src/HOL/BNF_Cardinal_Arithmetic.thy
author blanchet
Thu Sep 11 18:54:36 2014 +0200 (2014-09-11)
changeset 58306 117ba6cbe414
parent 56191 159b0c88b4a4
child 58889 5b7a9633cfa8
permissions -rw-r--r--
renamed 'rep_datatype' to 'old_rep_datatype' (HOL)
blanchet@55056
     1
(*  Title:      HOL/BNF_Cardinal_Arithmetic.thy
blanchet@54474
     2
    Author:     Dmitriy Traytel, TU Muenchen
blanchet@54474
     3
    Copyright   2012
blanchet@54474
     4
blanchet@55059
     5
Cardinal arithmetic as needed by bounded natural functors.
blanchet@54474
     6
*)
blanchet@54474
     7
blanchet@55059
     8
header {* Cardinal Arithmetic as Needed by Bounded Natural Functors *}
blanchet@54474
     9
blanchet@55056
    10
theory BNF_Cardinal_Arithmetic
blanchet@55056
    11
imports BNF_Cardinal_Order_Relation
blanchet@54474
    12
begin
blanchet@54474
    13
blanchet@54474
    14
lemma dir_image: "\<lbrakk>\<And>x y. (f x = f y) = (x = y); Card_order r\<rbrakk> \<Longrightarrow> r =o dir_image r f"
blanchet@54474
    15
by (rule dir_image_ordIso) (auto simp add: inj_on_def card_order_on_def)
blanchet@54474
    16
blanchet@54474
    17
lemma card_order_dir_image:
blanchet@54474
    18
  assumes bij: "bij f" and co: "card_order r"
blanchet@54474
    19
  shows "card_order (dir_image r f)"
blanchet@54474
    20
proof -
blanchet@54474
    21
  from assms have "Field (dir_image r f) = UNIV"
blanchet@54474
    22
    using card_order_on_Card_order[of UNIV r] unfolding bij_def dir_image_Field by auto
blanchet@54474
    23
  moreover from bij have "\<And>x y. (f x = f y) = (x = y)" unfolding bij_def inj_on_def by auto
blanchet@54474
    24
  with co have "Card_order (dir_image r f)"
blanchet@54474
    25
    using card_order_on_Card_order[of UNIV r] Card_order_ordIso2[OF _ dir_image] by blast
blanchet@54474
    26
  ultimately show ?thesis by auto
blanchet@54474
    27
qed
blanchet@54474
    28
blanchet@54474
    29
lemma ordIso_refl: "Card_order r \<Longrightarrow> r =o r"
blanchet@54474
    30
by (rule card_order_on_ordIso)
blanchet@54474
    31
blanchet@54474
    32
lemma ordLeq_refl: "Card_order r \<Longrightarrow> r \<le>o r"
blanchet@54474
    33
by (rule ordIso_imp_ordLeq, rule card_order_on_ordIso)
blanchet@54474
    34
blanchet@54474
    35
lemma card_of_ordIso_subst: "A = B \<Longrightarrow> |A| =o |B|"
blanchet@54474
    36
by (simp only: ordIso_refl card_of_Card_order)
blanchet@54474
    37
blanchet@54474
    38
lemma Field_card_order: "card_order r \<Longrightarrow> Field r = UNIV"
blanchet@54474
    39
using card_order_on_Card_order[of UNIV r] by simp
blanchet@54474
    40
blanchet@54474
    41
blanchet@54474
    42
subsection {* Zero *}
blanchet@54474
    43
blanchet@54474
    44
definition czero where
blanchet@54474
    45
  "czero = card_of {}"
blanchet@54474
    46
blanchet@54474
    47
lemma czero_ordIso:
blanchet@54474
    48
  "czero =o czero"
blanchet@54474
    49
using card_of_empty_ordIso by (simp add: czero_def)
blanchet@54474
    50
blanchet@54474
    51
lemma card_of_ordIso_czero_iff_empty:
blanchet@54474
    52
  "|A| =o (czero :: 'b rel) \<longleftrightarrow> A = ({} :: 'a set)"
blanchet@54474
    53
unfolding czero_def by (rule iffI[OF card_of_empty2]) (auto simp: card_of_refl card_of_empty_ordIso)
blanchet@54474
    54
blanchet@54474
    55
(* A "not czero" Cardinal predicate *)
blanchet@54474
    56
abbreviation Cnotzero where
blanchet@54474
    57
  "Cnotzero (r :: 'a rel) \<equiv> \<not>(r =o (czero :: 'a rel)) \<and> Card_order r"
blanchet@54474
    58
blanchet@54474
    59
(*helper*)
blanchet@54474
    60
lemma Cnotzero_imp_not_empty: "Cnotzero r \<Longrightarrow> Field r \<noteq> {}"
traytel@55811
    61
  unfolding Card_order_iff_ordIso_card_of czero_def by force
blanchet@54474
    62
blanchet@54474
    63
lemma czeroI:
blanchet@54474
    64
  "\<lbrakk>Card_order r; Field r = {}\<rbrakk> \<Longrightarrow> r =o czero"
blanchet@54474
    65
using Cnotzero_imp_not_empty ordIso_transitive[OF _ czero_ordIso] by blast
blanchet@54474
    66
blanchet@54474
    67
lemma czeroE:
blanchet@54474
    68
  "r =o czero \<Longrightarrow> Field r = {}"
blanchet@54474
    69
unfolding czero_def
blanchet@54474
    70
by (drule card_of_cong) (simp only: Field_card_of card_of_empty2)
blanchet@54474
    71
blanchet@54474
    72
lemma Cnotzero_mono:
blanchet@54474
    73
  "\<lbrakk>Cnotzero r; Card_order q; r \<le>o q\<rbrakk> \<Longrightarrow> Cnotzero q"
blanchet@54474
    74
apply (rule ccontr)
blanchet@54474
    75
apply auto
blanchet@54474
    76
apply (drule czeroE)
blanchet@54474
    77
apply (erule notE)
blanchet@54474
    78
apply (erule czeroI)
blanchet@54474
    79
apply (drule card_of_mono2)
blanchet@54474
    80
apply (simp only: card_of_empty3)
blanchet@54474
    81
done
blanchet@54474
    82
blanchet@54474
    83
subsection {* (In)finite cardinals *}
blanchet@54474
    84
blanchet@54474
    85
definition cinfinite where
traytel@54578
    86
  "cinfinite r = (\<not> finite (Field r))"
blanchet@54474
    87
blanchet@54474
    88
abbreviation Cinfinite where
blanchet@54474
    89
  "Cinfinite r \<equiv> cinfinite r \<and> Card_order r"
blanchet@54474
    90
blanchet@54474
    91
definition cfinite where
blanchet@54474
    92
  "cfinite r = finite (Field r)"
blanchet@54474
    93
blanchet@54474
    94
abbreviation Cfinite where
blanchet@54474
    95
  "Cfinite r \<equiv> cfinite r \<and> Card_order r"
blanchet@54474
    96
blanchet@54474
    97
lemma Cfinite_ordLess_Cinfinite: "\<lbrakk>Cfinite r; Cinfinite s\<rbrakk> \<Longrightarrow> r <o s"
blanchet@54474
    98
  unfolding cfinite_def cinfinite_def
traytel@55811
    99
  by (blast intro: finite_ordLess_infinite card_order_on_well_order_on)
blanchet@54474
   100
traytel@54581
   101
lemmas natLeq_card_order = natLeq_Card_order[unfolded Field_natLeq]
traytel@54581
   102
traytel@54581
   103
lemma natLeq_cinfinite: "cinfinite natLeq"
traytel@55811
   104
unfolding cinfinite_def Field_natLeq by (rule infinite_UNIV_nat)
traytel@54581
   105
blanchet@54474
   106
lemma natLeq_ordLeq_cinfinite:
blanchet@54474
   107
  assumes inf: "Cinfinite r"
blanchet@54474
   108
  shows "natLeq \<le>o r"
blanchet@54474
   109
proof -
traytel@55811
   110
  from inf have "natLeq \<le>o |Field r|" unfolding cinfinite_def
traytel@55811
   111
    using infinite_iff_natLeq_ordLeq by blast
blanchet@54474
   112
  also from inf have "|Field r| =o r" by (simp add: card_of_unique ordIso_symmetric)
blanchet@54474
   113
  finally show ?thesis .
blanchet@54474
   114
qed
blanchet@54474
   115
blanchet@54474
   116
lemma cinfinite_not_czero: "cinfinite r \<Longrightarrow> \<not> (r =o (czero :: 'a rel))"
traytel@55811
   117
unfolding cinfinite_def by (cases "Field r = {}") (auto dest: czeroE)
blanchet@54474
   118
blanchet@54474
   119
lemma Cinfinite_Cnotzero: "Cinfinite r \<Longrightarrow> Cnotzero r"
traytel@55811
   120
by (rule conjI[OF cinfinite_not_czero]) simp_all
blanchet@54474
   121
blanchet@54474
   122
lemma Cinfinite_cong: "\<lbrakk>r1 =o r2; Cinfinite r1\<rbrakk> \<Longrightarrow> Cinfinite r2"
traytel@55811
   123
using Card_order_ordIso2[of r1 r2] unfolding cinfinite_def ordIso_iff_ordLeq
traytel@55811
   124
by (auto dest: card_of_ordLeq_infinite[OF card_of_mono2])
blanchet@54474
   125
blanchet@54474
   126
lemma cinfinite_mono: "\<lbrakk>r1 \<le>o r2; cinfinite r1\<rbrakk> \<Longrightarrow> cinfinite r2"
traytel@55811
   127
unfolding cinfinite_def by (auto dest: card_of_ordLeq_infinite[OF card_of_mono2])
blanchet@54474
   128
blanchet@54474
   129
blanchet@54474
   130
subsection {* Binary sum *}
blanchet@54474
   131
blanchet@54474
   132
definition csum (infixr "+c" 65) where
blanchet@54474
   133
  "r1 +c r2 \<equiv> |Field r1 <+> Field r2|"
blanchet@54474
   134
blanchet@54474
   135
lemma Field_csum: "Field (r +c s) = Inl ` Field r \<union> Inr ` Field s"
blanchet@54474
   136
  unfolding csum_def Field_card_of by auto
blanchet@54474
   137
blanchet@54474
   138
lemma Card_order_csum:
blanchet@54474
   139
  "Card_order (r1 +c r2)"
blanchet@54474
   140
unfolding csum_def by (simp add: card_of_Card_order)
blanchet@54474
   141
blanchet@54474
   142
lemma csum_Cnotzero1:
blanchet@54474
   143
  "Cnotzero r1 \<Longrightarrow> Cnotzero (r1 +c r2)"
traytel@55811
   144
unfolding csum_def using Cnotzero_imp_not_empty[of r1] Plus_eq_empty_conv[of "Field r1" "Field r2"]
traytel@55811
   145
   card_of_ordIso_czero_iff_empty[of "Field r1 <+> Field r2"] by (auto intro: card_of_Card_order)
blanchet@54474
   146
blanchet@54474
   147
lemma card_order_csum:
blanchet@54474
   148
  assumes "card_order r1" "card_order r2"
blanchet@54474
   149
  shows "card_order (r1 +c r2)"
blanchet@54474
   150
proof -
blanchet@54474
   151
  have "Field r1 = UNIV" "Field r2 = UNIV" using assms card_order_on_Card_order by auto
blanchet@54474
   152
  thus ?thesis unfolding csum_def by (auto simp: card_of_card_order_on)
blanchet@54474
   153
qed
blanchet@54474
   154
blanchet@54474
   155
lemma cinfinite_csum:
blanchet@54474
   156
  "cinfinite r1 \<or> cinfinite r2 \<Longrightarrow> cinfinite (r1 +c r2)"
blanchet@54474
   157
unfolding cinfinite_def csum_def by (auto simp: Field_card_of)
blanchet@54474
   158
blanchet@54474
   159
lemma Cinfinite_csum1:
blanchet@54474
   160
  "Cinfinite r1 \<Longrightarrow> Cinfinite (r1 +c r2)"
traytel@55811
   161
unfolding cinfinite_def csum_def by (rule conjI[OF _ card_of_Card_order]) (auto simp: Field_card_of)
blanchet@54474
   162
blanchet@54480
   163
lemma Cinfinite_csum:
blanchet@54480
   164
  "Cinfinite r1 \<or> Cinfinite r2 \<Longrightarrow> Cinfinite (r1 +c r2)"
traytel@55811
   165
unfolding cinfinite_def csum_def by (rule conjI[OF _ card_of_Card_order]) (auto simp: Field_card_of)
blanchet@54480
   166
blanchet@55851
   167
lemma Cinfinite_csum_weak:
blanchet@54480
   168
  "\<lbrakk>Cinfinite r1; Cinfinite r2\<rbrakk> \<Longrightarrow> Cinfinite (r1 +c r2)"
traytel@55811
   169
by (erule Cinfinite_csum1)
blanchet@54480
   170
blanchet@54474
   171
lemma csum_cong: "\<lbrakk>p1 =o r1; p2 =o r2\<rbrakk> \<Longrightarrow> p1 +c p2 =o r1 +c r2"
blanchet@54474
   172
by (simp only: csum_def ordIso_Plus_cong)
blanchet@54474
   173
blanchet@54474
   174
lemma csum_cong1: "p1 =o r1 \<Longrightarrow> p1 +c q =o r1 +c q"
blanchet@54474
   175
by (simp only: csum_def ordIso_Plus_cong1)
blanchet@54474
   176
blanchet@54474
   177
lemma csum_cong2: "p2 =o r2 \<Longrightarrow> q +c p2 =o q +c r2"
blanchet@54474
   178
by (simp only: csum_def ordIso_Plus_cong2)
blanchet@54474
   179
blanchet@54474
   180
lemma csum_mono: "\<lbrakk>p1 \<le>o r1; p2 \<le>o r2\<rbrakk> \<Longrightarrow> p1 +c p2 \<le>o r1 +c r2"
blanchet@54474
   181
by (simp only: csum_def ordLeq_Plus_mono)
blanchet@54474
   182
blanchet@54474
   183
lemma csum_mono1: "p1 \<le>o r1 \<Longrightarrow> p1 +c q \<le>o r1 +c q"
blanchet@54474
   184
by (simp only: csum_def ordLeq_Plus_mono1)
blanchet@54474
   185
blanchet@54474
   186
lemma csum_mono2: "p2 \<le>o r2 \<Longrightarrow> q +c p2 \<le>o q +c r2"
blanchet@54474
   187
by (simp only: csum_def ordLeq_Plus_mono2)
blanchet@54474
   188
blanchet@54474
   189
lemma ordLeq_csum1: "Card_order p1 \<Longrightarrow> p1 \<le>o p1 +c p2"
blanchet@54474
   190
by (simp only: csum_def Card_order_Plus1)
blanchet@54474
   191
blanchet@54474
   192
lemma ordLeq_csum2: "Card_order p2 \<Longrightarrow> p2 \<le>o p1 +c p2"
blanchet@54474
   193
by (simp only: csum_def Card_order_Plus2)
blanchet@54474
   194
blanchet@54474
   195
lemma csum_com: "p1 +c p2 =o p2 +c p1"
blanchet@54474
   196
by (simp only: csum_def card_of_Plus_commute)
blanchet@54474
   197
blanchet@54474
   198
lemma csum_assoc: "(p1 +c p2) +c p3 =o p1 +c p2 +c p3"
blanchet@54474
   199
by (simp only: csum_def Field_card_of card_of_Plus_assoc)
blanchet@54474
   200
blanchet@54474
   201
lemma Cfinite_csum: "\<lbrakk>Cfinite r; Cfinite s\<rbrakk> \<Longrightarrow> Cfinite (r +c s)"
blanchet@54474
   202
  unfolding cfinite_def csum_def Field_card_of using card_of_card_order_on by simp
blanchet@54474
   203
blanchet@54474
   204
lemma csum_csum: "(r1 +c r2) +c (r3 +c r4) =o (r1 +c r3) +c (r2 +c r4)"
blanchet@54474
   205
proof -
blanchet@54474
   206
  have "(r1 +c r2) +c (r3 +c r4) =o r1 +c r2 +c (r3 +c r4)"
traytel@55811
   207
    by (rule csum_assoc)
blanchet@54474
   208
  also have "r1 +c r2 +c (r3 +c r4) =o r1 +c (r2 +c r3) +c r4"
traytel@55811
   209
    by (intro csum_assoc csum_cong2 ordIso_symmetric)
blanchet@54474
   210
  also have "r1 +c (r2 +c r3) +c r4 =o r1 +c (r3 +c r2) +c r4"
traytel@55811
   211
    by (intro csum_com csum_cong1 csum_cong2)
blanchet@54474
   212
  also have "r1 +c (r3 +c r2) +c r4 =o r1 +c r3 +c r2 +c r4"
traytel@55811
   213
    by (intro csum_assoc csum_cong2 ordIso_symmetric)
blanchet@54474
   214
  also have "r1 +c r3 +c r2 +c r4 =o (r1 +c r3) +c (r2 +c r4)"
traytel@55811
   215
    by (intro csum_assoc ordIso_symmetric)
blanchet@54474
   216
  finally show ?thesis .
blanchet@54474
   217
qed
blanchet@54474
   218
blanchet@54474
   219
lemma Plus_csum: "|A <+> B| =o |A| +c |B|"
blanchet@54474
   220
by (simp only: csum_def Field_card_of card_of_refl)
blanchet@54474
   221
blanchet@54474
   222
lemma Un_csum: "|A \<union> B| \<le>o |A| +c |B|"
blanchet@54474
   223
using ordLeq_ordIso_trans[OF card_of_Un_Plus_ordLeq Plus_csum] by blast
blanchet@54474
   224
blanchet@54474
   225
blanchet@54474
   226
subsection {* One *}
blanchet@54474
   227
blanchet@54474
   228
definition cone where
blanchet@54474
   229
  "cone = card_of {()}"
blanchet@54474
   230
blanchet@54474
   231
lemma Card_order_cone: "Card_order cone"
blanchet@54474
   232
unfolding cone_def by (rule card_of_Card_order)
blanchet@54474
   233
blanchet@54474
   234
lemma Cfinite_cone: "Cfinite cone"
blanchet@54474
   235
  unfolding cfinite_def by (simp add: Card_order_cone)
blanchet@54474
   236
blanchet@54474
   237
lemma cone_not_czero: "\<not> (cone =o czero)"
traytel@55811
   238
unfolding czero_def cone_def ordIso_iff_ordLeq using card_of_empty3 empty_not_insert by blast
blanchet@54474
   239
blanchet@54474
   240
lemma cone_ordLeq_Cnotzero: "Cnotzero r \<Longrightarrow> cone \<le>o r"
traytel@55811
   241
unfolding cone_def by (rule Card_order_singl_ordLeq) (auto intro: czeroI)
blanchet@54474
   242
blanchet@54474
   243
blanchet@55055
   244
subsection {* Two *}
blanchet@54474
   245
blanchet@54474
   246
definition ctwo where
blanchet@54474
   247
  "ctwo = |UNIV :: bool set|"
blanchet@54474
   248
blanchet@54474
   249
lemma Card_order_ctwo: "Card_order ctwo"
blanchet@54474
   250
unfolding ctwo_def by (rule card_of_Card_order)
blanchet@54474
   251
blanchet@54474
   252
lemma ctwo_not_czero: "\<not> (ctwo =o czero)"
blanchet@54474
   253
using card_of_empty3[of "UNIV :: bool set"] ordIso_iff_ordLeq
traytel@55811
   254
unfolding czero_def ctwo_def using UNIV_not_empty by auto
blanchet@54474
   255
blanchet@54474
   256
lemma ctwo_Cnotzero: "Cnotzero ctwo"
blanchet@54474
   257
by (simp add: ctwo_not_czero Card_order_ctwo)
blanchet@54474
   258
blanchet@54474
   259
blanchet@54474
   260
subsection {* Family sum *}
blanchet@54474
   261
blanchet@54474
   262
definition Csum where
blanchet@54474
   263
  "Csum r rs \<equiv> |SIGMA i : Field r. Field (rs i)|"
blanchet@54474
   264
blanchet@54474
   265
(* Similar setup to the one for SIGMA from theory Big_Operators: *)
blanchet@54474
   266
syntax "_Csum" ::
blanchet@54474
   267
  "pttrn => ('a * 'a) set => 'b * 'b set => (('a * 'b) * ('a * 'b)) set"
blanchet@54474
   268
  ("(3CSUM _:_. _)" [0, 51, 10] 10)
blanchet@54474
   269
blanchet@54474
   270
translations
blanchet@54474
   271
  "CSUM i:r. rs" == "CONST Csum r (%i. rs)"
blanchet@54474
   272
blanchet@54474
   273
lemma SIGMA_CSUM: "|SIGMA i : I. As i| = (CSUM i : |I|. |As i| )"
blanchet@54474
   274
by (auto simp: Csum_def Field_card_of)
blanchet@54474
   275
blanchet@54474
   276
(* NB: Always, under the cardinal operator,
blanchet@54474
   277
operations on sets are reduced automatically to operations on cardinals.
blanchet@54474
   278
This should make cardinal reasoning more direct and natural.  *)
blanchet@54474
   279
blanchet@54474
   280
blanchet@54474
   281
subsection {* Product *}
blanchet@54474
   282
blanchet@54474
   283
definition cprod (infixr "*c" 80) where
blanchet@54474
   284
  "r1 *c r2 = |Field r1 <*> Field r2|"
blanchet@54474
   285
blanchet@54474
   286
lemma card_order_cprod:
blanchet@54474
   287
  assumes "card_order r1" "card_order r2"
blanchet@54474
   288
  shows "card_order (r1 *c r2)"
blanchet@54474
   289
proof -
blanchet@54474
   290
  have "Field r1 = UNIV" "Field r2 = UNIV" using assms card_order_on_Card_order by auto
blanchet@54474
   291
  thus ?thesis by (auto simp: cprod_def card_of_card_order_on)
blanchet@54474
   292
qed
blanchet@54474
   293
blanchet@54474
   294
lemma Card_order_cprod: "Card_order (r1 *c r2)"
blanchet@54474
   295
by (simp only: cprod_def Field_card_of card_of_card_order_on)
blanchet@54474
   296
blanchet@54474
   297
lemma cprod_mono1: "p1 \<le>o r1 \<Longrightarrow> p1 *c q \<le>o r1 *c q"
blanchet@54474
   298
by (simp only: cprod_def ordLeq_Times_mono1)
blanchet@54474
   299
blanchet@54474
   300
lemma cprod_mono2: "p2 \<le>o r2 \<Longrightarrow> q *c p2 \<le>o q *c r2"
blanchet@54474
   301
by (simp only: cprod_def ordLeq_Times_mono2)
blanchet@54474
   302
blanchet@55851
   303
lemma cprod_mono: "\<lbrakk>p1 \<le>o r1; p2 \<le>o r2\<rbrakk> \<Longrightarrow> p1 *c p2 \<le>o r1 *c r2"
blanchet@55851
   304
by (rule ordLeq_transitive[OF cprod_mono1 cprod_mono2])
blanchet@55851
   305
blanchet@54474
   306
lemma ordLeq_cprod2: "\<lbrakk>Cnotzero p1; Card_order p2\<rbrakk> \<Longrightarrow> p2 \<le>o p1 *c p2"
traytel@55811
   307
unfolding cprod_def by (rule Card_order_Times2) (auto intro: czeroI)
blanchet@54474
   308
blanchet@54474
   309
lemma cinfinite_cprod: "\<lbrakk>cinfinite r1; cinfinite r2\<rbrakk> \<Longrightarrow> cinfinite (r1 *c r2)"
blanchet@54474
   310
by (simp add: cinfinite_def cprod_def Field_card_of infinite_cartesian_product)
blanchet@54474
   311
blanchet@54474
   312
lemma cinfinite_cprod2: "\<lbrakk>Cnotzero r1; Cinfinite r2\<rbrakk> \<Longrightarrow> cinfinite (r1 *c r2)"
traytel@55811
   313
by (rule cinfinite_mono) (auto intro: ordLeq_cprod2)
blanchet@54474
   314
blanchet@54474
   315
lemma Cinfinite_cprod2: "\<lbrakk>Cnotzero r1; Cinfinite r2\<rbrakk> \<Longrightarrow> Cinfinite (r1 *c r2)"
blanchet@54474
   316
by (blast intro: cinfinite_cprod2 Card_order_cprod)
blanchet@54474
   317
blanchet@55851
   318
lemma cprod_cong: "\<lbrakk>p1 =o r1; p2 =o r2\<rbrakk> \<Longrightarrow> p1 *c p2 =o r1 *c r2"
blanchet@55866
   319
unfolding ordIso_iff_ordLeq by (blast intro: cprod_mono)
blanchet@55851
   320
blanchet@55851
   321
lemma cprod_cong1: "\<lbrakk>p1 =o r1\<rbrakk> \<Longrightarrow> p1 *c p2 =o r1 *c p2"
blanchet@55866
   322
unfolding ordIso_iff_ordLeq by (blast intro: cprod_mono1)
blanchet@55851
   323
blanchet@55851
   324
lemma cprod_cong2: "p2 =o r2 \<Longrightarrow> q *c p2 =o q *c r2"
blanchet@55866
   325
unfolding ordIso_iff_ordLeq by (blast intro: cprod_mono2)
blanchet@55851
   326
blanchet@54474
   327
lemma cprod_com: "p1 *c p2 =o p2 *c p1"
blanchet@54474
   328
by (simp only: cprod_def card_of_Times_commute)
blanchet@54474
   329
blanchet@54474
   330
lemma card_of_Csum_Times:
blanchet@54474
   331
  "\<forall>i \<in> I. |A i| \<le>o |B| \<Longrightarrow> (CSUM i : |I|. |A i| ) \<le>o |I| *c |B|"
traytel@56191
   332
by (simp only: Csum_def cprod_def Field_card_of card_of_Sigma_mono1)
blanchet@54474
   333
blanchet@54474
   334
lemma card_of_Csum_Times':
blanchet@54474
   335
  assumes "Card_order r" "\<forall>i \<in> I. |A i| \<le>o r"
blanchet@54474
   336
  shows "(CSUM i : |I|. |A i| ) \<le>o |I| *c r"
blanchet@54474
   337
proof -
blanchet@54474
   338
  from assms(1) have *: "r =o |Field r|" by (simp add: card_of_unique)
blanchet@54474
   339
  with assms(2) have "\<forall>i \<in> I. |A i| \<le>o |Field r|" by (blast intro: ordLeq_ordIso_trans)
blanchet@54474
   340
  hence "(CSUM i : |I|. |A i| ) \<le>o |I| *c |Field r|" by (simp only: card_of_Csum_Times)
blanchet@54474
   341
  also from * have "|I| *c |Field r| \<le>o |I| *c r"
blanchet@54474
   342
    by (simp only: Field_card_of card_of_refl cprod_def ordIso_imp_ordLeq)
blanchet@54474
   343
  finally show ?thesis .
blanchet@54474
   344
qed
blanchet@54474
   345
blanchet@54474
   346
lemma cprod_csum_distrib1: "r1 *c r2 +c r1 *c r3 =o r1 *c (r2 +c r3)"
blanchet@54474
   347
unfolding csum_def cprod_def by (simp add: Field_card_of card_of_Times_Plus_distrib ordIso_symmetric)
blanchet@54474
   348
blanchet@54474
   349
lemma csum_absorb2': "\<lbrakk>Card_order r2; r1 \<le>o r2; cinfinite r1 \<or> cinfinite r2\<rbrakk> \<Longrightarrow> r1 +c r2 =o r2"
traytel@55811
   350
unfolding csum_def by (rule conjunct2[OF Card_order_Plus_infinite])
traytel@55811
   351
  (auto simp: cinfinite_def dest: cinfinite_mono)
blanchet@54474
   352
blanchet@54474
   353
lemma csum_absorb1':
blanchet@54474
   354
  assumes card: "Card_order r2"
blanchet@54474
   355
  and r12: "r1 \<le>o r2" and cr12: "cinfinite r1 \<or> cinfinite r2"
blanchet@54474
   356
  shows "r2 +c r1 =o r2"
blanchet@54474
   357
by (rule ordIso_transitive, rule csum_com, rule csum_absorb2', (simp only: assms)+)
blanchet@54474
   358
blanchet@54474
   359
lemma csum_absorb1: "\<lbrakk>Cinfinite r2; r1 \<le>o r2\<rbrakk> \<Longrightarrow> r2 +c r1 =o r2"
blanchet@54474
   360
by (rule csum_absorb1') auto
blanchet@54474
   361
blanchet@54474
   362
blanchet@54474
   363
subsection {* Exponentiation *}
blanchet@54474
   364
blanchet@54474
   365
definition cexp (infixr "^c" 90) where
blanchet@54474
   366
  "r1 ^c r2 \<equiv> |Func (Field r2) (Field r1)|"
blanchet@54474
   367
blanchet@54474
   368
lemma Card_order_cexp: "Card_order (r1 ^c r2)"
blanchet@54474
   369
unfolding cexp_def by (rule card_of_Card_order)
blanchet@54474
   370
blanchet@54474
   371
lemma cexp_mono':
blanchet@54474
   372
  assumes 1: "p1 \<le>o r1" and 2: "p2 \<le>o r2"
blanchet@54474
   373
  and n: "Field p2 = {} \<Longrightarrow> Field r2 = {}"
blanchet@54474
   374
  shows "p1 ^c p2 \<le>o r1 ^c r2"
blanchet@54474
   375
proof(cases "Field p1 = {}")
blanchet@54474
   376
  case True
traytel@55811
   377
  hence "Field p2 \<noteq> {} \<Longrightarrow> Func (Field p2) {} = {}" unfolding Func_is_emp by simp
traytel@55811
   378
  with True have "|Field |Func (Field p2) (Field p1)|| \<le>o cone"
blanchet@54474
   379
    unfolding cone_def Field_card_of
traytel@55811
   380
    by (cases "Field p2 = {}", auto intro: surj_imp_ordLeq simp: Func_empty)
blanchet@54474
   381
  hence "|Func (Field p2) (Field p1)| \<le>o cone" by (simp add: Field_card_of cexp_def)
blanchet@54474
   382
  hence "p1 ^c p2 \<le>o cone" unfolding cexp_def .
blanchet@54474
   383
  thus ?thesis
blanchet@54474
   384
  proof (cases "Field p2 = {}")
blanchet@54474
   385
    case True
blanchet@54474
   386
    with n have "Field r2 = {}" .
noschinl@55604
   387
    hence "cone \<le>o r1 ^c r2" unfolding cone_def cexp_def Func_def
noschinl@55604
   388
      by (auto intro: card_of_ordLeqI[where f="\<lambda>_ _. undefined"])
blanchet@54474
   389
    thus ?thesis using `p1 ^c p2 \<le>o cone` ordLeq_transitive by auto
blanchet@54474
   390
  next
blanchet@54474
   391
    case False with True have "|Field (p1 ^c p2)| =o czero"
blanchet@54474
   392
      unfolding card_of_ordIso_czero_iff_empty cexp_def Field_card_of Func_def by auto
blanchet@54474
   393
    thus ?thesis unfolding cexp_def card_of_ordIso_czero_iff_empty Field_card_of
blanchet@54474
   394
      by (simp add: card_of_empty)
blanchet@54474
   395
  qed
blanchet@54474
   396
next
blanchet@54474
   397
  case False
blanchet@54474
   398
  have 1: "|Field p1| \<le>o |Field r1|" and 2: "|Field p2| \<le>o |Field r2|"
blanchet@54474
   399
    using 1 2 by (auto simp: card_of_mono2)
blanchet@54474
   400
  obtain f1 where f1: "f1 ` Field r1 = Field p1"
blanchet@54474
   401
    using 1 unfolding card_of_ordLeq2[OF False, symmetric] by auto
blanchet@54474
   402
  obtain f2 where f2: "inj_on f2 (Field p2)" "f2 ` Field p2 \<subseteq> Field r2"
blanchet@54474
   403
    using 2 unfolding card_of_ordLeq[symmetric] by blast
blanchet@54474
   404
  have 0: "Func_map (Field p2) f1 f2 ` (Field (r1 ^c r2)) = Field (p1 ^c p2)"
blanchet@54474
   405
    unfolding cexp_def Field_card_of using Func_map_surj[OF f1 f2 n, symmetric] .
blanchet@54474
   406
  have 00: "Field (p1 ^c p2) \<noteq> {}" unfolding cexp_def Field_card_of Func_is_emp
blanchet@54474
   407
    using False by simp
blanchet@54474
   408
  show ?thesis
blanchet@54474
   409
    using 0 card_of_ordLeq2[OF 00] unfolding cexp_def Field_card_of by blast
blanchet@54474
   410
qed
blanchet@54474
   411
blanchet@54474
   412
lemma cexp_mono:
blanchet@54474
   413
  assumes 1: "p1 \<le>o r1" and 2: "p2 \<le>o r2"
blanchet@54474
   414
  and n: "p2 =o czero \<Longrightarrow> r2 =o czero" and card: "Card_order p2"
blanchet@54474
   415
  shows "p1 ^c p2 \<le>o r1 ^c r2"
traytel@55811
   416
  by (rule cexp_mono'[OF 1 2 czeroE[OF n[OF czeroI[OF card]]]])
blanchet@54474
   417
blanchet@54474
   418
lemma cexp_mono1:
blanchet@54474
   419
  assumes 1: "p1 \<le>o r1" and q: "Card_order q"
blanchet@54474
   420
  shows "p1 ^c q \<le>o r1 ^c q"
blanchet@54474
   421
using ordLeq_refl[OF q] by (rule cexp_mono[OF 1]) (auto simp: q)
blanchet@54474
   422
blanchet@54474
   423
lemma cexp_mono2':
blanchet@54474
   424
  assumes 2: "p2 \<le>o r2" and q: "Card_order q"
blanchet@54474
   425
  and n: "Field p2 = {} \<Longrightarrow> Field r2 = {}"
blanchet@54474
   426
  shows "q ^c p2 \<le>o q ^c r2"
blanchet@54474
   427
using ordLeq_refl[OF q] by (rule cexp_mono'[OF _ 2 n]) auto
blanchet@54474
   428
blanchet@54474
   429
lemma cexp_mono2:
blanchet@54474
   430
  assumes 2: "p2 \<le>o r2" and q: "Card_order q"
blanchet@54474
   431
  and n: "p2 =o czero \<Longrightarrow> r2 =o czero" and card: "Card_order p2"
blanchet@54474
   432
  shows "q ^c p2 \<le>o q ^c r2"
blanchet@54474
   433
using ordLeq_refl[OF q] by (rule cexp_mono[OF _ 2 n card]) auto
blanchet@54474
   434
blanchet@54474
   435
lemma cexp_mono2_Cnotzero:
blanchet@54474
   436
  assumes "p2 \<le>o r2" "Card_order q" "Cnotzero p2"
blanchet@54474
   437
  shows "q ^c p2 \<le>o q ^c r2"
traytel@55811
   438
using assms(3) czeroI by (blast intro: cexp_mono2'[OF assms(1,2)])
blanchet@54474
   439
blanchet@54474
   440
lemma cexp_cong:
blanchet@54474
   441
  assumes 1: "p1 =o r1" and 2: "p2 =o r2"
blanchet@54474
   442
  and Cr: "Card_order r2"
blanchet@54474
   443
  and Cp: "Card_order p2"
blanchet@54474
   444
  shows "p1 ^c p2 =o r1 ^c r2"
blanchet@54474
   445
proof -
blanchet@54474
   446
  obtain f where "bij_betw f (Field p2) (Field r2)"
blanchet@54474
   447
    using 2 card_of_ordIso[of "Field p2" "Field r2"] card_of_cong by auto
blanchet@54474
   448
  hence 0: "Field p2 = {} \<longleftrightarrow> Field r2 = {}" unfolding bij_betw_def by auto
blanchet@54474
   449
  have r: "p2 =o czero \<Longrightarrow> r2 =o czero"
blanchet@54474
   450
    and p: "r2 =o czero \<Longrightarrow> p2 =o czero"
blanchet@54474
   451
     using 0 Cr Cp czeroE czeroI by auto
blanchet@54474
   452
  show ?thesis using 0 1 2 unfolding ordIso_iff_ordLeq
traytel@55811
   453
    using r p cexp_mono[OF _ _ _ Cp] cexp_mono[OF _ _ _ Cr] by blast
blanchet@54474
   454
qed
blanchet@54474
   455
blanchet@54474
   456
lemma cexp_cong1:
blanchet@54474
   457
  assumes 1: "p1 =o r1" and q: "Card_order q"
blanchet@54474
   458
  shows "p1 ^c q =o r1 ^c q"
blanchet@54474
   459
by (rule cexp_cong[OF 1 _ q q]) (rule ordIso_refl[OF q])
blanchet@54474
   460
blanchet@54474
   461
lemma cexp_cong2:
blanchet@54474
   462
  assumes 2: "p2 =o r2" and q: "Card_order q" and p: "Card_order p2"
blanchet@54474
   463
  shows "q ^c p2 =o q ^c r2"
blanchet@54474
   464
by (rule cexp_cong[OF _ 2]) (auto simp only: ordIso_refl Card_order_ordIso2[OF p 2] q p)
blanchet@54474
   465
blanchet@54474
   466
lemma cexp_cone:
blanchet@54474
   467
  assumes "Card_order r"
blanchet@54474
   468
  shows "r ^c cone =o r"
blanchet@54474
   469
proof -
blanchet@54474
   470
  have "r ^c cone =o |Field r|"
blanchet@54474
   471
    unfolding cexp_def cone_def Field_card_of Func_empty
blanchet@54474
   472
      card_of_ordIso[symmetric] bij_betw_def Func_def inj_on_def image_def
blanchet@54474
   473
    by (rule exI[of _ "\<lambda>f. f ()"]) auto
blanchet@54474
   474
  also have "|Field r| =o r" by (rule card_of_Field_ordIso[OF assms])
blanchet@54474
   475
  finally show ?thesis .
blanchet@54474
   476
qed
blanchet@54474
   477
blanchet@54474
   478
lemma cexp_cprod:
blanchet@54474
   479
  assumes r1: "Card_order r1"
blanchet@54474
   480
  shows "(r1 ^c r2) ^c r3 =o r1 ^c (r2 *c r3)" (is "?L =o ?R")
blanchet@54474
   481
proof -
blanchet@54474
   482
  have "?L =o r1 ^c (r3 *c r2)"
blanchet@54474
   483
    unfolding cprod_def cexp_def Field_card_of
blanchet@54474
   484
    using card_of_Func_Times by(rule ordIso_symmetric)
blanchet@54474
   485
  also have "r1 ^c (r3 *c r2) =o ?R"
blanchet@54474
   486
    apply(rule cexp_cong2) using cprod_com r1 by (auto simp: Card_order_cprod)
blanchet@54474
   487
  finally show ?thesis .
blanchet@54474
   488
qed
blanchet@54474
   489
blanchet@54474
   490
lemma cprod_infinite1': "\<lbrakk>Cinfinite r; Cnotzero p; p \<le>o r\<rbrakk> \<Longrightarrow> r *c p =o r"
blanchet@54474
   491
unfolding cinfinite_def cprod_def
blanchet@54474
   492
by (rule Card_order_Times_infinite[THEN conjunct1]) (blast intro: czeroI)+
blanchet@54474
   493
blanchet@55851
   494
lemma cprod_infinite: "Cinfinite r \<Longrightarrow> r *c r =o r"
blanchet@55851
   495
using cprod_infinite1' Cinfinite_Cnotzero ordLeq_refl by blast
blanchet@55851
   496
blanchet@54474
   497
lemma cexp_cprod_ordLeq:
blanchet@54474
   498
  assumes r1: "Card_order r1" and r2: "Cinfinite r2"
blanchet@54474
   499
  and r3: "Cnotzero r3" "r3 \<le>o r2"
blanchet@54474
   500
  shows "(r1 ^c r2) ^c r3 =o r1 ^c r2" (is "?L =o ?R")
blanchet@54474
   501
proof-
blanchet@54474
   502
  have "?L =o r1 ^c (r2 *c r3)" using cexp_cprod[OF r1] .
blanchet@54474
   503
  also have "r1 ^c (r2 *c r3) =o ?R"
blanchet@54474
   504
  apply(rule cexp_cong2)
blanchet@54474
   505
  apply(rule cprod_infinite1'[OF r2 r3]) using r1 r2 by (fastforce simp: Card_order_cprod)+
blanchet@54474
   506
  finally show ?thesis .
blanchet@54474
   507
qed
blanchet@54474
   508
blanchet@54474
   509
lemma Cnotzero_UNIV: "Cnotzero |UNIV|"
blanchet@54474
   510
by (auto simp: card_of_Card_order card_of_ordIso_czero_iff_empty)
blanchet@54474
   511
blanchet@54474
   512
lemma ordLess_ctwo_cexp:
blanchet@54474
   513
  assumes "Card_order r"
blanchet@54474
   514
  shows "r <o ctwo ^c r"
blanchet@54474
   515
proof -
blanchet@54474
   516
  have "r <o |Pow (Field r)|" using assms by (rule Card_order_Pow)
blanchet@54474
   517
  also have "|Pow (Field r)| =o ctwo ^c r"
blanchet@54474
   518
    unfolding ctwo_def cexp_def Field_card_of by (rule card_of_Pow_Func)
blanchet@54474
   519
  finally show ?thesis .
blanchet@54474
   520
qed
blanchet@54474
   521
blanchet@54474
   522
lemma ordLeq_cexp1:
blanchet@54474
   523
  assumes "Cnotzero r" "Card_order q"
blanchet@54474
   524
  shows "q \<le>o q ^c r"
blanchet@54474
   525
proof (cases "q =o (czero :: 'a rel)")
blanchet@54474
   526
  case True thus ?thesis by (simp only: card_of_empty cexp_def czero_def ordIso_ordLeq_trans)
blanchet@54474
   527
next
blanchet@54474
   528
  case False
blanchet@54474
   529
  thus ?thesis
blanchet@54474
   530
    apply -
blanchet@54474
   531
    apply (rule ordIso_ordLeq_trans)
blanchet@54474
   532
    apply (rule ordIso_symmetric)
blanchet@54474
   533
    apply (rule cexp_cone)
blanchet@54474
   534
    apply (rule assms(2))
blanchet@54474
   535
    apply (rule cexp_mono2)
blanchet@54474
   536
    apply (rule cone_ordLeq_Cnotzero)
blanchet@54474
   537
    apply (rule assms(1))
blanchet@54474
   538
    apply (rule assms(2))
blanchet@54474
   539
    apply (rule notE)
blanchet@54474
   540
    apply (rule cone_not_czero)
blanchet@54474
   541
    apply assumption
blanchet@54474
   542
    apply (rule Card_order_cone)
blanchet@54474
   543
  done
blanchet@54474
   544
qed
blanchet@54474
   545
blanchet@54474
   546
lemma ordLeq_cexp2:
blanchet@54474
   547
  assumes "ctwo \<le>o q" "Card_order r"
blanchet@54474
   548
  shows "r \<le>o q ^c r"
blanchet@54474
   549
proof (cases "r =o (czero :: 'a rel)")
blanchet@54474
   550
  case True thus ?thesis by (simp only: card_of_empty cexp_def czero_def ordIso_ordLeq_trans)
blanchet@54474
   551
next
blanchet@54474
   552
  case False thus ?thesis
blanchet@54474
   553
    apply -
blanchet@54474
   554
    apply (rule ordLess_imp_ordLeq)
blanchet@54474
   555
    apply (rule ordLess_ordLeq_trans)
blanchet@54474
   556
    apply (rule ordLess_ctwo_cexp)
blanchet@54474
   557
    apply (rule assms(2))
blanchet@54474
   558
    apply (rule cexp_mono1)
blanchet@54474
   559
    apply (rule assms(1))
blanchet@54474
   560
    apply (rule assms(2))
blanchet@54474
   561
  done
blanchet@54474
   562
qed
blanchet@54474
   563
blanchet@54474
   564
lemma cinfinite_cexp: "\<lbrakk>ctwo \<le>o q; Cinfinite r\<rbrakk> \<Longrightarrow> cinfinite (q ^c r)"
traytel@55811
   565
by (rule cinfinite_mono[OF ordLeq_cexp2]) simp_all
blanchet@54474
   566
blanchet@54474
   567
lemma Cinfinite_cexp:
blanchet@54474
   568
  "\<lbrakk>ctwo \<le>o q; Cinfinite r\<rbrakk> \<Longrightarrow> Cinfinite (q ^c r)"
blanchet@54474
   569
by (simp add: cinfinite_cexp Card_order_cexp)
blanchet@54474
   570
blanchet@54474
   571
lemma ctwo_ordLess_natLeq: "ctwo <o natLeq"
traytel@54581
   572
unfolding ctwo_def using finite_UNIV natLeq_cinfinite natLeq_Card_order
traytel@54581
   573
by (intro Cfinite_ordLess_Cinfinite) (auto simp: cfinite_def card_of_Card_order)
blanchet@54474
   574
blanchet@54474
   575
lemma ctwo_ordLess_Cinfinite: "Cinfinite r \<Longrightarrow> ctwo <o r"
traytel@55811
   576
by (rule ordLess_ordLeq_trans[OF ctwo_ordLess_natLeq natLeq_ordLeq_cinfinite])
blanchet@54474
   577
blanchet@54474
   578
lemma ctwo_ordLeq_Cinfinite:
blanchet@54474
   579
  assumes "Cinfinite r"
blanchet@54474
   580
  shows "ctwo \<le>o r"
blanchet@54474
   581
by (rule ordLess_imp_ordLeq[OF ctwo_ordLess_Cinfinite[OF assms]])
blanchet@54474
   582
blanchet@54474
   583
lemma Un_Cinfinite_bound: "\<lbrakk>|A| \<le>o r; |B| \<le>o r; Cinfinite r\<rbrakk> \<Longrightarrow> |A \<union> B| \<le>o r"
blanchet@54474
   584
by (auto simp add: cinfinite_def card_of_Un_ordLeq_infinite_Field)
blanchet@54474
   585
blanchet@54474
   586
lemma UNION_Cinfinite_bound: "\<lbrakk>|I| \<le>o r; \<forall>i \<in> I. |A i| \<le>o r; Cinfinite r\<rbrakk> \<Longrightarrow> |\<Union>i \<in> I. A i| \<le>o r"
blanchet@54474
   587
by (auto simp add: card_of_UNION_ordLeq_infinite_Field cinfinite_def)
blanchet@54474
   588
blanchet@54474
   589
lemma csum_cinfinite_bound:
blanchet@54474
   590
  assumes "p \<le>o r" "q \<le>o r" "Card_order p" "Card_order q" "Cinfinite r"
blanchet@54474
   591
  shows "p +c q \<le>o r"
blanchet@54474
   592
proof -
blanchet@54474
   593
  from assms(1-4) have "|Field p| \<le>o r" "|Field q| \<le>o r"
blanchet@54474
   594
    unfolding card_order_on_def using card_of_least ordLeq_transitive by blast+
blanchet@54474
   595
  with assms show ?thesis unfolding cinfinite_def csum_def
blanchet@54474
   596
    by (blast intro: card_of_Plus_ordLeq_infinite_Field)
blanchet@54474
   597
qed
blanchet@54474
   598
blanchet@54474
   599
lemma cprod_cinfinite_bound:
blanchet@54474
   600
  assumes "p \<le>o r" "q \<le>o r" "Card_order p" "Card_order q" "Cinfinite r"
blanchet@54474
   601
  shows "p *c q \<le>o r"
blanchet@54474
   602
proof -
blanchet@54474
   603
  from assms(1-4) have "|Field p| \<le>o r" "|Field q| \<le>o r"
blanchet@54474
   604
    unfolding card_order_on_def using card_of_least ordLeq_transitive by blast+
blanchet@54474
   605
  with assms show ?thesis unfolding cinfinite_def cprod_def
blanchet@54474
   606
    by (blast intro: card_of_Times_ordLeq_infinite_Field)
blanchet@54474
   607
qed
blanchet@54474
   608
blanchet@54474
   609
lemma cprod_csum_cexp:
blanchet@54474
   610
  "r1 *c r2 \<le>o (r1 +c r2) ^c ctwo"
blanchet@54474
   611
unfolding cprod_def csum_def cexp_def ctwo_def Field_card_of
blanchet@54474
   612
proof -
blanchet@54474
   613
  let ?f = "\<lambda>(a, b). %x. if x then Inl a else Inr b"
blanchet@54474
   614
  have "inj_on ?f (Field r1 \<times> Field r2)" (is "inj_on _ ?LHS")
blanchet@54474
   615
    by (auto simp: inj_on_def fun_eq_iff split: bool.split)
blanchet@54474
   616
  moreover
blanchet@54474
   617
  have "?f ` ?LHS \<subseteq> Func (UNIV :: bool set) (Field r1 <+> Field r2)" (is "_ \<subseteq> ?RHS")
blanchet@54474
   618
    by (auto simp: Func_def)
blanchet@54474
   619
  ultimately show "|?LHS| \<le>o |?RHS|" using card_of_ordLeq by blast
blanchet@54474
   620
qed
blanchet@54474
   621
blanchet@54474
   622
lemma Cfinite_cprod_Cinfinite: "\<lbrakk>Cfinite r; Cinfinite s\<rbrakk> \<Longrightarrow> r *c s \<le>o s"
blanchet@54474
   623
by (intro cprod_cinfinite_bound)
blanchet@54474
   624
  (auto intro: ordLeq_refl ordLess_imp_ordLeq[OF Cfinite_ordLess_Cinfinite])
blanchet@54474
   625
blanchet@54474
   626
lemma cprod_cexp: "(r *c s) ^c t =o r ^c t *c s ^c t"
blanchet@54474
   627
  unfolding cprod_def cexp_def Field_card_of by (rule Func_Times_Range)
blanchet@54474
   628
blanchet@54474
   629
lemma cprod_cexp_csum_cexp_Cinfinite:
blanchet@54474
   630
  assumes t: "Cinfinite t"
blanchet@54474
   631
  shows "(r *c s) ^c t \<le>o (r +c s) ^c t"
blanchet@54474
   632
proof -
blanchet@54474
   633
  have "(r *c s) ^c t \<le>o ((r +c s) ^c ctwo) ^c t"
blanchet@54474
   634
    by (rule cexp_mono1[OF cprod_csum_cexp conjunct2[OF t]])
blanchet@54474
   635
  also have "((r +c s) ^c ctwo) ^c t =o (r +c s) ^c (ctwo *c t)"
blanchet@54474
   636
    by (rule cexp_cprod[OF Card_order_csum])
blanchet@54474
   637
  also have "(r +c s) ^c (ctwo *c t) =o (r +c s) ^c (t *c ctwo)"
blanchet@54474
   638
    by (rule cexp_cong2[OF cprod_com Card_order_csum Card_order_cprod])
blanchet@54474
   639
  also have "(r +c s) ^c (t *c ctwo) =o ((r +c s) ^c t) ^c ctwo"
blanchet@54474
   640
    by (rule ordIso_symmetric[OF cexp_cprod[OF Card_order_csum]])
blanchet@54474
   641
  also have "((r +c s) ^c t) ^c ctwo =o (r +c s) ^c t"
blanchet@54474
   642
    by (rule cexp_cprod_ordLeq[OF Card_order_csum t ctwo_Cnotzero ctwo_ordLeq_Cinfinite[OF t]])
blanchet@54474
   643
  finally show ?thesis .
blanchet@54474
   644
qed
blanchet@54474
   645
blanchet@54474
   646
lemma Cfinite_cexp_Cinfinite:
blanchet@54474
   647
  assumes s: "Cfinite s" and t: "Cinfinite t"
blanchet@54474
   648
  shows "s ^c t \<le>o ctwo ^c t"
blanchet@54474
   649
proof (cases "s \<le>o ctwo")
blanchet@54474
   650
  case True thus ?thesis using t by (blast intro: cexp_mono1)
blanchet@54474
   651
next
blanchet@54474
   652
  case False
traytel@55811
   653
  hence "ctwo \<le>o s" using ordLeq_total[of s ctwo] Card_order_ctwo s
traytel@55811
   654
    by (auto intro: card_order_on_well_order_on)
traytel@55811
   655
  hence "Cnotzero s" using Cnotzero_mono[OF ctwo_Cnotzero] s by blast
traytel@55811
   656
  hence st: "Cnotzero (s *c t)" by (intro Cinfinite_Cnotzero[OF Cinfinite_cprod2]) (auto simp: t)
blanchet@54474
   657
  have "s ^c t \<le>o (ctwo ^c s) ^c t"
blanchet@54474
   658
    using assms by (blast intro: cexp_mono1 ordLess_imp_ordLeq[OF ordLess_ctwo_cexp])
blanchet@54474
   659
  also have "(ctwo ^c s) ^c t =o ctwo ^c (s *c t)"
blanchet@54474
   660
    by (blast intro: Card_order_ctwo cexp_cprod)
blanchet@54474
   661
  also have "ctwo ^c (s *c t) \<le>o ctwo ^c t"
blanchet@54474
   662
    using assms st by (intro cexp_mono2_Cnotzero Cfinite_cprod_Cinfinite Card_order_ctwo)
blanchet@54474
   663
  finally show ?thesis .
blanchet@54474
   664
qed
blanchet@54474
   665
blanchet@54474
   666
lemma csum_Cfinite_cexp_Cinfinite:
blanchet@54474
   667
  assumes r: "Card_order r" and s: "Cfinite s" and t: "Cinfinite t"
blanchet@54474
   668
  shows "(r +c s) ^c t \<le>o (r +c ctwo) ^c t"
blanchet@54474
   669
proof (cases "Cinfinite r")
blanchet@54474
   670
  case True
blanchet@54474
   671
  hence "r +c s =o r" by (intro csum_absorb1 ordLess_imp_ordLeq[OF Cfinite_ordLess_Cinfinite] s)
blanchet@54474
   672
  hence "(r +c s) ^c t =o r ^c t" using t by (blast intro: cexp_cong1)
blanchet@54474
   673
  also have "r ^c t \<le>o (r +c ctwo) ^c t" using t by (blast intro: cexp_mono1 ordLeq_csum1 r)
blanchet@54474
   674
  finally show ?thesis .
blanchet@54474
   675
next
blanchet@54474
   676
  case False
blanchet@54474
   677
  with r have "Cfinite r" unfolding cinfinite_def cfinite_def by auto
blanchet@54474
   678
  hence "Cfinite (r +c s)" by (intro Cfinite_csum s)
blanchet@54474
   679
  hence "(r +c s) ^c t \<le>o ctwo ^c t" by (intro Cfinite_cexp_Cinfinite t)
blanchet@54474
   680
  also have "ctwo ^c t \<le>o (r +c ctwo) ^c t" using t
blanchet@54474
   681
    by (blast intro: cexp_mono1 ordLeq_csum2 Card_order_ctwo)
blanchet@54474
   682
  finally show ?thesis .
blanchet@54474
   683
qed
blanchet@54474
   684
blanchet@54474
   685
(* cardSuc *)
blanchet@54474
   686
blanchet@54474
   687
lemma Cinfinite_cardSuc: "Cinfinite r \<Longrightarrow> Cinfinite (cardSuc r)"
blanchet@54474
   688
by (simp add: cinfinite_def cardSuc_Card_order cardSuc_finite)
blanchet@54474
   689
blanchet@54474
   690
lemma cardSuc_UNION_Cinfinite:
blanchet@54474
   691
  assumes "Cinfinite r" "relChain (cardSuc r) As" "B \<le> (UN i : Field (cardSuc r). As i)" "|B| <=o r"
blanchet@54474
   692
  shows "EX i : Field (cardSuc r). B \<le> As i"
blanchet@54474
   693
using cardSuc_UNION assms unfolding cinfinite_def by blast
blanchet@54474
   694
blanchet@54474
   695
end