src/HOL/Old_Number_Theory/Chinese.thy
author blanchet
Thu Sep 11 18:54:36 2014 +0200 (2014-09-11)
changeset 58306 117ba6cbe414
parent 57514 bdc2c6b40bf2
child 58889 5b7a9633cfa8
permissions -rw-r--r--
renamed 'rep_datatype' to 'old_rep_datatype' (HOL)
wenzelm@38159
     1
(*  Title:      HOL/Old_Number_Theory/Chinese.thy
wenzelm@38159
     2
    Author:     Thomas M. Rasmussen
wenzelm@11049
     3
    Copyright   2000  University of Cambridge
paulson@9508
     4
*)
paulson@9508
     5
wenzelm@11049
     6
header {* The Chinese Remainder Theorem *}
wenzelm@11049
     7
haftmann@27556
     8
theory Chinese 
haftmann@27556
     9
imports IntPrimes
haftmann@27556
    10
begin
wenzelm@11049
    11
wenzelm@11049
    12
text {*
wenzelm@11049
    13
  The Chinese Remainder Theorem for an arbitrary finite number of
wenzelm@11049
    14
  equations.  (The one-equation case is included in theory @{text
wenzelm@11049
    15
  IntPrimes}.  Uses functions for indexing.\footnote{Maybe @{term
wenzelm@11049
    16
  funprod} and @{term funsum} should be based on general @{term fold}
wenzelm@11049
    17
  on indices?}
wenzelm@11049
    18
*}
wenzelm@11049
    19
wenzelm@11049
    20
wenzelm@11049
    21
subsection {* Definitions *}
paulson@9508
    22
wenzelm@38159
    23
primrec funprod :: "(nat => int) => nat => nat => int"
wenzelm@38159
    24
where
wenzelm@11049
    25
  "funprod f i 0 = f i"
wenzelm@38159
    26
| "funprod f i (Suc n) = f (Suc (i + n)) * funprod f i n"
paulson@9508
    27
wenzelm@38159
    28
primrec funsum :: "(nat => int) => nat => nat => int"
wenzelm@38159
    29
where
wenzelm@11049
    30
  "funsum f i 0 = f i"
wenzelm@38159
    31
| "funsum f i (Suc n) = f (Suc (i + n)) + funsum f i n"
paulson@9508
    32
wenzelm@19670
    33
definition
wenzelm@21404
    34
  m_cond :: "nat => (nat => int) => bool" where
wenzelm@19670
    35
  "m_cond n mf =
wenzelm@19670
    36
    ((\<forall>i. i \<le> n --> 0 < mf i) \<and>
haftmann@27556
    37
      (\<forall>i j. i \<le> n \<and> j \<le> n \<and> i \<noteq> j --> zgcd (mf i) (mf j) = 1))"
wenzelm@19670
    38
wenzelm@21404
    39
definition
wenzelm@21404
    40
  km_cond :: "nat => (nat => int) => (nat => int) => bool" where
haftmann@27556
    41
  "km_cond n kf mf = (\<forall>i. i \<le> n --> zgcd (kf i) (mf i) = 1)"
wenzelm@19670
    42
wenzelm@21404
    43
definition
wenzelm@11049
    44
  lincong_sol ::
wenzelm@21404
    45
    "nat => (nat => int) => (nat => int) => (nat => int) => int => bool" where
wenzelm@19670
    46
  "lincong_sol n kf bf mf x = (\<forall>i. i \<le> n --> zcong (kf i * x) (bf i) (mf i))"
paulson@9508
    47
wenzelm@21404
    48
definition
wenzelm@21404
    49
  mhf :: "(nat => int) => nat => nat => int" where
wenzelm@19670
    50
  "mhf mf n i =
wenzelm@19670
    51
    (if i = 0 then funprod mf (Suc 0) (n - Suc 0)
wenzelm@19670
    52
     else if i = n then funprod mf 0 (n - Suc 0)
wenzelm@19670
    53
     else funprod mf 0 (i - Suc 0) * funprod mf (Suc i) (n - Suc 0 - i))"
wenzelm@19670
    54
wenzelm@21404
    55
definition
wenzelm@11049
    56
  xilin_sol ::
wenzelm@21404
    57
    "nat => nat => (nat => int) => (nat => int) => (nat => int) => int" where
wenzelm@19670
    58
  "xilin_sol i n kf bf mf =
wenzelm@19670
    59
    (if 0 < n \<and> i \<le> n \<and> m_cond n mf \<and> km_cond n kf mf then
wenzelm@19670
    60
        (SOME x. 0 \<le> x \<and> x < mf i \<and> zcong (kf i * mhf mf n i * x) (bf i) (mf i))
wenzelm@19670
    61
     else 0)"
wenzelm@11049
    62
wenzelm@21404
    63
definition
wenzelm@21404
    64
  x_sol :: "nat => (nat => int) => (nat => int) => (nat => int) => int" where
wenzelm@19670
    65
  "x_sol n kf bf mf = funsum (\<lambda>i. xilin_sol i n kf bf mf * mhf mf n i) 0 n"
wenzelm@11049
    66
wenzelm@11049
    67
wenzelm@11049
    68
text {* \medskip @{term funprod} and @{term funsum} *}
wenzelm@11049
    69
paulson@11868
    70
lemma funprod_pos: "(\<forall>i. i \<le> n --> 0 < mf i) ==> 0 < funprod mf 0 n"
nipkow@56544
    71
by (induct n) auto
wenzelm@11049
    72
wenzelm@11049
    73
lemma funprod_zgcd [rule_format (no_asm)]:
haftmann@27556
    74
  "(\<forall>i. k \<le> i \<and> i \<le> k + l --> zgcd (mf i) (mf m) = 1) -->
haftmann@27556
    75
    zgcd (funprod mf k l) (mf m) = 1"
wenzelm@11049
    76
  apply (induct l)
wenzelm@11049
    77
   apply simp_all
wenzelm@11049
    78
  apply (rule impI)+
wenzelm@11049
    79
  apply (subst zgcd_zmult_cancel)
wenzelm@11049
    80
  apply auto
wenzelm@11049
    81
  done
paulson@9508
    82
wenzelm@11049
    83
lemma funprod_zdvd [rule_format]:
wenzelm@11049
    84
    "k \<le> i --> i \<le> k + l --> mf i dvd funprod mf k l"
wenzelm@11049
    85
  apply (induct l)
wenzelm@11049
    86
   apply auto
nipkow@30042
    87
  apply (subgoal_tac "i = Suc (k + l)")
nipkow@30042
    88
   apply (simp_all (no_asm_simp))
wenzelm@11049
    89
  done
wenzelm@11049
    90
wenzelm@11049
    91
lemma funsum_mod:
wenzelm@11049
    92
    "funsum f k l mod m = funsum (\<lambda>i. (f i) mod m) k l mod m"
wenzelm@11049
    93
  apply (induct l)
wenzelm@11049
    94
   apply auto
wenzelm@11049
    95
  apply (rule trans)
nipkow@29948
    96
   apply (rule mod_add_eq)
wenzelm@11049
    97
  apply simp
nipkow@30034
    98
  apply (rule mod_add_right_eq [symmetric])
wenzelm@11049
    99
  done
paulson@9508
   100
wenzelm@11049
   101
lemma funsum_zero [rule_format (no_asm)]:
paulson@11868
   102
    "(\<forall>i. k \<le> i \<and> i \<le> k + l --> f i = 0) --> (funsum f k l) = 0"
wenzelm@11049
   103
  apply (induct l)
wenzelm@11049
   104
   apply auto
wenzelm@11049
   105
  done
wenzelm@11049
   106
wenzelm@11049
   107
lemma funsum_oneelem [rule_format (no_asm)]:
wenzelm@11049
   108
  "k \<le> j --> j \<le> k + l -->
paulson@11868
   109
    (\<forall>i. k \<le> i \<and> i \<le> k + l \<and> i \<noteq> j --> f i = 0) -->
wenzelm@11049
   110
    funsum f k l = f j"
wenzelm@11049
   111
  apply (induct l)
wenzelm@11049
   112
   prefer 2
wenzelm@11049
   113
   apply clarify
wenzelm@11049
   114
   defer
wenzelm@11049
   115
   apply clarify
wenzelm@11049
   116
   apply (subgoal_tac "k = j")
wenzelm@11049
   117
    apply (simp_all (no_asm_simp))
nipkow@15236
   118
  apply (case_tac "Suc (k + l) = j")
nipkow@15236
   119
   apply (subgoal_tac "funsum f k l = 0")
wenzelm@11049
   120
    apply (rule_tac [2] funsum_zero)
nipkow@15236
   121
    apply (subgoal_tac [3] "f (Suc (k + l)) = 0")
nipkow@15236
   122
     apply (subgoal_tac [3] "j \<le> k + l")
wenzelm@11049
   123
      prefer 4
wenzelm@11049
   124
      apply arith
wenzelm@11049
   125
     apply auto
wenzelm@11049
   126
  done
wenzelm@11049
   127
wenzelm@11049
   128
wenzelm@11049
   129
subsection {* Chinese: uniqueness *}
paulson@9508
   130
wenzelm@13524
   131
lemma zcong_funprod_aux:
wenzelm@11049
   132
  "m_cond n mf ==> km_cond n kf mf
wenzelm@11049
   133
    ==> lincong_sol n kf bf mf x ==> lincong_sol n kf bf mf y
wenzelm@11049
   134
    ==> [x = y] (mod mf n)"
wenzelm@11049
   135
  apply (unfold m_cond_def km_cond_def lincong_sol_def)
wenzelm@11049
   136
  apply (rule iffD1)
wenzelm@11049
   137
   apply (rule_tac k = "kf n" in zcong_cancel2)
wenzelm@11049
   138
    apply (rule_tac [3] b = "bf n" in zcong_trans)
wenzelm@11049
   139
     prefer 4
wenzelm@11049
   140
     apply (subst zcong_sym)
wenzelm@11049
   141
     defer
wenzelm@11049
   142
     apply (rule order_less_imp_le)
wenzelm@11049
   143
     apply simp_all
wenzelm@11049
   144
  done
wenzelm@11049
   145
wenzelm@11049
   146
lemma zcong_funprod [rule_format]:
wenzelm@11049
   147
  "m_cond n mf --> km_cond n kf mf -->
wenzelm@11049
   148
    lincong_sol n kf bf mf x --> lincong_sol n kf bf mf y -->
wenzelm@11049
   149
    [x = y] (mod funprod mf 0 n)"
wenzelm@11049
   150
  apply (induct n)
wenzelm@11049
   151
   apply (simp_all (no_asm))
wenzelm@13524
   152
   apply (blast intro: zcong_funprod_aux)
wenzelm@11049
   153
  apply (rule impI)+
wenzelm@11049
   154
  apply (rule zcong_zgcd_zmult_zmod)
wenzelm@13524
   155
    apply (blast intro: zcong_funprod_aux)
wenzelm@11049
   156
    prefer 2
wenzelm@11049
   157
    apply (subst zgcd_commute)
wenzelm@11049
   158
    apply (rule funprod_zgcd)
wenzelm@11049
   159
   apply (auto simp add: m_cond_def km_cond_def lincong_sol_def)
wenzelm@11049
   160
  done
wenzelm@11049
   161
wenzelm@11049
   162
wenzelm@11049
   163
subsection {* Chinese: existence *}
wenzelm@11049
   164
wenzelm@11049
   165
lemma unique_xi_sol:
wenzelm@11049
   166
  "0 < n ==> i \<le> n ==> m_cond n mf ==> km_cond n kf mf
paulson@11868
   167
    ==> \<exists>!x. 0 \<le> x \<and> x < mf i \<and> [kf i * mhf mf n i * x = bf i] (mod mf i)"
wenzelm@11049
   168
  apply (rule zcong_lineq_unique)
wenzelm@39159
   169
   apply (tactic {* stac @{thm zgcd_zmult_cancel} 2 *})
wenzelm@11049
   170
    apply (unfold m_cond_def km_cond_def mhf_def)
wenzelm@11049
   171
    apply (simp_all (no_asm_simp))
wenzelm@11049
   172
  apply safe
wenzelm@39159
   173
    apply (tactic {* stac @{thm zgcd_zmult_cancel} 3 *})
wenzelm@11049
   174
     apply (rule_tac [!] funprod_zgcd)
wenzelm@11049
   175
     apply safe
wenzelm@11049
   176
     apply simp_all
thomas@57492
   177
   apply (subgoal_tac "ia<n")
webertj@20432
   178
    prefer 2
webertj@20432
   179
    apply arith
webertj@20432
   180
   apply (case_tac [2] i)
webertj@20432
   181
    apply simp_all
wenzelm@11049
   182
  done
paulson@9508
   183
wenzelm@13524
   184
lemma x_sol_lin_aux:
wenzelm@11049
   185
    "0 < n ==> i \<le> n ==> j \<le> n ==> j \<noteq> i ==> mf j dvd mhf mf n i"
wenzelm@11049
   186
  apply (unfold mhf_def)
wenzelm@11049
   187
  apply (case_tac "i = 0")
wenzelm@11049
   188
   apply (case_tac [2] "i = n")
wenzelm@11049
   189
    apply (simp_all (no_asm_simp))
wenzelm@11049
   190
    apply (case_tac [3] "j < i")
nipkow@30042
   191
     apply (rule_tac [3] dvd_mult2)
nipkow@30042
   192
     apply (rule_tac [4] dvd_mult)
wenzelm@11049
   193
     apply (rule_tac [!] funprod_zdvd)
chaieb@23315
   194
     apply arith
chaieb@23315
   195
     apply arith
chaieb@23315
   196
     apply arith
chaieb@23315
   197
     apply arith
chaieb@23315
   198
     apply arith
chaieb@23315
   199
     apply arith
chaieb@23315
   200
     apply arith
chaieb@23315
   201
     apply arith
wenzelm@11049
   202
  done
wenzelm@11049
   203
wenzelm@11049
   204
lemma x_sol_lin:
wenzelm@11049
   205
  "0 < n ==> i \<le> n
wenzelm@11049
   206
    ==> x_sol n kf bf mf mod mf i =
wenzelm@11049
   207
      xilin_sol i n kf bf mf * mhf mf n i mod mf i"
wenzelm@11049
   208
  apply (unfold x_sol_def)
wenzelm@11049
   209
  apply (subst funsum_mod)
wenzelm@11049
   210
  apply (subst funsum_oneelem)
wenzelm@11049
   211
     apply auto
nipkow@30042
   212
  apply (subst dvd_eq_mod_eq_0 [symmetric])
nipkow@30042
   213
  apply (rule dvd_mult)
wenzelm@13524
   214
  apply (rule x_sol_lin_aux)
wenzelm@11049
   215
  apply auto
wenzelm@11049
   216
  done
wenzelm@11049
   217
wenzelm@11049
   218
wenzelm@11049
   219
subsection {* Chinese *}
paulson@9508
   220
wenzelm@11049
   221
lemma chinese_remainder:
wenzelm@11049
   222
  "0 < n ==> m_cond n mf ==> km_cond n kf mf
paulson@11868
   223
    ==> \<exists>!x. 0 \<le> x \<and> x < funprod mf 0 n \<and> lincong_sol n kf bf mf x"
wenzelm@11049
   224
  apply safe
wenzelm@11049
   225
   apply (rule_tac [2] m = "funprod mf 0 n" in zcong_zless_imp_eq)
wenzelm@11049
   226
       apply (rule_tac [6] zcong_funprod)
wenzelm@11049
   227
          apply auto
wenzelm@11049
   228
  apply (rule_tac x = "x_sol n kf bf mf mod funprod mf 0 n" in exI)
wenzelm@11049
   229
  apply (unfold lincong_sol_def)
wenzelm@11049
   230
  apply safe
wenzelm@39159
   231
    apply (tactic {* stac @{thm zcong_zmod} 3 *})
wenzelm@39159
   232
    apply (tactic {* stac @{thm mod_mult_eq} 3 *})
wenzelm@39159
   233
    apply (tactic {* stac @{thm mod_mod_cancel} 3 *})
wenzelm@39159
   234
      apply (tactic {* stac @{thm x_sol_lin} 4 *})
wenzelm@39159
   235
        apply (tactic {* stac (@{thm mod_mult_eq} RS sym) 6 *})
wenzelm@39159
   236
        apply (tactic {* stac (@{thm zcong_zmod} RS sym) 6 *})
nipkow@30034
   237
        apply (subgoal_tac [6]
paulson@11868
   238
          "0 \<le> xilin_sol i n kf bf mf \<and> xilin_sol i n kf bf mf < mf i
wenzelm@11049
   239
          \<and> [kf i * mhf mf n i * xilin_sol i n kf bf mf = bf i] (mod mf i)")
nipkow@30034
   240
         prefer 6
haftmann@57514
   241
         apply (simp add: ac_simps)
wenzelm@11049
   242
        apply (unfold xilin_sol_def)
wenzelm@51717
   243
        apply (tactic {* asm_simp_tac @{context} 6 *})
nipkow@30034
   244
        apply (rule_tac [6] ex1_implies_ex [THEN someI_ex])
nipkow@30034
   245
        apply (rule_tac [6] unique_xi_sol)
nipkow@30034
   246
           apply (rule_tac [3] funprod_zdvd)
wenzelm@11049
   247
            apply (unfold m_cond_def)
wenzelm@11049
   248
            apply (rule funprod_pos [THEN pos_mod_sign])
wenzelm@11049
   249
            apply (rule_tac [2] funprod_pos [THEN pos_mod_bound])
wenzelm@11049
   250
            apply auto
wenzelm@11049
   251
  done
paulson@9508
   252
paulson@9508
   253
end