m a = Some b ==> a : dom m"
webertj@13908
   351
apply (unfold dom_def)
webertj@13908
   352
apply auto
webertj@13908
   353
done
oheimb@14100
   354
(* declare domI [intro]? *)
webertj@13908
   355
webertj@13908
   356
lemma domD: "a : dom m ==> ? b. m a = Some b"
webertj@13908
   357
apply (unfold dom_def)
webertj@13908
   358
apply auto
webertj@13908
   359
done
webertj@13908
   360
nipkow@13910
   361
lemma domIff[iff]: "(a : dom m) = (m a ~= None)"
webertj@13908
   362
apply (unfold dom_def)
webertj@13908
   363
apply auto
webertj@13908
   364
done
webertj@13908
   365
declare domIff [simp del]
webertj@13908
   366
nipkow@13910
   367
lemma dom_empty[simp]: "dom empty = {}"
webertj@13908
   368
apply (unfold dom_def)
webertj@13908
   369
apply (simp (no_asm))
webertj@13908
   370
done
webertj@13908
   371
nipkow@13910
   372
lemma dom_fun_upd[simp]:
nipkow@13910
   373
 "dom(f(x := y)) = (if y=None then dom f - {x} else insert x (dom f))"
nipkow@13910
   374
by (simp add:dom_def) blast
webertj@13908
   375
nipkow@13937
   376
lemma dom_map_of: "dom(map_of xys) = {x. \<exists>y. (x,y) : set xys}"
nipkow@13937
   377
apply(induct xys)
nipkow@13937
   378
apply(auto simp del:fun_upd_apply)
nipkow@13937
   379
done
nipkow@13937
   380
webertj@13908
   381
lemma finite_dom_map_of: "finite (dom (map_of l))"
webertj@13908
   382
apply (unfold dom_def)
webertj@13908
   383
apply (induct_tac "l")
webertj@13908
   384
apply (auto simp add: insert_Collect [symmetric])
webertj@13908
   385
done
webertj@13908
   386
nipkow@14025
   387
lemma dom_map_upds[simp]:
nipkow@14025
   388
 "!!m ys. dom(m(xs[|->]ys)) = set(take (length ys) xs) Un dom m"
nipkow@14025
   389
apply(induct xs)
nipkow@14025
   390
 apply simp
nipkow@14025
   391
apply(case_tac ys)
nipkow@14025
   392
 apply auto
nipkow@14025
   393
done
nipkow@13910
   394
nipkow@14025
   395
lemma dom_map_add[simp]: "dom(m++n) = dom n Un dom m"
webertj@13908
   396
apply (unfold dom_def)
webertj@13908
   397
apply auto
webertj@13908
   398
done
nipkow@13910
   399
nipkow@13910
   400
lemma dom_overwrite[simp]:
nipkow@13910
   401
 "dom(f(g|A)) = (dom f  - {a. a : A - dom g}) Un {a. a : A Int dom g}"
nipkow@13910
   402
by(auto simp add: dom_def overwrite_def)
webertj@13908
   403
nipkow@14027
   404
lemma map_add_comm: "dom m1 \<inter> dom m2 = {} \<Longrightarrow> m1++m2 = m2++m1"
nipkow@14027
   405
apply(rule ext)
nipkow@14027
   406
apply(fastsimp simp:map_add_def split:option.split)
nipkow@14027
   407
done
nipkow@14027
   408
oheimb@14100
   409
subsection {* @{term ran} *}
oheimb@14100
   410
oheimb@14100
   411
lemma ranI: "m a = Some b ==> b : ran m" 
oheimb@14100
   412
by (auto simp add: ran_def)
oheimb@14100
   413
(* declare ranI [intro]? *)
webertj@13908
   414
nipkow@13910
   415
lemma ran_empty[simp]: "ran empty = {}"
webertj@13908
   416
apply (unfold ran_def)
webertj@13908
   417
apply (simp (no_asm))
webertj@13908
   418
done
webertj@13908
   419
nipkow@13910
   420
lemma ran_map_upd[simp]: "m a = None ==> ran(m(a|->b)) = insert b (ran m)"
webertj@13908
   421
apply (unfold ran_def)
webertj@13908
   422
apply auto
webertj@13908
   423
apply (subgoal_tac "~ (aa = a) ")
webertj@13908
   424
apply auto
webertj@13908
   425
done
nipkow@13910
   426
oheimb@14100
   427
subsection {* @{text "map_le"} *}
nipkow@13910
   428
kleing@13912
   429
lemma map_le_empty [simp]: "empty \<subseteq>\<^sub>m g"
nipkow@13910
   430
by(simp add:map_le_def)
nipkow@13910
   431
nipkow@13910
   432
lemma map_le_upd[simp]: "f \<subseteq>\<^sub>m g ==> f(a := b) \<subseteq>\<^sub>m g(a := b)"
nipkow@13910
   433
by(fastsimp simp add:map_le_def)
nipkow@13910
   434
nipkow@13910
   435
lemma map_le_upds[simp]:
nipkow@13910
   436
 "!!f g bs. f \<subseteq>\<^sub>m g ==> f(as [|->] bs) \<subseteq>\<^sub>m g(as [|->] bs)"
nipkow@14025
   437
apply(induct as)
nipkow@14025
   438
 apply simp
nipkow@14025
   439
apply(case_tac bs)
nipkow@14025
   440
 apply auto
nipkow@14025
   441
done
webertj@13908
   442
webertj@14033
   443
lemma map_le_implies_dom_le: "(f \<subseteq>\<^sub>m g) \<Longrightarrow> (dom f \<subseteq> dom g)"
webertj@14033
   444
  by (fastsimp simp add: map_le_def dom_def)
webertj@14033
   445
webertj@14033
   446
lemma map_le_refl [simp]: "f \<subseteq>\<^sub>m f"
webertj@14033
   447
  by (simp add: map_le_def)
webertj@14033
   448
webertj@14033
   449
lemma map_le_trans: "\<lbrakk> f \<subseteq>\<^sub>m g; g \<subseteq>\<^sub>m h \<rbrakk> \<Longrightarrow> f \<subseteq>\<^sub>m h"
webertj@14033
   450
  apply (clarsimp simp add: map_le_def)
webertj@14033
   451
  apply (drule_tac x="a" in bspec, fastsimp)+
webertj@14033
   452
  apply assumption
webertj@14033
   453
done
webertj@14033
   454
webertj@14033
   455
lemma map_le_antisym: "\<lbrakk> f \<subseteq>\<^sub>m g; g \<subseteq>\<^sub>m f \<rbrakk> \<Longrightarrow> f = g"
webertj@14033
   456
  apply (unfold map_le_def)
webertj@14033
   457
  apply (rule ext)
webertj@14033
   458
  apply (case_tac "x \<in> dom f")
webertj@14033
   459
    apply simp
webertj@14033
   460
  apply (case_tac "x \<in> dom g")
webertj@14033
   461
    apply simp
webertj@14033
   462
  apply fastsimp
webertj@14033
   463
done
webertj@14033
   464
webertj@14033
   465
lemma map_le_map_add [simp]: "f \<subseteq>\<^sub>m (g ++ f)"
webertj@14033
   466
  by (fastsimp simp add: map_le_def)
webertj@14033
   467
nipkow@3981
   468
end