nipkow@13095
|
1 |
(* Title: HOL/IMP/Compiler.thy
|
nipkow@13095
|
2 |
ID: $Id$
|
nipkow@13095
|
3 |
Author: Tobias Nipkow, TUM
|
nipkow@13095
|
4 |
Copyright 1996 TUM
|
nipkow@13095
|
5 |
|
nipkow@13095
|
6 |
This is an early version of the compiler, where the abstract machine
|
nipkow@13095
|
7 |
has an explicit pc. This turned out to be awkward, and a second
|
nipkow@13095
|
8 |
development was started. See Machines.thy and Compiler.thy.
|
nipkow@13095
|
9 |
*)
|
nipkow@13095
|
10 |
|
nipkow@13095
|
11 |
header "A Simple Compiler"
|
nipkow@13095
|
12 |
|
haftmann@16417
|
13 |
theory Compiler0 imports Natural begin
|
nipkow@13095
|
14 |
|
nipkow@13095
|
15 |
subsection "An abstract, simplistic machine"
|
nipkow@13095
|
16 |
|
nipkow@13095
|
17 |
text {* There are only three instructions: *}
|
nipkow@13095
|
18 |
datatype instr = ASIN loc aexp | JMPF bexp nat | JMPB nat
|
nipkow@13095
|
19 |
|
nipkow@13095
|
20 |
text {* We describe execution of programs in the machine by
|
nipkow@13095
|
21 |
an operational (small step) semantics:
|
nipkow@13095
|
22 |
*}
|
nipkow@13095
|
23 |
|
berghofe@23746
|
24 |
inductive_set
|
berghofe@23746
|
25 |
stepa1 :: "instr list \<Rightarrow> ((state\<times>nat) \<times> (state\<times>nat))set"
|
berghofe@23746
|
26 |
and stepa1' :: "[instr list,state,nat,state,nat] \<Rightarrow> bool"
|
berghofe@23746
|
27 |
("_ \<turnstile> (3\<langle>_,_\<rangle>/ -1\<rightarrow> \<langle>_,_\<rangle>)" [50,0,0,0,0] 50)
|
berghofe@23746
|
28 |
for P :: "instr list"
|
berghofe@23746
|
29 |
where
|
berghofe@23746
|
30 |
"P \<turnstile> \<langle>s,m\<rangle> -1\<rightarrow> \<langle>t,n\<rangle> == ((s,m),t,n) : stepa1 P"
|
berghofe@23746
|
31 |
| ASIN[simp]:
|
berghofe@23746
|
32 |
"\<lbrakk> n<size P; P!n = ASIN x a \<rbrakk> \<Longrightarrow> P \<turnstile> \<langle>s,n\<rangle> -1\<rightarrow> \<langle>s[x\<mapsto> a s],Suc n\<rangle>"
|
berghofe@23746
|
33 |
| JMPFT[simp,intro]:
|
berghofe@23746
|
34 |
"\<lbrakk> n<size P; P!n = JMPF b i; b s \<rbrakk> \<Longrightarrow> P \<turnstile> \<langle>s,n\<rangle> -1\<rightarrow> \<langle>s,Suc n\<rangle>"
|
berghofe@23746
|
35 |
| JMPFF[simp,intro]:
|
berghofe@23746
|
36 |
"\<lbrakk> n<size P; P!n = JMPF b i; ~b s; m=n+i \<rbrakk> \<Longrightarrow> P \<turnstile> \<langle>s,n\<rangle> -1\<rightarrow> \<langle>s,m\<rangle>"
|
berghofe@23746
|
37 |
| JMPB[simp]:
|
berghofe@23746
|
38 |
"\<lbrakk> n<size P; P!n = JMPB i; i <= n; j = n-i \<rbrakk> \<Longrightarrow> P \<turnstile> \<langle>s,n\<rangle> -1\<rightarrow> \<langle>s,j\<rangle>"
|
kleing@14565
|
39 |
|
berghofe@23746
|
40 |
abbreviation
|
berghofe@23746
|
41 |
stepa :: "[instr list,state,nat,state,nat] \<Rightarrow> bool"
|
berghofe@23746
|
42 |
("_ \<turnstile>/ (3\<langle>_,_\<rangle>/ -*\<rightarrow> \<langle>_,_\<rangle>)" [50,0,0,0,0] 50) where
|
berghofe@23746
|
43 |
"P \<turnstile> \<langle>s,m\<rangle> -*\<rightarrow> \<langle>t,n\<rangle> == ((s,m),t,n) : ((stepa1 P)^*)"
|
nipkow@13095
|
44 |
|
berghofe@23746
|
45 |
abbreviation
|
berghofe@23746
|
46 |
stepan :: "[instr list,state,nat,nat,state,nat] \<Rightarrow> bool"
|
berghofe@23746
|
47 |
("_ \<turnstile>/ (3\<langle>_,_\<rangle>/ -(_)\<rightarrow> \<langle>_,_\<rangle>)" [50,0,0,0,0,0] 50) where
|
haftmann@30952
|
48 |
"P \<turnstile> \<langle>s,m\<rangle> -(i)\<rightarrow> \<langle>t,n\<rangle> == ((s,m),t,n) : (stepa1 P ^^ i)"
|
nipkow@13095
|
49 |
|
nipkow@13095
|
50 |
subsection "The compiler"
|
nipkow@13095
|
51 |
|
nipkow@13095
|
52 |
consts compile :: "com \<Rightarrow> instr list"
|
nipkow@13095
|
53 |
primrec
|
nipkow@13095
|
54 |
"compile \<SKIP> = []"
|
nipkow@13095
|
55 |
"compile (x:==a) = [ASIN x a]"
|
nipkow@13095
|
56 |
"compile (c1;c2) = compile c1 @ compile c2"
|
nipkow@13095
|
57 |
"compile (\<IF> b \<THEN> c1 \<ELSE> c2) =
|
nipkow@13095
|
58 |
[JMPF b (length(compile c1) + 2)] @ compile c1 @
|
nipkow@13095
|
59 |
[JMPF (%x. False) (length(compile c2)+1)] @ compile c2"
|
nipkow@13095
|
60 |
"compile (\<WHILE> b \<DO> c) = [JMPF b (length(compile c) + 2)] @ compile c @
|
nipkow@13095
|
61 |
[JMPB (length(compile c)+1)]"
|
nipkow@13095
|
62 |
|
nipkow@13095
|
63 |
declare nth_append[simp]
|
nipkow@13095
|
64 |
|
nipkow@13095
|
65 |
subsection "Context lifting lemmas"
|
nipkow@13095
|
66 |
|
wenzelm@18372
|
67 |
text {*
|
nipkow@13095
|
68 |
Some lemmas for lifting an execution into a prefix and suffix
|
nipkow@13095
|
69 |
of instructions; only needed for the first proof.
|
nipkow@13095
|
70 |
*}
|
nipkow@13095
|
71 |
lemma app_right_1:
|
wenzelm@18372
|
72 |
assumes "is1 \<turnstile> \<langle>s1,i1\<rangle> -1\<rightarrow> \<langle>s2,i2\<rangle>"
|
nipkow@13095
|
73 |
shows "is1 @ is2 \<turnstile> \<langle>s1,i1\<rangle> -1\<rightarrow> \<langle>s2,i2\<rangle>"
|
wenzelm@27363
|
74 |
using assms
|
wenzelm@18372
|
75 |
by induct auto
|
nipkow@13095
|
76 |
|
nipkow@13095
|
77 |
lemma app_left_1:
|
wenzelm@18372
|
78 |
assumes "is2 \<turnstile> \<langle>s1,i1\<rangle> -1\<rightarrow> \<langle>s2,i2\<rangle>"
|
nipkow@13095
|
79 |
shows "is1 @ is2 \<turnstile> \<langle>s1,size is1+i1\<rangle> -1\<rightarrow> \<langle>s2,size is1+i2\<rangle>"
|
wenzelm@27363
|
80 |
using assms
|
wenzelm@18372
|
81 |
by induct auto
|
nipkow@13095
|
82 |
|
nipkow@13095
|
83 |
declare rtrancl_induct2 [induct set: rtrancl]
|
nipkow@13095
|
84 |
|
nipkow@13095
|
85 |
lemma app_right:
|
wenzelm@18372
|
86 |
assumes "is1 \<turnstile> \<langle>s1,i1\<rangle> -*\<rightarrow> \<langle>s2,i2\<rangle>"
|
wenzelm@18372
|
87 |
shows "is1 @ is2 \<turnstile> \<langle>s1,i1\<rangle> -*\<rightarrow> \<langle>s2,i2\<rangle>"
|
wenzelm@27363
|
88 |
using assms
|
wenzelm@18372
|
89 |
proof induct
|
wenzelm@18372
|
90 |
show "is1 @ is2 \<turnstile> \<langle>s1,i1\<rangle> -*\<rightarrow> \<langle>s1,i1\<rangle>" by simp
|
wenzelm@18372
|
91 |
next
|
wenzelm@18372
|
92 |
fix s1' i1' s2 i2
|
wenzelm@18372
|
93 |
assume "is1 @ is2 \<turnstile> \<langle>s1,i1\<rangle> -*\<rightarrow> \<langle>s1',i1'\<rangle>"
|
wenzelm@18372
|
94 |
and "is1 \<turnstile> \<langle>s1',i1'\<rangle> -1\<rightarrow> \<langle>s2,i2\<rangle>"
|
wenzelm@18372
|
95 |
thus "is1 @ is2 \<turnstile> \<langle>s1,i1\<rangle> -*\<rightarrow> \<langle>s2,i2\<rangle>"
|
wenzelm@18372
|
96 |
by (blast intro: app_right_1 rtrancl_trans)
|
nipkow@13095
|
97 |
qed
|
nipkow@13095
|
98 |
|
nipkow@13095
|
99 |
lemma app_left:
|
wenzelm@18372
|
100 |
assumes "is2 \<turnstile> \<langle>s1,i1\<rangle> -*\<rightarrow> \<langle>s2,i2\<rangle>"
|
wenzelm@18372
|
101 |
shows "is1 @ is2 \<turnstile> \<langle>s1,size is1+i1\<rangle> -*\<rightarrow> \<langle>s2,size is1+i2\<rangle>"
|
wenzelm@27363
|
102 |
using assms
|
wenzelm@18372
|
103 |
proof induct
|
wenzelm@18372
|
104 |
show "is1 @ is2 \<turnstile> \<langle>s1,length is1 + i1\<rangle> -*\<rightarrow> \<langle>s1,length is1 + i1\<rangle>" by simp
|
wenzelm@18372
|
105 |
next
|
wenzelm@18372
|
106 |
fix s1' i1' s2 i2
|
wenzelm@18372
|
107 |
assume "is1 @ is2 \<turnstile> \<langle>s1,length is1 + i1\<rangle> -*\<rightarrow> \<langle>s1',length is1 + i1'\<rangle>"
|
wenzelm@18372
|
108 |
and "is2 \<turnstile> \<langle>s1',i1'\<rangle> -1\<rightarrow> \<langle>s2,i2\<rangle>"
|
wenzelm@18372
|
109 |
thus "is1 @ is2 \<turnstile> \<langle>s1,length is1 + i1\<rangle> -*\<rightarrow> \<langle>s2,length is1 + i2\<rangle>"
|
wenzelm@18372
|
110 |
by (blast intro: app_left_1 rtrancl_trans)
|
nipkow@13095
|
111 |
qed
|
nipkow@13095
|
112 |
|
nipkow@13095
|
113 |
lemma app_left2:
|
nipkow@13095
|
114 |
"\<lbrakk> is2 \<turnstile> \<langle>s1,i1\<rangle> -*\<rightarrow> \<langle>s2,i2\<rangle>; j1 = size is1+i1; j2 = size is1+i2 \<rbrakk> \<Longrightarrow>
|
wenzelm@18372
|
115 |
is1 @ is2 \<turnstile> \<langle>s1,j1\<rangle> -*\<rightarrow> \<langle>s2,j2\<rangle>"
|
wenzelm@18372
|
116 |
by (simp add: app_left)
|
nipkow@13095
|
117 |
|
nipkow@13095
|
118 |
lemma app1_left:
|
wenzelm@18372
|
119 |
assumes "is \<turnstile> \<langle>s1,i1\<rangle> -*\<rightarrow> \<langle>s2,i2\<rangle>"
|
wenzelm@18372
|
120 |
shows "instr # is \<turnstile> \<langle>s1,Suc i1\<rangle> -*\<rightarrow> \<langle>s2,Suc i2\<rangle>"
|
wenzelm@18372
|
121 |
proof -
|
wenzelm@27363
|
122 |
from app_left [OF assms, of "[instr]"]
|
wenzelm@18372
|
123 |
show ?thesis by simp
|
wenzelm@18372
|
124 |
qed
|
nipkow@13095
|
125 |
|
nipkow@13095
|
126 |
subsection "Compiler correctness"
|
nipkow@13095
|
127 |
|
nipkow@13095
|
128 |
declare rtrancl_into_rtrancl[trans]
|
nipkow@13095
|
129 |
converse_rtrancl_into_rtrancl[trans]
|
nipkow@13095
|
130 |
rtrancl_trans[trans]
|
nipkow@13095
|
131 |
|
nipkow@13095
|
132 |
text {*
|
nipkow@13095
|
133 |
The first proof; The statement is very intuitive,
|
nipkow@13095
|
134 |
but application of induction hypothesis requires the above lifting lemmas
|
nipkow@13095
|
135 |
*}
|
wenzelm@18372
|
136 |
theorem
|
wenzelm@18372
|
137 |
assumes "\<langle>c,s\<rangle> \<longrightarrow>\<^sub>c t"
|
wenzelm@18372
|
138 |
shows "compile c \<turnstile> \<langle>s,0\<rangle> -*\<rightarrow> \<langle>t,length(compile c)\<rangle>" (is "?P c s t")
|
wenzelm@27363
|
139 |
using assms
|
wenzelm@18372
|
140 |
proof induct
|
wenzelm@18372
|
141 |
show "\<And>s. ?P \<SKIP> s s" by simp
|
wenzelm@18372
|
142 |
next
|
wenzelm@18372
|
143 |
show "\<And>a s x. ?P (x :== a) s (s[x\<mapsto> a s])" by force
|
wenzelm@18372
|
144 |
next
|
wenzelm@18372
|
145 |
fix c0 c1 s0 s1 s2
|
wenzelm@18372
|
146 |
assume "?P c0 s0 s1"
|
wenzelm@18372
|
147 |
hence "compile c0 @ compile c1 \<turnstile> \<langle>s0,0\<rangle> -*\<rightarrow> \<langle>s1,length(compile c0)\<rangle>"
|
wenzelm@18372
|
148 |
by (rule app_right)
|
wenzelm@18372
|
149 |
moreover assume "?P c1 s1 s2"
|
wenzelm@18372
|
150 |
hence "compile c0 @ compile c1 \<turnstile> \<langle>s1,length(compile c0)\<rangle> -*\<rightarrow>
|
wenzelm@18372
|
151 |
\<langle>s2,length(compile c0)+length(compile c1)\<rangle>"
|
wenzelm@18372
|
152 |
proof -
|
wenzelm@18372
|
153 |
show "\<And>is1 is2 s1 s2 i2.
|
wenzelm@18372
|
154 |
is2 \<turnstile> \<langle>s1,0\<rangle> -*\<rightarrow> \<langle>s2,i2\<rangle> \<Longrightarrow>
|
wenzelm@18372
|
155 |
is1 @ is2 \<turnstile> \<langle>s1,size is1\<rangle> -*\<rightarrow> \<langle>s2,size is1+i2\<rangle>"
|
wenzelm@18372
|
156 |
using app_left[of _ 0] by simp
|
nipkow@13095
|
157 |
qed
|
wenzelm@18372
|
158 |
ultimately have "compile c0 @ compile c1 \<turnstile> \<langle>s0,0\<rangle> -*\<rightarrow>
|
wenzelm@18372
|
159 |
\<langle>s2,length(compile c0)+length(compile c1)\<rangle>"
|
wenzelm@18372
|
160 |
by (rule rtrancl_trans)
|
wenzelm@18372
|
161 |
thus "?P (c0; c1) s0 s2" by simp
|
wenzelm@18372
|
162 |
next
|
wenzelm@18372
|
163 |
fix b c0 c1 s0 s1
|
wenzelm@18372
|
164 |
let ?comp = "compile(\<IF> b \<THEN> c0 \<ELSE> c1)"
|
wenzelm@18372
|
165 |
assume "b s0" and IH: "?P c0 s0 s1"
|
wenzelm@18372
|
166 |
hence "?comp \<turnstile> \<langle>s0,0\<rangle> -1\<rightarrow> \<langle>s0,1\<rangle>" by auto
|
wenzelm@18372
|
167 |
also from IH
|
wenzelm@18372
|
168 |
have "?comp \<turnstile> \<langle>s0,1\<rangle> -*\<rightarrow> \<langle>s1,length(compile c0)+1\<rangle>"
|
wenzelm@18372
|
169 |
by(auto intro:app1_left app_right)
|
wenzelm@18372
|
170 |
also have "?comp \<turnstile> \<langle>s1,length(compile c0)+1\<rangle> -1\<rightarrow> \<langle>s1,length ?comp\<rangle>"
|
wenzelm@18372
|
171 |
by(auto)
|
wenzelm@18372
|
172 |
finally show "?P (\<IF> b \<THEN> c0 \<ELSE> c1) s0 s1" .
|
wenzelm@18372
|
173 |
next
|
wenzelm@18372
|
174 |
fix b c0 c1 s0 s1
|
wenzelm@18372
|
175 |
let ?comp = "compile(\<IF> b \<THEN> c0 \<ELSE> c1)"
|
wenzelm@18372
|
176 |
assume "\<not>b s0" and IH: "?P c1 s0 s1"
|
wenzelm@18372
|
177 |
hence "?comp \<turnstile> \<langle>s0,0\<rangle> -1\<rightarrow> \<langle>s0,length(compile c0) + 2\<rangle>" by auto
|
wenzelm@18372
|
178 |
also from IH
|
wenzelm@18372
|
179 |
have "?comp \<turnstile> \<langle>s0,length(compile c0)+2\<rangle> -*\<rightarrow> \<langle>s1,length ?comp\<rangle>"
|
wenzelm@18372
|
180 |
by (force intro!: app_left2 app1_left)
|
wenzelm@18372
|
181 |
finally show "?P (\<IF> b \<THEN> c0 \<ELSE> c1) s0 s1" .
|
wenzelm@18372
|
182 |
next
|
wenzelm@18372
|
183 |
fix b c and s::state
|
wenzelm@18372
|
184 |
assume "\<not>b s"
|
wenzelm@18372
|
185 |
thus "?P (\<WHILE> b \<DO> c) s s" by force
|
wenzelm@18372
|
186 |
next
|
wenzelm@18372
|
187 |
fix b c and s0::state and s1 s2
|
wenzelm@18372
|
188 |
let ?comp = "compile(\<WHILE> b \<DO> c)"
|
wenzelm@18372
|
189 |
assume "b s0" and
|
wenzelm@18372
|
190 |
IHc: "?P c s0 s1" and IHw: "?P (\<WHILE> b \<DO> c) s1 s2"
|
wenzelm@18372
|
191 |
hence "?comp \<turnstile> \<langle>s0,0\<rangle> -1\<rightarrow> \<langle>s0,1\<rangle>" by auto
|
wenzelm@18372
|
192 |
also from IHc
|
wenzelm@18372
|
193 |
have "?comp \<turnstile> \<langle>s0,1\<rangle> -*\<rightarrow> \<langle>s1,length(compile c)+1\<rangle>"
|
wenzelm@18372
|
194 |
by (auto intro: app1_left app_right)
|
wenzelm@18372
|
195 |
also have "?comp \<turnstile> \<langle>s1,length(compile c)+1\<rangle> -1\<rightarrow> \<langle>s1,0\<rangle>" by simp
|
wenzelm@18372
|
196 |
also note IHw
|
wenzelm@18372
|
197 |
finally show "?P (\<WHILE> b \<DO> c) s0 s2".
|
nipkow@13095
|
198 |
qed
|
nipkow@13095
|
199 |
|
nipkow@13095
|
200 |
text {*
|
nipkow@13095
|
201 |
Second proof; statement is generalized to cater for prefixes and suffixes;
|
nipkow@13095
|
202 |
needs none of the lifting lemmas, but instantiations of pre/suffix.
|
nipkow@13095
|
203 |
*}
|
nipkow@13130
|
204 |
(*
|
nipkow@13112
|
205 |
theorem assumes A: "\<langle>c,s\<rangle> \<longrightarrow>\<^sub>c t"
|
nipkow@13112
|
206 |
shows "\<And>a z. a@compile c@z \<turnstile> \<langle>s,size a\<rangle> -*\<rightarrow> \<langle>t,size a + size(compile c)\<rangle>"
|
nipkow@13112
|
207 |
(is "\<And>a z. ?P c s t a z")
|
nipkow@13112
|
208 |
proof -
|
nipkow@13112
|
209 |
from A show "\<And>a z. ?thesis a z"
|
nipkow@13112
|
210 |
proof induct
|
nipkow@13112
|
211 |
case Skip thus ?case by simp
|
nipkow@13112
|
212 |
next
|
nipkow@13112
|
213 |
case Assign thus ?case by (force intro!: ASIN)
|
nipkow@13112
|
214 |
next
|
nipkow@13112
|
215 |
fix c1 c2 s s' s'' a z
|
nipkow@13112
|
216 |
assume IH1: "\<And>a z. ?P c1 s s' a z" and IH2: "\<And>a z. ?P c2 s' s'' a z"
|
nipkow@13112
|
217 |
from IH1 IH2[of "a@compile c1"]
|
nipkow@13112
|
218 |
show "?P (c1;c2) s s'' a z"
|
nipkow@13112
|
219 |
by(simp add:add_assoc[THEN sym])(blast intro:rtrancl_trans)
|
nipkow@13112
|
220 |
next
|
nipkow@13112
|
221 |
(* at this point I gave up converting to structured proofs *)
|
nipkow@13095
|
222 |
(* \<IF> b \<THEN> c0 \<ELSE> c1; case b is true *)
|
nipkow@13095
|
223 |
apply(intro strip)
|
nipkow@13095
|
224 |
(* instantiate assumption sufficiently for later: *)
|
nipkow@13095
|
225 |
apply(erule_tac x = "a@[?I]" in allE)
|
nipkow@13095
|
226 |
apply(simp)
|
nipkow@13095
|
227 |
(* execute JMPF: *)
|
nipkow@13095
|
228 |
apply(rule converse_rtrancl_into_rtrancl)
|
nipkow@13095
|
229 |
apply(force intro!: JMPFT)
|
nipkow@13095
|
230 |
(* execute compile c0: *)
|
nipkow@13095
|
231 |
apply(rule rtrancl_trans)
|
nipkow@13095
|
232 |
apply(erule allE)
|
nipkow@13095
|
233 |
apply assumption
|
nipkow@13095
|
234 |
(* execute JMPF: *)
|
nipkow@13095
|
235 |
apply(rule r_into_rtrancl)
|
nipkow@13095
|
236 |
apply(force intro!: JMPFF)
|
nipkow@13095
|
237 |
(* end of case b is true *)
|
nipkow@13095
|
238 |
apply(intro strip)
|
nipkow@13095
|
239 |
apply(erule_tac x = "a@[?I]@compile c0@[?J]" in allE)
|
nipkow@13095
|
240 |
apply(simp add:add_assoc)
|
nipkow@13095
|
241 |
apply(rule converse_rtrancl_into_rtrancl)
|
nipkow@13095
|
242 |
apply(force intro!: JMPFF)
|
nipkow@13095
|
243 |
apply(blast)
|
nipkow@13095
|
244 |
apply(force intro: JMPFF)
|
nipkow@13095
|
245 |
apply(intro strip)
|
nipkow@13095
|
246 |
apply(erule_tac x = "a@[?I]" in allE)
|
nipkow@13095
|
247 |
apply(erule_tac x = a in allE)
|
nipkow@13095
|
248 |
apply(simp)
|
nipkow@13095
|
249 |
apply(rule converse_rtrancl_into_rtrancl)
|
nipkow@13095
|
250 |
apply(force intro!: JMPFT)
|
nipkow@13095
|
251 |
apply(rule rtrancl_trans)
|
nipkow@13095
|
252 |
apply(erule allE)
|
nipkow@13095
|
253 |
apply assumption
|
nipkow@13095
|
254 |
apply(rule converse_rtrancl_into_rtrancl)
|
nipkow@13095
|
255 |
apply(force intro!: JMPB)
|
nipkow@13095
|
256 |
apply(simp)
|
nipkow@13095
|
257 |
done
|
nipkow@13130
|
258 |
*)
|
nipkow@13095
|
259 |
text {* Missing: the other direction! I did much of it, and although
|
nipkow@13095
|
260 |
the main lemma is very similar to the one in the new development, the
|
nipkow@13095
|
261 |
lemmas surrounding it seemed much more complicated. In the end I gave
|
nipkow@13095
|
262 |
up. *}
|
nipkow@13095
|
263 |
|
nipkow@13095
|
264 |
end
|