src/ZF/AC.thy
author wenzelm
Tue Jul 31 19:40:22 2007 +0200 (2007-07-31)
changeset 24091 109f19a13872
parent 16417 9bc16273c2d4
child 24893 b8ef7afe3a6b
permissions -rw-r--r--
added Tools/lin_arith.ML;
clasohm@1478
     1
(*  Title:      ZF/AC.thy
lcp@484
     2
    ID:         $Id$
clasohm@1478
     3
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
lcp@484
     4
    Copyright   1994  University of Cambridge
lcp@484
     5
paulson@13328
     6
*)
lcp@484
     7
paulson@13328
     8
header{*The Axiom of Choice*}
lcp@484
     9
haftmann@16417
    10
theory AC imports Main begin
paulson@13134
    11
paulson@13328
    12
text{*This definition comes from Halmos (1960), page 59.*}
paulson@13134
    13
axioms AC: "[| a: A;  !!x. x:A ==> (EX y. y:B(x)) |] ==> EX z. z : Pi(A,B)"
paulson@13134
    14
paulson@13134
    15
(*The same as AC, but no premise a \<in> A*)
paulson@13134
    16
lemma AC_Pi: "[| !!x. x \<in> A ==> (\<exists>y. y \<in> B(x)) |] ==> \<exists>z. z \<in> Pi(A,B)"
paulson@13134
    17
apply (case_tac "A=0")
paulson@13149
    18
apply (simp add: Pi_empty1)
paulson@13134
    19
(*The non-trivial case*)
paulson@13134
    20
apply (blast intro: AC)
paulson@13134
    21
done
paulson@13134
    22
paulson@13134
    23
(*Using dtac, this has the advantage of DELETING the universal quantifier*)
paulson@13134
    24
lemma AC_ball_Pi: "\<forall>x \<in> A. \<exists>y. y \<in> B(x) ==> \<exists>y. y \<in> Pi(A,B)"
paulson@13134
    25
apply (rule AC_Pi)
paulson@13269
    26
apply (erule bspec, assumption)
paulson@13134
    27
done
paulson@13134
    28
skalberg@14171
    29
lemma AC_Pi_Pow: "\<exists>f. f \<in> (\<Pi> X \<in> Pow(C)-{0}. X)"
paulson@13134
    30
apply (rule_tac B1 = "%x. x" in AC_Pi [THEN exE])
paulson@13269
    31
apply (erule_tac [2] exI, blast)
paulson@13134
    32
done
paulson@6053
    33
paulson@13134
    34
lemma AC_func:
paulson@13134
    35
     "[| !!x. x \<in> A ==> (\<exists>y. y \<in> x) |] ==> \<exists>f \<in> A->Union(A). \<forall>x \<in> A. f`x \<in> x"
paulson@13134
    36
apply (rule_tac B1 = "%x. x" in AC_Pi [THEN exE])
paulson@13269
    37
prefer 2 apply (blast dest: apply_type intro: Pi_type, blast) 
paulson@13134
    38
done
paulson@13134
    39
paulson@13134
    40
lemma non_empty_family: "[| 0 \<notin> A;  x \<in> A |] ==> \<exists>y. y \<in> x"
paulson@13269
    41
by (subgoal_tac "x \<noteq> 0", blast+)
paulson@6053
    42
paulson@13134
    43
lemma AC_func0: "0 \<notin> A ==> \<exists>f \<in> A->Union(A). \<forall>x \<in> A. f`x \<in> x"
paulson@13134
    44
apply (rule AC_func)
paulson@13134
    45
apply (simp_all add: non_empty_family) 
paulson@13134
    46
done
paulson@13134
    47
paulson@13134
    48
lemma AC_func_Pow: "\<exists>f \<in> (Pow(C)-{0}) -> C. \<forall>x \<in> Pow(C)-{0}. f`x \<in> x"
paulson@13134
    49
apply (rule AC_func0 [THEN bexE])
paulson@13134
    50
apply (rule_tac [2] bexI)
paulson@13269
    51
prefer 2 apply assumption
paulson@13269
    52
apply (erule_tac [2] fun_weaken_type, blast+)
paulson@13134
    53
done
paulson@13134
    54
skalberg@14171
    55
lemma AC_Pi0: "0 \<notin> A ==> \<exists>f. f \<in> (\<Pi> x \<in> A. x)"
paulson@13134
    56
apply (rule AC_Pi)
paulson@13134
    57
apply (simp_all add: non_empty_family) 
paulson@13134
    58
done
paulson@13134
    59
lcp@484
    60
end