src/HOL/Hyperreal/Lim.thy
author nipkow
Sun Dec 10 07:12:26 2006 +0100 (2006-12-10)
changeset 21733 131dd2a27137
parent 21404 eb85850d3eb7
child 21786 66da6af2b0c9
permissions -rw-r--r--
Modified lattice locale
paulson@10751
     1
(*  Title       : Lim.thy
paulson@14477
     2
    ID          : $Id$
paulson@10751
     3
    Author      : Jacques D. Fleuriot
paulson@10751
     4
    Copyright   : 1998  University of Cambridge
paulson@14477
     5
    Conversion to Isar and new proofs by Lawrence C Paulson, 2004
paulson@10751
     6
*)
paulson@10751
     7
huffman@21165
     8
header{* Limits and Continuity *}
paulson@10751
     9
nipkow@15131
    10
theory Lim
nipkow@15360
    11
imports SEQ
nipkow@15131
    12
begin
paulson@14477
    13
paulson@14477
    14
text{*Standard and Nonstandard Definitions*}
paulson@10751
    15
wenzelm@19765
    16
definition
huffman@20561
    17
  LIM :: "['a::real_normed_vector => 'b::real_normed_vector, 'a, 'b] => bool"
wenzelm@21404
    18
        ("((_)/ -- (_)/ --> (_))" [60, 0, 60] 60) where
wenzelm@19765
    19
  "f -- a --> L =
huffman@20563
    20
     (\<forall>r > 0. \<exists>s > 0. \<forall>x. x \<noteq> a & norm (x - a) < s
huffman@20563
    21
        --> norm (f x - L) < r)"
paulson@10751
    22
wenzelm@21404
    23
definition
huffman@20561
    24
  NSLIM :: "['a::real_normed_vector => 'b::real_normed_vector, 'a, 'b] => bool"
wenzelm@21404
    25
            ("((_)/ -- (_)/ --NS> (_))" [60, 0, 60] 60) where
huffman@20552
    26
  "f -- a --NS> L =
huffman@20552
    27
    (\<forall>x. (x \<noteq> star_of a & x @= star_of a --> ( *f* f) x @= star_of L))"
paulson@10751
    28
wenzelm@21404
    29
definition
wenzelm@21404
    30
  isCont :: "['a::real_normed_vector => 'b::real_normed_vector, 'a] => bool" where
wenzelm@19765
    31
  "isCont f a = (f -- a --> (f a))"
paulson@10751
    32
wenzelm@21404
    33
definition
wenzelm@21404
    34
  isNSCont :: "['a::real_normed_vector => 'b::real_normed_vector, 'a] => bool" where
paulson@15228
    35
    --{*NS definition dispenses with limit notions*}
huffman@20552
    36
  "isNSCont f a = (\<forall>y. y @= star_of a -->
huffman@20552
    37
         ( *f* f) y @= star_of (f a))"
paulson@10751
    38
wenzelm@21404
    39
definition
wenzelm@21404
    40
  isUCont :: "['a::real_normed_vector => 'b::real_normed_vector] => bool" where
huffman@20752
    41
  "isUCont f = (\<forall>r>0. \<exists>s>0. \<forall>x y. norm (x - y) < s \<longrightarrow> norm (f x - f y) < r)"
paulson@10751
    42
wenzelm@21404
    43
definition
wenzelm@21404
    44
  isNSUCont :: "['a::real_normed_vector => 'b::real_normed_vector] => bool" where
wenzelm@19765
    45
  "isNSUCont f = (\<forall>x y. x @= y --> ( *f* f) x @= ( *f* f) y)"
paulson@10751
    46
paulson@10751
    47
huffman@20755
    48
subsection {* Limits of Functions *}
paulson@14477
    49
huffman@20755
    50
subsubsection {* Purely standard proofs *}
paulson@14477
    51
paulson@14477
    52
lemma LIM_eq:
paulson@14477
    53
     "f -- a --> L =
huffman@20561
    54
     (\<forall>r>0.\<exists>s>0.\<forall>x. x \<noteq> a & norm (x-a) < s --> norm (f x - L) < r)"
paulson@14477
    55
by (simp add: LIM_def diff_minus)
paulson@14477
    56
huffman@20552
    57
lemma LIM_I:
huffman@20561
    58
     "(!!r. 0<r ==> \<exists>s>0.\<forall>x. x \<noteq> a & norm (x-a) < s --> norm (f x - L) < r)
huffman@20552
    59
      ==> f -- a --> L"
huffman@20552
    60
by (simp add: LIM_eq)
huffman@20552
    61
paulson@14477
    62
lemma LIM_D:
paulson@14477
    63
     "[| f -- a --> L; 0<r |]
huffman@20561
    64
      ==> \<exists>s>0.\<forall>x. x \<noteq> a & norm (x-a) < s --> norm (f x - L) < r"
paulson@14477
    65
by (simp add: LIM_eq)
paulson@14477
    66
huffman@21165
    67
lemma LIM_offset: "f -- a --> L \<Longrightarrow> (\<lambda>x. f (x + k)) -- a - k --> L"
huffman@20756
    68
apply (rule LIM_I)
huffman@20756
    69
apply (drule_tac r="r" in LIM_D, safe)
huffman@20756
    70
apply (rule_tac x="s" in exI, safe)
huffman@20756
    71
apply (drule_tac x="x + k" in spec)
huffman@20756
    72
apply (simp add: compare_rls)
huffman@20756
    73
done
huffman@20756
    74
huffman@21239
    75
lemma LIM_offset_zero: "f -- a --> L \<Longrightarrow> (\<lambda>h. f (a + h)) -- 0 --> L"
huffman@21239
    76
by (drule_tac k="a" in LIM_offset, simp add: add_commute)
huffman@21239
    77
huffman@21239
    78
lemma LIM_offset_zero_cancel: "(\<lambda>h. f (a + h)) -- 0 --> L \<Longrightarrow> f -- a --> L"
huffman@21239
    79
by (drule_tac k="- a" in LIM_offset, simp)
huffman@21239
    80
paulson@15228
    81
lemma LIM_const [simp]: "(%x. k) -- x --> k"
paulson@14477
    82
by (simp add: LIM_def)
paulson@14477
    83
paulson@14477
    84
lemma LIM_add:
huffman@20561
    85
  fixes f g :: "'a::real_normed_vector \<Rightarrow> 'b::real_normed_vector"
paulson@14477
    86
  assumes f: "f -- a --> L" and g: "g -- a --> M"
paulson@14477
    87
  shows "(%x. f x + g(x)) -- a --> (L + M)"
huffman@20552
    88
proof (rule LIM_I)
paulson@14477
    89
  fix r :: real
huffman@20409
    90
  assume r: "0 < r"
paulson@14477
    91
  from LIM_D [OF f half_gt_zero [OF r]]
paulson@14477
    92
  obtain fs
paulson@14477
    93
    where fs:    "0 < fs"
huffman@20561
    94
      and fs_lt: "\<forall>x. x \<noteq> a & norm (x-a) < fs --> norm (f x - L) < r/2"
paulson@14477
    95
  by blast
paulson@14477
    96
  from LIM_D [OF g half_gt_zero [OF r]]
paulson@14477
    97
  obtain gs
paulson@14477
    98
    where gs:    "0 < gs"
huffman@20561
    99
      and gs_lt: "\<forall>x. x \<noteq> a & norm (x-a) < gs --> norm (g x - M) < r/2"
paulson@14477
   100
  by blast
huffman@20561
   101
  show "\<exists>s>0.\<forall>x. x \<noteq> a \<and> norm (x-a) < s \<longrightarrow> norm (f x + g x - (L + M)) < r"
paulson@14477
   102
  proof (intro exI conjI strip)
paulson@14477
   103
    show "0 < min fs gs"  by (simp add: fs gs)
huffman@20561
   104
    fix x :: 'a
huffman@20561
   105
    assume "x \<noteq> a \<and> norm (x-a) < min fs gs"
huffman@20561
   106
    hence "x \<noteq> a \<and> norm (x-a) < fs \<and> norm (x-a) < gs" by simp
paulson@14477
   107
    with fs_lt gs_lt
huffman@20552
   108
    have "norm (f x - L) < r/2" and "norm (g x - M) < r/2" by blast+
huffman@20552
   109
    hence "norm (f x - L) + norm (g x - M) < r" by arith
huffman@20552
   110
    thus "norm (f x + g x - (L + M)) < r"
huffman@20552
   111
      by (blast intro: norm_diff_triangle_ineq order_le_less_trans)
paulson@14477
   112
  qed
paulson@14477
   113
qed
paulson@14477
   114
huffman@21257
   115
lemma LIM_add_zero:
huffman@21257
   116
  "\<lbrakk>f -- a --> 0; g -- a --> 0\<rbrakk> \<Longrightarrow> (\<lambda>x. f x + g x) -- a --> 0"
huffman@21257
   117
by (drule (1) LIM_add, simp)
huffman@21257
   118
huffman@20552
   119
lemma minus_diff_minus:
huffman@20552
   120
  fixes a b :: "'a::ab_group_add"
huffman@20552
   121
  shows "(- a) - (- b) = - (a - b)"
huffman@20552
   122
by simp
huffman@20552
   123
paulson@14477
   124
lemma LIM_minus: "f -- a --> L ==> (%x. -f(x)) -- a --> -L"
huffman@20552
   125
by (simp only: LIM_eq minus_diff_minus norm_minus_cancel)
paulson@14477
   126
paulson@14477
   127
lemma LIM_add_minus:
paulson@14477
   128
    "[| f -- x --> l; g -- x --> m |] ==> (%x. f(x) + -g(x)) -- x --> (l + -m)"
huffman@20552
   129
by (intro LIM_add LIM_minus)
paulson@14477
   130
paulson@14477
   131
lemma LIM_diff:
paulson@14477
   132
    "[| f -- x --> l; g -- x --> m |] ==> (%x. f(x) - g(x)) -- x --> l-m"
huffman@20552
   133
by (simp only: diff_minus LIM_add LIM_minus)
paulson@14477
   134
huffman@21239
   135
lemma LIM_zero: "f -- a --> l \<Longrightarrow> (\<lambda>x. f x - l) -- a --> 0"
huffman@21239
   136
by (simp add: LIM_def)
huffman@21239
   137
huffman@21239
   138
lemma LIM_zero_cancel: "(\<lambda>x. f x - l) -- a --> 0 \<Longrightarrow> f -- a --> l"
huffman@21239
   139
by (simp add: LIM_def)
huffman@21239
   140
huffman@21399
   141
lemma LIM_zero_iff: "(\<lambda>x. f x - l) -- a --> 0 = f -- a --> l"
huffman@21399
   142
by (simp add: LIM_def)
huffman@21399
   143
huffman@21257
   144
lemma LIM_imp_LIM:
huffman@21257
   145
  assumes f: "f -- a --> l"
huffman@21257
   146
  assumes le: "\<And>x. x \<noteq> a \<Longrightarrow> norm (g x - m) \<le> norm (f x - l)"
huffman@21257
   147
  shows "g -- a --> m"
huffman@21257
   148
apply (rule LIM_I, drule LIM_D [OF f], safe)
huffman@21257
   149
apply (rule_tac x="s" in exI, safe)
huffman@21257
   150
apply (drule_tac x="x" in spec, safe)
huffman@21257
   151
apply (erule (1) order_le_less_trans [OF le])
huffman@21257
   152
done
huffman@21257
   153
huffman@21257
   154
lemma LIM_norm: "f -- a --> l \<Longrightarrow> (\<lambda>x. norm (f x)) -- a --> norm l"
huffman@21257
   155
by (erule LIM_imp_LIM, simp add: norm_triangle_ineq3)
huffman@21257
   156
huffman@21257
   157
lemma LIM_norm_zero: "f -- a --> 0 \<Longrightarrow> (\<lambda>x. norm (f x)) -- a --> 0"
huffman@21257
   158
by (drule LIM_norm, simp)
huffman@21257
   159
huffman@21257
   160
lemma LIM_norm_zero_cancel: "(\<lambda>x. norm (f x)) -- a --> 0 \<Longrightarrow> f -- a --> 0"
huffman@21257
   161
by (erule LIM_imp_LIM, simp)
huffman@21257
   162
huffman@21399
   163
lemma LIM_norm_zero_iff: "(\<lambda>x. norm (f x)) -- a --> 0 = f -- a --> 0"
huffman@21399
   164
by (rule iffI [OF LIM_norm_zero_cancel LIM_norm_zero])
huffman@21399
   165
huffman@20561
   166
lemma LIM_const_not_eq:
huffman@20561
   167
  fixes a :: "'a::real_normed_div_algebra"
huffman@20561
   168
  shows "k \<noteq> L ==> ~ ((%x. k) -- a --> L)"
huffman@20552
   169
apply (simp add: LIM_eq)
huffman@20552
   170
apply (rule_tac x="norm (k - L)" in exI, simp, safe)
huffman@20561
   171
apply (rule_tac x="a + of_real (s/2)" in exI, simp add: norm_of_real)
huffman@20552
   172
done
paulson@14477
   173
huffman@20561
   174
lemma LIM_const_eq:
huffman@20561
   175
  fixes a :: "'a::real_normed_div_algebra"
huffman@20561
   176
  shows "(%x. k) -- a --> L ==> k = L"
paulson@14477
   177
apply (rule ccontr)
kleing@19023
   178
apply (blast dest: LIM_const_not_eq)
paulson@14477
   179
done
paulson@14477
   180
huffman@20561
   181
lemma LIM_unique:
huffman@20561
   182
  fixes a :: "'a::real_normed_div_algebra"
huffman@20561
   183
  shows "[| f -- a --> L; f -- a --> M |] ==> L = M"
kleing@19023
   184
apply (drule LIM_diff, assumption)
paulson@14477
   185
apply (auto dest!: LIM_const_eq)
paulson@14477
   186
done
paulson@14477
   187
paulson@14477
   188
lemma LIM_mult_zero:
huffman@20561
   189
  fixes f g :: "'a::real_normed_vector \<Rightarrow> 'b::real_normed_algebra"
paulson@14477
   190
  assumes f: "f -- a --> 0" and g: "g -- a --> 0"
paulson@14477
   191
  shows "(%x. f(x) * g(x)) -- a --> 0"
huffman@20552
   192
proof (rule LIM_I, simp)
paulson@14477
   193
  fix r :: real
paulson@14477
   194
  assume r: "0<r"
paulson@14477
   195
  from LIM_D [OF f zero_less_one]
paulson@14477
   196
  obtain fs
paulson@14477
   197
    where fs:    "0 < fs"
huffman@20561
   198
      and fs_lt: "\<forall>x. x \<noteq> a & norm (x-a) < fs --> norm (f x) < 1"
paulson@14477
   199
  by auto
paulson@14477
   200
  from LIM_D [OF g r]
paulson@14477
   201
  obtain gs
paulson@14477
   202
    where gs:    "0 < gs"
huffman@20561
   203
      and gs_lt: "\<forall>x. x \<noteq> a & norm (x-a) < gs --> norm (g x) < r"
paulson@14477
   204
  by auto
huffman@20561
   205
  show "\<exists>s. 0 < s \<and> (\<forall>x. x \<noteq> a \<and> norm (x-a) < s \<longrightarrow> norm (f x * g x) < r)"
paulson@14477
   206
  proof (intro exI conjI strip)
paulson@14477
   207
    show "0 < min fs gs"  by (simp add: fs gs)
huffman@20561
   208
    fix x :: 'a
huffman@20561
   209
    assume "x \<noteq> a \<and> norm (x-a) < min fs gs"
huffman@20561
   210
    hence  "x \<noteq> a \<and> norm (x-a) < fs \<and> norm (x-a) < gs" by simp
paulson@14477
   211
    with fs_lt gs_lt
huffman@20552
   212
    have "norm (f x) < 1" and "norm (g x) < r" by blast+
huffman@20552
   213
    hence "norm (f x) * norm (g x) < 1*r"
huffman@20552
   214
      by (rule mult_strict_mono' [OF _ _ norm_ge_zero norm_ge_zero])
huffman@20552
   215
    thus "norm (f x * g x) < r"
huffman@20552
   216
      by (simp add: order_le_less_trans [OF norm_mult_ineq])
paulson@14477
   217
  qed
paulson@14477
   218
qed
paulson@14477
   219
paulson@14477
   220
lemma LIM_self: "(%x. x) -- a --> a"
paulson@14477
   221
by (auto simp add: LIM_def)
paulson@14477
   222
paulson@14477
   223
text{*Limits are equal for functions equal except at limit point*}
paulson@14477
   224
lemma LIM_equal:
paulson@14477
   225
     "[| \<forall>x. x \<noteq> a --> (f x = g x) |] ==> (f -- a --> l) = (g -- a --> l)"
paulson@14477
   226
by (simp add: LIM_def)
paulson@14477
   227
huffman@20796
   228
lemma LIM_cong:
huffman@20796
   229
  "\<lbrakk>a = b; \<And>x. x \<noteq> b \<Longrightarrow> f x = g x; l = m\<rbrakk>
huffman@21399
   230
   \<Longrightarrow> ((\<lambda>x. f x) -- a --> l) = ((\<lambda>x. g x) -- b --> m)"
huffman@20796
   231
by (simp add: LIM_def)
huffman@20796
   232
huffman@21282
   233
lemma LIM_equal2:
huffman@21282
   234
  assumes 1: "0 < R"
huffman@21282
   235
  assumes 2: "\<And>x. \<lbrakk>x \<noteq> a; norm (x - a) < R\<rbrakk> \<Longrightarrow> f x = g x"
huffman@21282
   236
  shows "g -- a --> l \<Longrightarrow> f -- a --> l"
huffman@21282
   237
apply (unfold LIM_def, safe)
huffman@21282
   238
apply (drule_tac x="r" in spec, safe)
huffman@21282
   239
apply (rule_tac x="min s R" in exI, safe)
huffman@21282
   240
apply (simp add: 1)
huffman@21282
   241
apply (simp add: 2)
huffman@21282
   242
done
huffman@21282
   243
paulson@14477
   244
text{*Two uses in Hyperreal/Transcendental.ML*}
paulson@14477
   245
lemma LIM_trans:
paulson@14477
   246
     "[| (%x. f(x) + -g(x)) -- a --> 0;  g -- a --> l |] ==> f -- a --> l"
paulson@14477
   247
apply (drule LIM_add, assumption)
paulson@14477
   248
apply (auto simp add: add_assoc)
paulson@14477
   249
done
paulson@14477
   250
huffman@21239
   251
lemma LIM_compose:
huffman@21239
   252
  assumes g: "g -- l --> g l"
huffman@21239
   253
  assumes f: "f -- a --> l"
huffman@21239
   254
  shows "(\<lambda>x. g (f x)) -- a --> g l"
huffman@21239
   255
proof (rule LIM_I)
huffman@21239
   256
  fix r::real assume r: "0 < r"
huffman@21239
   257
  obtain s where s: "0 < s"
huffman@21239
   258
    and less_r: "\<And>y. \<lbrakk>y \<noteq> l; norm (y - l) < s\<rbrakk> \<Longrightarrow> norm (g y - g l) < r"
huffman@21239
   259
    using LIM_D [OF g r] by fast
huffman@21239
   260
  obtain t where t: "0 < t"
huffman@21239
   261
    and less_s: "\<And>x. \<lbrakk>x \<noteq> a; norm (x - a) < t\<rbrakk> \<Longrightarrow> norm (f x - l) < s"
huffman@21239
   262
    using LIM_D [OF f s] by fast
huffman@21239
   263
huffman@21239
   264
  show "\<exists>t>0. \<forall>x. x \<noteq> a \<and> norm (x - a) < t \<longrightarrow> norm (g (f x) - g l) < r"
huffman@21239
   265
  proof (rule exI, safe)
huffman@21239
   266
    show "0 < t" using t .
huffman@21239
   267
  next
huffman@21239
   268
    fix x assume "x \<noteq> a" and "norm (x - a) < t"
huffman@21239
   269
    hence "norm (f x - l) < s" by (rule less_s)
huffman@21239
   270
    thus "norm (g (f x) - g l) < r"
huffman@21239
   271
      using r less_r by (case_tac "f x = l", simp_all)
huffman@21239
   272
  qed
huffman@21239
   273
qed
huffman@21239
   274
huffman@21239
   275
lemma LIM_o: "\<lbrakk>g -- l --> g l; f -- a --> l\<rbrakk> \<Longrightarrow> (g \<circ> f) -- a --> g l"
huffman@21239
   276
unfolding o_def by (rule LIM_compose)
huffman@21239
   277
huffman@21282
   278
lemma real_LIM_sandwich_zero:
huffman@21282
   279
  fixes f g :: "'a::real_normed_vector \<Rightarrow> real"
huffman@21282
   280
  assumes f: "f -- a --> 0"
huffman@21282
   281
  assumes 1: "\<And>x. x \<noteq> a \<Longrightarrow> 0 \<le> g x"
huffman@21282
   282
  assumes 2: "\<And>x. x \<noteq> a \<Longrightarrow> g x \<le> f x"
huffman@21282
   283
  shows "g -- a --> 0"
huffman@21282
   284
proof (rule LIM_imp_LIM [OF f])
huffman@21282
   285
  fix x assume x: "x \<noteq> a"
huffman@21282
   286
  have "norm (g x - 0) = g x" by (simp add: 1 x)
huffman@21282
   287
  also have "g x \<le> f x" by (rule 2 [OF x])
huffman@21282
   288
  also have "f x \<le> \<bar>f x\<bar>" by (rule abs_ge_self)
huffman@21282
   289
  also have "\<bar>f x\<bar> = norm (f x - 0)" by simp
huffman@21282
   290
  finally show "norm (g x - 0) \<le> norm (f x - 0)" .
huffman@21282
   291
qed
huffman@21282
   292
huffman@21282
   293
subsubsection {* Bounded Linear Operators *}
huffman@21282
   294
huffman@21282
   295
locale bounded_linear = additive +
huffman@21282
   296
  constrains f :: "'a::real_normed_vector \<Rightarrow> 'b::real_normed_vector"
huffman@21282
   297
  assumes scaleR: "f (scaleR r x) = scaleR r (f x)"
huffman@21282
   298
  assumes bounded: "\<exists>K. \<forall>x. norm (f x) \<le> norm x * K"
huffman@21282
   299
huffman@21282
   300
lemma (in bounded_linear) pos_bounded:
huffman@21282
   301
  "\<exists>K>0. \<forall>x. norm (f x) \<le> norm x * K"
huffman@21282
   302
apply (cut_tac bounded, erule exE)
huffman@21282
   303
apply (rule_tac x="max 1 K" in exI, safe)
huffman@21282
   304
apply (rule order_less_le_trans [OF zero_less_one le_maxI1])
huffman@21282
   305
apply (drule spec, erule order_trans)
huffman@21282
   306
apply (rule mult_left_mono [OF le_maxI2 norm_ge_zero])
huffman@21282
   307
done
huffman@21282
   308
huffman@21282
   309
lemma (in bounded_linear) pos_boundedE:
huffman@21282
   310
  obtains K where "0 < K" and "\<forall>x. norm (f x) \<le> norm x * K"
huffman@21282
   311
  using pos_bounded by fast
huffman@21282
   312
huffman@21282
   313
lemma (in bounded_linear) cont: "f -- a --> f a"
huffman@21282
   314
proof (rule LIM_I)
huffman@21282
   315
  fix r::real assume r: "0 < r"
huffman@21282
   316
  obtain K where K: "0 < K" and norm_le: "\<And>x. norm (f x) \<le> norm x * K"
huffman@21282
   317
    using pos_bounded by fast
huffman@21282
   318
  show "\<exists>s>0. \<forall>x. x \<noteq> a \<and> norm (x - a) < s \<longrightarrow> norm (f x - f a) < r"
huffman@21282
   319
  proof (rule exI, safe)
huffman@21282
   320
    from r K show "0 < r / K" by (rule divide_pos_pos)
huffman@21282
   321
  next
huffman@21282
   322
    fix x assume x: "norm (x - a) < r / K"
huffman@21282
   323
    have "norm (f x - f a) = norm (f (x - a))" by (simp only: diff)
huffman@21282
   324
    also have "\<dots> \<le> norm (x - a) * K" by (rule norm_le)
huffman@21282
   325
    also from K x have "\<dots> < r" by (simp only: pos_less_divide_eq)
huffman@21282
   326
    finally show "norm (f x - f a) < r" .
huffman@21282
   327
  qed
huffman@21282
   328
qed
huffman@21282
   329
huffman@21282
   330
lemma (in bounded_linear) LIM:
huffman@21282
   331
  "g -- a --> l \<Longrightarrow> (\<lambda>x. f (g x)) -- a --> f l"
huffman@21282
   332
by (rule LIM_compose [OF cont])
huffman@21282
   333
huffman@21282
   334
lemma (in bounded_linear) LIM_zero:
huffman@21282
   335
  "g -- a --> 0 \<Longrightarrow> (\<lambda>x. f (g x)) -- a --> 0"
huffman@21282
   336
by (drule LIM, simp only: zero)
huffman@21282
   337
huffman@21282
   338
subsubsection {* Bounded Bilinear Operators *}
huffman@21282
   339
huffman@21282
   340
locale bounded_bilinear =
huffman@21282
   341
  fixes prod :: "['a::real_normed_vector, 'b::real_normed_vector]
huffman@21282
   342
                 \<Rightarrow> 'c::real_normed_vector"
huffman@21282
   343
    (infixl "**" 70)
huffman@21282
   344
  assumes add_left: "prod (a + a') b = prod a b + prod a' b"
huffman@21282
   345
  assumes add_right: "prod a (b + b') = prod a b + prod a b'"
huffman@21282
   346
  assumes scaleR_left: "prod (scaleR r a) b = scaleR r (prod a b)"
huffman@21282
   347
  assumes scaleR_right: "prod a (scaleR r b) = scaleR r (prod a b)"
huffman@21282
   348
  assumes bounded: "\<exists>K. \<forall>a b. norm (prod a b) \<le> norm a * norm b * K"
huffman@21282
   349
huffman@21282
   350
lemma (in bounded_bilinear) pos_bounded:
huffman@21282
   351
  "\<exists>K>0. \<forall>a b. norm (a ** b) \<le> norm a * norm b * K"
huffman@21282
   352
apply (cut_tac bounded, erule exE)
huffman@21282
   353
apply (rule_tac x="max 1 K" in exI, safe)
huffman@21282
   354
apply (rule order_less_le_trans [OF zero_less_one le_maxI1])
huffman@21282
   355
apply (drule spec, drule spec, erule order_trans)
huffman@21282
   356
apply (rule mult_left_mono [OF le_maxI2])
huffman@21282
   357
apply (intro mult_nonneg_nonneg norm_ge_zero)
huffman@21282
   358
done
huffman@21282
   359
huffman@21282
   360
lemma (in bounded_bilinear) additive_right: "additive (\<lambda>b. prod a b)"
huffman@21282
   361
by (rule additive.intro, rule add_right)
huffman@21282
   362
huffman@21282
   363
lemma (in bounded_bilinear) additive_left: "additive (\<lambda>a. prod a b)"
huffman@21282
   364
by (rule additive.intro, rule add_left)
huffman@21282
   365
huffman@21282
   366
lemma (in bounded_bilinear) zero_left: "prod 0 b = 0"
huffman@21282
   367
by (rule additive.zero [OF additive_left])
huffman@21282
   368
huffman@21282
   369
lemma (in bounded_bilinear) zero_right: "prod a 0 = 0"
huffman@21282
   370
by (rule additive.zero [OF additive_right])
huffman@21282
   371
huffman@21282
   372
lemma (in bounded_bilinear) minus_left: "prod (- a) b = - prod a b"
huffman@21282
   373
by (rule additive.minus [OF additive_left])
huffman@21282
   374
huffman@21282
   375
lemma (in bounded_bilinear) minus_right: "prod a (- b) = - prod a b"
huffman@21282
   376
by (rule additive.minus [OF additive_right])
huffman@21282
   377
huffman@21282
   378
lemma (in bounded_bilinear) diff_left:
huffman@21282
   379
  "prod (a - a') b = prod a b - prod a' b"
huffman@21282
   380
by (rule additive.diff [OF additive_left])
huffman@21282
   381
huffman@21282
   382
lemma (in bounded_bilinear) diff_right:
huffman@21282
   383
  "prod a (b - b') = prod a b - prod a b'"
huffman@21282
   384
by (rule additive.diff [OF additive_right])
huffman@21282
   385
huffman@21282
   386
lemma (in bounded_bilinear) LIM_prod_zero:
huffman@21282
   387
  assumes f: "f -- a --> 0"
huffman@21282
   388
  assumes g: "g -- a --> 0"
huffman@21282
   389
  shows "(\<lambda>x. f x ** g x) -- a --> 0"
huffman@21282
   390
proof (rule LIM_I)
huffman@21282
   391
  fix r::real assume r: "0 < r"
huffman@21282
   392
  obtain K where K: "0 < K"
huffman@21282
   393
    and norm_le: "\<And>x y. norm (x ** y) \<le> norm x * norm y * K"
huffman@21282
   394
    using pos_bounded by fast
huffman@21282
   395
  from K have K': "0 < inverse K"
huffman@21282
   396
    by (rule positive_imp_inverse_positive)
huffman@21282
   397
  obtain s where s: "0 < s"
huffman@21282
   398
    and norm_f: "\<And>x. \<lbrakk>x \<noteq> a; norm (x - a) < s\<rbrakk> \<Longrightarrow> norm (f x) < r"
huffman@21282
   399
    using LIM_D [OF f r] by auto
huffman@21282
   400
  obtain t where t: "0 < t"
huffman@21282
   401
    and norm_g: "\<And>x. \<lbrakk>x \<noteq> a; norm (x - a) < t\<rbrakk> \<Longrightarrow> norm (g x) < inverse K"
huffman@21282
   402
    using LIM_D [OF g K'] by auto
huffman@21282
   403
  show "\<exists>s>0. \<forall>x. x \<noteq> a \<and> norm (x - a) < s \<longrightarrow> norm (f x ** g x - 0) < r"
huffman@21282
   404
  proof (rule exI, safe)
huffman@21282
   405
    from s t show "0 < min s t" by simp
huffman@21282
   406
  next
huffman@21282
   407
    fix x assume x: "x \<noteq> a"
huffman@21282
   408
    assume "norm (x - a) < min s t"
huffman@21282
   409
    hence xs: "norm (x - a) < s" and xt: "norm (x - a) < t" by simp_all
huffman@21282
   410
    from x xs have 1: "norm (f x) < r" by (rule norm_f)
huffman@21282
   411
    from x xt have 2: "norm (g x) < inverse K" by (rule norm_g)
huffman@21282
   412
    have "norm (f x ** g x) \<le> norm (f x) * norm (g x) * K" by (rule norm_le)
huffman@21282
   413
    also from 1 2 K have "\<dots> < r * inverse K * K"
huffman@21282
   414
      by (intro mult_strict_right_mono mult_strict_mono' norm_ge_zero)
huffman@21282
   415
    also from K have "r * inverse K * K = r" by simp
huffman@21282
   416
    finally show "norm (f x ** g x - 0) < r" by simp
huffman@21282
   417
  qed
huffman@21282
   418
qed
huffman@21282
   419
huffman@21282
   420
lemma (in bounded_bilinear) bounded_linear_left:
huffman@21282
   421
  "bounded_linear (\<lambda>a. a ** b)"
huffman@21282
   422
apply (unfold_locales)
huffman@21282
   423
apply (rule add_left)
huffman@21282
   424
apply (rule scaleR_left)
huffman@21282
   425
apply (cut_tac bounded, safe)
huffman@21282
   426
apply (rule_tac x="norm b * K" in exI)
huffman@21282
   427
apply (simp add: mult_ac)
huffman@21282
   428
done
huffman@21282
   429
huffman@21282
   430
lemma (in bounded_bilinear) bounded_linear_right:
huffman@21282
   431
  "bounded_linear (\<lambda>b. a ** b)"
huffman@21282
   432
apply (unfold_locales)
huffman@21282
   433
apply (rule add_right)
huffman@21282
   434
apply (rule scaleR_right)
huffman@21282
   435
apply (cut_tac bounded, safe)
huffman@21282
   436
apply (rule_tac x="norm a * K" in exI)
huffman@21282
   437
apply (simp add: mult_ac)
huffman@21282
   438
done
huffman@21282
   439
huffman@21282
   440
lemma (in bounded_bilinear) LIM_left_zero:
huffman@21282
   441
  "f -- a --> 0 \<Longrightarrow> (\<lambda>x. f x ** c) -- a --> 0"
huffman@21282
   442
by (rule bounded_linear.LIM_zero [OF bounded_linear_left])
huffman@21282
   443
huffman@21282
   444
lemma (in bounded_bilinear) LIM_right_zero:
huffman@21282
   445
  "f -- a --> 0 \<Longrightarrow> (\<lambda>x. c ** f x) -- a --> 0"
huffman@21282
   446
by (rule bounded_linear.LIM_zero [OF bounded_linear_right])
huffman@21282
   447
huffman@21282
   448
lemma (in bounded_bilinear) prod_diff_prod:
huffman@21282
   449
  "(x ** y - a ** b) = (x - a) ** (y - b) + (x - a) ** b + a ** (y - b)"
huffman@21282
   450
by (simp add: diff_left diff_right)
huffman@21282
   451
huffman@21282
   452
lemma (in bounded_bilinear) LIM:
huffman@21282
   453
  "\<lbrakk>f -- a --> L; g -- a --> M\<rbrakk> \<Longrightarrow> (\<lambda>x. f x ** g x) -- a --> L ** M"
huffman@21282
   454
apply (drule LIM_zero)
huffman@21282
   455
apply (drule LIM_zero)
huffman@21282
   456
apply (rule LIM_zero_cancel)
huffman@21282
   457
apply (subst prod_diff_prod)
huffman@21282
   458
apply (rule LIM_add_zero)
huffman@21282
   459
apply (rule LIM_add_zero)
huffman@21282
   460
apply (erule (1) LIM_prod_zero)
huffman@21282
   461
apply (erule LIM_left_zero)
huffman@21282
   462
apply (erule LIM_right_zero)
huffman@21282
   463
done
huffman@21282
   464
huffman@21282
   465
interpretation bounded_bilinear_mult:
huffman@21282
   466
  bounded_bilinear ["op * :: 'a \<Rightarrow> 'a \<Rightarrow> 'a::real_normed_algebra"]
huffman@21282
   467
apply (rule bounded_bilinear.intro)
huffman@21282
   468
apply (rule left_distrib)
huffman@21282
   469
apply (rule right_distrib)
huffman@21282
   470
apply (rule mult_scaleR_left)
huffman@21282
   471
apply (rule mult_scaleR_right)
huffman@21282
   472
apply (rule_tac x="1" in exI)
huffman@21282
   473
apply (simp add: norm_mult_ineq)
huffman@21282
   474
done
huffman@21282
   475
huffman@21282
   476
interpretation bounded_bilinear_scaleR:
huffman@21282
   477
  bounded_bilinear ["scaleR"]
huffman@21282
   478
apply (rule bounded_bilinear.intro)
huffman@21282
   479
apply (rule scaleR_left_distrib)
huffman@21282
   480
apply (rule scaleR_right_distrib)
huffman@21282
   481
apply (simp add: real_scaleR_def)
huffman@21282
   482
apply (rule scaleR_left_commute)
huffman@21282
   483
apply (rule_tac x="1" in exI)
huffman@21282
   484
apply (simp add: norm_scaleR)
huffman@21282
   485
done
huffman@21282
   486
huffman@21282
   487
lemmas LIM_mult = bounded_bilinear_mult.LIM
huffman@21282
   488
huffman@21282
   489
lemmas LIM_mult_zero = bounded_bilinear_mult.LIM_prod_zero
huffman@21282
   490
huffman@21282
   491
lemmas LIM_mult_left_zero = bounded_bilinear_mult.LIM_left_zero
huffman@21282
   492
huffman@21282
   493
lemmas LIM_mult_right_zero = bounded_bilinear_mult.LIM_right_zero
huffman@21282
   494
huffman@21282
   495
lemmas LIM_scaleR = bounded_bilinear_scaleR.LIM
huffman@21282
   496
huffman@20755
   497
subsubsection {* Purely nonstandard proofs *}
paulson@14477
   498
huffman@20754
   499
lemma NSLIM_I:
huffman@20754
   500
  "(\<And>x. \<lbrakk>x \<noteq> star_of a; x \<approx> star_of a\<rbrakk> \<Longrightarrow> starfun f x \<approx> star_of L)
huffman@20754
   501
   \<Longrightarrow> f -- a --NS> L"
huffman@20754
   502
by (simp add: NSLIM_def)
paulson@14477
   503
huffman@20754
   504
lemma NSLIM_D:
huffman@20754
   505
  "\<lbrakk>f -- a --NS> L; x \<noteq> star_of a; x \<approx> star_of a\<rbrakk>
huffman@20754
   506
   \<Longrightarrow> starfun f x \<approx> star_of L"
huffman@20754
   507
by (simp add: NSLIM_def)
paulson@14477
   508
huffman@20755
   509
text{*Proving properties of limits using nonstandard definition.
huffman@20755
   510
      The properties hold for standard limits as well!*}
huffman@20755
   511
huffman@20755
   512
lemma NSLIM_mult:
huffman@20755
   513
  fixes l m :: "'a::real_normed_algebra"
huffman@20755
   514
  shows "[| f -- x --NS> l; g -- x --NS> m |]
huffman@20755
   515
      ==> (%x. f(x) * g(x)) -- x --NS> (l * m)"
huffman@20755
   516
by (auto simp add: NSLIM_def intro!: approx_mult_HFinite)
huffman@20755
   517
huffman@20794
   518
lemma starfun_scaleR [simp]:
huffman@20794
   519
  "starfun (\<lambda>x. f x *# g x) = (\<lambda>x. scaleHR (starfun f x) (starfun g x))"
huffman@20794
   520
by transfer (rule refl)
huffman@20794
   521
huffman@20794
   522
lemma NSLIM_scaleR:
huffman@20794
   523
  "[| f -- x --NS> l; g -- x --NS> m |]
huffman@20794
   524
      ==> (%x. f(x) *# g(x)) -- x --NS> (l *# m)"
huffman@20794
   525
by (auto simp add: NSLIM_def intro!: approx_scaleR_HFinite)
huffman@20794
   526
huffman@20755
   527
lemma NSLIM_add:
huffman@20755
   528
     "[| f -- x --NS> l; g -- x --NS> m |]
huffman@20755
   529
      ==> (%x. f(x) + g(x)) -- x --NS> (l + m)"
huffman@20755
   530
by (auto simp add: NSLIM_def intro!: approx_add)
huffman@20755
   531
huffman@20755
   532
lemma NSLIM_const [simp]: "(%x. k) -- x --NS> k"
huffman@20755
   533
by (simp add: NSLIM_def)
huffman@20755
   534
huffman@20755
   535
lemma NSLIM_minus: "f -- a --NS> L ==> (%x. -f(x)) -- a --NS> -L"
huffman@20755
   536
by (simp add: NSLIM_def)
huffman@20755
   537
huffman@20755
   538
lemma NSLIM_add_minus: "[| f -- x --NS> l; g -- x --NS> m |] ==> (%x. f(x) + -g(x)) -- x --NS> (l + -m)"
huffman@20755
   539
by (simp only: NSLIM_add NSLIM_minus)
huffman@20755
   540
huffman@20755
   541
lemma NSLIM_inverse:
huffman@20755
   542
  fixes L :: "'a::real_normed_div_algebra"
huffman@20755
   543
  shows "[| f -- a --NS> L;  L \<noteq> 0 |]
huffman@20755
   544
      ==> (%x. inverse(f(x))) -- a --NS> (inverse L)"
huffman@20755
   545
apply (simp add: NSLIM_def, clarify)
huffman@20755
   546
apply (drule spec)
huffman@20755
   547
apply (auto simp add: star_of_approx_inverse)
huffman@20755
   548
done
huffman@20755
   549
huffman@20755
   550
lemma NSLIM_zero:
huffman@20755
   551
  assumes f: "f -- a --NS> l" shows "(%x. f(x) + -l) -- a --NS> 0"
huffman@20755
   552
proof -
huffman@20755
   553
  have "(\<lambda>x. f x + - l) -- a --NS> l + -l"
huffman@20755
   554
    by (rule NSLIM_add_minus [OF f NSLIM_const])
huffman@20755
   555
  thus ?thesis by simp
huffman@20755
   556
qed
huffman@20755
   557
huffman@20755
   558
lemma NSLIM_zero_cancel: "(%x. f(x) - l) -- x --NS> 0 ==> f -- x --NS> l"
huffman@20755
   559
apply (drule_tac g = "%x. l" and m = l in NSLIM_add)
huffman@20755
   560
apply (auto simp add: diff_minus add_assoc)
huffman@20755
   561
done
huffman@20755
   562
huffman@20755
   563
lemma NSLIM_const_not_eq:
huffman@20755
   564
  fixes a :: real (* TODO: generalize to real_normed_div_algebra *)
huffman@20755
   565
  shows "k \<noteq> L ==> ~ ((%x. k) -- a --NS> L)"
huffman@20755
   566
apply (simp add: NSLIM_def)
huffman@20755
   567
apply (rule_tac x="star_of a + epsilon" in exI)
huffman@20755
   568
apply (auto intro: Infinitesimal_add_approx_self [THEN approx_sym]
huffman@20755
   569
            simp add: hypreal_epsilon_not_zero)
huffman@20755
   570
done
huffman@20755
   571
huffman@20755
   572
lemma NSLIM_not_zero:
huffman@20755
   573
  fixes a :: real
huffman@20755
   574
  shows "k \<noteq> 0 ==> ~ ((%x. k) -- a --NS> 0)"
huffman@20755
   575
by (rule NSLIM_const_not_eq)
huffman@20755
   576
huffman@20755
   577
lemma NSLIM_const_eq:
huffman@20755
   578
  fixes a :: real
huffman@20755
   579
  shows "(%x. k) -- a --NS> L ==> k = L"
huffman@20755
   580
apply (rule ccontr)
huffman@20755
   581
apply (blast dest: NSLIM_const_not_eq)
huffman@20755
   582
done
huffman@20755
   583
huffman@20755
   584
text{* can actually be proved more easily by unfolding the definition!*}
huffman@20755
   585
lemma NSLIM_unique:
huffman@20755
   586
  fixes a :: real
huffman@20755
   587
  shows "[| f -- a --NS> L; f -- a --NS> M |] ==> L = M"
huffman@20755
   588
apply (drule NSLIM_minus)
huffman@20755
   589
apply (drule NSLIM_add, assumption)
huffman@20755
   590
apply (auto dest!: NSLIM_const_eq [symmetric])
huffman@20755
   591
apply (simp add: diff_def [symmetric])
huffman@20755
   592
done
huffman@20755
   593
huffman@20755
   594
lemma NSLIM_mult_zero:
huffman@20755
   595
  fixes f g :: "'a::real_normed_vector \<Rightarrow> 'b::real_normed_algebra"
huffman@20755
   596
  shows "[| f -- x --NS> 0; g -- x --NS> 0 |] ==> (%x. f(x)*g(x)) -- x --NS> 0"
huffman@20755
   597
by (drule NSLIM_mult, auto)
huffman@20755
   598
huffman@20755
   599
lemma NSLIM_self: "(%x. x) -- a --NS> a"
huffman@20755
   600
by (simp add: NSLIM_def)
huffman@20755
   601
huffman@20755
   602
subsubsection {* Equivalence of @{term LIM} and @{term NSLIM} *}
huffman@20755
   603
huffman@20754
   604
lemma LIM_NSLIM:
huffman@20754
   605
  assumes f: "f -- a --> L" shows "f -- a --NS> L"
huffman@20754
   606
proof (rule NSLIM_I)
huffman@20754
   607
  fix x
huffman@20754
   608
  assume neq: "x \<noteq> star_of a"
huffman@20754
   609
  assume approx: "x \<approx> star_of a"
huffman@20754
   610
  have "starfun f x - star_of L \<in> Infinitesimal"
huffman@20754
   611
  proof (rule InfinitesimalI2)
huffman@20754
   612
    fix r::real assume r: "0 < r"
huffman@20754
   613
    from LIM_D [OF f r]
huffman@20754
   614
    obtain s where s: "0 < s" and
huffman@20754
   615
      less_r: "\<And>x. \<lbrakk>x \<noteq> a; norm (x - a) < s\<rbrakk> \<Longrightarrow> norm (f x - L) < r"
huffman@20754
   616
      by fast
huffman@20754
   617
    from less_r have less_r':
huffman@20754
   618
       "\<And>x. \<lbrakk>x \<noteq> star_of a; hnorm (x - star_of a) < star_of s\<rbrakk>
huffman@20754
   619
        \<Longrightarrow> hnorm (starfun f x - star_of L) < star_of r"
huffman@20754
   620
      by transfer
huffman@20754
   621
    from approx have "x - star_of a \<in> Infinitesimal"
huffman@20754
   622
      by (unfold approx_def)
huffman@20754
   623
    hence "hnorm (x - star_of a) < star_of s"
huffman@20754
   624
      using s by (rule InfinitesimalD2)
huffman@20754
   625
    with neq show "hnorm (starfun f x - star_of L) < star_of r"
huffman@20754
   626
      by (rule less_r')
huffman@20754
   627
  qed
huffman@20754
   628
  thus "starfun f x \<approx> star_of L"
huffman@20754
   629
    by (unfold approx_def)
huffman@20754
   630
qed
huffman@20552
   631
huffman@20754
   632
lemma NSLIM_LIM:
huffman@20754
   633
  assumes f: "f -- a --NS> L" shows "f -- a --> L"
huffman@20754
   634
proof (rule LIM_I)
huffman@20754
   635
  fix r::real assume r: "0 < r"
huffman@20754
   636
  have "\<exists>s>0. \<forall>x. x \<noteq> star_of a \<and> hnorm (x - star_of a) < s
huffman@20754
   637
        \<longrightarrow> hnorm (starfun f x - star_of L) < star_of r"
huffman@20754
   638
  proof (rule exI, safe)
huffman@20754
   639
    show "0 < epsilon" by (rule hypreal_epsilon_gt_zero)
huffman@20754
   640
  next
huffman@20754
   641
    fix x assume neq: "x \<noteq> star_of a"
huffman@20754
   642
    assume "hnorm (x - star_of a) < epsilon"
huffman@20754
   643
    with Infinitesimal_epsilon
huffman@20754
   644
    have "x - star_of a \<in> Infinitesimal"
huffman@20754
   645
      by (rule hnorm_less_Infinitesimal)
huffman@20754
   646
    hence "x \<approx> star_of a"
huffman@20754
   647
      by (unfold approx_def)
huffman@20754
   648
    with f neq have "starfun f x \<approx> star_of L"
huffman@20754
   649
      by (rule NSLIM_D)
huffman@20754
   650
    hence "starfun f x - star_of L \<in> Infinitesimal"
huffman@20754
   651
      by (unfold approx_def)
huffman@20754
   652
    thus "hnorm (starfun f x - star_of L) < star_of r"
huffman@20754
   653
      using r by (rule InfinitesimalD2)
huffman@20754
   654
  qed
huffman@20754
   655
  thus "\<exists>s>0. \<forall>x. x \<noteq> a \<and> norm (x - a) < s \<longrightarrow> norm (f x - L) < r"
huffman@20754
   656
    by transfer
huffman@20754
   657
qed
paulson@14477
   658
paulson@15228
   659
theorem LIM_NSLIM_iff: "(f -- x --> L) = (f -- x --NS> L)"
paulson@14477
   660
by (blast intro: LIM_NSLIM NSLIM_LIM)
paulson@14477
   661
huffman@20755
   662
subsubsection {* Derived theorems about @{term LIM} *}
paulson@14477
   663
paulson@15228
   664
lemma LIM_mult2:
huffman@20552
   665
  fixes l m :: "'a::real_normed_algebra"
huffman@20552
   666
  shows "[| f -- x --> l; g -- x --> m |]
huffman@20552
   667
      ==> (%x. f(x) * g(x)) -- x --> (l * m)"
paulson@14477
   668
by (simp add: LIM_NSLIM_iff NSLIM_mult)
paulson@14477
   669
huffman@20794
   670
lemma LIM_scaleR:
huffman@20794
   671
  "[| f -- x --> l; g -- x --> m |]
huffman@20794
   672
      ==> (%x. f(x) *# g(x)) -- x --> (l *# m)"
huffman@20794
   673
by (simp add: LIM_NSLIM_iff NSLIM_scaleR)
huffman@20794
   674
paulson@15228
   675
lemma LIM_add2:
paulson@15228
   676
     "[| f -- x --> l; g -- x --> m |] ==> (%x. f(x) + g(x)) -- x --> (l + m)"
paulson@14477
   677
by (simp add: LIM_NSLIM_iff NSLIM_add)
paulson@14477
   678
paulson@14477
   679
lemma LIM_const2: "(%x. k) -- x --> k"
paulson@14477
   680
by (simp add: LIM_NSLIM_iff)
paulson@14477
   681
paulson@14477
   682
lemma LIM_minus2: "f -- a --> L ==> (%x. -f(x)) -- a --> -L"
paulson@14477
   683
by (simp add: LIM_NSLIM_iff NSLIM_minus)
paulson@14477
   684
paulson@14477
   685
lemma LIM_add_minus2: "[| f -- x --> l; g -- x --> m |] ==> (%x. f(x) + -g(x)) -- x --> (l + -m)"
paulson@14477
   686
by (simp add: LIM_NSLIM_iff NSLIM_add_minus)
paulson@14477
   687
huffman@20552
   688
lemma LIM_inverse:
huffman@20653
   689
  fixes L :: "'a::real_normed_div_algebra"
huffman@20552
   690
  shows "[| f -- a --> L; L \<noteq> 0 |]
huffman@20552
   691
      ==> (%x. inverse(f(x))) -- a --> (inverse L)"
paulson@14477
   692
by (simp add: LIM_NSLIM_iff NSLIM_inverse)
paulson@14477
   693
paulson@14477
   694
lemma LIM_zero2: "f -- a --> l ==> (%x. f(x) + -l) -- a --> 0"
paulson@14477
   695
by (simp add: LIM_NSLIM_iff NSLIM_zero)
paulson@14477
   696
huffman@20561
   697
lemma LIM_unique2:
huffman@20561
   698
  fixes a :: real
huffman@20561
   699
  shows "[| f -- a --> L; f -- a --> M |] ==> L = M"
paulson@14477
   700
by (simp add: LIM_NSLIM_iff NSLIM_unique)
paulson@14477
   701
paulson@14477
   702
(* we can use the corresponding thm LIM_mult2 *)
paulson@14477
   703
(* for standard definition of limit           *)
paulson@14477
   704
huffman@20552
   705
lemma LIM_mult_zero2:
huffman@20561
   706
  fixes f g :: "'a::real_normed_vector \<Rightarrow> 'b::real_normed_algebra"
huffman@20552
   707
  shows "[| f -- x --> 0; g -- x --> 0 |] ==> (%x. f(x)*g(x)) -- x --> 0"
paulson@14477
   708
by (drule LIM_mult2, auto)
paulson@14477
   709
paulson@14477
   710
huffman@20755
   711
subsection {* Continuity *}
paulson@14477
   712
huffman@21239
   713
subsubsection {* Purely standard proofs *}
huffman@21239
   714
huffman@21239
   715
lemma LIM_isCont_iff: "(f -- a --> f a) = ((\<lambda>h. f (a + h)) -- 0 --> f a)"
huffman@21239
   716
by (rule iffI [OF LIM_offset_zero LIM_offset_zero_cancel])
huffman@21239
   717
huffman@21239
   718
lemma isCont_iff: "isCont f x = (\<lambda>h. f (x + h)) -- 0 --> f x"
huffman@21239
   719
by (simp add: isCont_def LIM_isCont_iff)
huffman@21239
   720
huffman@21239
   721
lemma isCont_Id: "isCont (\<lambda>x. x) a"
huffman@21282
   722
  unfolding isCont_def by (rule LIM_self)
huffman@21239
   723
huffman@21239
   724
lemma isCont_const [simp]: "isCont (%x. k) a"
huffman@21282
   725
  unfolding isCont_def by (rule LIM_const)
huffman@21239
   726
huffman@21239
   727
lemma isCont_add: "\<lbrakk>isCont f a; isCont g a\<rbrakk> \<Longrightarrow> isCont (\<lambda>x. f x + g x) a"
huffman@21282
   728
  unfolding isCont_def by (rule LIM_add)
huffman@21239
   729
huffman@21239
   730
lemma isCont_minus: "isCont f a \<Longrightarrow> isCont (\<lambda>x. - f x) a"
huffman@21282
   731
  unfolding isCont_def by (rule LIM_minus)
huffman@21239
   732
huffman@21239
   733
lemma isCont_diff: "\<lbrakk>isCont f a; isCont g a\<rbrakk> \<Longrightarrow> isCont (\<lambda>x. f x - g x) a"
huffman@21282
   734
  unfolding isCont_def by (rule LIM_diff)
huffman@21239
   735
huffman@21239
   736
lemma isCont_mult:
huffman@21239
   737
  fixes f g :: "'a::real_normed_vector \<Rightarrow> 'b::real_normed_algebra"
huffman@21239
   738
  shows "[| isCont f a; isCont g a |] ==> isCont (%x. f(x) * g(x)) a"
huffman@21282
   739
  unfolding isCont_def by (rule LIM_mult)
huffman@21239
   740
huffman@21239
   741
lemma isCont_inverse:
huffman@21239
   742
  fixes f :: "'a::real_normed_vector \<Rightarrow> 'b::real_normed_div_algebra"
huffman@21239
   743
  shows "[| isCont f x; f x \<noteq> 0 |] ==> isCont (%x. inverse (f x)) x"
huffman@21282
   744
  unfolding isCont_def by (rule LIM_inverse)
huffman@21239
   745
huffman@21239
   746
lemma isCont_LIM_compose:
huffman@21239
   747
  "\<lbrakk>isCont g l; f -- a --> l\<rbrakk> \<Longrightarrow> (\<lambda>x. g (f x)) -- a --> g l"
huffman@21282
   748
  unfolding isCont_def by (rule LIM_compose)
huffman@21239
   749
huffman@21239
   750
lemma isCont_o2: "\<lbrakk>isCont f a; isCont g (f a)\<rbrakk> \<Longrightarrow> isCont (\<lambda>x. g (f x)) a"
huffman@21282
   751
  unfolding isCont_def by (rule LIM_compose)
huffman@21239
   752
huffman@21239
   753
lemma isCont_o: "\<lbrakk>isCont f a; isCont g (f a)\<rbrakk> \<Longrightarrow> isCont (g o f) a"
huffman@21282
   754
  unfolding o_def by (rule isCont_o2)
huffman@21282
   755
huffman@21282
   756
lemma (in bounded_linear) isCont: "isCont f a"
huffman@21282
   757
  unfolding isCont_def by (rule cont)
huffman@21282
   758
huffman@21282
   759
lemma (in bounded_bilinear) isCont:
huffman@21282
   760
  "\<lbrakk>isCont f a; isCont g a\<rbrakk> \<Longrightarrow> isCont (\<lambda>x. f x ** g x) a"
huffman@21282
   761
  unfolding isCont_def by (rule LIM)
huffman@21282
   762
huffman@21282
   763
lemmas isCont_scaleR = bounded_bilinear_scaleR.isCont
huffman@21239
   764
huffman@21239
   765
subsubsection {* Nonstandard proofs *}
huffman@21239
   766
paulson@14477
   767
lemma isNSContD: "[| isNSCont f a; y \<approx> hypreal_of_real a |] ==> ( *f* f) y \<approx> hypreal_of_real (f a)"
paulson@14477
   768
by (simp add: isNSCont_def)
paulson@14477
   769
paulson@14477
   770
lemma isNSCont_NSLIM: "isNSCont f a ==> f -- a --NS> (f a) "
paulson@14477
   771
by (simp add: isNSCont_def NSLIM_def)
paulson@14477
   772
paulson@14477
   773
lemma NSLIM_isNSCont: "f -- a --NS> (f a) ==> isNSCont f a"
paulson@14477
   774
apply (simp add: isNSCont_def NSLIM_def, auto)
huffman@20561
   775
apply (case_tac "y = star_of a", auto)
paulson@14477
   776
done
paulson@14477
   777
paulson@15228
   778
text{*NS continuity can be defined using NS Limit in
paulson@15228
   779
    similar fashion to standard def of continuity*}
paulson@14477
   780
lemma isNSCont_NSLIM_iff: "(isNSCont f a) = (f -- a --NS> (f a))"
paulson@14477
   781
by (blast intro: isNSCont_NSLIM NSLIM_isNSCont)
paulson@14477
   782
paulson@15228
   783
text{*Hence, NS continuity can be given
paulson@15228
   784
  in terms of standard limit*}
paulson@14477
   785
lemma isNSCont_LIM_iff: "(isNSCont f a) = (f -- a --> (f a))"
paulson@14477
   786
by (simp add: LIM_NSLIM_iff isNSCont_NSLIM_iff)
paulson@14477
   787
paulson@15228
   788
text{*Moreover, it's trivial now that NS continuity
paulson@15228
   789
  is equivalent to standard continuity*}
paulson@14477
   790
lemma isNSCont_isCont_iff: "(isNSCont f a) = (isCont f a)"
paulson@14477
   791
apply (simp add: isCont_def)
paulson@14477
   792
apply (rule isNSCont_LIM_iff)
paulson@14477
   793
done
paulson@14477
   794
paulson@15228
   795
text{*Standard continuity ==> NS continuity*}
paulson@14477
   796
lemma isCont_isNSCont: "isCont f a ==> isNSCont f a"
paulson@14477
   797
by (erule isNSCont_isCont_iff [THEN iffD2])
paulson@14477
   798
paulson@15228
   799
text{*NS continuity ==> Standard continuity*}
paulson@14477
   800
lemma isNSCont_isCont: "isNSCont f a ==> isCont f a"
paulson@14477
   801
by (erule isNSCont_isCont_iff [THEN iffD1])
paulson@14477
   802
paulson@14477
   803
text{*Alternative definition of continuity*}
paulson@14477
   804
(* Prove equivalence between NS limits - *)
paulson@14477
   805
(* seems easier than using standard def  *)
paulson@14477
   806
lemma NSLIM_h_iff: "(f -- a --NS> L) = ((%h. f(a + h)) -- 0 --NS> L)"
paulson@14477
   807
apply (simp add: NSLIM_def, auto)
huffman@20561
   808
apply (drule_tac x = "star_of a + x" in spec)
huffman@20561
   809
apply (drule_tac [2] x = "- star_of a + x" in spec, safe, simp)
huffman@20561
   810
apply (erule mem_infmal_iff [THEN iffD2, THEN Infinitesimal_add_approx_self [THEN approx_sym]])
huffman@20561
   811
apply (erule_tac [3] approx_minus_iff2 [THEN iffD1])
huffman@20561
   812
 prefer 2 apply (simp add: add_commute diff_def [symmetric])
huffman@20561
   813
apply (rule_tac x = x in star_cases)
huffman@17318
   814
apply (rule_tac [2] x = x in star_cases)
huffman@17318
   815
apply (auto simp add: starfun star_of_def star_n_minus star_n_add add_assoc approx_refl star_n_zero_num)
paulson@14477
   816
done
paulson@14477
   817
paulson@14477
   818
lemma NSLIM_isCont_iff: "(f -- a --NS> f a) = ((%h. f(a + h)) -- 0 --NS> f a)"
paulson@14477
   819
by (rule NSLIM_h_iff)
paulson@14477
   820
paulson@14477
   821
lemma isNSCont_minus: "isNSCont f a ==> isNSCont (%x. - f x) a"
paulson@14477
   822
by (simp add: isNSCont_def)
paulson@14477
   823
huffman@20552
   824
lemma isNSCont_inverse:
huffman@20653
   825
  fixes f :: "'a::real_normed_vector \<Rightarrow> 'b::real_normed_div_algebra"
huffman@20552
   826
  shows "[| isNSCont f x; f x \<noteq> 0 |] ==> isNSCont (%x. inverse (f x)) x"
paulson@14477
   827
by (auto intro: isCont_inverse simp add: isNSCont_isCont_iff)
paulson@14477
   828
paulson@15228
   829
lemma isNSCont_const [simp]: "isNSCont (%x. k) a"
paulson@14477
   830
by (simp add: isNSCont_def)
paulson@14477
   831
huffman@20561
   832
lemma isNSCont_abs [simp]: "isNSCont abs (a::real)"
paulson@14477
   833
apply (simp add: isNSCont_def)
paulson@14477
   834
apply (auto intro: approx_hrabs simp add: hypreal_of_real_hrabs [symmetric] starfun_rabs_hrabs)
paulson@14477
   835
done
paulson@14477
   836
huffman@20561
   837
lemma isCont_abs [simp]: "isCont abs (a::real)"
paulson@14477
   838
by (auto simp add: isNSCont_isCont_iff [symmetric])
paulson@15228
   839
paulson@14477
   840
paulson@14477
   841
(****************************************************************
paulson@14477
   842
(%* Leave as commented until I add topology theory or remove? *%)
paulson@14477
   843
(%*------------------------------------------------------------
paulson@14477
   844
  Elementary topology proof for a characterisation of
paulson@14477
   845
  continuity now: a function f is continuous if and only
paulson@14477
   846
  if the inverse image, {x. f(x) \<in> A}, of any open set A
paulson@14477
   847
  is always an open set
paulson@14477
   848
 ------------------------------------------------------------*%)
paulson@14477
   849
Goal "[| isNSopen A; \<forall>x. isNSCont f x |]
paulson@14477
   850
               ==> isNSopen {x. f x \<in> A}"
paulson@14477
   851
by (auto_tac (claset(),simpset() addsimps [isNSopen_iff1]));
paulson@14477
   852
by (dtac (mem_monad_approx RS approx_sym);
paulson@14477
   853
by (dres_inst_tac [("x","a")] spec 1);
paulson@14477
   854
by (dtac isNSContD 1 THEN assume_tac 1)
paulson@14477
   855
by (dtac bspec 1 THEN assume_tac 1)
paulson@14477
   856
by (dres_inst_tac [("x","( *f* f) x")] approx_mem_monad2 1);
paulson@14477
   857
by (blast_tac (claset() addIs [starfun_mem_starset]);
paulson@14477
   858
qed "isNSCont_isNSopen";
paulson@14477
   859
paulson@14477
   860
Goalw [isNSCont_def]
paulson@14477
   861
          "\<forall>A. isNSopen A --> isNSopen {x. f x \<in> A} \
paulson@14477
   862
\              ==> isNSCont f x";
paulson@14477
   863
by (auto_tac (claset() addSIs [(mem_infmal_iff RS iffD1) RS
paulson@14477
   864
     (approx_minus_iff RS iffD2)],simpset() addsimps
paulson@14477
   865
      [Infinitesimal_def,SReal_iff]));
paulson@14477
   866
by (dres_inst_tac [("x","{z. abs(z + -f(x)) < ya}")] spec 1);
paulson@14477
   867
by (etac (isNSopen_open_interval RSN (2,impE));
paulson@14477
   868
by (auto_tac (claset(),simpset() addsimps [isNSopen_def,isNSnbhd_def]));
paulson@14477
   869
by (dres_inst_tac [("x","x")] spec 1);
paulson@14477
   870
by (auto_tac (claset() addDs [approx_sym RS approx_mem_monad],
paulson@14477
   871
    simpset() addsimps [hypreal_of_real_zero RS sym,STAR_starfun_rabs_add_minus]));
paulson@14477
   872
qed "isNSopen_isNSCont";
paulson@14477
   873
paulson@14477
   874
Goal "(\<forall>x. isNSCont f x) = \
paulson@14477
   875
\     (\<forall>A. isNSopen A --> isNSopen {x. f(x) \<in> A})";
paulson@14477
   876
by (blast_tac (claset() addIs [isNSCont_isNSopen,
paulson@14477
   877
    isNSopen_isNSCont]);
paulson@14477
   878
qed "isNSCont_isNSopen_iff";
paulson@14477
   879
paulson@14477
   880
(%*------- Standard version of same theorem --------*%)
paulson@14477
   881
Goal "(\<forall>x. isCont f x) = \
paulson@14477
   882
\         (\<forall>A. isopen A --> isopen {x. f(x) \<in> A})";
paulson@14477
   883
by (auto_tac (claset() addSIs [isNSCont_isNSopen_iff],
paulson@14477
   884
              simpset() addsimps [isNSopen_isopen_iff RS sym,
paulson@14477
   885
              isNSCont_isCont_iff RS sym]));
paulson@14477
   886
qed "isCont_isopen_iff";
paulson@14477
   887
*******************************************************************)
paulson@14477
   888
huffman@20755
   889
subsection {* Uniform Continuity *}
huffman@20755
   890
paulson@14477
   891
lemma isNSUContD: "[| isNSUCont f; x \<approx> y|] ==> ( *f* f) x \<approx> ( *f* f) y"
paulson@14477
   892
by (simp add: isNSUCont_def)
paulson@14477
   893
paulson@14477
   894
lemma isUCont_isCont: "isUCont f ==> isCont f x"
paulson@14477
   895
by (simp add: isUCont_def isCont_def LIM_def, meson)
paulson@14477
   896
huffman@20754
   897
lemma isUCont_isNSUCont:
huffman@20754
   898
  fixes f :: "'a::real_normed_vector \<Rightarrow> 'b::real_normed_vector"
huffman@20754
   899
  assumes f: "isUCont f" shows "isNSUCont f"
huffman@20754
   900
proof (unfold isNSUCont_def, safe)
huffman@20754
   901
  fix x y :: "'a star"
huffman@20754
   902
  assume approx: "x \<approx> y"
huffman@20754
   903
  have "starfun f x - starfun f y \<in> Infinitesimal"
huffman@20754
   904
  proof (rule InfinitesimalI2)
huffman@20754
   905
    fix r::real assume r: "0 < r"
huffman@20754
   906
    with f obtain s where s: "0 < s" and
huffman@20754
   907
      less_r: "\<And>x y. norm (x - y) < s \<Longrightarrow> norm (f x - f y) < r"
huffman@20754
   908
      by (auto simp add: isUCont_def)
huffman@20754
   909
    from less_r have less_r':
huffman@20754
   910
       "\<And>x y. hnorm (x - y) < star_of s
huffman@20754
   911
        \<Longrightarrow> hnorm (starfun f x - starfun f y) < star_of r"
huffman@20754
   912
      by transfer
huffman@20754
   913
    from approx have "x - y \<in> Infinitesimal"
huffman@20754
   914
      by (unfold approx_def)
huffman@20754
   915
    hence "hnorm (x - y) < star_of s"
huffman@20754
   916
      using s by (rule InfinitesimalD2)
huffman@20754
   917
    thus "hnorm (starfun f x - starfun f y) < star_of r"
huffman@20754
   918
      by (rule less_r')
huffman@20754
   919
  qed
huffman@20754
   920
  thus "starfun f x \<approx> starfun f y"
huffman@20754
   921
    by (unfold approx_def)
huffman@20754
   922
qed
paulson@14477
   923
paulson@14477
   924
lemma isNSUCont_isUCont:
huffman@20754
   925
  fixes f :: "'a::real_normed_vector \<Rightarrow> 'b::real_normed_vector"
huffman@20754
   926
  assumes f: "isNSUCont f" shows "isUCont f"
huffman@20754
   927
proof (unfold isUCont_def, safe)
huffman@20754
   928
  fix r::real assume r: "0 < r"
huffman@20754
   929
  have "\<exists>s>0. \<forall>x y. hnorm (x - y) < s
huffman@20754
   930
        \<longrightarrow> hnorm (starfun f x - starfun f y) < star_of r"
huffman@20754
   931
  proof (rule exI, safe)
huffman@20754
   932
    show "0 < epsilon" by (rule hypreal_epsilon_gt_zero)
huffman@20754
   933
  next
huffman@20754
   934
    fix x y :: "'a star"
huffman@20754
   935
    assume "hnorm (x - y) < epsilon"
huffman@20754
   936
    with Infinitesimal_epsilon
huffman@20754
   937
    have "x - y \<in> Infinitesimal"
huffman@20754
   938
      by (rule hnorm_less_Infinitesimal)
huffman@20754
   939
    hence "x \<approx> y"
huffman@20754
   940
      by (unfold approx_def)
huffman@20754
   941
    with f have "starfun f x \<approx> starfun f y"
huffman@20754
   942
      by (simp add: isNSUCont_def)
huffman@20754
   943
    hence "starfun f x - starfun f y \<in> Infinitesimal"
huffman@20754
   944
      by (unfold approx_def)
huffman@20754
   945
    thus "hnorm (starfun f x - starfun f y) < star_of r"
huffman@20754
   946
      using r by (rule InfinitesimalD2)
huffman@20754
   947
  qed
huffman@20754
   948
  thus "\<exists>s>0. \<forall>x y. norm (x - y) < s \<longrightarrow> norm (f x - f y) < r"
huffman@20754
   949
    by transfer
huffman@20754
   950
qed
paulson@14477
   951
huffman@21165
   952
subsection {* Relation of LIM and LIMSEQ *}
kleing@19023
   953
kleing@19023
   954
lemma LIMSEQ_SEQ_conv1:
huffman@21165
   955
  fixes a :: "'a::real_normed_vector"
huffman@21165
   956
  assumes X: "X -- a --> L"
kleing@19023
   957
  shows "\<forall>S. (\<forall>n. S n \<noteq> a) \<and> S ----> a \<longrightarrow> (\<lambda>n. X (S n)) ----> L"
huffman@21165
   958
proof (safe intro!: LIMSEQ_I)
huffman@21165
   959
  fix S :: "nat \<Rightarrow> 'a"
huffman@21165
   960
  fix r :: real
huffman@21165
   961
  assume rgz: "0 < r"
huffman@21165
   962
  assume as: "\<forall>n. S n \<noteq> a"
huffman@21165
   963
  assume S: "S ----> a"
huffman@21165
   964
  from LIM_D [OF X rgz] obtain s
huffman@21165
   965
    where sgz: "0 < s"
huffman@21165
   966
    and aux: "\<And>x. \<lbrakk>x \<noteq> a; norm (x - a) < s\<rbrakk> \<Longrightarrow> norm (X x - L) < r"
huffman@21165
   967
    by fast
huffman@21165
   968
  from LIMSEQ_D [OF S sgz]
nipkow@21733
   969
  obtain no where "\<forall>n\<ge>no. norm (S n - a) < s" by blast
huffman@21165
   970
  hence "\<forall>n\<ge>no. norm (X (S n) - L) < r" by (simp add: aux as)
huffman@21165
   971
  thus "\<exists>no. \<forall>n\<ge>no. norm (X (S n) - L) < r" ..
kleing@19023
   972
qed
kleing@19023
   973
kleing@19023
   974
lemma LIMSEQ_SEQ_conv2:
huffman@20561
   975
  fixes a :: real
kleing@19023
   976
  assumes "\<forall>S. (\<forall>n. S n \<noteq> a) \<and> S ----> a \<longrightarrow> (\<lambda>n. X (S n)) ----> L"
kleing@19023
   977
  shows "X -- a --> L"
kleing@19023
   978
proof (rule ccontr)
kleing@19023
   979
  assume "\<not> (X -- a --> L)"
huffman@20563
   980
  hence "\<not> (\<forall>r > 0. \<exists>s > 0. \<forall>x. x \<noteq> a & norm (x - a) < s --> norm (X x - L) < r)" by (unfold LIM_def)
huffman@20563
   981
  hence "\<exists>r > 0. \<forall>s > 0. \<exists>x. \<not>(x \<noteq> a \<and> \<bar>x - a\<bar> < s --> norm (X x - L) < r)" by simp
huffman@20563
   982
  hence "\<exists>r > 0. \<forall>s > 0. \<exists>x. (x \<noteq> a \<and> \<bar>x - a\<bar> < s \<and> norm (X x - L) \<ge> r)" by (simp add: linorder_not_less)
huffman@20563
   983
  then obtain r where rdef: "r > 0 \<and> (\<forall>s > 0. \<exists>x. (x \<noteq> a \<and> \<bar>x - a\<bar> < s \<and> norm (X x - L) \<ge> r))" by auto
kleing@19023
   984
huffman@20563
   985
  let ?F = "\<lambda>n::nat. SOME x. x\<noteq>a \<and> \<bar>x - a\<bar> < inverse (real (Suc n)) \<and> norm (X x - L) \<ge> r"
huffman@21165
   986
  have "\<And>n. \<exists>x. x\<noteq>a \<and> \<bar>x - a\<bar> < inverse (real (Suc n)) \<and> norm (X x - L) \<ge> r"
huffman@21165
   987
    using rdef by simp
huffman@21165
   988
  hence F: "\<And>n. ?F n \<noteq> a \<and> \<bar>?F n - a\<bar> < inverse (real (Suc n)) \<and> norm (X (?F n) - L) \<ge> r"
huffman@21165
   989
    by (rule someI_ex)
huffman@21165
   990
  hence F1: "\<And>n. ?F n \<noteq> a"
huffman@21165
   991
    and F2: "\<And>n. \<bar>?F n - a\<bar> < inverse (real (Suc n))"
huffman@21165
   992
    and F3: "\<And>n. norm (X (?F n) - L) \<ge> r"
huffman@21165
   993
    by fast+
huffman@21165
   994
kleing@19023
   995
  have "?F ----> a"
huffman@21165
   996
  proof (rule LIMSEQ_I, unfold real_norm_def)
kleing@19023
   997
      fix e::real
kleing@19023
   998
      assume "0 < e"
kleing@19023
   999
        (* choose no such that inverse (real (Suc n)) < e *)
kleing@19023
  1000
      have "\<exists>no. inverse (real (Suc no)) < e" by (rule reals_Archimedean)
kleing@19023
  1001
      then obtain m where nodef: "inverse (real (Suc m)) < e" by auto
huffman@21165
  1002
      show "\<exists>no. \<forall>n. no \<le> n --> \<bar>?F n - a\<bar> < e"
huffman@21165
  1003
      proof (intro exI allI impI)
kleing@19023
  1004
        fix n
kleing@19023
  1005
        assume mlen: "m \<le> n"
huffman@21165
  1006
        have "\<bar>?F n - a\<bar> < inverse (real (Suc n))"
huffman@21165
  1007
          by (rule F2)
huffman@21165
  1008
        also have "inverse (real (Suc n)) \<le> inverse (real (Suc m))"
kleing@19023
  1009
          by auto
huffman@21165
  1010
        also from nodef have
kleing@19023
  1011
          "inverse (real (Suc m)) < e" .
huffman@21165
  1012
        finally show "\<bar>?F n - a\<bar> < e" .
huffman@21165
  1013
      qed
kleing@19023
  1014
  qed
kleing@19023
  1015
  
kleing@19023
  1016
  moreover have "\<forall>n. ?F n \<noteq> a"
huffman@21165
  1017
    by (rule allI) (rule F1)
huffman@21165
  1018
kleing@19023
  1019
  moreover from prems have "\<forall>S. (\<forall>n. S n \<noteq> a) \<and> S ----> a \<longrightarrow> (\<lambda>n. X (S n)) ----> L" by simp
kleing@19023
  1020
  ultimately have "(\<lambda>n. X (?F n)) ----> L" by simp
kleing@19023
  1021
  
kleing@19023
  1022
  moreover have "\<not> ((\<lambda>n. X (?F n)) ----> L)"
kleing@19023
  1023
  proof -
kleing@19023
  1024
    {
kleing@19023
  1025
      fix no::nat
kleing@19023
  1026
      obtain n where "n = no + 1" by simp
kleing@19023
  1027
      then have nolen: "no \<le> n" by simp
kleing@19023
  1028
        (* We prove this by showing that for any m there is an n\<ge>m such that |X (?F n) - L| \<ge> r *)
huffman@21165
  1029
      have "norm (X (?F n) - L) \<ge> r"
huffman@21165
  1030
        by (rule F3)
huffman@21165
  1031
      with nolen have "\<exists>n. no \<le> n \<and> norm (X (?F n) - L) \<ge> r" by fast
kleing@19023
  1032
    }
huffman@20563
  1033
    then have "(\<forall>no. \<exists>n. no \<le> n \<and> norm (X (?F n) - L) \<ge> r)" by simp
huffman@20563
  1034
    with rdef have "\<exists>e>0. (\<forall>no. \<exists>n. no \<le> n \<and> norm (X (?F n) - L) \<ge> e)" by auto
kleing@19023
  1035
    thus ?thesis by (unfold LIMSEQ_def, auto simp add: linorder_not_less)
kleing@19023
  1036
  qed
kleing@19023
  1037
  ultimately show False by simp
kleing@19023
  1038
qed
kleing@19023
  1039
kleing@19023
  1040
lemma LIMSEQ_SEQ_conv:
huffman@20561
  1041
  "(\<forall>S. (\<forall>n. S n \<noteq> a) \<and> S ----> (a::real) \<longrightarrow> (\<lambda>n. X (S n)) ----> L) =
huffman@20561
  1042
   (X -- a --> L)"
kleing@19023
  1043
proof
kleing@19023
  1044
  assume "\<forall>S. (\<forall>n. S n \<noteq> a) \<and> S ----> a \<longrightarrow> (\<lambda>n. X (S n)) ----> L"
kleing@19023
  1045
  show "X -- a --> L" by (rule LIMSEQ_SEQ_conv2)
kleing@19023
  1046
next
kleing@19023
  1047
  assume "(X -- a --> L)"
kleing@19023
  1048
  show "\<forall>S. (\<forall>n. S n \<noteq> a) \<and> S ----> a \<longrightarrow> (\<lambda>n. X (S n)) ----> L" by (rule LIMSEQ_SEQ_conv1)
kleing@19023
  1049
qed
kleing@19023
  1050
paulson@10751
  1051
end