src/HOL/Relation.thy
author haftmann
Thu Aug 18 13:55:26 2011 +0200 (2011-08-18)
changeset 44278 1220ecb81e8f
parent 41792 ff3cb0c418b7
child 44921 58eef4843641
permissions -rw-r--r--
observe distinction between sets and predicates more properly
wenzelm@10358
     1
(*  Title:      HOL/Relation.thy
paulson@1983
     2
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
paulson@1983
     3
    Copyright   1996  University of Cambridge
nipkow@1128
     4
*)
nipkow@1128
     5
berghofe@12905
     6
header {* Relations *}
berghofe@12905
     7
nipkow@15131
     8
theory Relation
haftmann@32850
     9
imports Datatype Finite_Set
nipkow@15131
    10
begin
paulson@5978
    11
wenzelm@12913
    12
subsection {* Definitions *}
wenzelm@12913
    13
wenzelm@19656
    14
definition
wenzelm@21404
    15
  converse :: "('a * 'b) set => ('b * 'a) set"
wenzelm@21404
    16
    ("(_^-1)" [1000] 999) where
wenzelm@10358
    17
  "r^-1 == {(y, x). (x, y) : r}"
paulson@7912
    18
wenzelm@21210
    19
notation (xsymbols)
wenzelm@19656
    20
  converse  ("(_\<inverse>)" [1000] 999)
wenzelm@19656
    21
wenzelm@19656
    22
definition
krauss@32235
    23
  rel_comp  :: "[('a * 'b) set, ('b * 'c) set] => ('a * 'c) set"
wenzelm@21404
    24
    (infixr "O" 75) where
krauss@32235
    25
  "r O s == {(x,z). EX y. (x, y) : r & (y, z) : s}"
wenzelm@12913
    26
wenzelm@21404
    27
definition
wenzelm@21404
    28
  Image :: "[('a * 'b) set, 'a set] => 'b set"
wenzelm@21404
    29
    (infixl "``" 90) where
wenzelm@12913
    30
  "r `` s == {y. EX x:s. (x,y):r}"
paulson@7912
    31
wenzelm@21404
    32
definition
wenzelm@21404
    33
  Id :: "('a * 'a) set" where -- {* the identity relation *}
wenzelm@12913
    34
  "Id == {p. EX x. p = (x,x)}"
paulson@7912
    35
wenzelm@21404
    36
definition
nipkow@30198
    37
  Id_on  :: "'a set => ('a * 'a) set" where -- {* diagonal: identity over a set *}
nipkow@30198
    38
  "Id_on A == \<Union>x\<in>A. {(x,x)}"
wenzelm@12913
    39
wenzelm@21404
    40
definition
wenzelm@21404
    41
  Domain :: "('a * 'b) set => 'a set" where
wenzelm@12913
    42
  "Domain r == {x. EX y. (x,y):r}"
paulson@5978
    43
wenzelm@21404
    44
definition
wenzelm@21404
    45
  Range  :: "('a * 'b) set => 'b set" where
wenzelm@12913
    46
  "Range r == Domain(r^-1)"
paulson@5978
    47
wenzelm@21404
    48
definition
wenzelm@21404
    49
  Field :: "('a * 'a) set => 'a set" where
paulson@13830
    50
  "Field r == Domain r \<union> Range r"
paulson@10786
    51
wenzelm@21404
    52
definition
nipkow@30198
    53
  refl_on :: "['a set, ('a * 'a) set] => bool" where -- {* reflexivity over a set *}
nipkow@30198
    54
  "refl_on A r == r \<subseteq> A \<times> A & (ALL x: A. (x,x) : r)"
paulson@6806
    55
nipkow@26297
    56
abbreviation
nipkow@30198
    57
  refl :: "('a * 'a) set => bool" where -- {* reflexivity over a type *}
nipkow@30198
    58
  "refl == refl_on UNIV"
nipkow@26297
    59
wenzelm@21404
    60
definition
wenzelm@21404
    61
  sym :: "('a * 'a) set => bool" where -- {* symmetry predicate *}
wenzelm@12913
    62
  "sym r == ALL x y. (x,y): r --> (y,x): r"
paulson@6806
    63
wenzelm@21404
    64
definition
wenzelm@21404
    65
  antisym :: "('a * 'a) set => bool" where -- {* antisymmetry predicate *}
wenzelm@12913
    66
  "antisym r == ALL x y. (x,y):r --> (y,x):r --> x=y"
paulson@6806
    67
wenzelm@21404
    68
definition
wenzelm@21404
    69
  trans :: "('a * 'a) set => bool" where -- {* transitivity predicate *}
wenzelm@12913
    70
  "trans r == (ALL x y z. (x,y):r --> (y,z):r --> (x,z):r)"
paulson@5978
    71
wenzelm@21404
    72
definition
nipkow@29859
    73
irrefl :: "('a * 'a) set => bool" where
nipkow@29859
    74
"irrefl r \<equiv> \<forall>x. (x,x) \<notin> r"
nipkow@29859
    75
nipkow@29859
    76
definition
nipkow@29859
    77
total_on :: "'a set => ('a * 'a) set => bool" where
nipkow@29859
    78
"total_on A r \<equiv> \<forall>x\<in>A.\<forall>y\<in>A. x\<noteq>y \<longrightarrow> (x,y)\<in>r \<or> (y,x)\<in>r"
nipkow@29859
    79
nipkow@29859
    80
abbreviation "total \<equiv> total_on UNIV"
nipkow@29859
    81
nipkow@29859
    82
definition
wenzelm@21404
    83
  single_valued :: "('a * 'b) set => bool" where
wenzelm@12913
    84
  "single_valued r == ALL x y. (x,y):r --> (ALL z. (x,z):r --> y=z)"
berghofe@7014
    85
wenzelm@21404
    86
definition
wenzelm@21404
    87
  inv_image :: "('b * 'b) set => ('a => 'b) => ('a * 'a) set" where
wenzelm@12913
    88
  "inv_image r f == {(x, y). (f x, f y) : r}"
oheimb@11136
    89
berghofe@12905
    90
wenzelm@12913
    91
subsection {* The identity relation *}
berghofe@12905
    92
berghofe@12905
    93
lemma IdI [intro]: "(a, a) : Id"
nipkow@26271
    94
by (simp add: Id_def)
berghofe@12905
    95
berghofe@12905
    96
lemma IdE [elim!]: "p : Id ==> (!!x. p = (x, x) ==> P) ==> P"
nipkow@26271
    97
by (unfold Id_def) (iprover elim: CollectE)
berghofe@12905
    98
berghofe@12905
    99
lemma pair_in_Id_conv [iff]: "((a, b) : Id) = (a = b)"
nipkow@26271
   100
by (unfold Id_def) blast
berghofe@12905
   101
nipkow@30198
   102
lemma refl_Id: "refl Id"
nipkow@30198
   103
by (simp add: refl_on_def)
berghofe@12905
   104
berghofe@12905
   105
lemma antisym_Id: "antisym Id"
berghofe@12905
   106
  -- {* A strange result, since @{text Id} is also symmetric. *}
nipkow@26271
   107
by (simp add: antisym_def)
berghofe@12905
   108
huffman@19228
   109
lemma sym_Id: "sym Id"
nipkow@26271
   110
by (simp add: sym_def)
huffman@19228
   111
berghofe@12905
   112
lemma trans_Id: "trans Id"
nipkow@26271
   113
by (simp add: trans_def)
berghofe@12905
   114
berghofe@12905
   115
wenzelm@12913
   116
subsection {* Diagonal: identity over a set *}
berghofe@12905
   117
nipkow@30198
   118
lemma Id_on_empty [simp]: "Id_on {} = {}"
nipkow@30198
   119
by (simp add: Id_on_def) 
paulson@13812
   120
nipkow@30198
   121
lemma Id_on_eqI: "a = b ==> a : A ==> (a, b) : Id_on A"
nipkow@30198
   122
by (simp add: Id_on_def)
berghofe@12905
   123
blanchet@35828
   124
lemma Id_onI [intro!,no_atp]: "a : A ==> (a, a) : Id_on A"
nipkow@30198
   125
by (rule Id_on_eqI) (rule refl)
berghofe@12905
   126
nipkow@30198
   127
lemma Id_onE [elim!]:
nipkow@30198
   128
  "c : Id_on A ==> (!!x. x : A ==> c = (x, x) ==> P) ==> P"
wenzelm@12913
   129
  -- {* The general elimination rule. *}
nipkow@30198
   130
by (unfold Id_on_def) (iprover elim!: UN_E singletonE)
berghofe@12905
   131
nipkow@30198
   132
lemma Id_on_iff: "((x, y) : Id_on A) = (x = y & x : A)"
nipkow@26271
   133
by blast
berghofe@12905
   134
blanchet@41792
   135
lemma Id_on_def' [nitpick_unfold, code]:
haftmann@44278
   136
  "Id_on {x. A x} = Collect (\<lambda>(x, y). x = y \<and> A x)"
haftmann@44278
   137
by auto
bulwahn@40923
   138
nipkow@30198
   139
lemma Id_on_subset_Times: "Id_on A \<subseteq> A \<times> A"
nipkow@26271
   140
by blast
berghofe@12905
   141
berghofe@12905
   142
berghofe@12905
   143
subsection {* Composition of two relations *}
berghofe@12905
   144
wenzelm@12913
   145
lemma rel_compI [intro]:
krauss@32235
   146
  "(a, b) : r ==> (b, c) : s ==> (a, c) : r O s"
nipkow@26271
   147
by (unfold rel_comp_def) blast
berghofe@12905
   148
wenzelm@12913
   149
lemma rel_compE [elim!]: "xz : r O s ==>
krauss@32235
   150
  (!!x y z. xz = (x, z) ==> (x, y) : r ==> (y, z) : s  ==> P) ==> P"
nipkow@26271
   151
by (unfold rel_comp_def) (iprover elim!: CollectE splitE exE conjE)
berghofe@12905
   152
berghofe@12905
   153
lemma rel_compEpair:
krauss@32235
   154
  "(a, c) : r O s ==> (!!y. (a, y) : r ==> (y, c) : s ==> P) ==> P"
nipkow@26271
   155
by (iprover elim: rel_compE Pair_inject ssubst)
berghofe@12905
   156
berghofe@12905
   157
lemma R_O_Id [simp]: "R O Id = R"
nipkow@26271
   158
by fast
berghofe@12905
   159
berghofe@12905
   160
lemma Id_O_R [simp]: "Id O R = R"
nipkow@26271
   161
by fast
berghofe@12905
   162
krauss@23185
   163
lemma rel_comp_empty1[simp]: "{} O R = {}"
nipkow@26271
   164
by blast
krauss@23185
   165
krauss@23185
   166
lemma rel_comp_empty2[simp]: "R O {} = {}"
nipkow@26271
   167
by blast
krauss@23185
   168
berghofe@12905
   169
lemma O_assoc: "(R O S) O T = R O (S O T)"
nipkow@26271
   170
by blast
berghofe@12905
   171
wenzelm@12913
   172
lemma trans_O_subset: "trans r ==> r O r \<subseteq> r"
nipkow@26271
   173
by (unfold trans_def) blast
berghofe@12905
   174
wenzelm@12913
   175
lemma rel_comp_mono: "r' \<subseteq> r ==> s' \<subseteq> s ==> (r' O s') \<subseteq> (r O s)"
nipkow@26271
   176
by blast
berghofe@12905
   177
berghofe@12905
   178
lemma rel_comp_subset_Sigma:
krauss@32235
   179
    "r \<subseteq> A \<times> B ==> s \<subseteq> B \<times> C ==> (r O s) \<subseteq> A \<times> C"
nipkow@26271
   180
by blast
berghofe@12905
   181
krauss@28008
   182
lemma rel_comp_distrib[simp]: "R O (S \<union> T) = (R O S) \<union> (R O T)" 
krauss@28008
   183
by auto
krauss@28008
   184
krauss@28008
   185
lemma rel_comp_distrib2[simp]: "(S \<union> T) O R = (S O R) \<union> (T O R)"
krauss@28008
   186
by auto
krauss@28008
   187
krauss@36772
   188
lemma rel_comp_UNION_distrib: "s O UNION I r = UNION I (%i. s O r i)"
krauss@36772
   189
by auto
krauss@36772
   190
krauss@36772
   191
lemma rel_comp_UNION_distrib2: "UNION I r O s = UNION I (%i. r i O s)"
krauss@36772
   192
by auto
krauss@36772
   193
wenzelm@12913
   194
wenzelm@12913
   195
subsection {* Reflexivity *}
wenzelm@12913
   196
nipkow@30198
   197
lemma refl_onI: "r \<subseteq> A \<times> A ==> (!!x. x : A ==> (x, x) : r) ==> refl_on A r"
nipkow@30198
   198
by (unfold refl_on_def) (iprover intro!: ballI)
berghofe@12905
   199
nipkow@30198
   200
lemma refl_onD: "refl_on A r ==> a : A ==> (a, a) : r"
nipkow@30198
   201
by (unfold refl_on_def) blast
berghofe@12905
   202
nipkow@30198
   203
lemma refl_onD1: "refl_on A r ==> (x, y) : r ==> x : A"
nipkow@30198
   204
by (unfold refl_on_def) blast
huffman@19228
   205
nipkow@30198
   206
lemma refl_onD2: "refl_on A r ==> (x, y) : r ==> y : A"
nipkow@30198
   207
by (unfold refl_on_def) blast
huffman@19228
   208
nipkow@30198
   209
lemma refl_on_Int: "refl_on A r ==> refl_on B s ==> refl_on (A \<inter> B) (r \<inter> s)"
nipkow@30198
   210
by (unfold refl_on_def) blast
huffman@19228
   211
nipkow@30198
   212
lemma refl_on_Un: "refl_on A r ==> refl_on B s ==> refl_on (A \<union> B) (r \<union> s)"
nipkow@30198
   213
by (unfold refl_on_def) blast
huffman@19228
   214
nipkow@30198
   215
lemma refl_on_INTER:
nipkow@30198
   216
  "ALL x:S. refl_on (A x) (r x) ==> refl_on (INTER S A) (INTER S r)"
nipkow@30198
   217
by (unfold refl_on_def) fast
huffman@19228
   218
nipkow@30198
   219
lemma refl_on_UNION:
nipkow@30198
   220
  "ALL x:S. refl_on (A x) (r x) \<Longrightarrow> refl_on (UNION S A) (UNION S r)"
nipkow@30198
   221
by (unfold refl_on_def) blast
huffman@19228
   222
nipkow@30198
   223
lemma refl_on_empty[simp]: "refl_on {} {}"
nipkow@30198
   224
by(simp add:refl_on_def)
nipkow@26297
   225
nipkow@30198
   226
lemma refl_on_Id_on: "refl_on A (Id_on A)"
nipkow@30198
   227
by (rule refl_onI [OF Id_on_subset_Times Id_onI])
huffman@19228
   228
blanchet@41792
   229
lemma refl_on_def' [nitpick_unfold, code]:
bulwahn@41056
   230
  "refl_on A r = ((\<forall>(x, y) \<in> r. x : A \<and> y : A) \<and> (\<forall>x \<in> A. (x, x) : r))"
bulwahn@41056
   231
by (auto intro: refl_onI dest: refl_onD refl_onD1 refl_onD2)
wenzelm@12913
   232
wenzelm@12913
   233
subsection {* Antisymmetry *}
berghofe@12905
   234
berghofe@12905
   235
lemma antisymI:
berghofe@12905
   236
  "(!!x y. (x, y) : r ==> (y, x) : r ==> x=y) ==> antisym r"
nipkow@26271
   237
by (unfold antisym_def) iprover
berghofe@12905
   238
berghofe@12905
   239
lemma antisymD: "antisym r ==> (a, b) : r ==> (b, a) : r ==> a = b"
nipkow@26271
   240
by (unfold antisym_def) iprover
berghofe@12905
   241
huffman@19228
   242
lemma antisym_subset: "r \<subseteq> s ==> antisym s ==> antisym r"
nipkow@26271
   243
by (unfold antisym_def) blast
wenzelm@12913
   244
huffman@19228
   245
lemma antisym_empty [simp]: "antisym {}"
nipkow@26271
   246
by (unfold antisym_def) blast
huffman@19228
   247
nipkow@30198
   248
lemma antisym_Id_on [simp]: "antisym (Id_on A)"
nipkow@26271
   249
by (unfold antisym_def) blast
huffman@19228
   250
huffman@19228
   251
huffman@19228
   252
subsection {* Symmetry *}
huffman@19228
   253
huffman@19228
   254
lemma symI: "(!!a b. (a, b) : r ==> (b, a) : r) ==> sym r"
nipkow@26271
   255
by (unfold sym_def) iprover
paulson@15177
   256
paulson@15177
   257
lemma symD: "sym r ==> (a, b) : r ==> (b, a) : r"
nipkow@26271
   258
by (unfold sym_def, blast)
berghofe@12905
   259
huffman@19228
   260
lemma sym_Int: "sym r ==> sym s ==> sym (r \<inter> s)"
nipkow@26271
   261
by (fast intro: symI dest: symD)
huffman@19228
   262
huffman@19228
   263
lemma sym_Un: "sym r ==> sym s ==> sym (r \<union> s)"
nipkow@26271
   264
by (fast intro: symI dest: symD)
huffman@19228
   265
huffman@19228
   266
lemma sym_INTER: "ALL x:S. sym (r x) ==> sym (INTER S r)"
nipkow@26271
   267
by (fast intro: symI dest: symD)
huffman@19228
   268
huffman@19228
   269
lemma sym_UNION: "ALL x:S. sym (r x) ==> sym (UNION S r)"
nipkow@26271
   270
by (fast intro: symI dest: symD)
huffman@19228
   271
nipkow@30198
   272
lemma sym_Id_on [simp]: "sym (Id_on A)"
nipkow@26271
   273
by (rule symI) clarify
huffman@19228
   274
huffman@19228
   275
huffman@19228
   276
subsection {* Transitivity *}
huffman@19228
   277
berghofe@12905
   278
lemma transI:
berghofe@12905
   279
  "(!!x y z. (x, y) : r ==> (y, z) : r ==> (x, z) : r) ==> trans r"
nipkow@26271
   280
by (unfold trans_def) iprover
berghofe@12905
   281
berghofe@12905
   282
lemma transD: "trans r ==> (a, b) : r ==> (b, c) : r ==> (a, c) : r"
nipkow@26271
   283
by (unfold trans_def) iprover
berghofe@12905
   284
huffman@19228
   285
lemma trans_Int: "trans r ==> trans s ==> trans (r \<inter> s)"
nipkow@26271
   286
by (fast intro: transI elim: transD)
huffman@19228
   287
huffman@19228
   288
lemma trans_INTER: "ALL x:S. trans (r x) ==> trans (INTER S r)"
nipkow@26271
   289
by (fast intro: transI elim: transD)
huffman@19228
   290
nipkow@30198
   291
lemma trans_Id_on [simp]: "trans (Id_on A)"
nipkow@26271
   292
by (fast intro: transI elim: transD)
huffman@19228
   293
nipkow@29859
   294
lemma trans_diff_Id: " trans r \<Longrightarrow> antisym r \<Longrightarrow> trans (r-Id)"
nipkow@29859
   295
unfolding antisym_def trans_def by blast
nipkow@29859
   296
nipkow@29859
   297
subsection {* Irreflexivity *}
nipkow@29859
   298
nipkow@29859
   299
lemma irrefl_diff_Id[simp]: "irrefl(r-Id)"
nipkow@29859
   300
by(simp add:irrefl_def)
nipkow@29859
   301
nipkow@29859
   302
subsection {* Totality *}
nipkow@29859
   303
nipkow@29859
   304
lemma total_on_empty[simp]: "total_on {} r"
nipkow@29859
   305
by(simp add:total_on_def)
nipkow@29859
   306
nipkow@29859
   307
lemma total_on_diff_Id[simp]: "total_on A (r-Id) = total_on A r"
nipkow@29859
   308
by(simp add: total_on_def)
berghofe@12905
   309
wenzelm@12913
   310
subsection {* Converse *}
wenzelm@12913
   311
wenzelm@12913
   312
lemma converse_iff [iff]: "((a,b): r^-1) = ((b,a) : r)"
nipkow@26271
   313
by (simp add: converse_def)
berghofe@12905
   314
nipkow@13343
   315
lemma converseI[sym]: "(a, b) : r ==> (b, a) : r^-1"
nipkow@26271
   316
by (simp add: converse_def)
berghofe@12905
   317
nipkow@13343
   318
lemma converseD[sym]: "(a,b) : r^-1 ==> (b, a) : r"
nipkow@26271
   319
by (simp add: converse_def)
berghofe@12905
   320
berghofe@12905
   321
lemma converseE [elim!]:
berghofe@12905
   322
  "yx : r^-1 ==> (!!x y. yx = (y, x) ==> (x, y) : r ==> P) ==> P"
wenzelm@12913
   323
    -- {* More general than @{text converseD}, as it ``splits'' the member of the relation. *}
nipkow@26271
   324
by (unfold converse_def) (iprover elim!: CollectE splitE bexE)
berghofe@12905
   325
berghofe@12905
   326
lemma converse_converse [simp]: "(r^-1)^-1 = r"
nipkow@26271
   327
by (unfold converse_def) blast
berghofe@12905
   328
berghofe@12905
   329
lemma converse_rel_comp: "(r O s)^-1 = s^-1 O r^-1"
nipkow@26271
   330
by blast
berghofe@12905
   331
huffman@19228
   332
lemma converse_Int: "(r \<inter> s)^-1 = r^-1 \<inter> s^-1"
nipkow@26271
   333
by blast
huffman@19228
   334
huffman@19228
   335
lemma converse_Un: "(r \<union> s)^-1 = r^-1 \<union> s^-1"
nipkow@26271
   336
by blast
huffman@19228
   337
huffman@19228
   338
lemma converse_INTER: "(INTER S r)^-1 = (INT x:S. (r x)^-1)"
nipkow@26271
   339
by fast
huffman@19228
   340
huffman@19228
   341
lemma converse_UNION: "(UNION S r)^-1 = (UN x:S. (r x)^-1)"
nipkow@26271
   342
by blast
huffman@19228
   343
berghofe@12905
   344
lemma converse_Id [simp]: "Id^-1 = Id"
nipkow@26271
   345
by blast
berghofe@12905
   346
nipkow@30198
   347
lemma converse_Id_on [simp]: "(Id_on A)^-1 = Id_on A"
nipkow@26271
   348
by blast
berghofe@12905
   349
nipkow@30198
   350
lemma refl_on_converse [simp]: "refl_on A (converse r) = refl_on A r"
nipkow@30198
   351
by (unfold refl_on_def) auto
berghofe@12905
   352
huffman@19228
   353
lemma sym_converse [simp]: "sym (converse r) = sym r"
nipkow@26271
   354
by (unfold sym_def) blast
huffman@19228
   355
huffman@19228
   356
lemma antisym_converse [simp]: "antisym (converse r) = antisym r"
nipkow@26271
   357
by (unfold antisym_def) blast
berghofe@12905
   358
huffman@19228
   359
lemma trans_converse [simp]: "trans (converse r) = trans r"
nipkow@26271
   360
by (unfold trans_def) blast
berghofe@12905
   361
huffman@19228
   362
lemma sym_conv_converse_eq: "sym r = (r^-1 = r)"
nipkow@26271
   363
by (unfold sym_def) fast
huffman@19228
   364
huffman@19228
   365
lemma sym_Un_converse: "sym (r \<union> r^-1)"
nipkow@26271
   366
by (unfold sym_def) blast
huffman@19228
   367
huffman@19228
   368
lemma sym_Int_converse: "sym (r \<inter> r^-1)"
nipkow@26271
   369
by (unfold sym_def) blast
huffman@19228
   370
nipkow@29859
   371
lemma total_on_converse[simp]: "total_on A (r^-1) = total_on A r"
nipkow@29859
   372
by (auto simp: total_on_def)
nipkow@29859
   373
wenzelm@12913
   374
berghofe@12905
   375
subsection {* Domain *}
berghofe@12905
   376
blanchet@35828
   377
declare Domain_def [no_atp]
paulson@24286
   378
berghofe@12905
   379
lemma Domain_iff: "(a : Domain r) = (EX y. (a, y) : r)"
nipkow@26271
   380
by (unfold Domain_def) blast
berghofe@12905
   381
berghofe@12905
   382
lemma DomainI [intro]: "(a, b) : r ==> a : Domain r"
nipkow@26271
   383
by (iprover intro!: iffD2 [OF Domain_iff])
berghofe@12905
   384
berghofe@12905
   385
lemma DomainE [elim!]:
berghofe@12905
   386
  "a : Domain r ==> (!!y. (a, y) : r ==> P) ==> P"
nipkow@26271
   387
by (iprover dest!: iffD1 [OF Domain_iff])
berghofe@12905
   388
berghofe@12905
   389
lemma Domain_empty [simp]: "Domain {} = {}"
nipkow@26271
   390
by blast
berghofe@12905
   391
paulson@32876
   392
lemma Domain_empty_iff: "Domain r = {} \<longleftrightarrow> r = {}"
paulson@32876
   393
  by auto
paulson@32876
   394
berghofe@12905
   395
lemma Domain_insert: "Domain (insert (a, b) r) = insert a (Domain r)"
nipkow@26271
   396
by blast
berghofe@12905
   397
berghofe@12905
   398
lemma Domain_Id [simp]: "Domain Id = UNIV"
nipkow@26271
   399
by blast
berghofe@12905
   400
nipkow@30198
   401
lemma Domain_Id_on [simp]: "Domain (Id_on A) = A"
nipkow@26271
   402
by blast
berghofe@12905
   403
paulson@13830
   404
lemma Domain_Un_eq: "Domain(A \<union> B) = Domain(A) \<union> Domain(B)"
nipkow@26271
   405
by blast
berghofe@12905
   406
paulson@13830
   407
lemma Domain_Int_subset: "Domain(A \<inter> B) \<subseteq> Domain(A) \<inter> Domain(B)"
nipkow@26271
   408
by blast
berghofe@12905
   409
wenzelm@12913
   410
lemma Domain_Diff_subset: "Domain(A) - Domain(B) \<subseteq> Domain(A - B)"
nipkow@26271
   411
by blast
berghofe@12905
   412
paulson@13830
   413
lemma Domain_Union: "Domain (Union S) = (\<Union>A\<in>S. Domain A)"
nipkow@26271
   414
by blast
nipkow@26271
   415
nipkow@26271
   416
lemma Domain_converse[simp]: "Domain(r^-1) = Range r"
nipkow@26271
   417
by(auto simp:Range_def)
berghofe@12905
   418
wenzelm@12913
   419
lemma Domain_mono: "r \<subseteq> s ==> Domain r \<subseteq> Domain s"
nipkow@26271
   420
by blast
berghofe@12905
   421
krauss@36729
   422
lemma fst_eq_Domain: "fst ` R = Domain R"
nipkow@26271
   423
by (auto intro!:image_eqI)
paulson@22172
   424
haftmann@29609
   425
lemma Domain_dprod [simp]: "Domain (dprod r s) = uprod (Domain r) (Domain s)"
haftmann@29609
   426
by auto
haftmann@29609
   427
haftmann@29609
   428
lemma Domain_dsum [simp]: "Domain (dsum r s) = usum (Domain r) (Domain s)"
haftmann@29609
   429
by auto
haftmann@29609
   430
berghofe@12905
   431
berghofe@12905
   432
subsection {* Range *}
berghofe@12905
   433
berghofe@12905
   434
lemma Range_iff: "(a : Range r) = (EX y. (y, a) : r)"
nipkow@26271
   435
by (simp add: Domain_def Range_def)
berghofe@12905
   436
berghofe@12905
   437
lemma RangeI [intro]: "(a, b) : r ==> b : Range r"
nipkow@26271
   438
by (unfold Range_def) (iprover intro!: converseI DomainI)
berghofe@12905
   439
berghofe@12905
   440
lemma RangeE [elim!]: "b : Range r ==> (!!x. (x, b) : r ==> P) ==> P"
nipkow@26271
   441
by (unfold Range_def) (iprover elim!: DomainE dest!: converseD)
berghofe@12905
   442
berghofe@12905
   443
lemma Range_empty [simp]: "Range {} = {}"
nipkow@26271
   444
by blast
berghofe@12905
   445
paulson@32876
   446
lemma Range_empty_iff: "Range r = {} \<longleftrightarrow> r = {}"
paulson@32876
   447
  by auto
paulson@32876
   448
berghofe@12905
   449
lemma Range_insert: "Range (insert (a, b) r) = insert b (Range r)"
nipkow@26271
   450
by blast
berghofe@12905
   451
berghofe@12905
   452
lemma Range_Id [simp]: "Range Id = UNIV"
nipkow@26271
   453
by blast
berghofe@12905
   454
nipkow@30198
   455
lemma Range_Id_on [simp]: "Range (Id_on A) = A"
nipkow@26271
   456
by auto
berghofe@12905
   457
paulson@13830
   458
lemma Range_Un_eq: "Range(A \<union> B) = Range(A) \<union> Range(B)"
nipkow@26271
   459
by blast
berghofe@12905
   460
paulson@13830
   461
lemma Range_Int_subset: "Range(A \<inter> B) \<subseteq> Range(A) \<inter> Range(B)"
nipkow@26271
   462
by blast
berghofe@12905
   463
wenzelm@12913
   464
lemma Range_Diff_subset: "Range(A) - Range(B) \<subseteq> Range(A - B)"
nipkow@26271
   465
by blast
berghofe@12905
   466
paulson@13830
   467
lemma Range_Union: "Range (Union S) = (\<Union>A\<in>S. Range A)"
nipkow@26271
   468
by blast
nipkow@26271
   469
nipkow@26271
   470
lemma Range_converse[simp]: "Range(r^-1) = Domain r"
nipkow@26271
   471
by blast
berghofe@12905
   472
krauss@36729
   473
lemma snd_eq_Range: "snd ` R = Range R"
nipkow@26271
   474
by (auto intro!:image_eqI)
nipkow@26271
   475
nipkow@26271
   476
nipkow@26271
   477
subsection {* Field *}
nipkow@26271
   478
nipkow@26271
   479
lemma mono_Field: "r \<subseteq> s \<Longrightarrow> Field r \<subseteq> Field s"
nipkow@26271
   480
by(auto simp:Field_def Domain_def Range_def)
nipkow@26271
   481
nipkow@26271
   482
lemma Field_empty[simp]: "Field {} = {}"
nipkow@26271
   483
by(auto simp:Field_def)
nipkow@26271
   484
nipkow@26271
   485
lemma Field_insert[simp]: "Field (insert (a,b) r) = {a,b} \<union> Field r"
nipkow@26271
   486
by(auto simp:Field_def)
nipkow@26271
   487
nipkow@26271
   488
lemma Field_Un[simp]: "Field (r \<union> s) = Field r \<union> Field s"
nipkow@26271
   489
by(auto simp:Field_def)
nipkow@26271
   490
nipkow@26271
   491
lemma Field_Union[simp]: "Field (\<Union>R) = \<Union>(Field ` R)"
nipkow@26271
   492
by(auto simp:Field_def)
nipkow@26271
   493
nipkow@26271
   494
lemma Field_converse[simp]: "Field(r^-1) = Field r"
nipkow@26271
   495
by(auto simp:Field_def)
paulson@22172
   496
berghofe@12905
   497
berghofe@12905
   498
subsection {* Image of a set under a relation *}
berghofe@12905
   499
blanchet@35828
   500
declare Image_def [no_atp]
paulson@24286
   501
wenzelm@12913
   502
lemma Image_iff: "(b : r``A) = (EX x:A. (x, b) : r)"
nipkow@26271
   503
by (simp add: Image_def)
berghofe@12905
   504
wenzelm@12913
   505
lemma Image_singleton: "r``{a} = {b. (a, b) : r}"
nipkow@26271
   506
by (simp add: Image_def)
berghofe@12905
   507
wenzelm@12913
   508
lemma Image_singleton_iff [iff]: "(b : r``{a}) = ((a, b) : r)"
nipkow@26271
   509
by (rule Image_iff [THEN trans]) simp
berghofe@12905
   510
blanchet@35828
   511
lemma ImageI [intro,no_atp]: "(a, b) : r ==> a : A ==> b : r``A"
nipkow@26271
   512
by (unfold Image_def) blast
berghofe@12905
   513
berghofe@12905
   514
lemma ImageE [elim!]:
wenzelm@12913
   515
    "b : r `` A ==> (!!x. (x, b) : r ==> x : A ==> P) ==> P"
nipkow@26271
   516
by (unfold Image_def) (iprover elim!: CollectE bexE)
berghofe@12905
   517
berghofe@12905
   518
lemma rev_ImageI: "a : A ==> (a, b) : r ==> b : r `` A"
berghofe@12905
   519
  -- {* This version's more effective when we already have the required @{text a} *}
nipkow@26271
   520
by blast
berghofe@12905
   521
berghofe@12905
   522
lemma Image_empty [simp]: "R``{} = {}"
nipkow@26271
   523
by blast
berghofe@12905
   524
berghofe@12905
   525
lemma Image_Id [simp]: "Id `` A = A"
nipkow@26271
   526
by blast
berghofe@12905
   527
nipkow@30198
   528
lemma Image_Id_on [simp]: "Id_on A `` B = A \<inter> B"
nipkow@26271
   529
by blast
paulson@13830
   530
paulson@13830
   531
lemma Image_Int_subset: "R `` (A \<inter> B) \<subseteq> R `` A \<inter> R `` B"
nipkow@26271
   532
by blast
berghofe@12905
   533
paulson@13830
   534
lemma Image_Int_eq:
paulson@13830
   535
     "single_valued (converse R) ==> R `` (A \<inter> B) = R `` A \<inter> R `` B"
nipkow@26271
   536
by (simp add: single_valued_def, blast) 
berghofe@12905
   537
paulson@13830
   538
lemma Image_Un: "R `` (A \<union> B) = R `` A \<union> R `` B"
nipkow@26271
   539
by blast
berghofe@12905
   540
paulson@13812
   541
lemma Un_Image: "(R \<union> S) `` A = R `` A \<union> S `` A"
nipkow@26271
   542
by blast
paulson@13812
   543
wenzelm@12913
   544
lemma Image_subset: "r \<subseteq> A \<times> B ==> r``C \<subseteq> B"
nipkow@26271
   545
by (iprover intro!: subsetI elim!: ImageE dest!: subsetD SigmaD2)
berghofe@12905
   546
paulson@13830
   547
lemma Image_eq_UN: "r``B = (\<Union>y\<in> B. r``{y})"
berghofe@12905
   548
  -- {* NOT suitable for rewriting *}
nipkow@26271
   549
by blast
berghofe@12905
   550
wenzelm@12913
   551
lemma Image_mono: "r' \<subseteq> r ==> A' \<subseteq> A ==> (r' `` A') \<subseteq> (r `` A)"
nipkow@26271
   552
by blast
berghofe@12905
   553
paulson@13830
   554
lemma Image_UN: "(r `` (UNION A B)) = (\<Union>x\<in>A. r `` (B x))"
nipkow@26271
   555
by blast
paulson@13830
   556
paulson@13830
   557
lemma Image_INT_subset: "(r `` INTER A B) \<subseteq> (\<Inter>x\<in>A. r `` (B x))"
nipkow@26271
   558
by blast
berghofe@12905
   559
paulson@13830
   560
text{*Converse inclusion requires some assumptions*}
paulson@13830
   561
lemma Image_INT_eq:
paulson@13830
   562
     "[|single_valued (r\<inverse>); A\<noteq>{}|] ==> r `` INTER A B = (\<Inter>x\<in>A. r `` B x)"
paulson@13830
   563
apply (rule equalityI)
paulson@13830
   564
 apply (rule Image_INT_subset) 
paulson@13830
   565
apply  (simp add: single_valued_def, blast)
paulson@13830
   566
done
berghofe@12905
   567
wenzelm@12913
   568
lemma Image_subset_eq: "(r``A \<subseteq> B) = (A \<subseteq> - ((r^-1) `` (-B)))"
nipkow@26271
   569
by blast
berghofe@12905
   570
berghofe@12905
   571
wenzelm@12913
   572
subsection {* Single valued relations *}
wenzelm@12913
   573
wenzelm@12913
   574
lemma single_valuedI:
berghofe@12905
   575
  "ALL x y. (x,y):r --> (ALL z. (x,z):r --> y=z) ==> single_valued r"
nipkow@26271
   576
by (unfold single_valued_def)
berghofe@12905
   577
berghofe@12905
   578
lemma single_valuedD:
berghofe@12905
   579
  "single_valued r ==> (x, y) : r ==> (x, z) : r ==> y = z"
nipkow@26271
   580
by (simp add: single_valued_def)
berghofe@12905
   581
huffman@19228
   582
lemma single_valued_rel_comp:
huffman@19228
   583
  "single_valued r ==> single_valued s ==> single_valued (r O s)"
nipkow@26271
   584
by (unfold single_valued_def) blast
huffman@19228
   585
huffman@19228
   586
lemma single_valued_subset:
huffman@19228
   587
  "r \<subseteq> s ==> single_valued s ==> single_valued r"
nipkow@26271
   588
by (unfold single_valued_def) blast
huffman@19228
   589
huffman@19228
   590
lemma single_valued_Id [simp]: "single_valued Id"
nipkow@26271
   591
by (unfold single_valued_def) blast
huffman@19228
   592
nipkow@30198
   593
lemma single_valued_Id_on [simp]: "single_valued (Id_on A)"
nipkow@26271
   594
by (unfold single_valued_def) blast
huffman@19228
   595
berghofe@12905
   596
berghofe@12905
   597
subsection {* Graphs given by @{text Collect} *}
berghofe@12905
   598
berghofe@12905
   599
lemma Domain_Collect_split [simp]: "Domain{(x,y). P x y} = {x. EX y. P x y}"
nipkow@26271
   600
by auto
berghofe@12905
   601
berghofe@12905
   602
lemma Range_Collect_split [simp]: "Range{(x,y). P x y} = {y. EX x. P x y}"
nipkow@26271
   603
by auto
berghofe@12905
   604
berghofe@12905
   605
lemma Image_Collect_split [simp]: "{(x,y). P x y} `` A = {y. EX x:A. P x y}"
nipkow@26271
   606
by auto
berghofe@12905
   607
berghofe@12905
   608
wenzelm@12913
   609
subsection {* Inverse image *}
berghofe@12905
   610
huffman@19228
   611
lemma sym_inv_image: "sym r ==> sym (inv_image r f)"
nipkow@26271
   612
by (unfold sym_def inv_image_def) blast
huffman@19228
   613
wenzelm@12913
   614
lemma trans_inv_image: "trans r ==> trans (inv_image r f)"
berghofe@12905
   615
  apply (unfold trans_def inv_image_def)
berghofe@12905
   616
  apply (simp (no_asm))
berghofe@12905
   617
  apply blast
berghofe@12905
   618
  done
berghofe@12905
   619
krauss@32463
   620
lemma in_inv_image[simp]: "((x,y) : inv_image r f) = ((f x, f y) : r)"
krauss@32463
   621
  by (auto simp:inv_image_def)
krauss@32463
   622
krauss@33218
   623
lemma converse_inv_image[simp]: "(inv_image R f)^-1 = inv_image (R^-1) f"
krauss@33218
   624
unfolding inv_image_def converse_def by auto
krauss@33218
   625
haftmann@23709
   626
haftmann@29609
   627
subsection {* Finiteness *}
haftmann@29609
   628
haftmann@29609
   629
lemma finite_converse [iff]: "finite (r^-1) = finite r"
haftmann@29609
   630
  apply (subgoal_tac "r^-1 = (%(x,y). (y,x))`r")
haftmann@29609
   631
   apply simp
haftmann@29609
   632
   apply (rule iffI)
haftmann@29609
   633
    apply (erule finite_imageD [unfolded inj_on_def])
haftmann@29609
   634
    apply (simp split add: split_split)
haftmann@29609
   635
   apply (erule finite_imageI)
haftmann@29609
   636
  apply (simp add: converse_def image_def, auto)
haftmann@29609
   637
  apply (rule bexI)
haftmann@29609
   638
   prefer 2 apply assumption
haftmann@29609
   639
  apply simp
haftmann@29609
   640
  done
haftmann@29609
   641
paulson@32876
   642
lemma finite_Domain: "finite r ==> finite (Domain r)"
paulson@32876
   643
  by (induct set: finite) (auto simp add: Domain_insert)
paulson@32876
   644
paulson@32876
   645
lemma finite_Range: "finite r ==> finite (Range r)"
paulson@32876
   646
  by (induct set: finite) (auto simp add: Range_insert)
haftmann@29609
   647
haftmann@29609
   648
lemma finite_Field: "finite r ==> finite (Field r)"
haftmann@29609
   649
  -- {* A finite relation has a finite field (@{text "= domain \<union> range"}. *}
haftmann@29609
   650
  apply (induct set: finite)
haftmann@29609
   651
   apply (auto simp add: Field_def Domain_insert Range_insert)
haftmann@29609
   652
  done
haftmann@29609
   653
haftmann@29609
   654
krauss@36728
   655
subsection {* Miscellaneous *}
krauss@36728
   656
krauss@36728
   657
text {* Version of @{thm[source] lfp_induct} for binary relations *}
haftmann@23709
   658
haftmann@23709
   659
lemmas lfp_induct2 = 
haftmann@23709
   660
  lfp_induct_set [of "(a, b)", split_format (complete)]
haftmann@23709
   661
krauss@36728
   662
text {* Version of @{thm[source] subsetI} for binary relations *}
krauss@36728
   663
krauss@36728
   664
lemma subrelI: "(\<And>x y. (x, y) \<in> r \<Longrightarrow> (x, y) \<in> s) \<Longrightarrow> r \<subseteq> s"
krauss@36728
   665
by auto
krauss@36728
   666
nipkow@1128
   667
end