src/HOL/Hahn_Banach/README.html
author hoelzl
Thu Sep 02 10:14:32 2010 +0200 (2010-09-02)
changeset 39072 1030b1a166ef
parent 36862 952b2b102a0a
permissions -rw-r--r--
Add lessThan_Suc_eq_insert_0
webertj@15283
     1
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
webertj@15283
     2
webertj@15582
     3
<HTML>
webertj@15582
     4
webertj@15582
     5
<HEAD>
webertj@15582
     6
  <meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
wenzelm@31795
     7
  <TITLE>HOL/Hahn_Banach/README</TITLE>
webertj@15582
     8
</HEAD>
webertj@15582
     9
webertj@15582
    10
<BODY>
wenzelm@7655
    11
webertj@15283
    12
<H3>The Hahn-Banach Theorem for Real Vector Spaces (Isabelle/Isar)</H3>
wenzelm@7655
    13
webertj@15283
    14
Author: Gertrud Bauer, Technische Universit&auml;t M&uuml;nchen<P>
wenzelm@7655
    15
wenzelm@7655
    16
This directory contains the proof of the Hahn-Banach theorem for real vectorspaces,
wenzelm@7655
    17
following H. Heuser, Funktionalanalysis, p. 228 -232.
wenzelm@7655
    18
The Hahn-Banach theorem is one of the fundamental theorems of functioal analysis.
wenzelm@7655
    19
It is a conclusion of Zorn's lemma.<P>
wenzelm@7655
    20
wenzelm@7655
    21
Two different formaulations of the theorem are presented, one for general real vectorspaces
wenzelm@7655
    22
and its application to normed vectorspaces. <P>
wenzelm@7655
    23
wenzelm@7655
    24
The theorem says, that every continous linearform, defined on arbitrary subspaces
wenzelm@7655
    25
(not only one-dimensional subspaces), can be extended to a continous linearform on
wenzelm@7655
    26
the whole vectorspace.
wenzelm@7655
    27
wenzelm@7655
    28
wenzelm@7655
    29
<HR>
wenzelm@7655
    30
wenzelm@7655
    31
<ADDRESS>
wenzelm@7655
    32
<A NAME="bauerg@in.tum.de" HREF="mailto:bauerg@in.tum.de">bauerg@in.tum.de</A>
wenzelm@7655
    33
</ADDRESS>
wenzelm@7655
    34
webertj@15582
    35
</BODY>
webertj@15582
    36
</HTML>