src/HOL/Library/Stream.thy
author wenzelm
Mon Dec 28 01:28:28 2015 +0100 (2015-12-28)
changeset 61945 1135b8de26c3
parent 61681 ca53150406c9
child 62093 bd73a2279fcd
permissions -rw-r--r--
more symbols;
hoelzl@58607
     1
(*  Title:      HOL/Library/Stream.thy
traytel@50518
     2
    Author:     Dmitriy Traytel, TU Muenchen
traytel@50518
     3
    Author:     Andrei Popescu, TU Muenchen
blanchet@51778
     4
    Copyright   2012, 2013
traytel@50518
     5
traytel@50518
     6
Infinite streams.
traytel@50518
     7
*)
traytel@50518
     8
wenzelm@60500
     9
section \<open>Infinite Streams\<close>
traytel@50518
    10
traytel@50518
    11
theory Stream
blanchet@55076
    12
imports "~~/src/HOL/Library/Nat_Bijection"
traytel@50518
    13
begin
traytel@50518
    14
blanchet@57206
    15
codatatype (sset: 'a) stream =
traytel@54720
    16
  SCons (shd: 'a) (stl: "'a stream") (infixr "##" 65)
blanchet@57206
    17
for
blanchet@57206
    18
  map: smap
blanchet@57206
    19
  rel: stream_all2
traytel@51409
    20
wenzelm@60011
    21
context
wenzelm@60011
    22
begin
wenzelm@60011
    23
traytel@51462
    24
(*for code generation only*)
wenzelm@60011
    25
qualified definition smember :: "'a \<Rightarrow> 'a stream \<Rightarrow> bool" where
traytel@51772
    26
  [code_abbrev]: "smember x s \<longleftrightarrow> x \<in> sset s"
traytel@51462
    27
traytel@54720
    28
lemma smember_code[code, simp]: "smember x (y ## s) = (if x = y then True else smember x s)"
traytel@51462
    29
  unfolding smember_def by auto
traytel@51462
    30
wenzelm@60011
    31
end
traytel@51462
    32
blanchet@57983
    33
lemmas smap_simps[simp] = stream.map_sel
blanchet@57983
    34
lemmas shd_sset = stream.set_sel(1)
blanchet@57983
    35
lemmas stl_sset = stream.set_sel(2)
traytel@50518
    36
blanchet@57986
    37
theorem sset_induct[consumes 1, case_names shd stl, induct set: sset]:
blanchet@57986
    38
  assumes "y \<in> sset s" and "\<And>s. P (shd s) s" and "\<And>s y. \<lbrakk>y \<in> sset (stl s); P y (stl s)\<rbrakk> \<Longrightarrow> P y s"
traytel@50518
    39
  shows "P y s"
blanchet@57986
    40
using assms by induct (metis stream.sel(1), auto)
traytel@50518
    41
hoelzl@59000
    42
lemma smap_ctr: "smap f s = x ## s' \<longleftrightarrow> f (shd s) = x \<and> smap f (stl s) = s'"
hoelzl@59000
    43
  by (cases s) simp
traytel@50518
    44
wenzelm@60500
    45
subsection \<open>prepend list to stream\<close>
traytel@50518
    46
traytel@50518
    47
primrec shift :: "'a list \<Rightarrow> 'a stream \<Rightarrow> 'a stream" (infixr "@-" 65) where
traytel@50518
    48
  "shift [] s = s"
traytel@51023
    49
| "shift (x # xs) s = x ## shift xs s"
traytel@50518
    50
traytel@51772
    51
lemma smap_shift[simp]: "smap f (xs @- s) = map f xs @- smap f s"
traytel@51353
    52
  by (induct xs) auto
traytel@51353
    53
traytel@50518
    54
lemma shift_append[simp]: "(xs @ ys) @- s = xs @- ys @- s"
traytel@51141
    55
  by (induct xs) auto
traytel@50518
    56
traytel@50518
    57
lemma shift_simps[simp]:
traytel@50518
    58
   "shd (xs @- s) = (if xs = [] then shd s else hd xs)"
traytel@50518
    59
   "stl (xs @- s) = (if xs = [] then stl s else tl xs @- s)"
traytel@51141
    60
  by (induct xs) auto
traytel@50518
    61
traytel@51772
    62
lemma sset_shift[simp]: "sset (xs @- s) = set xs \<union> sset s"
traytel@51141
    63
  by (induct xs) auto
traytel@50518
    64
traytel@51352
    65
lemma shift_left_inj[simp]: "xs @- s1 = xs @- s2 \<longleftrightarrow> s1 = s2"
traytel@51352
    66
  by (induct xs) auto
traytel@51352
    67
traytel@50518
    68
wenzelm@60500
    69
subsection \<open>set of streams with elements in some fixed set\<close>
traytel@50518
    70
wenzelm@61681
    71
context
wenzelm@61681
    72
  notes [[inductive_defs]]
wenzelm@61681
    73
begin
wenzelm@61681
    74
traytel@50518
    75
coinductive_set
hoelzl@54469
    76
  streams :: "'a set \<Rightarrow> 'a stream set"
traytel@50518
    77
  for A :: "'a set"
traytel@50518
    78
where
traytel@51023
    79
  Stream[intro!, simp, no_atp]: "\<lbrakk>a \<in> A; s \<in> streams A\<rbrakk> \<Longrightarrow> a ## s \<in> streams A"
traytel@50518
    80
wenzelm@61681
    81
end
wenzelm@61681
    82
hoelzl@59000
    83
lemma in_streams: "stl s \<in> streams S \<Longrightarrow> shd s \<in> S \<Longrightarrow> s \<in> streams S"
hoelzl@59000
    84
  by (cases s) auto
hoelzl@59000
    85
hoelzl@59000
    86
lemma streamsE: "s \<in> streams A \<Longrightarrow> (shd s \<in> A \<Longrightarrow> stl s \<in> streams A \<Longrightarrow> P) \<Longrightarrow> P"
hoelzl@59000
    87
  by (erule streams.cases) simp_all
hoelzl@59000
    88
hoelzl@59000
    89
lemma Stream_image: "x ## y \<in> (op ## x') ` Y \<longleftrightarrow> x = x' \<and> y \<in> Y"
hoelzl@59000
    90
  by auto
hoelzl@59000
    91
traytel@50518
    92
lemma shift_streams: "\<lbrakk>w \<in> lists A; s \<in> streams A\<rbrakk> \<Longrightarrow> w @- s \<in> streams A"
traytel@51141
    93
  by (induct w) auto
traytel@50518
    94
hoelzl@54469
    95
lemma streams_Stream: "x ## s \<in> streams A \<longleftrightarrow> x \<in> A \<and> s \<in> streams A"
hoelzl@54469
    96
  by (auto elim: streams.cases)
hoelzl@54469
    97
hoelzl@54469
    98
lemma streams_stl: "s \<in> streams A \<Longrightarrow> stl s \<in> streams A"
hoelzl@54469
    99
  by (cases s) (auto simp: streams_Stream)
hoelzl@54469
   100
hoelzl@54469
   101
lemma streams_shd: "s \<in> streams A \<Longrightarrow> shd s \<in> A"
hoelzl@54469
   102
  by (cases s) (auto simp: streams_Stream)
hoelzl@54469
   103
traytel@51772
   104
lemma sset_streams:
traytel@51772
   105
  assumes "sset s \<subseteq> A"
traytel@50518
   106
  shows "s \<in> streams A"
traytel@54027
   107
using assms proof (coinduction arbitrary: s)
traytel@54027
   108
  case streams then show ?case by (cases s) simp
traytel@50518
   109
qed
traytel@50518
   110
hoelzl@54469
   111
lemma streams_sset:
hoelzl@54469
   112
  assumes "s \<in> streams A"
hoelzl@54469
   113
  shows "sset s \<subseteq> A"
hoelzl@54469
   114
proof
wenzelm@60500
   115
  fix x assume "x \<in> sset s" from this \<open>s \<in> streams A\<close> show "x \<in> A"
hoelzl@54469
   116
    by (induct s) (auto intro: streams_shd streams_stl)
hoelzl@54469
   117
qed
hoelzl@54469
   118
hoelzl@54469
   119
lemma streams_iff_sset: "s \<in> streams A \<longleftrightarrow> sset s \<subseteq> A"
hoelzl@54469
   120
  by (metis sset_streams streams_sset)
hoelzl@54469
   121
hoelzl@54469
   122
lemma streams_mono:  "s \<in> streams A \<Longrightarrow> A \<subseteq> B \<Longrightarrow> s \<in> streams B"
hoelzl@54469
   123
  unfolding streams_iff_sset by auto
hoelzl@54469
   124
hoelzl@59000
   125
lemma streams_mono2: "S \<subseteq> T \<Longrightarrow> streams S \<subseteq> streams T"
hoelzl@59000
   126
  by (auto intro: streams_mono)
hoelzl@59000
   127
hoelzl@54469
   128
lemma smap_streams: "s \<in> streams A \<Longrightarrow> (\<And>x. x \<in> A \<Longrightarrow> f x \<in> B) \<Longrightarrow> smap f s \<in> streams B"
hoelzl@54469
   129
  unfolding streams_iff_sset stream.set_map by auto
hoelzl@54469
   130
hoelzl@54469
   131
lemma streams_empty: "streams {} = {}"
hoelzl@54469
   132
  by (auto elim: streams.cases)
hoelzl@54469
   133
hoelzl@54469
   134
lemma streams_UNIV[simp]: "streams UNIV = UNIV"
hoelzl@54469
   135
  by (auto simp: streams_iff_sset)
traytel@50518
   136
wenzelm@60500
   137
subsection \<open>nth, take, drop for streams\<close>
traytel@51141
   138
traytel@51141
   139
primrec snth :: "'a stream \<Rightarrow> nat \<Rightarrow> 'a" (infixl "!!" 100) where
traytel@51141
   140
  "s !! 0 = shd s"
traytel@51141
   141
| "s !! Suc n = stl s !! n"
traytel@51141
   142
hoelzl@59000
   143
lemma snth_Stream: "(x ## s) !! Suc i = s !! i"
hoelzl@59000
   144
  by simp
hoelzl@59000
   145
traytel@51772
   146
lemma snth_smap[simp]: "smap f s !! n = f (s !! n)"
traytel@51141
   147
  by (induct n arbitrary: s) auto
traytel@51141
   148
traytel@51141
   149
lemma shift_snth_less[simp]: "p < length xs \<Longrightarrow> (xs @- s) !! p = xs ! p"
traytel@51141
   150
  by (induct p arbitrary: xs) (auto simp: hd_conv_nth nth_tl)
traytel@51141
   151
traytel@51141
   152
lemma shift_snth_ge[simp]: "p \<ge> length xs \<Longrightarrow> (xs @- s) !! p = s !! (p - length xs)"
traytel@51141
   153
  by (induct p arbitrary: xs) (auto simp: Suc_diff_eq_diff_pred)
traytel@51141
   154
traytel@57175
   155
lemma shift_snth: "(xs @- s) !! n = (if n < length xs then xs ! n else s !! (n - length xs))"
traytel@57175
   156
  by auto
traytel@57175
   157
traytel@51772
   158
lemma snth_sset[simp]: "s !! n \<in> sset s"
traytel@51772
   159
  by (induct n arbitrary: s) (auto intro: shd_sset stl_sset)
traytel@51141
   160
traytel@51772
   161
lemma sset_range: "sset s = range (snth s)"
traytel@51141
   162
proof (intro equalityI subsetI)
traytel@51772
   163
  fix x assume "x \<in> sset s"
traytel@51141
   164
  thus "x \<in> range (snth s)"
traytel@51141
   165
  proof (induct s)
traytel@51141
   166
    case (stl s x)
traytel@51141
   167
    then obtain n where "x = stl s !! n" by auto
traytel@51141
   168
    thus ?case by (auto intro: range_eqI[of _ _ "Suc n"])
traytel@51141
   169
  qed (auto intro: range_eqI[of _ _ 0])
traytel@51141
   170
qed auto
traytel@50518
   171
hoelzl@59000
   172
lemma streams_iff_snth: "s \<in> streams X \<longleftrightarrow> (\<forall>n. s !! n \<in> X)"
hoelzl@59000
   173
  by (force simp: streams_iff_sset sset_range)
hoelzl@59000
   174
hoelzl@59000
   175
lemma snth_in: "s \<in> streams X \<Longrightarrow> s !! n \<in> X"
hoelzl@59000
   176
  by (simp add: streams_iff_snth)
hoelzl@59000
   177
traytel@50518
   178
primrec stake :: "nat \<Rightarrow> 'a stream \<Rightarrow> 'a list" where
traytel@50518
   179
  "stake 0 s = []"
traytel@50518
   180
| "stake (Suc n) s = shd s # stake n (stl s)"
traytel@50518
   181
traytel@51141
   182
lemma length_stake[simp]: "length (stake n s) = n"
traytel@51141
   183
  by (induct n arbitrary: s) auto
traytel@51141
   184
traytel@51772
   185
lemma stake_smap[simp]: "stake n (smap f s) = map f (stake n s)"
traytel@51141
   186
  by (induct n arbitrary: s) auto
traytel@51141
   187
traytel@57175
   188
lemma take_stake: "take n (stake m s) = stake (min n m) s"
traytel@57175
   189
proof (induct m arbitrary: s n)
traytel@57175
   190
  case (Suc m) thus ?case by (cases n) auto
traytel@57175
   191
qed simp
traytel@57175
   192
traytel@50518
   193
primrec sdrop :: "nat \<Rightarrow> 'a stream \<Rightarrow> 'a stream" where
traytel@50518
   194
  "sdrop 0 s = s"
traytel@50518
   195
| "sdrop (Suc n) s = sdrop n (stl s)"
traytel@50518
   196
traytel@51141
   197
lemma sdrop_simps[simp]:
traytel@51141
   198
  "shd (sdrop n s) = s !! n" "stl (sdrop n s) = sdrop (Suc n) s"
traytel@51141
   199
  by (induct n arbitrary: s)  auto
traytel@51141
   200
traytel@51772
   201
lemma sdrop_smap[simp]: "sdrop n (smap f s) = smap f (sdrop n s)"
traytel@51141
   202
  by (induct n arbitrary: s) auto
traytel@50518
   203
traytel@51352
   204
lemma sdrop_stl: "sdrop n (stl s) = stl (sdrop n s)"
traytel@51352
   205
  by (induct n) auto
traytel@51352
   206
traytel@57175
   207
lemma drop_stake: "drop n (stake m s) = stake (m - n) (sdrop n s)"
traytel@57175
   208
proof (induct m arbitrary: s n)
traytel@57175
   209
  case (Suc m) thus ?case by (cases n) auto
traytel@57175
   210
qed simp
traytel@57175
   211
traytel@50518
   212
lemma stake_sdrop: "stake n s @- sdrop n s = s"
traytel@51141
   213
  by (induct n arbitrary: s) auto
traytel@51141
   214
traytel@51141
   215
lemma id_stake_snth_sdrop:
traytel@51141
   216
  "s = stake i s @- s !! i ## sdrop (Suc i) s"
traytel@51141
   217
  by (subst stake_sdrop[symmetric, of _ i]) (metis sdrop_simps stream.collapse)
traytel@50518
   218
traytel@51772
   219
lemma smap_alt: "smap f s = s' \<longleftrightarrow> (\<forall>n. f (s !! n) = s' !! n)" (is "?L = ?R")
traytel@51141
   220
proof
traytel@51141
   221
  assume ?R
traytel@54027
   222
  then have "\<And>n. smap f (sdrop n s) = sdrop n s'"
traytel@54027
   223
    by coinduction (auto intro: exI[of _ 0] simp del: sdrop.simps(2))
traytel@54027
   224
  then show ?L using sdrop.simps(1) by metis
traytel@51141
   225
qed auto
traytel@51141
   226
traytel@51141
   227
lemma stake_invert_Nil[iff]: "stake n s = [] \<longleftrightarrow> n = 0"
traytel@51141
   228
  by (induct n) auto
traytel@50518
   229
traytel@57175
   230
lemma sdrop_shift: "sdrop i (w @- s) = drop i w @- sdrop (i - length w) s"
traytel@57175
   231
  by (induct i arbitrary: w s) (auto simp: drop_tl drop_Suc neq_Nil_conv)
traytel@50518
   232
traytel@57175
   233
lemma stake_shift: "stake i (w @- s) = take i w @ stake (i - length w) s"
traytel@57175
   234
  by (induct i arbitrary: w s) (auto simp: neq_Nil_conv)
traytel@50518
   235
traytel@50518
   236
lemma stake_add[simp]: "stake m s @ stake n (sdrop m s) = stake (m + n) s"
traytel@51141
   237
  by (induct m arbitrary: s) auto
traytel@50518
   238
traytel@50518
   239
lemma sdrop_add[simp]: "sdrop n (sdrop m s) = sdrop (m + n) s"
traytel@51141
   240
  by (induct m arbitrary: s) auto
traytel@51141
   241
traytel@57175
   242
lemma sdrop_snth: "sdrop n s !! m = s !! (n + m)"
traytel@57175
   243
  by (induct n arbitrary: m s) auto
traytel@57175
   244
traytel@51430
   245
partial_function (tailrec) sdrop_while :: "('a \<Rightarrow> bool) \<Rightarrow> 'a stream \<Rightarrow> 'a stream" where 
traytel@51430
   246
  "sdrop_while P s = (if P (shd s) then sdrop_while P (stl s) else s)"
traytel@51430
   247
traytel@54720
   248
lemma sdrop_while_SCons[code]:
traytel@54720
   249
  "sdrop_while P (a ## s) = (if P a then sdrop_while P s else a ## s)"
traytel@51430
   250
  by (subst sdrop_while.simps) simp
traytel@51430
   251
traytel@51430
   252
lemma sdrop_while_sdrop_LEAST:
traytel@51430
   253
  assumes "\<exists>n. P (s !! n)"
traytel@51430
   254
  shows "sdrop_while (Not o P) s = sdrop (LEAST n. P (s !! n)) s"
traytel@51430
   255
proof -
traytel@51430
   256
  from assms obtain m where "P (s !! m)" "\<And>n. P (s !! n) \<Longrightarrow> m \<le> n"
traytel@51430
   257
    and *: "(LEAST n. P (s !! n)) = m" by atomize_elim (auto intro: LeastI Least_le)
traytel@51430
   258
  thus ?thesis unfolding *
traytel@51430
   259
  proof (induct m arbitrary: s)
traytel@51430
   260
    case (Suc m)
traytel@51430
   261
    hence "sdrop_while (Not \<circ> P) (stl s) = sdrop m (stl s)"
traytel@51430
   262
      by (metis (full_types) not_less_eq_eq snth.simps(2))
traytel@51430
   263
    moreover from Suc(3) have "\<not> (P (s !! 0))" by blast
traytel@51430
   264
    ultimately show ?case by (subst sdrop_while.simps) simp
traytel@51430
   265
  qed (metis comp_apply sdrop.simps(1) sdrop_while.simps snth.simps(1))
traytel@51430
   266
qed
traytel@51430
   267
traytel@54027
   268
primcorec sfilter where
traytel@54027
   269
  "shd (sfilter P s) = shd (sdrop_while (Not o P) s)"
traytel@54027
   270
| "stl (sfilter P s) = sfilter P (stl (sdrop_while (Not o P) s))"
traytel@52905
   271
traytel@52905
   272
lemma sfilter_Stream: "sfilter P (x ## s) = (if P x then x ## sfilter P s else sfilter P s)"
traytel@52905
   273
proof (cases "P x")
traytel@54720
   274
  case True thus ?thesis by (subst sfilter.ctr) (simp add: sdrop_while_SCons)
traytel@52905
   275
next
traytel@54720
   276
  case False thus ?thesis by (subst (1 2) sfilter.ctr) (simp add: sdrop_while_SCons)
traytel@52905
   277
qed
traytel@52905
   278
traytel@51141
   279
wenzelm@60500
   280
subsection \<open>unary predicates lifted to streams\<close>
traytel@51141
   281
traytel@51141
   282
definition "stream_all P s = (\<forall>p. P (s !! p))"
traytel@51141
   283
traytel@51772
   284
lemma stream_all_iff[iff]: "stream_all P s \<longleftrightarrow> Ball (sset s) P"
traytel@51772
   285
  unfolding stream_all_def sset_range by auto
traytel@51141
   286
traytel@51141
   287
lemma stream_all_shift[simp]: "stream_all P (xs @- s) = (list_all P xs \<and> stream_all P s)"
traytel@51141
   288
  unfolding stream_all_iff list_all_iff by auto
traytel@51141
   289
hoelzl@54469
   290
lemma stream_all_Stream: "stream_all P (x ## X) \<longleftrightarrow> P x \<and> stream_all P X"
hoelzl@54469
   291
  by simp
hoelzl@54469
   292
traytel@51141
   293
wenzelm@60500
   294
subsection \<open>recurring stream out of a list\<close>
traytel@51141
   295
traytel@54027
   296
primcorec cycle :: "'a list \<Rightarrow> 'a stream" where
traytel@54027
   297
  "shd (cycle xs) = hd xs"
traytel@54027
   298
| "stl (cycle xs) = cycle (tl xs @ [hd xs])"
traytel@54720
   299
traytel@51141
   300
lemma cycle_decomp: "u \<noteq> [] \<Longrightarrow> cycle u = u @- cycle u"
traytel@54027
   301
proof (coinduction arbitrary: u)
traytel@54027
   302
  case Eq_stream then show ?case using stream.collapse[of "cycle u"]
traytel@54027
   303
    by (auto intro!: exI[of _ "tl u @ [hd u]"])
traytel@54027
   304
qed
traytel@51141
   305
traytel@51409
   306
lemma cycle_Cons[code]: "cycle (x # xs) = x ## cycle (xs @ [x])"
traytel@54027
   307
  by (subst cycle.ctr) simp
traytel@50518
   308
traytel@50518
   309
lemma cycle_rotated: "\<lbrakk>v \<noteq> []; cycle u = v @- s\<rbrakk> \<Longrightarrow> cycle (tl u @ [hd u]) = tl v @- s"
traytel@51141
   310
  by (auto dest: arg_cong[of _ _ stl])
traytel@50518
   311
traytel@50518
   312
lemma stake_append: "stake n (u @- s) = take (min (length u) n) u @ stake (n - length u) s"
traytel@50518
   313
proof (induct n arbitrary: u)
traytel@50518
   314
  case (Suc n) thus ?case by (cases u) auto
traytel@50518
   315
qed auto
traytel@50518
   316
traytel@50518
   317
lemma stake_cycle_le[simp]:
traytel@50518
   318
  assumes "u \<noteq> []" "n < length u"
traytel@50518
   319
  shows "stake n (cycle u) = take n u"
traytel@50518
   320
using min_absorb2[OF less_imp_le_nat[OF assms(2)]]
traytel@51141
   321
  by (subst cycle_decomp[OF assms(1)], subst stake_append) auto
traytel@50518
   322
traytel@50518
   323
lemma stake_cycle_eq[simp]: "u \<noteq> [] \<Longrightarrow> stake (length u) (cycle u) = u"
traytel@57175
   324
  by (subst cycle_decomp) (auto simp: stake_shift)
traytel@50518
   325
traytel@50518
   326
lemma sdrop_cycle_eq[simp]: "u \<noteq> [] \<Longrightarrow> sdrop (length u) (cycle u) = cycle u"
traytel@57175
   327
  by (subst cycle_decomp) (auto simp: sdrop_shift)
traytel@50518
   328
traytel@50518
   329
lemma stake_cycle_eq_mod_0[simp]: "\<lbrakk>u \<noteq> []; n mod length u = 0\<rbrakk> \<Longrightarrow>
traytel@50518
   330
   stake n (cycle u) = concat (replicate (n div length u) u)"
traytel@51141
   331
  by (induct "n div length u" arbitrary: n u) (auto simp: stake_add[symmetric])
traytel@50518
   332
traytel@50518
   333
lemma sdrop_cycle_eq_mod_0[simp]: "\<lbrakk>u \<noteq> []; n mod length u = 0\<rbrakk> \<Longrightarrow>
traytel@50518
   334
   sdrop n (cycle u) = cycle u"
traytel@51141
   335
  by (induct "n div length u" arbitrary: n u) (auto simp: sdrop_add[symmetric])
traytel@50518
   336
traytel@50518
   337
lemma stake_cycle: "u \<noteq> [] \<Longrightarrow>
traytel@50518
   338
   stake n (cycle u) = concat (replicate (n div length u) u) @ take (n mod length u) u"
traytel@51141
   339
  by (subst mod_div_equality[of n "length u", symmetric], unfold stake_add[symmetric]) auto
traytel@50518
   340
traytel@50518
   341
lemma sdrop_cycle: "u \<noteq> [] \<Longrightarrow> sdrop n (cycle u) = cycle (rotate (n mod length u) u)"
traytel@51141
   342
  by (induct n arbitrary: u) (auto simp: rotate1_rotate_swap rotate1_hd_tl rotate_conv_mod[symmetric])
traytel@51141
   343
traytel@51141
   344
wenzelm@60500
   345
subsection \<open>iterated application of a function\<close>
hoelzl@54497
   346
hoelzl@54497
   347
primcorec siterate where
hoelzl@54497
   348
  "shd (siterate f x) = x"
hoelzl@54497
   349
| "stl (siterate f x) = siterate f (f x)"
hoelzl@54497
   350
hoelzl@54497
   351
lemma stake_Suc: "stake (Suc n) s = stake n s @ [s !! n]"
hoelzl@54497
   352
  by (induct n arbitrary: s) auto
hoelzl@54497
   353
hoelzl@54497
   354
lemma snth_siterate[simp]: "siterate f x !! n = (f^^n) x"
hoelzl@54497
   355
  by (induct n arbitrary: x) (auto simp: funpow_swap1)
hoelzl@54497
   356
hoelzl@54497
   357
lemma sdrop_siterate[simp]: "sdrop n (siterate f x) = siterate f ((f^^n) x)"
hoelzl@54497
   358
  by (induct n arbitrary: x) (auto simp: funpow_swap1)
hoelzl@54497
   359
hoelzl@54497
   360
lemma stake_siterate[simp]: "stake n (siterate f x) = map (\<lambda>n. (f^^n) x) [0 ..< n]"
hoelzl@54497
   361
  by (induct n arbitrary: x) (auto simp del: stake.simps(2) simp: stake_Suc)
hoelzl@54497
   362
hoelzl@54497
   363
lemma sset_siterate: "sset (siterate f x) = {(f^^n) x | n. True}"
hoelzl@54497
   364
  by (auto simp: sset_range)
hoelzl@54497
   365
hoelzl@54497
   366
lemma smap_siterate: "smap f (siterate f x) = siterate f (f x)"
hoelzl@54497
   367
  by (coinduction arbitrary: x) auto
hoelzl@54497
   368
hoelzl@54497
   369
wenzelm@60500
   370
subsection \<open>stream repeating a single element\<close>
traytel@51141
   371
hoelzl@54497
   372
abbreviation "sconst \<equiv> siterate id"
traytel@51141
   373
hoelzl@54497
   374
lemma shift_replicate_sconst[simp]: "replicate n x @- sconst x = sconst x"
hoelzl@54497
   375
  by (subst (3) stake_sdrop[symmetric]) (simp add: map_replicate_trivial)
traytel@51141
   376
traytel@57175
   377
lemma sset_sconst[simp]: "sset (sconst x) = {x}"
hoelzl@54497
   378
  by (simp add: sset_siterate)
traytel@51141
   379
traytel@57175
   380
lemma sconst_alt: "s = sconst x \<longleftrightarrow> sset s = {x}"
traytel@57175
   381
proof
traytel@57175
   382
  assume "sset s = {x}"
traytel@57175
   383
  then show "s = sconst x"
traytel@57175
   384
  proof (coinduction arbitrary: s)
traytel@57175
   385
    case Eq_stream
traytel@57175
   386
    then have "shd s = x" "sset (stl s) \<subseteq> {x}" by (case_tac [!] s) auto
traytel@57175
   387
    then have "sset (stl s) = {x}" by (cases "stl s") auto
wenzelm@60500
   388
    with \<open>shd s = x\<close> show ?case by auto
traytel@57175
   389
  qed
traytel@57175
   390
qed simp
traytel@57175
   391
traytel@59016
   392
lemma sconst_cycle: "sconst x = cycle [x]"
hoelzl@54497
   393
  by coinduction auto
traytel@51141
   394
hoelzl@54497
   395
lemma smap_sconst: "smap f (sconst x) = sconst (f x)"
hoelzl@54497
   396
  by coinduction auto
traytel@51141
   397
hoelzl@54497
   398
lemma sconst_streams: "x \<in> A \<Longrightarrow> sconst x \<in> streams A"
hoelzl@54497
   399
  by (simp add: streams_iff_sset)
traytel@51141
   400
traytel@51141
   401
wenzelm@60500
   402
subsection \<open>stream of natural numbers\<close>
traytel@51141
   403
hoelzl@54497
   404
abbreviation "fromN \<equiv> siterate Suc"
hoelzl@54469
   405
traytel@51141
   406
abbreviation "nats \<equiv> fromN 0"
traytel@51141
   407
hoelzl@54497
   408
lemma sset_fromN[simp]: "sset (fromN n) = {n ..}"
traytel@54720
   409
  by (auto simp add: sset_siterate le_iff_add)
hoelzl@54497
   410
traytel@57175
   411
lemma stream_smap_fromN: "s = smap (\<lambda>j. let i = j - n in s !! i) (fromN n)"
traytel@57175
   412
  by (coinduction arbitrary: s n)
traytel@57175
   413
    (force simp: neq_Nil_conv Let_def snth.simps(2)[symmetric] Suc_diff_Suc
traytel@57175
   414
      intro: stream.map_cong split: if_splits simp del: snth.simps(2))
traytel@57175
   415
traytel@57175
   416
lemma stream_smap_nats: "s = smap (snth s) nats"
traytel@57175
   417
  using stream_smap_fromN[where n = 0] by simp
traytel@57175
   418
traytel@51141
   419
wenzelm@60500
   420
subsection \<open>flatten a stream of lists\<close>
traytel@51462
   421
traytel@54027
   422
primcorec flat where
traytel@51462
   423
  "shd (flat ws) = hd (shd ws)"
traytel@54027
   424
| "stl (flat ws) = flat (if tl (shd ws) = [] then stl ws else tl (shd ws) ## stl ws)"
traytel@51462
   425
traytel@51462
   426
lemma flat_Cons[simp, code]: "flat ((x # xs) ## ws) = x ## flat (if xs = [] then ws else xs ## ws)"
traytel@54027
   427
  by (subst flat.ctr) simp
traytel@51462
   428
traytel@51462
   429
lemma flat_Stream[simp]: "xs \<noteq> [] \<Longrightarrow> flat (xs ## ws) = xs @- flat ws"
traytel@51462
   430
  by (induct xs) auto
traytel@51462
   431
traytel@51462
   432
lemma flat_unfold: "shd ws \<noteq> [] \<Longrightarrow> flat ws = shd ws @- flat (stl ws)"
traytel@51462
   433
  by (cases ws) auto
traytel@51462
   434
traytel@51772
   435
lemma flat_snth: "\<forall>xs \<in> sset s. xs \<noteq> [] \<Longrightarrow> flat s !! n = (if n < length (shd s) then 
traytel@51462
   436
  shd s ! n else flat (stl s) !! (n - length (shd s)))"
traytel@51772
   437
  by (metis flat_unfold not_less shd_sset shift_snth_ge shift_snth_less)
traytel@51462
   438
traytel@51772
   439
lemma sset_flat[simp]: "\<forall>xs \<in> sset s. xs \<noteq> [] \<Longrightarrow> 
traytel@51772
   440
  sset (flat s) = (\<Union>xs \<in> sset s. set xs)" (is "?P \<Longrightarrow> ?L = ?R")
traytel@51462
   441
proof safe
traytel@51462
   442
  fix x assume ?P "x : ?L"
traytel@51772
   443
  then obtain m where "x = flat s !! m" by (metis image_iff sset_range)
wenzelm@60500
   444
  with \<open>?P\<close> obtain n m' where "x = s !! n ! m'" "m' < length (s !! n)"
traytel@51462
   445
  proof (atomize_elim, induct m arbitrary: s rule: less_induct)
traytel@51462
   446
    case (less y)
traytel@51462
   447
    thus ?case
traytel@51462
   448
    proof (cases "y < length (shd s)")
traytel@51462
   449
      case True thus ?thesis by (metis flat_snth less(2,3) snth.simps(1))
traytel@51462
   450
    next
traytel@51462
   451
      case False
traytel@51462
   452
      hence "x = flat (stl s) !! (y - length (shd s))" by (metis less(2,3) flat_snth)
traytel@51462
   453
      moreover
wenzelm@53374
   454
      { from less(2) have *: "length (shd s) > 0" by (cases s) simp_all
wenzelm@53374
   455
        with False have "y > 0" by (cases y) simp_all
wenzelm@53374
   456
        with * have "y - length (shd s) < y" by simp
traytel@51462
   457
      }
traytel@51772
   458
      moreover have "\<forall>xs \<in> sset (stl s). xs \<noteq> []" using less(2) by (cases s) auto
traytel@51462
   459
      ultimately have "\<exists>n m'. x = stl s !! n ! m' \<and> m' < length (stl s !! n)" by (intro less(1)) auto
traytel@51462
   460
      thus ?thesis by (metis snth.simps(2))
traytel@51462
   461
    qed
traytel@51462
   462
  qed
traytel@51772
   463
  thus "x \<in> ?R" by (auto simp: sset_range dest!: nth_mem)
traytel@51462
   464
next
traytel@51772
   465
  fix x xs assume "xs \<in> sset s" ?P "x \<in> set xs" thus "x \<in> ?L"
blanchet@57986
   466
    by (induct rule: sset_induct)
traytel@51772
   467
      (metis UnI1 flat_unfold shift.simps(1) sset_shift,
traytel@51772
   468
       metis UnI2 flat_unfold shd_sset stl_sset sset_shift)
traytel@51462
   469
qed
traytel@51462
   470
traytel@51462
   471
wenzelm@60500
   472
subsection \<open>merge a stream of streams\<close>
traytel@51462
   473
traytel@51462
   474
definition smerge :: "'a stream stream \<Rightarrow> 'a stream" where
traytel@51772
   475
  "smerge ss = flat (smap (\<lambda>n. map (\<lambda>s. s !! n) (stake (Suc n) ss) @ stake n (ss !! n)) nats)"
traytel@51462
   476
traytel@51462
   477
lemma stake_nth[simp]: "m < n \<Longrightarrow> stake n s ! m = s !! m"
traytel@51462
   478
  by (induct n arbitrary: s m) (auto simp: nth_Cons', metis Suc_pred snth.simps(2))
traytel@51462
   479
traytel@51772
   480
lemma snth_sset_smerge: "ss !! n !! m \<in> sset (smerge ss)"
traytel@51462
   481
proof (cases "n \<le> m")
traytel@51462
   482
  case False thus ?thesis unfolding smerge_def
traytel@51772
   483
    by (subst sset_flat)
blanchet@53290
   484
      (auto simp: stream.set_map in_set_conv_nth simp del: stake.simps
traytel@51462
   485
        intro!: exI[of _ n, OF disjI2] exI[of _ m, OF mp])
traytel@51462
   486
next
traytel@51462
   487
  case True thus ?thesis unfolding smerge_def
traytel@51772
   488
    by (subst sset_flat)
blanchet@53290
   489
      (auto simp: stream.set_map in_set_conv_nth image_iff simp del: stake.simps snth.simps
traytel@51462
   490
        intro!: exI[of _ m, OF disjI1] bexI[of _ "ss !! n"] exI[of _ n, OF mp])
traytel@51462
   491
qed
traytel@51462
   492
traytel@51772
   493
lemma sset_smerge: "sset (smerge ss) = UNION (sset ss) sset"
traytel@51462
   494
proof safe
traytel@51772
   495
  fix x assume "x \<in> sset (smerge ss)"
traytel@51772
   496
  thus "x \<in> UNION (sset ss) sset"
traytel@51772
   497
    unfolding smerge_def by (subst (asm) sset_flat)
blanchet@53290
   498
      (auto simp: stream.set_map in_set_conv_nth sset_range simp del: stake.simps, fast+)
traytel@51462
   499
next
traytel@51772
   500
  fix s x assume "s \<in> sset ss" "x \<in> sset s"
traytel@51772
   501
  thus "x \<in> sset (smerge ss)" using snth_sset_smerge by (auto simp: sset_range)
traytel@51462
   502
qed
traytel@51462
   503
traytel@51462
   504
wenzelm@60500
   505
subsection \<open>product of two streams\<close>
traytel@51462
   506
traytel@51462
   507
definition sproduct :: "'a stream \<Rightarrow> 'b stream \<Rightarrow> ('a \<times> 'b) stream" where
traytel@51772
   508
  "sproduct s1 s2 = smerge (smap (\<lambda>x. smap (Pair x) s2) s1)"
traytel@51462
   509
traytel@51772
   510
lemma sset_sproduct: "sset (sproduct s1 s2) = sset s1 \<times> sset s2"
blanchet@53290
   511
  unfolding sproduct_def sset_smerge by (auto simp: stream.set_map)
traytel@51462
   512
traytel@51462
   513
wenzelm@60500
   514
subsection \<open>interleave two streams\<close>
traytel@51462
   515
traytel@54027
   516
primcorec sinterleave where
traytel@54027
   517
  "shd (sinterleave s1 s2) = shd s1"
traytel@54027
   518
| "stl (sinterleave s1 s2) = sinterleave s2 (stl s1)"
traytel@51462
   519
traytel@51462
   520
lemma sinterleave_code[code]:
traytel@51462
   521
  "sinterleave (x ## s1) s2 = x ## sinterleave s2 s1"
traytel@54027
   522
  by (subst sinterleave.ctr) simp
traytel@51462
   523
traytel@51462
   524
lemma sinterleave_snth[simp]:
traytel@51462
   525
  "even n \<Longrightarrow> sinterleave s1 s2 !! n = s1 !! (n div 2)"
haftmann@58710
   526
  "odd n \<Longrightarrow> sinterleave s1 s2 !! n = s2 !! (n div 2)"
haftmann@58710
   527
  by (induct n arbitrary: s1 s2) simp_all
traytel@51462
   528
traytel@51772
   529
lemma sset_sinterleave: "sset (sinterleave s1 s2) = sset s1 \<union> sset s2"
traytel@51462
   530
proof (intro equalityI subsetI)
traytel@51772
   531
  fix x assume "x \<in> sset (sinterleave s1 s2)"
traytel@51772
   532
  then obtain n where "x = sinterleave s1 s2 !! n" unfolding sset_range by blast
traytel@51772
   533
  thus "x \<in> sset s1 \<union> sset s2" by (cases "even n") auto
traytel@51462
   534
next
traytel@51772
   535
  fix x assume "x \<in> sset s1 \<union> sset s2"
traytel@51772
   536
  thus "x \<in> sset (sinterleave s1 s2)"
traytel@51462
   537
  proof
traytel@51772
   538
    assume "x \<in> sset s1"
traytel@51772
   539
    then obtain n where "x = s1 !! n" unfolding sset_range by blast
traytel@51462
   540
    hence "sinterleave s1 s2 !! (2 * n) = x" by simp
traytel@51772
   541
    thus ?thesis unfolding sset_range by blast
traytel@51462
   542
  next
traytel@51772
   543
    assume "x \<in> sset s2"
traytel@51772
   544
    then obtain n where "x = s2 !! n" unfolding sset_range by blast
traytel@51462
   545
    hence "sinterleave s1 s2 !! (2 * n + 1) = x" by simp
traytel@51772
   546
    thus ?thesis unfolding sset_range by blast
traytel@51462
   547
  qed
traytel@51462
   548
qed
traytel@51462
   549
traytel@51462
   550
wenzelm@60500
   551
subsection \<open>zip\<close>
traytel@51141
   552
traytel@54027
   553
primcorec szip where
traytel@54027
   554
  "shd (szip s1 s2) = (shd s1, shd s2)"
traytel@54027
   555
| "stl (szip s1 s2) = szip (stl s1) (stl s2)"
traytel@51141
   556
traytel@54720
   557
lemma szip_unfold[code]: "szip (a ## s1) (b ## s2) = (a, b) ## (szip s1 s2)"
traytel@54027
   558
  by (subst szip.ctr) simp
traytel@51409
   559
traytel@51141
   560
lemma snth_szip[simp]: "szip s1 s2 !! n = (s1 !! n, s2 !! n)"
traytel@51141
   561
  by (induct n arbitrary: s1 s2) auto
traytel@51141
   562
traytel@57175
   563
lemma stake_szip[simp]:
traytel@57175
   564
  "stake n (szip s1 s2) = zip (stake n s1) (stake n s2)"
traytel@57175
   565
  by (induct n arbitrary: s1 s2) auto
traytel@57175
   566
traytel@57175
   567
lemma sdrop_szip[simp]: "sdrop n (szip s1 s2) = szip (sdrop n s1) (sdrop n s2)"
traytel@57175
   568
  by (induct n arbitrary: s1 s2) auto
traytel@57175
   569
traytel@57175
   570
lemma smap_szip_fst:
traytel@57175
   571
  "smap (\<lambda>x. f (fst x)) (szip s1 s2) = smap f s1"
traytel@57175
   572
  by (coinduction arbitrary: s1 s2) auto
traytel@57175
   573
traytel@57175
   574
lemma smap_szip_snd:
traytel@57175
   575
  "smap (\<lambda>x. g (snd x)) (szip s1 s2) = smap g s2"
traytel@57175
   576
  by (coinduction arbitrary: s1 s2) auto
traytel@57175
   577
traytel@51141
   578
wenzelm@60500
   579
subsection \<open>zip via function\<close>
traytel@51141
   580
traytel@54027
   581
primcorec smap2 where
traytel@51772
   582
  "shd (smap2 f s1 s2) = f (shd s1) (shd s2)"
traytel@54027
   583
| "stl (smap2 f s1 s2) = smap2 f (stl s1) (stl s2)"
traytel@51141
   584
traytel@51772
   585
lemma smap2_unfold[code]:
traytel@54720
   586
  "smap2 f (a ## s1) (b ## s2) = f a b ## (smap2 f s1 s2)"
traytel@54027
   587
  by (subst smap2.ctr) simp
traytel@51409
   588
traytel@51772
   589
lemma smap2_szip:
haftmann@61424
   590
  "smap2 f s1 s2 = smap (case_prod f) (szip s1 s2)"
traytel@54027
   591
  by (coinduction arbitrary: s1 s2) auto
traytel@50518
   592
traytel@57175
   593
lemma smap_smap2[simp]:
traytel@57175
   594
  "smap f (smap2 g s1 s2) = smap2 (\<lambda>x y. f (g x y)) s1 s2"
traytel@57175
   595
  unfolding smap2_szip stream.map_comp o_def split_def ..
traytel@57175
   596
traytel@57175
   597
lemma smap2_alt:
traytel@57175
   598
  "(smap2 f s1 s2 = s) = (\<forall>n. f (s1 !! n) (s2 !! n) = s !! n)"
traytel@57175
   599
  unfolding smap2_szip smap_alt by auto
traytel@57175
   600
traytel@57175
   601
lemma snth_smap2[simp]:
traytel@57175
   602
  "smap2 f s1 s2 !! n = f (s1 !! n) (s2 !! n)"
traytel@57175
   603
  by (induct n arbitrary: s1 s2) auto
traytel@57175
   604
traytel@57175
   605
lemma stake_smap2[simp]:
haftmann@61424
   606
  "stake n (smap2 f s1 s2) = map (case_prod f) (zip (stake n s1) (stake n s2))"
traytel@57175
   607
  by (induct n arbitrary: s1 s2) auto
traytel@57175
   608
traytel@57175
   609
lemma sdrop_smap2[simp]:
traytel@57175
   610
  "sdrop n (smap2 f s1 s2) = smap2 f (sdrop n s1) (sdrop n s2)"
traytel@57175
   611
  by (induct n arbitrary: s1 s2) auto
traytel@57175
   612
traytel@50518
   613
end