src/HOL/Arith.ML
author paulson
Thu Mar 28 12:36:50 1996 +0100 (1996-03-28)
changeset 1626 12560b3ebf2c
parent 1618 372880456b5b
child 1655 5be64540f275
permissions -rw-r--r--
Moved even/odd lemmas from ex/Mutil to Arith
clasohm@1465
     1
(*  Title:      HOL/Arith.ML
clasohm@923
     2
    ID:         $Id$
clasohm@1465
     3
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
clasohm@923
     4
    Copyright   1993  University of Cambridge
clasohm@923
     5
clasohm@923
     6
Proofs about elementary arithmetic: addition, multiplication, etc.
clasohm@923
     7
Tests definitions and simplifier.
clasohm@923
     8
*)
clasohm@923
     9
clasohm@923
    10
open Arith;
clasohm@923
    11
clasohm@923
    12
(*** Basic rewrite rules for the arithmetic operators ***)
clasohm@923
    13
clasohm@923
    14
val [pred_0, pred_Suc] = nat_recs pred_def;
clasohm@923
    15
val [add_0,add_Suc] = nat_recs add_def; 
clasohm@923
    16
val [mult_0,mult_Suc] = nat_recs mult_def; 
nipkow@1301
    17
Addsimps [pred_0,pred_Suc,add_0,add_Suc,mult_0,mult_Suc];
nipkow@1301
    18
nipkow@1301
    19
(** pred **)
nipkow@1301
    20
nipkow@1301
    21
val prems = goal Arith.thy "n ~= 0 ==> Suc(pred n) = n";
paulson@1552
    22
by (res_inst_tac [("n","n")] natE 1);
paulson@1552
    23
by (cut_facts_tac prems 1);
paulson@1552
    24
by (ALLGOALS Asm_full_simp_tac);
nipkow@1301
    25
qed "Suc_pred";
nipkow@1301
    26
Addsimps [Suc_pred];
clasohm@923
    27
clasohm@923
    28
(** Difference **)
clasohm@923
    29
clasohm@923
    30
val diff_0 = diff_def RS def_nat_rec_0;
clasohm@923
    31
clasohm@923
    32
qed_goalw "diff_0_eq_0" Arith.thy [diff_def, pred_def]
clasohm@923
    33
    "0 - n = 0"
clasohm@1264
    34
 (fn _ => [nat_ind_tac "n" 1,  ALLGOALS Asm_simp_tac]);
clasohm@923
    35
clasohm@923
    36
(*Must simplify BEFORE the induction!!  (Else we get a critical pair)
clasohm@923
    37
  Suc(m) - Suc(n)   rewrites to   pred(Suc(m) - n)  *)
clasohm@923
    38
qed_goalw "diff_Suc_Suc" Arith.thy [diff_def, pred_def]
clasohm@923
    39
    "Suc(m) - Suc(n) = m - n"
clasohm@923
    40
 (fn _ =>
clasohm@1264
    41
  [Simp_tac 1, nat_ind_tac "n" 1, ALLGOALS Asm_simp_tac]);
clasohm@923
    42
nipkow@1301
    43
Addsimps [diff_0, diff_0_eq_0, diff_Suc_Suc];
clasohm@923
    44
clasohm@923
    45
clasohm@923
    46
(**** Inductive properties of the operators ****)
clasohm@923
    47
clasohm@923
    48
(*** Addition ***)
clasohm@923
    49
clasohm@923
    50
qed_goal "add_0_right" Arith.thy "m + 0 = m"
clasohm@1264
    51
 (fn _ => [nat_ind_tac "m" 1, ALLGOALS Asm_simp_tac]);
clasohm@923
    52
clasohm@923
    53
qed_goal "add_Suc_right" Arith.thy "m + Suc(n) = Suc(m+n)"
clasohm@1264
    54
 (fn _ => [nat_ind_tac "m" 1, ALLGOALS Asm_simp_tac]);
clasohm@923
    55
clasohm@1264
    56
Addsimps [add_0_right,add_Suc_right];
clasohm@923
    57
clasohm@923
    58
(*Associative law for addition*)
clasohm@923
    59
qed_goal "add_assoc" Arith.thy "(m + n) + k = m + ((n + k)::nat)"
clasohm@1264
    60
 (fn _ => [nat_ind_tac "m" 1, ALLGOALS Asm_simp_tac]);
clasohm@923
    61
clasohm@923
    62
(*Commutative law for addition*)  
clasohm@923
    63
qed_goal "add_commute" Arith.thy "m + n = n + (m::nat)"
clasohm@1264
    64
 (fn _ =>  [nat_ind_tac "m" 1, ALLGOALS Asm_simp_tac]);
clasohm@923
    65
clasohm@923
    66
qed_goal "add_left_commute" Arith.thy "x+(y+z)=y+((x+z)::nat)"
clasohm@923
    67
 (fn _ => [rtac (add_commute RS trans) 1, rtac (add_assoc RS trans) 1,
clasohm@923
    68
           rtac (add_commute RS arg_cong) 1]);
clasohm@923
    69
clasohm@923
    70
(*Addition is an AC-operator*)
clasohm@923
    71
val add_ac = [add_assoc, add_commute, add_left_commute];
clasohm@923
    72
clasohm@923
    73
goal Arith.thy "!!k::nat. (k + m = k + n) = (m=n)";
clasohm@923
    74
by (nat_ind_tac "k" 1);
clasohm@1264
    75
by (Simp_tac 1);
clasohm@1264
    76
by (Asm_simp_tac 1);
clasohm@923
    77
qed "add_left_cancel";
clasohm@923
    78
clasohm@923
    79
goal Arith.thy "!!k::nat. (m + k = n + k) = (m=n)";
clasohm@923
    80
by (nat_ind_tac "k" 1);
clasohm@1264
    81
by (Simp_tac 1);
clasohm@1264
    82
by (Asm_simp_tac 1);
clasohm@923
    83
qed "add_right_cancel";
clasohm@923
    84
clasohm@923
    85
goal Arith.thy "!!k::nat. (k + m <= k + n) = (m<=n)";
clasohm@923
    86
by (nat_ind_tac "k" 1);
clasohm@1264
    87
by (Simp_tac 1);
clasohm@1264
    88
by (Asm_simp_tac 1);
clasohm@923
    89
qed "add_left_cancel_le";
clasohm@923
    90
clasohm@923
    91
goal Arith.thy "!!k::nat. (k + m < k + n) = (m<n)";
clasohm@923
    92
by (nat_ind_tac "k" 1);
clasohm@1264
    93
by (Simp_tac 1);
clasohm@1264
    94
by (Asm_simp_tac 1);
clasohm@923
    95
qed "add_left_cancel_less";
clasohm@923
    96
nipkow@1327
    97
Addsimps [add_left_cancel, add_right_cancel,
nipkow@1327
    98
          add_left_cancel_le, add_left_cancel_less];
nipkow@1327
    99
nipkow@1327
   100
goal Arith.thy "(m+n = 0) = (m=0 & n=0)";
nipkow@1327
   101
by (nat_ind_tac "m" 1);
nipkow@1327
   102
by (ALLGOALS Asm_simp_tac);
nipkow@1327
   103
qed "add_is_0";
nipkow@1327
   104
Addsimps [add_is_0];
nipkow@1327
   105
nipkow@1327
   106
goal Arith.thy "!!n. n ~= 0 ==> m + pred n = pred(m+n)";
nipkow@1327
   107
by (nat_ind_tac "m" 1);
nipkow@1327
   108
by (ALLGOALS Asm_simp_tac);
nipkow@1327
   109
qed "add_pred";
nipkow@1327
   110
Addsimps [add_pred];
nipkow@1327
   111
clasohm@923
   112
(*** Multiplication ***)
clasohm@923
   113
clasohm@923
   114
(*right annihilation in product*)
clasohm@923
   115
qed_goal "mult_0_right" Arith.thy "m * 0 = 0"
clasohm@1264
   116
 (fn _ => [nat_ind_tac "m" 1, ALLGOALS Asm_simp_tac]);
clasohm@923
   117
clasohm@923
   118
(*right Sucessor law for multiplication*)
clasohm@923
   119
qed_goal "mult_Suc_right" Arith.thy  "m * Suc(n) = m + (m * n)"
clasohm@923
   120
 (fn _ => [nat_ind_tac "m" 1,
clasohm@1264
   121
           ALLGOALS(asm_simp_tac (!simpset addsimps add_ac))]);
clasohm@923
   122
clasohm@1264
   123
Addsimps [mult_0_right,mult_Suc_right];
clasohm@923
   124
clasohm@923
   125
(*Commutative law for multiplication*)
clasohm@923
   126
qed_goal "mult_commute" Arith.thy "m * n = n * (m::nat)"
clasohm@1264
   127
 (fn _ => [nat_ind_tac "m" 1, ALLGOALS Asm_simp_tac]);
clasohm@923
   128
clasohm@923
   129
(*addition distributes over multiplication*)
clasohm@923
   130
qed_goal "add_mult_distrib" Arith.thy "(m + n)*k = (m*k) + ((n*k)::nat)"
clasohm@923
   131
 (fn _ => [nat_ind_tac "m" 1,
clasohm@1264
   132
           ALLGOALS(asm_simp_tac (!simpset addsimps add_ac))]);
clasohm@923
   133
clasohm@923
   134
qed_goal "add_mult_distrib2" Arith.thy "k*(m + n) = (k*m) + ((k*n)::nat)"
clasohm@923
   135
 (fn _ => [nat_ind_tac "m" 1,
clasohm@1264
   136
           ALLGOALS(asm_simp_tac (!simpset addsimps add_ac))]);
clasohm@923
   137
clasohm@1264
   138
Addsimps [add_mult_distrib,add_mult_distrib2];
clasohm@923
   139
clasohm@923
   140
(*Associative law for multiplication*)
clasohm@923
   141
qed_goal "mult_assoc" Arith.thy "(m * n) * k = m * ((n * k)::nat)"
clasohm@1264
   142
  (fn _ => [nat_ind_tac "m" 1, ALLGOALS Asm_simp_tac]);
clasohm@923
   143
clasohm@923
   144
qed_goal "mult_left_commute" Arith.thy "x*(y*z) = y*((x*z)::nat)"
clasohm@923
   145
 (fn _ => [rtac trans 1, rtac mult_commute 1, rtac trans 1,
clasohm@923
   146
           rtac mult_assoc 1, rtac (mult_commute RS arg_cong) 1]);
clasohm@923
   147
clasohm@923
   148
val mult_ac = [mult_assoc,mult_commute,mult_left_commute];
clasohm@923
   149
clasohm@923
   150
(*** Difference ***)
clasohm@923
   151
clasohm@923
   152
qed_goal "diff_self_eq_0" Arith.thy "m - m = 0"
clasohm@1264
   153
 (fn _ => [nat_ind_tac "m" 1, ALLGOALS Asm_simp_tac]);
nipkow@1496
   154
Addsimps [diff_self_eq_0];
clasohm@923
   155
clasohm@923
   156
(*Addition is the inverse of subtraction: if n<=m then n+(m-n) = m. *)
clasohm@923
   157
val [prem] = goal Arith.thy "[| ~ m<n |] ==> n+(m-n) = (m::nat)";
clasohm@923
   158
by (rtac (prem RS rev_mp) 1);
clasohm@923
   159
by (res_inst_tac [("m","m"),("n","n")] diff_induct 1);
clasohm@1264
   160
by (ALLGOALS Asm_simp_tac);
clasohm@923
   161
qed "add_diff_inverse";
clasohm@923
   162
clasohm@923
   163
clasohm@923
   164
(*** Remainder ***)
clasohm@923
   165
clasohm@923
   166
goal Arith.thy "m - n < Suc(m)";
clasohm@923
   167
by (res_inst_tac [("m","m"),("n","n")] diff_induct 1);
clasohm@923
   168
by (etac less_SucE 3);
clasohm@1264
   169
by (ALLGOALS Asm_simp_tac);
clasohm@923
   170
qed "diff_less_Suc";
clasohm@923
   171
clasohm@923
   172
goal Arith.thy "!!m::nat. m - n <= m";
clasohm@923
   173
by (res_inst_tac [("m","m"), ("n","n")] diff_induct 1);
clasohm@1264
   174
by (ALLGOALS Asm_simp_tac);
clasohm@923
   175
qed "diff_le_self";
clasohm@923
   176
clasohm@923
   177
goal Arith.thy "!!n::nat. (n+m) - n = m";
clasohm@923
   178
by (nat_ind_tac "n" 1);
clasohm@1264
   179
by (ALLGOALS Asm_simp_tac);
clasohm@923
   180
qed "diff_add_inverse";
clasohm@923
   181
clasohm@923
   182
goal Arith.thy "!!n::nat. n - (n+m) = 0";
clasohm@923
   183
by (nat_ind_tac "n" 1);
clasohm@1264
   184
by (ALLGOALS Asm_simp_tac);
clasohm@923
   185
qed "diff_add_0";
clasohm@923
   186
clasohm@923
   187
(*In ordinary notation: if 0<n and n<=m then m-n < m *)
clasohm@923
   188
goal Arith.thy "!!m. [| 0<n; ~ m<n |] ==> m - n < m";
clasohm@923
   189
by (subgoal_tac "0<n --> ~ m<n --> m - n < m" 1);
clasohm@923
   190
by (fast_tac HOL_cs 1);
clasohm@923
   191
by (res_inst_tac [("m","m"),("n","n")] diff_induct 1);
clasohm@1264
   192
by (ALLGOALS(asm_simp_tac(!simpset addsimps [diff_less_Suc])));
nipkow@1398
   193
qed "diff_less";
clasohm@923
   194
clasohm@923
   195
val wf_less_trans = wf_pred_nat RS wf_trancl RSN (2, def_wfrec RS trans);
clasohm@923
   196
clasohm@972
   197
goalw Nat.thy [less_def] "(m,n) : pred_nat^+ = (m<n)";
clasohm@923
   198
by (rtac refl 1);
clasohm@923
   199
qed "less_eq";
clasohm@923
   200
clasohm@1475
   201
goal Arith.thy "(%m. m mod n) = wfrec (trancl pred_nat) \
clasohm@1475
   202
             \                      (%f j. if j<n then j else f (j-n))";
clasohm@1475
   203
by (simp_tac (HOL_ss addsimps [mod_def]) 1);
clasohm@1475
   204
val mod_def1 = result() RS eq_reflection;
clasohm@1475
   205
clasohm@923
   206
goal Arith.thy "!!m. m<n ==> m mod n = m";
clasohm@1475
   207
by (rtac (mod_def1 RS wf_less_trans) 1);
paulson@1552
   208
by (Asm_simp_tac 1);
clasohm@923
   209
qed "mod_less";
clasohm@923
   210
clasohm@923
   211
goal Arith.thy "!!m. [| 0<n;  ~m<n |] ==> m mod n = (m-n) mod n";
clasohm@1475
   212
by (rtac (mod_def1 RS wf_less_trans) 1);
paulson@1552
   213
by (asm_simp_tac (!simpset addsimps [diff_less, cut_apply, less_eq]) 1);
clasohm@923
   214
qed "mod_geq";
clasohm@923
   215
clasohm@923
   216
clasohm@923
   217
(*** Quotient ***)
clasohm@923
   218
clasohm@1475
   219
goal Arith.thy "(%m. m div n) = wfrec (trancl pred_nat) \
clasohm@1475
   220
                        \            (%f j. if j<n then 0 else Suc (f (j-n)))";
clasohm@1475
   221
by (simp_tac (HOL_ss addsimps [div_def]) 1);
clasohm@1475
   222
val div_def1 = result() RS eq_reflection;
clasohm@1475
   223
clasohm@923
   224
goal Arith.thy "!!m. m<n ==> m div n = 0";
clasohm@1475
   225
by (rtac (div_def1 RS wf_less_trans) 1);
paulson@1552
   226
by (Asm_simp_tac 1);
clasohm@923
   227
qed "div_less";
clasohm@923
   228
clasohm@923
   229
goal Arith.thy "!!M. [| 0<n;  ~m<n |] ==> m div n = Suc((m-n) div n)";
clasohm@1475
   230
by (rtac (div_def1 RS wf_less_trans) 1);
paulson@1552
   231
by (asm_simp_tac (!simpset addsimps [diff_less, cut_apply, less_eq]) 1);
clasohm@923
   232
qed "div_geq";
clasohm@923
   233
clasohm@923
   234
(*Main Result about quotient and remainder.*)
clasohm@923
   235
goal Arith.thy "!!m. 0<n ==> (m div n)*n + m mod n = m";
clasohm@923
   236
by (res_inst_tac [("n","m")] less_induct 1);
clasohm@923
   237
by (rename_tac "k" 1);    (*Variable name used in line below*)
clasohm@923
   238
by (case_tac "k<n" 1);
clasohm@1264
   239
by (ALLGOALS (asm_simp_tac(!simpset addsimps (add_ac @
clasohm@923
   240
                       [mod_less, mod_geq, div_less, div_geq,
clasohm@1465
   241
                        add_diff_inverse, diff_less]))));
clasohm@923
   242
qed "mod_div_equality";
clasohm@923
   243
clasohm@923
   244
clasohm@923
   245
(*** More results about difference ***)
clasohm@923
   246
clasohm@923
   247
val [prem] = goal Arith.thy "m < Suc(n) ==> m-n = 0";
clasohm@923
   248
by (rtac (prem RS rev_mp) 1);
clasohm@923
   249
by (res_inst_tac [("m","m"),("n","n")] diff_induct 1);
clasohm@1264
   250
by (ALLGOALS Asm_simp_tac);
clasohm@923
   251
qed "less_imp_diff_is_0";
clasohm@923
   252
clasohm@923
   253
val prems = goal Arith.thy "m-n = 0  -->  n-m = 0  -->  m=n";
clasohm@923
   254
by (res_inst_tac [("m","m"),("n","n")] diff_induct 1);
clasohm@1264
   255
by (REPEAT(Simp_tac 1 THEN TRY(atac 1)));
nipkow@1485
   256
qed_spec_mp "diffs0_imp_equal";
clasohm@923
   257
clasohm@923
   258
val [prem] = goal Arith.thy "m<n ==> 0<n-m";
clasohm@923
   259
by (rtac (prem RS rev_mp) 1);
clasohm@923
   260
by (res_inst_tac [("m","m"),("n","n")] diff_induct 1);
clasohm@1264
   261
by (ALLGOALS Asm_simp_tac);
clasohm@923
   262
qed "less_imp_diff_positive";
clasohm@923
   263
clasohm@923
   264
val [prem] = goal Arith.thy "n < Suc(m) ==> Suc(m)-n = Suc(m-n)";
clasohm@923
   265
by (rtac (prem RS rev_mp) 1);
clasohm@923
   266
by (res_inst_tac [("m","m"),("n","n")] diff_induct 1);
clasohm@1264
   267
by (ALLGOALS Asm_simp_tac);
clasohm@923
   268
qed "Suc_diff_n";
clasohm@923
   269
nipkow@1398
   270
goal Arith.thy "Suc(m)-n = (if m<n then 0 else Suc(m-n))";
paulson@1552
   271
by (simp_tac (!simpset addsimps [less_imp_diff_is_0, not_less_eq, Suc_diff_n]
clasohm@923
   272
                    setloop (split_tac [expand_if])) 1);
clasohm@923
   273
qed "if_Suc_diff_n";
clasohm@923
   274
clasohm@923
   275
goal Arith.thy "P(k) --> (!n. P(Suc(n))--> P(n)) --> P(k-i)";
clasohm@923
   276
by (res_inst_tac [("m","k"),("n","i")] diff_induct 1);
clasohm@1264
   277
by (ALLGOALS (strip_tac THEN' Simp_tac THEN' TRY o fast_tac HOL_cs));
clasohm@923
   278
qed "zero_induct_lemma";
clasohm@923
   279
clasohm@923
   280
val prems = goal Arith.thy "[| P(k);  !!n. P(Suc(n)) ==> P(n) |] ==> P(0)";
clasohm@923
   281
by (rtac (diff_self_eq_0 RS subst) 1);
clasohm@923
   282
by (rtac (zero_induct_lemma RS mp RS mp) 1);
clasohm@923
   283
by (REPEAT (ares_tac ([impI,allI]@prems) 1));
clasohm@923
   284
qed "zero_induct";
clasohm@923
   285
clasohm@923
   286
(*13 July 1992: loaded in 105.7s*)
clasohm@923
   287
paulson@1618
   288
paulson@1618
   289
(*** Further facts about mod (mainly for mutilated checkerboard ***)
paulson@1618
   290
paulson@1618
   291
goal Arith.thy
paulson@1618
   292
    "!!m n. 0<n ==> \
paulson@1618
   293
\           Suc(m) mod n = (if Suc(m mod n) = n then 0 else Suc(m mod n))";
paulson@1618
   294
by (res_inst_tac [("n","m")] less_induct 1);
paulson@1618
   295
by (excluded_middle_tac "Suc(na)<n" 1);
paulson@1618
   296
(* case Suc(na) < n *)
paulson@1618
   297
by (forward_tac [lessI RS less_trans] 2);
paulson@1618
   298
by (asm_simp_tac (!simpset addsimps [mod_less, less_not_refl2 RS not_sym]) 2);
paulson@1618
   299
(* case n <= Suc(na) *)
paulson@1618
   300
by (asm_full_simp_tac (!simpset addsimps [not_less_iff_le, mod_geq]) 1);
paulson@1618
   301
by (etac (le_imp_less_or_eq RS disjE) 1);
paulson@1618
   302
by (asm_simp_tac (!simpset addsimps [Suc_diff_n]) 1);
paulson@1618
   303
by (asm_full_simp_tac (!simpset addsimps [not_less_eq RS sym, 
paulson@1618
   304
                                          diff_less, mod_geq]) 1);
paulson@1618
   305
by (asm_simp_tac (!simpset addsimps [mod_less]) 1);
paulson@1618
   306
qed "mod_Suc";
paulson@1618
   307
paulson@1618
   308
goal Arith.thy "!!m n. 0<n ==> m mod n < n";
paulson@1618
   309
by (res_inst_tac [("n","m")] less_induct 1);
paulson@1618
   310
by (excluded_middle_tac "na<n" 1);
paulson@1618
   311
(*case na<n*)
paulson@1618
   312
by (asm_simp_tac (!simpset addsimps [mod_less]) 2);
paulson@1618
   313
(*case n le na*)
paulson@1618
   314
by (asm_full_simp_tac (!simpset addsimps [mod_geq, diff_less]) 1);
paulson@1618
   315
qed "mod_less_divisor";
paulson@1618
   316
paulson@1618
   317
paulson@1626
   318
(** Evens and Odds **)
paulson@1626
   319
paulson@1626
   320
val less_cs = set_cs addSEs [less_zeroE, less_SucE];
paulson@1626
   321
paulson@1626
   322
goal thy "!!k b. b<2 ==> k mod 2 = b | k mod 2 = (if b=1 then 0 else 1)";
paulson@1626
   323
by (subgoal_tac "k mod 2 < 2" 1);
paulson@1626
   324
by (asm_simp_tac (!simpset addsimps [mod_less_divisor]) 2);
paulson@1626
   325
by (asm_simp_tac (!simpset setloop split_tac [expand_if]) 1);
paulson@1626
   326
by (fast_tac less_cs 1);
paulson@1626
   327
qed "mod2_cases";
paulson@1626
   328
paulson@1626
   329
goal thy "Suc(Suc(m)) mod 2 = m mod 2";
paulson@1626
   330
by (subgoal_tac "m mod 2 < 2" 1);
paulson@1626
   331
by (asm_simp_tac (!simpset addsimps [mod_less_divisor]) 2);
paulson@1626
   332
by (safe_tac less_cs);
paulson@1626
   333
by (ALLGOALS (asm_simp_tac (!simpset addsimps [mod_Suc])));
paulson@1626
   334
qed "mod2_Suc_Suc";
paulson@1626
   335
Addsimps [mod2_Suc_Suc];
paulson@1626
   336
paulson@1626
   337
goal thy "(m+m) mod 2 = 0";
paulson@1626
   338
by (nat_ind_tac "m" 1);
paulson@1626
   339
by (simp_tac (!simpset addsimps [mod_less]) 1);
paulson@1626
   340
by (asm_simp_tac (!simpset addsimps [mod2_Suc_Suc, add_Suc_right]) 1);
paulson@1626
   341
qed "mod2_add_self";
paulson@1626
   342
Addsimps [mod2_add_self];
paulson@1626
   343
paulson@1626
   344
clasohm@923
   345
(**** Additional theorems about "less than" ****)
clasohm@923
   346
clasohm@923
   347
goal Arith.thy "!!m. m<n --> (? k. n=Suc(m+k))";
clasohm@923
   348
by (nat_ind_tac "n" 1);
clasohm@1264
   349
by (ALLGOALS(Simp_tac));
clasohm@923
   350
by (REPEAT_FIRST (ares_tac [conjI, impI]));
clasohm@923
   351
by (res_inst_tac [("x","0")] exI 2);
clasohm@1264
   352
by (Simp_tac 2);
clasohm@923
   353
by (safe_tac HOL_cs);
clasohm@923
   354
by (res_inst_tac [("x","Suc(k)")] exI 1);
clasohm@1264
   355
by (Simp_tac 1);
nipkow@1485
   356
qed_spec_mp "less_eq_Suc_add";
clasohm@923
   357
clasohm@923
   358
goal Arith.thy "n <= ((m + n)::nat)";
clasohm@923
   359
by (nat_ind_tac "m" 1);
clasohm@1264
   360
by (ALLGOALS Simp_tac);
clasohm@923
   361
by (etac le_trans 1);
clasohm@923
   362
by (rtac (lessI RS less_imp_le) 1);
clasohm@923
   363
qed "le_add2";
clasohm@923
   364
clasohm@923
   365
goal Arith.thy "n <= ((n + m)::nat)";
clasohm@1264
   366
by (simp_tac (!simpset addsimps add_ac) 1);
clasohm@923
   367
by (rtac le_add2 1);
clasohm@923
   368
qed "le_add1";
clasohm@923
   369
clasohm@923
   370
bind_thm ("less_add_Suc1", (lessI RS (le_add1 RS le_less_trans)));
clasohm@923
   371
bind_thm ("less_add_Suc2", (lessI RS (le_add2 RS le_less_trans)));
clasohm@923
   372
clasohm@923
   373
(*"i <= j ==> i <= j+m"*)
clasohm@923
   374
bind_thm ("trans_le_add1", le_add1 RSN (2,le_trans));
clasohm@923
   375
clasohm@923
   376
(*"i <= j ==> i <= m+j"*)
clasohm@923
   377
bind_thm ("trans_le_add2", le_add2 RSN (2,le_trans));
clasohm@923
   378
clasohm@923
   379
(*"i < j ==> i < j+m"*)
clasohm@923
   380
bind_thm ("trans_less_add1", le_add1 RSN (2,less_le_trans));
clasohm@923
   381
clasohm@923
   382
(*"i < j ==> i < m+j"*)
clasohm@923
   383
bind_thm ("trans_less_add2", le_add2 RSN (2,less_le_trans));
clasohm@923
   384
nipkow@1152
   385
goal Arith.thy "!!i. i+j < (k::nat) ==> i<k";
paulson@1552
   386
by (etac rev_mp 1);
paulson@1552
   387
by (nat_ind_tac "j" 1);
clasohm@1264
   388
by (ALLGOALS Asm_simp_tac);
paulson@1552
   389
by (fast_tac (HOL_cs addDs [Suc_lessD]) 1);
nipkow@1152
   390
qed "add_lessD1";
nipkow@1152
   391
clasohm@923
   392
goal Arith.thy "!!k::nat. m <= n ==> m <= n+k";
paulson@1552
   393
by (etac le_trans 1);
paulson@1552
   394
by (rtac le_add1 1);
clasohm@923
   395
qed "le_imp_add_le";
clasohm@923
   396
clasohm@923
   397
goal Arith.thy "!!k::nat. m < n ==> m < n+k";
paulson@1552
   398
by (etac less_le_trans 1);
paulson@1552
   399
by (rtac le_add1 1);
clasohm@923
   400
qed "less_imp_add_less";
clasohm@923
   401
clasohm@923
   402
goal Arith.thy "m+k<=n --> m<=(n::nat)";
clasohm@923
   403
by (nat_ind_tac "k" 1);
clasohm@1264
   404
by (ALLGOALS Asm_simp_tac);
clasohm@923
   405
by (fast_tac (HOL_cs addDs [Suc_leD]) 1);
nipkow@1485
   406
qed_spec_mp "add_leD1";
clasohm@923
   407
clasohm@923
   408
goal Arith.thy "!!k l::nat. [| k<l; m+l = k+n |] ==> m<n";
clasohm@923
   409
by (safe_tac (HOL_cs addSDs [less_eq_Suc_add]));
clasohm@923
   410
by (asm_full_simp_tac
clasohm@1264
   411
    (!simpset delsimps [add_Suc_right]
clasohm@1264
   412
                addsimps ([add_Suc_right RS sym, add_left_cancel] @add_ac)) 1);
paulson@1552
   413
by (etac subst 1);
clasohm@1264
   414
by (simp_tac (!simpset addsimps [less_add_Suc1]) 1);
clasohm@923
   415
qed "less_add_eq_less";
clasohm@923
   416
clasohm@923
   417
clasohm@923
   418
(** Monotonicity of addition (from ZF/Arith) **)
clasohm@923
   419
clasohm@923
   420
(** Monotonicity results **)
clasohm@923
   421
clasohm@923
   422
(*strict, in 1st argument*)
clasohm@923
   423
goal Arith.thy "!!i j k::nat. i < j ==> i + k < j + k";
clasohm@923
   424
by (nat_ind_tac "k" 1);
clasohm@1264
   425
by (ALLGOALS Asm_simp_tac);
clasohm@923
   426
qed "add_less_mono1";
clasohm@923
   427
clasohm@923
   428
(*strict, in both arguments*)
clasohm@923
   429
goal Arith.thy "!!i j k::nat. [|i < j; k < l|] ==> i + k < j + l";
clasohm@923
   430
by (rtac (add_less_mono1 RS less_trans) 1);
lcp@1198
   431
by (REPEAT (assume_tac 1));
clasohm@923
   432
by (nat_ind_tac "j" 1);
clasohm@1264
   433
by (ALLGOALS Asm_simp_tac);
clasohm@923
   434
qed "add_less_mono";
clasohm@923
   435
clasohm@923
   436
(*A [clumsy] way of lifting < monotonicity to <= monotonicity *)
clasohm@923
   437
val [lt_mono,le] = goal Arith.thy
clasohm@1465
   438
     "[| !!i j::nat. i<j ==> f(i) < f(j);       \
clasohm@1465
   439
\        i <= j                                 \
clasohm@923
   440
\     |] ==> f(i) <= (f(j)::nat)";
clasohm@923
   441
by (cut_facts_tac [le] 1);
clasohm@1264
   442
by (asm_full_simp_tac (!simpset addsimps [le_eq_less_or_eq]) 1);
clasohm@923
   443
by (fast_tac (HOL_cs addSIs [lt_mono]) 1);
clasohm@923
   444
qed "less_mono_imp_le_mono";
clasohm@923
   445
clasohm@923
   446
(*non-strict, in 1st argument*)
clasohm@923
   447
goal Arith.thy "!!i j k::nat. i<=j ==> i + k <= j + k";
clasohm@923
   448
by (res_inst_tac [("f", "%j.j+k")] less_mono_imp_le_mono 1);
paulson@1552
   449
by (etac add_less_mono1 1);
clasohm@923
   450
by (assume_tac 1);
clasohm@923
   451
qed "add_le_mono1";
clasohm@923
   452
clasohm@923
   453
(*non-strict, in both arguments*)
clasohm@923
   454
goal Arith.thy "!!k l::nat. [|i<=j;  k<=l |] ==> i + k <= j + l";
clasohm@923
   455
by (etac (add_le_mono1 RS le_trans) 1);
clasohm@1264
   456
by (simp_tac (!simpset addsimps [add_commute]) 1);
clasohm@923
   457
(*j moves to the end because it is free while k, l are bound*)
paulson@1552
   458
by (etac add_le_mono1 1);
clasohm@923
   459
qed "add_le_mono";