src/HOL/Tools/Meson/meson.ML
author wenzelm
Fri Dec 02 14:54:25 2011 +0100 (2011-12-02)
changeset 45740 132a3e1c0fe5
parent 45567 8e3891309a8e
child 45981 4c629115e3ab
permissions -rw-r--r--
more antiquotations;
blanchet@39941
     1
(*  Title:      HOL/Tools/Meson/meson.ML
paulson@9840
     2
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
blanchet@39941
     3
    Author:     Jasmin Blanchette, TU Muenchen
paulson@9840
     4
wenzelm@9869
     5
The MESON resolution proof procedure for HOL.
wenzelm@29267
     6
When making clauses, avoids using the rewriter -- instead uses RS recursively.
paulson@9840
     7
*)
paulson@9840
     8
wenzelm@24300
     9
signature MESON =
paulson@15579
    10
sig
blanchet@39979
    11
  val trace : bool Config.T
blanchet@42739
    12
  val unfold_set_consts : bool Config.T
blanchet@39979
    13
  val max_clauses : int Config.T
wenzelm@24300
    14
  val term_pair_of: indexname * (typ * 'a) -> term * 'a
blanchet@45567
    15
  val first_order_resolve : thm -> thm -> thm
wenzelm@24300
    16
  val size_of_subgoals: thm -> int
blanchet@39269
    17
  val has_too_many_clauses: Proof.context -> term -> bool
blanchet@43964
    18
  val make_cnf:
blanchet@43964
    19
    thm list -> thm -> Proof.context
blanchet@43964
    20
    -> Proof.context -> thm list * Proof.context
wenzelm@24300
    21
  val finish_cnf: thm list -> thm list
blanchet@42739
    22
  val unfold_set_const_simps : Proof.context -> thm list
blanchet@43264
    23
  val presimplified_consts : Proof.context -> string list
blanchet@42750
    24
  val presimplify: Proof.context -> thm -> thm
wenzelm@32262
    25
  val make_nnf: Proof.context -> thm -> thm
blanchet@39950
    26
  val choice_theorems : theory -> thm list
blanchet@39950
    27
  val skolemize_with_choice_theorems : Proof.context -> thm list -> thm -> thm
blanchet@39904
    28
  val skolemize : Proof.context -> thm -> thm
blanchet@42747
    29
  val extensionalize_conv : Proof.context -> conv
blanchet@42747
    30
  val extensionalize_theorem : Proof.context -> thm -> thm
wenzelm@24300
    31
  val is_fol_term: theory -> term -> bool
blanchet@43964
    32
  val make_clauses_unsorted: Proof.context -> thm list -> thm list
blanchet@43964
    33
  val make_clauses: Proof.context -> thm list -> thm list
wenzelm@24300
    34
  val make_horns: thm list -> thm list
wenzelm@24300
    35
  val best_prolog_tac: (thm -> int) -> thm list -> tactic
wenzelm@24300
    36
  val depth_prolog_tac: thm list -> tactic
wenzelm@24300
    37
  val gocls: thm list -> thm list
blanchet@39900
    38
  val skolemize_prems_tac : Proof.context -> thm list -> int -> tactic
blanchet@39037
    39
  val MESON:
blanchet@39269
    40
    tactic -> (thm list -> thm list) -> (thm list -> tactic) -> Proof.context
blanchet@39269
    41
    -> int -> tactic
wenzelm@32262
    42
  val best_meson_tac: (thm -> int) -> Proof.context -> int -> tactic
wenzelm@32262
    43
  val safe_best_meson_tac: Proof.context -> int -> tactic
wenzelm@32262
    44
  val depth_meson_tac: Proof.context -> int -> tactic
wenzelm@24300
    45
  val prolog_step_tac': thm list -> int -> tactic
wenzelm@24300
    46
  val iter_deepen_prolog_tac: thm list -> tactic
wenzelm@32262
    47
  val iter_deepen_meson_tac: Proof.context -> thm list -> int -> tactic
wenzelm@24300
    48
  val make_meta_clause: thm -> thm
wenzelm@24300
    49
  val make_meta_clauses: thm list -> thm list
wenzelm@32262
    50
  val meson_tac: Proof.context -> thm list -> int -> tactic
paulson@15579
    51
end
paulson@9840
    52
blanchet@39901
    53
structure Meson : MESON =
paulson@15579
    54
struct
paulson@9840
    55
wenzelm@42616
    56
val trace = Attrib.setup_config_bool @{binding meson_trace} (K false)
blanchet@39979
    57
blanchet@39979
    58
fun trace_msg ctxt msg = if Config.get ctxt trace then tracing (msg ()) else ()
wenzelm@32955
    59
blanchet@42739
    60
val unfold_set_consts =
blanchet@42739
    61
  Attrib.setup_config_bool @{binding meson_unfold_set_consts} (K false)
blanchet@42739
    62
blanchet@42739
    63
val max_clauses = Attrib.setup_config_int @{binding meson_max_clauses} (K 60)
paulson@26562
    64
wenzelm@38802
    65
(*No known example (on 1-5-2007) needs even thirty*)
wenzelm@38802
    66
val iter_deepen_limit = 50;
wenzelm@38802
    67
haftmann@31454
    68
val disj_forward = @{thm disj_forward};
haftmann@31454
    69
val disj_forward2 = @{thm disj_forward2};
haftmann@31454
    70
val make_pos_rule = @{thm make_pos_rule};
haftmann@31454
    71
val make_pos_rule' = @{thm make_pos_rule'};
haftmann@31454
    72
val make_pos_goal = @{thm make_pos_goal};
haftmann@31454
    73
val make_neg_rule = @{thm make_neg_rule};
haftmann@31454
    74
val make_neg_rule' = @{thm make_neg_rule'};
haftmann@31454
    75
val make_neg_goal = @{thm make_neg_goal};
haftmann@31454
    76
val conj_forward = @{thm conj_forward};
haftmann@31454
    77
val all_forward = @{thm all_forward};
haftmann@31454
    78
val ex_forward = @{thm ex_forward};
haftmann@31454
    79
blanchet@39953
    80
val not_conjD = @{thm not_conjD};
blanchet@39953
    81
val not_disjD = @{thm not_disjD};
blanchet@39953
    82
val not_notD = @{thm not_notD};
blanchet@39953
    83
val not_allD = @{thm not_allD};
blanchet@39953
    84
val not_exD = @{thm not_exD};
blanchet@39953
    85
val imp_to_disjD = @{thm imp_to_disjD};
blanchet@39953
    86
val not_impD = @{thm not_impD};
blanchet@39953
    87
val iff_to_disjD = @{thm iff_to_disjD};
blanchet@39953
    88
val not_iffD = @{thm not_iffD};
blanchet@39953
    89
val conj_exD1 = @{thm conj_exD1};
blanchet@39953
    90
val conj_exD2 = @{thm conj_exD2};
blanchet@39953
    91
val disj_exD = @{thm disj_exD};
blanchet@39953
    92
val disj_exD1 = @{thm disj_exD1};
blanchet@39953
    93
val disj_exD2 = @{thm disj_exD2};
blanchet@39953
    94
val disj_assoc = @{thm disj_assoc};
blanchet@39953
    95
val disj_comm = @{thm disj_comm};
blanchet@39953
    96
val disj_FalseD1 = @{thm disj_FalseD1};
blanchet@39953
    97
val disj_FalseD2 = @{thm disj_FalseD2};
paulson@9840
    98
paulson@9840
    99
paulson@15579
   100
(**** Operators for forward proof ****)
paulson@15579
   101
paulson@20417
   102
paulson@20417
   103
(** First-order Resolution **)
paulson@20417
   104
paulson@20417
   105
fun term_pair_of (ix, (ty,t)) = (Var (ix,ty), t);
paulson@20417
   106
paulson@20417
   107
(*FIXME: currently does not "rename variables apart"*)
paulson@20417
   108
fun first_order_resolve thA thB =
wenzelm@32262
   109
  (case
wenzelm@32262
   110
    try (fn () =>
wenzelm@32262
   111
      let val thy = theory_of_thm thA
wenzelm@32262
   112
          val tmA = concl_of thA
wenzelm@32262
   113
          val Const("==>",_) $ tmB $ _ = prop_of thB
blanchet@37398
   114
          val tenv =
blanchet@37410
   115
            Pattern.first_order_match thy (tmB, tmA)
blanchet@37410
   116
                                          (Vartab.empty, Vartab.empty) |> snd
wenzelm@32262
   117
          val ct_pairs = map (pairself (cterm_of thy) o term_pair_of) (Vartab.dest tenv)
wenzelm@32262
   118
      in  thA RS (cterm_instantiate ct_pairs thB)  end) () of
wenzelm@32262
   119
    SOME th => th
blanchet@37398
   120
  | NONE => raise THM ("first_order_resolve", 0, [thA, thB]))
paulson@18175
   121
blanchet@40262
   122
(* Hack to make it less likely that we lose our precious bound variable names in
blanchet@40262
   123
   "rename_bound_vars_RS" below, because of a clash. *)
blanchet@40262
   124
val protect_prefix = "Meson_xyzzy"
blanchet@40262
   125
blanchet@40262
   126
fun protect_bound_var_names (t $ u) =
blanchet@40262
   127
    protect_bound_var_names t $ protect_bound_var_names u
blanchet@40262
   128
  | protect_bound_var_names (Abs (s, T, t')) =
blanchet@40262
   129
    Abs (protect_prefix ^ s, T, protect_bound_var_names t')
blanchet@40262
   130
  | protect_bound_var_names t = t
blanchet@39930
   131
blanchet@40262
   132
fun fix_bound_var_names old_t new_t =
blanchet@40262
   133
  let
blanchet@40262
   134
    fun quant_of @{const_name All} = SOME true
blanchet@40262
   135
      | quant_of @{const_name Ball} = SOME true
blanchet@40262
   136
      | quant_of @{const_name Ex} = SOME false
blanchet@40262
   137
      | quant_of @{const_name Bex} = SOME false
blanchet@40262
   138
      | quant_of _ = NONE
blanchet@40262
   139
    val flip_quant = Option.map not
blanchet@40262
   140
    fun some_eq (SOME x) (SOME y) = x = y
blanchet@40262
   141
      | some_eq _ _ = false
blanchet@40262
   142
    fun add_names quant (Const (quant_s, _) $ Abs (s, _, t')) =
blanchet@40262
   143
        add_names quant t' #> some_eq quant (quant_of quant_s) ? cons s
blanchet@40262
   144
      | add_names quant (@{const Not} $ t) = add_names (flip_quant quant) t
blanchet@40262
   145
      | add_names quant (@{const implies} $ t1 $ t2) =
blanchet@40262
   146
        add_names (flip_quant quant) t1 #> add_names quant t2
blanchet@40262
   147
      | add_names quant (t1 $ t2) = fold (add_names quant) [t1, t2]
blanchet@40262
   148
      | add_names _ _ = I
blanchet@40262
   149
    fun lost_names quant =
blanchet@40262
   150
      subtract (op =) (add_names quant new_t []) (add_names quant old_t [])
blanchet@40262
   151
    fun aux ((t1 as Const (quant_s, _)) $ (Abs (s, T, t'))) =
blanchet@40262
   152
      t1 $ Abs (s |> String.isPrefix protect_prefix s
blanchet@40262
   153
                   ? perhaps (try (fn _ => hd (lost_names (quant_of quant_s)))),
blanchet@40262
   154
                T, aux t')
blanchet@40262
   155
      | aux (t1 $ t2) = aux t1 $ aux t2
blanchet@40262
   156
      | aux t = t
blanchet@40262
   157
  in aux new_t end
blanchet@39930
   158
blanchet@40262
   159
(* Forward proof while preserving bound variables names *)
blanchet@40262
   160
fun rename_bound_vars_RS th rl =
blanchet@39904
   161
  let
blanchet@39904
   162
    val t = concl_of th
blanchet@39930
   163
    val r = concl_of rl
blanchet@40262
   164
    val th' = th RS Thm.rename_boundvars r (protect_bound_var_names r) rl
blanchet@39904
   165
    val t' = concl_of th'
blanchet@40262
   166
  in Thm.rename_boundvars t' (fix_bound_var_names t t') th' end
paulson@24937
   167
paulson@24937
   168
(*raises exception if no rules apply*)
wenzelm@24300
   169
fun tryres (th, rls) =
paulson@18141
   170
  let fun tryall [] = raise THM("tryres", 0, th::rls)
blanchet@40262
   171
        | tryall (rl::rls) =
blanchet@40262
   172
          (rename_bound_vars_RS th rl handle THM _ => tryall rls)
paulson@18141
   173
  in  tryall rls  end;
wenzelm@24300
   174
paulson@21050
   175
(*Permits forward proof from rules that discharge assumptions. The supplied proof state st,
paulson@21050
   176
  e.g. from conj_forward, should have the form
paulson@21050
   177
    "[| P' ==> ?P; Q' ==> ?Q |] ==> ?P & ?Q"
paulson@21050
   178
  and the effect should be to instantiate ?P and ?Q with normalized versions of P' and Q'.*)
wenzelm@32262
   179
fun forward_res ctxt nf st =
paulson@21050
   180
  let fun forward_tacf [prem] = rtac (nf prem) 1
wenzelm@24300
   181
        | forward_tacf prems =
wenzelm@32091
   182
            error (cat_lines
wenzelm@32091
   183
              ("Bad proof state in forward_res, please inform lcp@cl.cam.ac.uk:" ::
wenzelm@32262
   184
                Display.string_of_thm ctxt st ::
wenzelm@32262
   185
                "Premises:" :: map (Display.string_of_thm ctxt) prems))
paulson@21050
   186
  in
wenzelm@37781
   187
    case Seq.pull (ALLGOALS (Misc_Legacy.METAHYPS forward_tacf) st)
paulson@21050
   188
    of SOME(th,_) => th
paulson@21050
   189
     | NONE => raise THM("forward_res", 0, [st])
paulson@21050
   190
  end;
paulson@15579
   191
paulson@20134
   192
(*Are any of the logical connectives in "bs" present in the term?*)
paulson@20134
   193
fun has_conns bs =
blanchet@39328
   194
  let fun has (Const _) = false
haftmann@38557
   195
        | has (Const(@{const_name Trueprop},_) $ p) = has p
haftmann@38557
   196
        | has (Const(@{const_name Not},_) $ p) = has p
haftmann@38795
   197
        | has (Const(@{const_name HOL.disj},_) $ p $ q) = member (op =) bs @{const_name HOL.disj} orelse has p orelse has q
haftmann@38795
   198
        | has (Const(@{const_name HOL.conj},_) $ p $ q) = member (op =) bs @{const_name HOL.conj} orelse has p orelse has q
haftmann@38557
   199
        | has (Const(@{const_name All},_) $ Abs(_,_,p)) = member (op =) bs @{const_name All} orelse has p
haftmann@38557
   200
        | has (Const(@{const_name Ex},_) $ Abs(_,_,p)) = member (op =) bs @{const_name Ex} orelse has p
wenzelm@24300
   201
        | has _ = false
paulson@15579
   202
  in  has  end;
wenzelm@24300
   203
paulson@9840
   204
paulson@15579
   205
(**** Clause handling ****)
paulson@9840
   206
haftmann@38557
   207
fun literals (Const(@{const_name Trueprop},_) $ P) = literals P
haftmann@38795
   208
  | literals (Const(@{const_name HOL.disj},_) $ P $ Q) = literals P @ literals Q
haftmann@38557
   209
  | literals (Const(@{const_name Not},_) $ P) = [(false,P)]
paulson@15579
   210
  | literals P = [(true,P)];
paulson@9840
   211
paulson@15579
   212
(*number of literals in a term*)
paulson@15579
   213
val nliterals = length o literals;
paulson@9840
   214
paulson@18389
   215
paulson@18389
   216
(*** Tautology Checking ***)
paulson@18389
   217
haftmann@38795
   218
fun signed_lits_aux (Const (@{const_name HOL.disj}, _) $ P $ Q) (poslits, neglits) =
paulson@18389
   219
      signed_lits_aux Q (signed_lits_aux P (poslits, neglits))
haftmann@38557
   220
  | signed_lits_aux (Const(@{const_name Not},_) $ P) (poslits, neglits) = (poslits, P::neglits)
paulson@18389
   221
  | signed_lits_aux P (poslits, neglits) = (P::poslits, neglits);
wenzelm@24300
   222
paulson@18389
   223
fun signed_lits th = signed_lits_aux (HOLogic.dest_Trueprop (concl_of th)) ([],[]);
paulson@18389
   224
paulson@18389
   225
(*Literals like X=X are tautologous*)
haftmann@38864
   226
fun taut_poslit (Const(@{const_name HOL.eq},_) $ t $ u) = t aconv u
haftmann@38557
   227
  | taut_poslit (Const(@{const_name True},_)) = true
paulson@18389
   228
  | taut_poslit _ = false;
paulson@18389
   229
paulson@18389
   230
fun is_taut th =
paulson@18389
   231
  let val (poslits,neglits) = signed_lits th
paulson@18389
   232
  in  exists taut_poslit poslits
paulson@18389
   233
      orelse
wenzelm@45740
   234
      exists (member (op aconv) neglits) (@{term False} :: poslits)
paulson@19894
   235
  end
wenzelm@24300
   236
  handle TERM _ => false;       (*probably dest_Trueprop on a weird theorem*)
paulson@18389
   237
paulson@18389
   238
paulson@18389
   239
(*** To remove trivial negated equality literals from clauses ***)
paulson@18389
   240
paulson@18389
   241
(*They are typically functional reflexivity axioms and are the converses of
paulson@18389
   242
  injectivity equivalences*)
wenzelm@24300
   243
blanchet@39953
   244
val not_refl_disj_D = @{thm not_refl_disj_D};
paulson@18389
   245
paulson@20119
   246
(*Is either term a Var that does not properly occur in the other term?*)
paulson@20119
   247
fun eliminable (t as Var _, u) = t aconv u orelse not (Logic.occs(t,u))
paulson@20119
   248
  | eliminable (u, t as Var _) = t aconv u orelse not (Logic.occs(t,u))
paulson@20119
   249
  | eliminable _ = false;
paulson@20119
   250
paulson@18389
   251
fun refl_clause_aux 0 th = th
paulson@18389
   252
  | refl_clause_aux n th =
paulson@18389
   253
       case HOLogic.dest_Trueprop (concl_of th) of
haftmann@38795
   254
          (Const (@{const_name HOL.disj}, _) $ (Const (@{const_name HOL.disj}, _) $ _ $ _) $ _) =>
paulson@18389
   255
            refl_clause_aux n (th RS disj_assoc)    (*isolate an atom as first disjunct*)
haftmann@38864
   256
        | (Const (@{const_name HOL.disj}, _) $ (Const(@{const_name Not},_) $ (Const(@{const_name HOL.eq},_) $ t $ u)) $ _) =>
wenzelm@24300
   257
            if eliminable(t,u)
wenzelm@24300
   258
            then refl_clause_aux (n-1) (th RS not_refl_disj_D)  (*Var inequation: delete*)
wenzelm@24300
   259
            else refl_clause_aux (n-1) (th RS disj_comm)  (*not between Vars: ignore*)
haftmann@38795
   260
        | (Const (@{const_name HOL.disj}, _) $ _ $ _) => refl_clause_aux n (th RS disj_comm)
wenzelm@24300
   261
        | _ => (*not a disjunction*) th;
paulson@18389
   262
haftmann@38795
   263
fun notequal_lits_count (Const (@{const_name HOL.disj}, _) $ P $ Q) =
paulson@18389
   264
      notequal_lits_count P + notequal_lits_count Q
haftmann@38864
   265
  | notequal_lits_count (Const(@{const_name Not},_) $ (Const(@{const_name HOL.eq},_) $ _ $ _)) = 1
paulson@18389
   266
  | notequal_lits_count _ = 0;
paulson@18389
   267
paulson@18389
   268
(*Simplify a clause by applying reflexivity to its negated equality literals*)
wenzelm@24300
   269
fun refl_clause th =
paulson@18389
   270
  let val neqs = notequal_lits_count (HOLogic.dest_Trueprop (concl_of th))
paulson@19894
   271
  in  zero_var_indexes (refl_clause_aux neqs th)  end
wenzelm@24300
   272
  handle TERM _ => th;  (*probably dest_Trueprop on a weird theorem*)
paulson@18389
   273
paulson@18389
   274
paulson@24937
   275
(*** Removal of duplicate literals ***)
paulson@24937
   276
paulson@24937
   277
(*Forward proof, passing extra assumptions as theorems to the tactic*)
blanchet@39328
   278
fun forward_res2 nf hyps st =
paulson@24937
   279
  case Seq.pull
paulson@24937
   280
        (REPEAT
wenzelm@37781
   281
         (Misc_Legacy.METAHYPS (fn major::minors => rtac (nf (minors@hyps) major) 1) 1)
paulson@24937
   282
         st)
paulson@24937
   283
  of SOME(th,_) => th
paulson@24937
   284
   | NONE => raise THM("forward_res2", 0, [st]);
paulson@24937
   285
paulson@24937
   286
(*Remove duplicates in P|Q by assuming ~P in Q
paulson@24937
   287
  rls (initially []) accumulates assumptions of the form P==>False*)
wenzelm@32262
   288
fun nodups_aux ctxt rls th = nodups_aux ctxt rls (th RS disj_assoc)
paulson@24937
   289
    handle THM _ => tryres(th,rls)
blanchet@39328
   290
    handle THM _ => tryres(forward_res2 (nodups_aux ctxt) rls (th RS disj_forward2),
paulson@24937
   291
                           [disj_FalseD1, disj_FalseD2, asm_rl])
paulson@24937
   292
    handle THM _ => th;
paulson@24937
   293
paulson@24937
   294
(*Remove duplicate literals, if there are any*)
wenzelm@32262
   295
fun nodups ctxt th =
paulson@24937
   296
  if has_duplicates (op =) (literals (prop_of th))
wenzelm@32262
   297
    then nodups_aux ctxt [] th
paulson@24937
   298
    else th;
paulson@24937
   299
paulson@24937
   300
paulson@18389
   301
(*** The basic CNF transformation ***)
paulson@18389
   302
blanchet@39328
   303
fun estimated_num_clauses bound t =
paulson@26562
   304
 let
blanchet@39269
   305
  fun sum x y = if x < bound andalso y < bound then x+y else bound
blanchet@39269
   306
  fun prod x y = if x < bound andalso y < bound then x*y else bound
paulson@26562
   307
  
paulson@26562
   308
  (*Estimate the number of clauses in order to detect infeasible theorems*)
haftmann@38557
   309
  fun signed_nclauses b (Const(@{const_name Trueprop},_) $ t) = signed_nclauses b t
haftmann@38557
   310
    | signed_nclauses b (Const(@{const_name Not},_) $ t) = signed_nclauses (not b) t
haftmann@38795
   311
    | signed_nclauses b (Const(@{const_name HOL.conj},_) $ t $ u) =
wenzelm@32960
   312
        if b then sum (signed_nclauses b t) (signed_nclauses b u)
wenzelm@32960
   313
             else prod (signed_nclauses b t) (signed_nclauses b u)
haftmann@38795
   314
    | signed_nclauses b (Const(@{const_name HOL.disj},_) $ t $ u) =
wenzelm@32960
   315
        if b then prod (signed_nclauses b t) (signed_nclauses b u)
wenzelm@32960
   316
             else sum (signed_nclauses b t) (signed_nclauses b u)
haftmann@38786
   317
    | signed_nclauses b (Const(@{const_name HOL.implies},_) $ t $ u) =
wenzelm@32960
   318
        if b then prod (signed_nclauses (not b) t) (signed_nclauses b u)
wenzelm@32960
   319
             else sum (signed_nclauses (not b) t) (signed_nclauses b u)
haftmann@38864
   320
    | signed_nclauses b (Const(@{const_name HOL.eq}, Type ("fun", [T, _])) $ t $ u) =
wenzelm@32960
   321
        if T = HOLogic.boolT then (*Boolean equality is if-and-only-if*)
wenzelm@32960
   322
            if b then sum (prod (signed_nclauses (not b) t) (signed_nclauses b u))
wenzelm@32960
   323
                          (prod (signed_nclauses (not b) u) (signed_nclauses b t))
wenzelm@32960
   324
                 else sum (prod (signed_nclauses b t) (signed_nclauses b u))
wenzelm@32960
   325
                          (prod (signed_nclauses (not b) t) (signed_nclauses (not b) u))
wenzelm@32960
   326
        else 1
haftmann@38557
   327
    | signed_nclauses b (Const(@{const_name Ex}, _) $ Abs (_,_,t)) = signed_nclauses b t
haftmann@38557
   328
    | signed_nclauses b (Const(@{const_name All},_) $ Abs (_,_,t)) = signed_nclauses b t
paulson@26562
   329
    | signed_nclauses _ _ = 1; (* literal *)
blanchet@39269
   330
 in signed_nclauses true t end
blanchet@39269
   331
blanchet@39269
   332
fun has_too_many_clauses ctxt t =
blanchet@39269
   333
  let val max_cl = Config.get ctxt max_clauses in
blanchet@39328
   334
    estimated_num_clauses (max_cl + 1) t > max_cl
blanchet@39269
   335
  end
paulson@19894
   336
paulson@15579
   337
(*Replaces universally quantified variables by FREE variables -- because
paulson@24937
   338
  assumptions may not contain scheme variables.  Later, generalize using Variable.export. *)
paulson@24937
   339
local  
paulson@24937
   340
  val spec_var = Thm.dest_arg (Thm.dest_arg (#2 (Thm.dest_implies (Thm.cprop_of spec))));
paulson@24937
   341
  val spec_varT = #T (Thm.rep_cterm spec_var);
haftmann@38557
   342
  fun name_of (Const (@{const_name All}, _) $ Abs(x,_,_)) = x | name_of _ = Name.uu;
paulson@24937
   343
in  
paulson@24937
   344
  fun freeze_spec th ctxt =
paulson@24937
   345
    let
wenzelm@42361
   346
      val cert = Thm.cterm_of (Proof_Context.theory_of ctxt);
paulson@24937
   347
      val ([x], ctxt') = Variable.variant_fixes [name_of (HOLogic.dest_Trueprop (concl_of th))] ctxt;
paulson@24937
   348
      val spec' = Thm.instantiate ([], [(spec_var, cert (Free (x, spec_varT)))]) spec;
paulson@24937
   349
    in (th RS spec', ctxt') end
paulson@24937
   350
end;
paulson@9840
   351
paulson@15998
   352
(*Used with METAHYPS below. There is one assumption, which gets bound to prem
paulson@15998
   353
  and then normalized via function nf. The normal form is given to resolve_tac,
paulson@22515
   354
  instantiate a Boolean variable created by resolution with disj_forward. Since
paulson@22515
   355
  (nf prem) returns a LIST of theorems, we can backtrack to get all combinations.*)
paulson@15579
   356
fun resop nf [prem] = resolve_tac (nf prem) 1;
paulson@9840
   357
blanchet@39037
   358
(* Any need to extend this list with "HOL.type_class", "HOL.eq_class",
blanchet@39037
   359
   and "Pure.term"? *)
haftmann@38557
   360
val has_meta_conn = exists_Const (member (op =) ["==", "==>", "=simp=>", "all", "prop"] o #1);
paulson@20417
   361
blanchet@37410
   362
fun apply_skolem_theorem (th, rls) =
blanchet@37398
   363
  let
blanchet@37410
   364
    fun tryall [] = raise THM ("apply_skolem_theorem", 0, th::rls)
blanchet@37398
   365
      | tryall (rl :: rls) =
blanchet@37398
   366
        first_order_resolve th rl handle THM _ => tryall rls
blanchet@37398
   367
  in tryall rls end
paulson@22515
   368
blanchet@37410
   369
(* Conjunctive normal form, adding clauses from th in front of ths (for foldr).
blanchet@37410
   370
   Strips universal quantifiers and breaks up conjunctions.
blanchet@37410
   371
   Eliminates existential quantifiers using Skolemization theorems. *)
blanchet@43964
   372
fun cnf old_skolem_ths ctxt ctxt0 (th, ths) =
blanchet@43964
   373
  let val ctxt0r = Unsynchronized.ref ctxt0   (* FIXME ??? *)
paulson@24937
   374
      fun cnf_aux (th,ths) =
wenzelm@24300
   375
        if not (can HOLogic.dest_Trueprop (prop_of th)) then ths (*meta-level: ignore*)
haftmann@38795
   376
        else if not (has_conns [@{const_name All}, @{const_name Ex}, @{const_name HOL.conj}] (prop_of th))
blanchet@43964
   377
        then nodups ctxt0 th :: ths (*no work to do, terminate*)
wenzelm@24300
   378
        else case head_of (HOLogic.dest_Trueprop (concl_of th)) of
haftmann@38795
   379
            Const (@{const_name HOL.conj}, _) => (*conjunction*)
wenzelm@24300
   380
                cnf_aux (th RS conjunct1, cnf_aux (th RS conjunct2, ths))
haftmann@38557
   381
          | Const (@{const_name All}, _) => (*universal quantifier*)
blanchet@43964
   382
                let val (th',ctxt0') = freeze_spec th (!ctxt0r)
blanchet@43964
   383
                in  ctxt0r := ctxt0'; cnf_aux (th', ths) end
haftmann@38557
   384
          | Const (@{const_name Ex}, _) =>
wenzelm@24300
   385
              (*existential quantifier: Insert Skolem functions*)
blanchet@39886
   386
              cnf_aux (apply_skolem_theorem (th, old_skolem_ths), ths)
haftmann@38795
   387
          | Const (@{const_name HOL.disj}, _) =>
wenzelm@24300
   388
              (*Disjunction of P, Q: Create new goal of proving ?P | ?Q and solve it using
wenzelm@24300
   389
                all combinations of converting P, Q to CNF.*)
wenzelm@24300
   390
              let val tac =
wenzelm@37781
   391
                  Misc_Legacy.METAHYPS (resop cnf_nil) 1 THEN
wenzelm@37781
   392
                   (fn st' => st' |> Misc_Legacy.METAHYPS (resop cnf_nil) 1)
wenzelm@24300
   393
              in  Seq.list_of (tac (th RS disj_forward)) @ ths  end
blanchet@43964
   394
          | _ => nodups ctxt0 th :: ths  (*no work to do*)
paulson@19154
   395
      and cnf_nil th = cnf_aux (th,[])
blanchet@39269
   396
      val cls =
blanchet@43964
   397
        if has_too_many_clauses ctxt (concl_of th) then
blanchet@43964
   398
          (trace_msg ctxt (fn () =>
blanchet@43964
   399
               "cnf is ignoring: " ^ Display.string_of_thm ctxt0 th); ths)
blanchet@43964
   400
        else
blanchet@43964
   401
          cnf_aux (th, ths)
blanchet@43964
   402
  in (cls, !ctxt0r) end
blanchet@43964
   403
fun make_cnf old_skolem_ths th ctxt ctxt0 =
blanchet@43964
   404
  cnf old_skolem_ths ctxt ctxt0 (th, [])
paulson@20417
   405
paulson@20417
   406
(*Generalization, removal of redundant equalities, removal of tautologies.*)
paulson@24937
   407
fun finish_cnf ths = filter (not o is_taut) (map refl_clause ths);
paulson@9840
   408
paulson@9840
   409
paulson@15579
   410
(**** Generation of contrapositives ****)
paulson@9840
   411
haftmann@38557
   412
fun is_left (Const (@{const_name Trueprop}, _) $
haftmann@38795
   413
               (Const (@{const_name HOL.disj}, _) $ (Const (@{const_name HOL.disj}, _) $ _ $ _) $ _)) = true
paulson@21102
   414
  | is_left _ = false;
wenzelm@24300
   415
paulson@15579
   416
(*Associate disjuctions to right -- make leftmost disjunct a LITERAL*)
wenzelm@24300
   417
fun assoc_right th =
paulson@21102
   418
  if is_left (prop_of th) then assoc_right (th RS disj_assoc)
paulson@21102
   419
  else th;
paulson@9840
   420
paulson@15579
   421
(*Must check for negative literal first!*)
paulson@15579
   422
val clause_rules = [disj_assoc, make_neg_rule, make_pos_rule];
paulson@9840
   423
paulson@15579
   424
(*For ordinary resolution. *)
paulson@15579
   425
val resolution_clause_rules = [disj_assoc, make_neg_rule', make_pos_rule'];
paulson@9840
   426
paulson@15579
   427
(*Create a goal or support clause, conclusing False*)
paulson@15579
   428
fun make_goal th =   (*Must check for negative literal first!*)
paulson@15579
   429
    make_goal (tryres(th, clause_rules))
paulson@15579
   430
  handle THM _ => tryres(th, [make_neg_goal, make_pos_goal]);
paulson@9840
   431
paulson@15579
   432
(*Sort clauses by number of literals*)
paulson@15579
   433
fun fewerlits(th1,th2) = nliterals(prop_of th1) < nliterals(prop_of th2);
paulson@9840
   434
paulson@18389
   435
fun sort_clauses ths = sort (make_ord fewerlits) ths;
paulson@9840
   436
blanchet@38099
   437
fun has_bool @{typ bool} = true
blanchet@38099
   438
  | has_bool (Type (_, Ts)) = exists has_bool Ts
blanchet@38099
   439
  | has_bool _ = false
blanchet@38099
   440
blanchet@38099
   441
fun has_fun (Type (@{type_name fun}, _)) = true
blanchet@38099
   442
  | has_fun (Type (_, Ts)) = exists has_fun Ts
blanchet@38099
   443
  | has_fun _ = false
wenzelm@24300
   444
wenzelm@24300
   445
(*Is the string the name of a connective? Really only | and Not can remain,
wenzelm@24300
   446
  since this code expects to be called on a clause form.*)
wenzelm@19875
   447
val is_conn = member (op =)
haftmann@38795
   448
    [@{const_name Trueprop}, @{const_name HOL.conj}, @{const_name HOL.disj},
haftmann@38786
   449
     @{const_name HOL.implies}, @{const_name Not},
haftmann@38557
   450
     @{const_name All}, @{const_name Ex}, @{const_name Ball}, @{const_name Bex}];
paulson@15613
   451
wenzelm@24300
   452
(*True if the term contains a function--not a logical connective--where the type
paulson@20524
   453
  of any argument contains bool.*)
wenzelm@24300
   454
val has_bool_arg_const =
paulson@15613
   455
    exists_Const
blanchet@38099
   456
      (fn (c,T) => not(is_conn c) andalso exists has_bool (binder_types T));
paulson@22381
   457
wenzelm@24300
   458
(*A higher-order instance of a first-order constant? Example is the definition of
haftmann@38622
   459
  one, 1, at a function type in theory Function_Algebras.*)
wenzelm@24300
   460
fun higher_inst_const thy (c,T) =
paulson@22381
   461
  case binder_types T of
paulson@22381
   462
      [] => false (*not a function type, OK*)
paulson@22381
   463
    | Ts => length (binder_types (Sign.the_const_type thy c)) <> length Ts;
paulson@22381
   464
blanchet@42833
   465
(* Returns false if any Vars in the theorem mention type bool.
blanchet@42833
   466
   Also rejects functions whose arguments are Booleans or other functions. *)
paulson@22381
   467
fun is_fol_term thy t =
blanchet@42833
   468
    Term.is_first_order [@{const_name all}, @{const_name All},
blanchet@42833
   469
                         @{const_name Ex}] t andalso
blanchet@38099
   470
    not (exists_subterm (fn Var (_, T) => has_bool T orelse has_fun T
blanchet@42833
   471
                          | _ => false) t orelse
blanchet@38099
   472
         has_bool_arg_const t orelse
wenzelm@24300
   473
         exists_Const (higher_inst_const thy) t orelse
wenzelm@24300
   474
         has_meta_conn t);
paulson@19204
   475
paulson@21102
   476
fun rigid t = not (is_Var (head_of t));
paulson@21102
   477
haftmann@38795
   478
fun ok4horn (Const (@{const_name Trueprop},_) $ (Const (@{const_name HOL.disj}, _) $ t $ _)) = rigid t
haftmann@38557
   479
  | ok4horn (Const (@{const_name Trueprop},_) $ t) = rigid t
paulson@21102
   480
  | ok4horn _ = false;
paulson@21102
   481
paulson@15579
   482
(*Create a meta-level Horn clause*)
wenzelm@24300
   483
fun make_horn crules th =
wenzelm@24300
   484
  if ok4horn (concl_of th)
paulson@21102
   485
  then make_horn crules (tryres(th,crules)) handle THM _ => th
paulson@21102
   486
  else th;
paulson@9840
   487
paulson@16563
   488
(*Generate Horn clauses for all contrapositives of a clause. The input, th,
paulson@16563
   489
  is a HOL disjunction.*)
wenzelm@33339
   490
fun add_contras crules th hcs =
blanchet@39328
   491
  let fun rots (0,_) = hcs
wenzelm@24300
   492
        | rots (k,th) = zero_var_indexes (make_horn crules th) ::
wenzelm@24300
   493
                        rots(k-1, assoc_right (th RS disj_comm))
paulson@15862
   494
  in case nliterals(prop_of th) of
wenzelm@24300
   495
        1 => th::hcs
paulson@15579
   496
      | n => rots(n, assoc_right th)
paulson@15579
   497
  end;
paulson@9840
   498
paulson@15579
   499
(*Use "theorem naming" to label the clauses*)
paulson@15579
   500
fun name_thms label =
wenzelm@33339
   501
    let fun name1 th (k, ths) =
wenzelm@27865
   502
          (k-1, Thm.put_name_hint (label ^ string_of_int k) th :: ths)
wenzelm@33339
   503
    in  fn ths => #2 (fold_rev name1 ths (length ths, []))  end;
paulson@9840
   504
paulson@16563
   505
(*Is the given disjunction an all-negative support clause?*)
paulson@15579
   506
fun is_negative th = forall (not o #1) (literals (prop_of th));
paulson@9840
   507
wenzelm@33317
   508
val neg_clauses = filter is_negative;
paulson@9840
   509
paulson@9840
   510
paulson@15579
   511
(***** MESON PROOF PROCEDURE *****)
paulson@9840
   512
haftmann@38557
   513
fun rhyps (Const("==>",_) $ (Const(@{const_name Trueprop},_) $ A) $ phi,
wenzelm@24300
   514
           As) = rhyps(phi, A::As)
paulson@15579
   515
  | rhyps (_, As) = As;
paulson@9840
   516
paulson@15579
   517
(** Detecting repeated assumptions in a subgoal **)
paulson@9840
   518
paulson@15579
   519
(*The stringtree detects repeated assumptions.*)
wenzelm@33245
   520
fun ins_term t net = Net.insert_term (op aconv) (t, t) net;
paulson@9840
   521
paulson@15579
   522
(*detects repetitions in a list of terms*)
paulson@15579
   523
fun has_reps [] = false
paulson@15579
   524
  | has_reps [_] = false
paulson@15579
   525
  | has_reps [t,u] = (t aconv u)
wenzelm@33245
   526
  | has_reps ts = (fold ins_term ts Net.empty; false) handle Net.INSERT => true;
paulson@9840
   527
paulson@15579
   528
(*Like TRYALL eq_assume_tac, but avoids expensive THEN calls*)
paulson@18508
   529
fun TRYING_eq_assume_tac 0 st = Seq.single st
paulson@18508
   530
  | TRYING_eq_assume_tac i st =
wenzelm@31945
   531
       TRYING_eq_assume_tac (i-1) (Thm.eq_assumption i st)
paulson@18508
   532
       handle THM _ => TRYING_eq_assume_tac (i-1) st;
paulson@18508
   533
paulson@18508
   534
fun TRYALL_eq_assume_tac st = TRYING_eq_assume_tac (nprems_of st) st;
paulson@9840
   535
paulson@15579
   536
(*Loop checking: FAIL if trying to prove the same thing twice
paulson@15579
   537
  -- if *ANY* subgoal has repeated literals*)
paulson@15579
   538
fun check_tac st =
paulson@15579
   539
  if exists (fn prem => has_reps (rhyps(prem,[]))) (prems_of st)
paulson@15579
   540
  then  Seq.empty  else  Seq.single st;
paulson@9840
   541
paulson@9840
   542
paulson@15579
   543
(* net_resolve_tac actually made it slower... *)
paulson@15579
   544
fun prolog_step_tac horns i =
paulson@15579
   545
    (assume_tac i APPEND resolve_tac horns i) THEN check_tac THEN
paulson@18508
   546
    TRYALL_eq_assume_tac;
paulson@9840
   547
paulson@9840
   548
(*Sums the sizes of the subgoals, ignoring hypotheses (ancestors)*)
wenzelm@33339
   549
fun addconcl prem sz = size_of_term (Logic.strip_assums_concl prem) + sz;
paulson@15579
   550
wenzelm@33339
   551
fun size_of_subgoals st = fold_rev addconcl (prems_of st) 0;
paulson@15579
   552
paulson@9840
   553
paulson@9840
   554
(*Negation Normal Form*)
paulson@9840
   555
val nnf_rls = [imp_to_disjD, iff_to_disjD, not_conjD, not_disjD,
wenzelm@9869
   556
               not_impD, not_iffD, not_allD, not_exD, not_notD];
paulson@15581
   557
haftmann@38557
   558
fun ok4nnf (Const (@{const_name Trueprop},_) $ (Const (@{const_name Not}, _) $ t)) = rigid t
haftmann@38557
   559
  | ok4nnf (Const (@{const_name Trueprop},_) $ t) = rigid t
paulson@21102
   560
  | ok4nnf _ = false;
paulson@21102
   561
wenzelm@32262
   562
fun make_nnf1 ctxt th =
wenzelm@24300
   563
  if ok4nnf (concl_of th)
wenzelm@32262
   564
  then make_nnf1 ctxt (tryres(th, nnf_rls))
paulson@28174
   565
    handle THM ("tryres", _, _) =>
wenzelm@32262
   566
        forward_res ctxt (make_nnf1 ctxt)
wenzelm@9869
   567
           (tryres(th, [conj_forward,disj_forward,all_forward,ex_forward]))
paulson@28174
   568
    handle THM ("tryres", _, _) => th
blanchet@38608
   569
  else th
paulson@9840
   570
blanchet@42739
   571
fun unfold_set_const_simps ctxt =
blanchet@42739
   572
  if Config.get ctxt unfold_set_consts then @{thms Collect_def_raw mem_def_raw}
blanchet@42739
   573
  else []
blanchet@42739
   574
wenzelm@24300
   575
(*The simplification removes defined quantifiers and occurrences of True and False.
paulson@20018
   576
  nnf_ss also includes the one-point simprocs,
paulson@18405
   577
  which are needed to avoid the various one-point theorems from generating junk clauses.*)
paulson@19894
   578
val nnf_simps =
blanchet@37539
   579
  @{thms simp_implies_def Ex1_def Ball_def Bex_def if_True if_False if_cancel
blanchet@37539
   580
         if_eq_cancel cases_simp}
blanchet@37539
   581
val nnf_extra_simps = @{thms split_ifs ex_simps all_simps simp_thms}
paulson@18405
   582
blanchet@43821
   583
(* FIXME: "let_simp" is probably redundant now that we also rewrite with
blanchet@43821
   584
  "Let_def_raw". *)
paulson@18405
   585
val nnf_ss =
wenzelm@24300
   586
  HOL_basic_ss addsimps nnf_extra_simps
blanchet@43264
   587
    addsimprocs [@{simproc defined_All}, @{simproc defined_Ex}, @{simproc neq},
blanchet@43264
   588
                 @{simproc let_simp}]
blanchet@43264
   589
blanchet@43264
   590
fun presimplified_consts ctxt =
blanchet@43264
   591
  [@{const_name simp_implies}, @{const_name False}, @{const_name True},
blanchet@43264
   592
   @{const_name Ex1}, @{const_name Ball}, @{const_name Bex}, @{const_name If},
blanchet@43264
   593
   @{const_name Let}]
blanchet@43264
   594
  |> Config.get ctxt unfold_set_consts
blanchet@43264
   595
     ? append ([@{const_name Collect}, @{const_name Set.member}])
paulson@15872
   596
blanchet@42750
   597
fun presimplify ctxt =
blanchet@42750
   598
  rewrite_rule (map safe_mk_meta_eq nnf_simps)
blanchet@42750
   599
  #> simplify nnf_ss
blanchet@42750
   600
  (* TODO: avoid introducing "Set.member" in "Ball_def" "Bex_def" above if and
blanchet@42750
   601
     when "metis_unfold_set_consts" becomes the only mode of operation. *)
blanchet@43821
   602
  #> Raw_Simplifier.rewrite_rule
blanchet@43821
   603
         (@{thm Let_def_raw} :: unfold_set_const_simps ctxt)
blanchet@38089
   604
wenzelm@32262
   605
fun make_nnf ctxt th = case prems_of th of
blanchet@42750
   606
    [] => th |> presimplify ctxt |> make_nnf1 ctxt
paulson@21050
   607
  | _ => raise THM ("make_nnf: premises in argument", 0, [th]);
paulson@15581
   608
blanchet@39950
   609
fun choice_theorems thy =
blanchet@39950
   610
  try (Global_Theory.get_thm thy) "Hilbert_Choice.choice" |> the_list
blanchet@39950
   611
blanchet@39900
   612
(* Pull existential quantifiers to front. This accomplishes Skolemization for
blanchet@39900
   613
   clauses that arise from a subgoal. *)
blanchet@39950
   614
fun skolemize_with_choice_theorems ctxt choice_ths =
blanchet@39900
   615
  let
blanchet@39900
   616
    fun aux th =
blanchet@39900
   617
      if not (has_conns [@{const_name Ex}] (prop_of th)) then
blanchet@39900
   618
        th
blanchet@39900
   619
      else
blanchet@39901
   620
        tryres (th, choice_ths @
blanchet@39900
   621
                    [conj_exD1, conj_exD2, disj_exD, disj_exD1, disj_exD2])
blanchet@39900
   622
        |> aux
blanchet@39900
   623
        handle THM ("tryres", _, _) =>
blanchet@39900
   624
               tryres (th, [conj_forward, disj_forward, all_forward])
blanchet@39900
   625
               |> forward_res ctxt aux
blanchet@39900
   626
               |> aux
blanchet@39900
   627
               handle THM ("tryres", _, _) =>
blanchet@40262
   628
                      rename_bound_vars_RS th ex_forward
blanchet@39900
   629
                      |> forward_res ctxt aux
blanchet@39900
   630
  in aux o make_nnf ctxt end
paulson@29684
   631
blanchet@39950
   632
fun skolemize ctxt =
wenzelm@42361
   633
  let val thy = Proof_Context.theory_of ctxt in
blanchet@39950
   634
    skolemize_with_choice_theorems ctxt (choice_theorems thy)
blanchet@39950
   635
  end
blanchet@39904
   636
blanchet@42760
   637
(* Removes the lambdas from an equation of the form "t = (%x1 ... xn. u)". It
blanchet@42760
   638
   would be desirable to do this symmetrically but there's at least one existing
blanchet@42760
   639
   proof in "Tarski" that relies on the current behavior. *)
blanchet@42747
   640
fun extensionalize_conv ctxt ct =
blanchet@42747
   641
  case term_of ct of
blanchet@42760
   642
    Const (@{const_name HOL.eq}, _) $ _ $ Abs _ =>
blanchet@42760
   643
    ct |> (Conv.rewr_conv @{thm fun_eq_iff [THEN eq_reflection]}
blanchet@42760
   644
           then_conv extensionalize_conv ctxt)
blanchet@42747
   645
  | _ $ _ => Conv.comb_conv (extensionalize_conv ctxt) ct
blanchet@42747
   646
  | Abs _ => Conv.abs_conv (extensionalize_conv o snd) ctxt ct
blanchet@42747
   647
  | _ => Conv.all_conv ct
blanchet@42747
   648
blanchet@42747
   649
val extensionalize_theorem = Conv.fconv_rule o extensionalize_conv
blanchet@42747
   650
blanchet@39900
   651
(* "RS" can fail if "unify_search_bound" is too small. *)
blanchet@42747
   652
fun try_skolemize_etc ctxt =
blanchet@42747
   653
  Raw_Simplifier.rewrite_rule (unfold_set_const_simps ctxt)
blanchet@42747
   654
  (* Extensionalize "th", because that makes sense and that's what Sledgehammer
blanchet@42747
   655
     does, but also keep an unextensionalized version of "th" for backward
blanchet@42747
   656
     compatibility. *)
blanchet@42747
   657
  #> (fn th => insert Thm.eq_thm_prop (extensionalize_theorem ctxt th) [th])
blanchet@42747
   658
  #> map_filter (fn th => try (skolemize ctxt) th
blanchet@42747
   659
                          |> tap (fn NONE =>
blanchet@42747
   660
                                     trace_msg ctxt (fn () =>
blanchet@42747
   661
                                         "Failed to skolemize " ^
blanchet@42747
   662
                                          Display.string_of_thm ctxt th)
blanchet@42747
   663
                                   | _ => ()))
paulson@25694
   664
blanchet@43964
   665
fun add_clauses ctxt th cls =
wenzelm@36603
   666
  let val ctxt0 = Variable.global_thm_context th
blanchet@43964
   667
      val (cnfs, ctxt) = make_cnf [] th ctxt ctxt0
paulson@24937
   668
  in Variable.export ctxt ctxt0 cnfs @ cls end;
paulson@9840
   669
paulson@9840
   670
(*Make clauses from a list of theorems, previously Skolemized and put into nnf.
paulson@9840
   671
  The resulting clauses are HOL disjunctions.*)
blanchet@43964
   672
fun make_clauses_unsorted ctxt ths = fold_rev (add_clauses ctxt) ths [];
blanchet@43964
   673
val make_clauses = sort_clauses oo make_clauses_unsorted;
quigley@15773
   674
paulson@16563
   675
(*Convert a list of clauses (disjunctions) to Horn clauses (contrapositives)*)
wenzelm@9869
   676
fun make_horns ths =
paulson@9840
   677
    name_thms "Horn#"
wenzelm@33339
   678
      (distinct Thm.eq_thm_prop (fold_rev (add_contras clause_rules) ths []));
paulson@9840
   679
paulson@9840
   680
(*Could simply use nprems_of, which would count remaining subgoals -- no
paulson@9840
   681
  discrimination as to their size!  With BEST_FIRST, fails for problem 41.*)
paulson@9840
   682
wenzelm@9869
   683
fun best_prolog_tac sizef horns =
paulson@9840
   684
    BEST_FIRST (has_fewer_prems 1, sizef) (prolog_step_tac horns 1);
paulson@9840
   685
wenzelm@9869
   686
fun depth_prolog_tac horns =
paulson@9840
   687
    DEPTH_FIRST (has_fewer_prems 1) (prolog_step_tac horns 1);
paulson@9840
   688
paulson@9840
   689
(*Return all negative clauses, as possible goal clauses*)
paulson@9840
   690
fun gocls cls = name_thms "Goal#" (map make_goal (neg_clauses cls));
paulson@9840
   691
wenzelm@32262
   692
fun skolemize_prems_tac ctxt prems =
blanchet@42747
   693
  cut_facts_tac (maps (try_skolemize_etc ctxt) prems) THEN' REPEAT o etac exE
paulson@9840
   694
paulson@22546
   695
(*Basis of all meson-tactics.  Supplies cltac with clauses: HOL disjunctions.
paulson@22546
   696
  Function mkcl converts theorems to clauses.*)
blanchet@39037
   697
fun MESON preskolem_tac mkcl cltac ctxt i st =
paulson@16588
   698
  SELECT_GOAL
wenzelm@35625
   699
    (EVERY [Object_Logic.atomize_prems_tac 1,
paulson@23552
   700
            rtac ccontr 1,
blanchet@39269
   701
            preskolem_tac,
wenzelm@32283
   702
            Subgoal.FOCUS (fn {context = ctxt', prems = negs, ...} =>
blanchet@39269
   703
                      EVERY1 [skolemize_prems_tac ctxt negs,
wenzelm@32283
   704
                              Subgoal.FOCUS (cltac o mkcl o #prems) ctxt']) ctxt 1]) i st
wenzelm@24300
   705
  handle THM _ => no_tac st;    (*probably from make_meta_clause, not first-order*)
paulson@9840
   706
blanchet@39037
   707
paulson@9840
   708
(** Best-first search versions **)
paulson@9840
   709
paulson@16563
   710
(*ths is a list of additional clauses (HOL disjunctions) to use.*)
blanchet@43964
   711
fun best_meson_tac sizef ctxt =
blanchet@43964
   712
  MESON all_tac (make_clauses ctxt)
paulson@22546
   713
    (fn cls =>
paulson@9840
   714
         THEN_BEST_FIRST (resolve_tac (gocls cls) 1)
paulson@9840
   715
                         (has_fewer_prems 1, sizef)
blanchet@43964
   716
                         (prolog_step_tac (make_horns cls) 1))
blanchet@43964
   717
    ctxt
paulson@9840
   718
paulson@9840
   719
(*First, breaks the goal into independent units*)
wenzelm@32262
   720
fun safe_best_meson_tac ctxt =
wenzelm@42793
   721
  SELECT_GOAL (TRY (safe_tac ctxt) THEN TRYALL (best_meson_tac size_of_subgoals ctxt));
paulson@9840
   722
paulson@9840
   723
(** Depth-first search version **)
paulson@9840
   724
blanchet@43964
   725
fun depth_meson_tac ctxt =
blanchet@43964
   726
  MESON all_tac (make_clauses ctxt)
blanchet@43964
   727
    (fn cls => EVERY [resolve_tac (gocls cls) 1, depth_prolog_tac (make_horns cls)])
blanchet@43964
   728
    ctxt
paulson@9840
   729
paulson@9840
   730
(** Iterative deepening version **)
paulson@9840
   731
paulson@9840
   732
(*This version does only one inference per call;
paulson@9840
   733
  having only one eq_assume_tac speeds it up!*)
wenzelm@9869
   734
fun prolog_step_tac' horns =
blanchet@39328
   735
    let val (horn0s, _) = (*0 subgoals vs 1 or more*)
paulson@9840
   736
            take_prefix Thm.no_prems horns
paulson@9840
   737
        val nrtac = net_resolve_tac horns
paulson@9840
   738
    in  fn i => eq_assume_tac i ORELSE
paulson@9840
   739
                match_tac horn0s i ORELSE  (*no backtracking if unit MATCHES*)
paulson@9840
   740
                ((assume_tac i APPEND nrtac i) THEN check_tac)
paulson@9840
   741
    end;
paulson@9840
   742
wenzelm@9869
   743
fun iter_deepen_prolog_tac horns =
wenzelm@38802
   744
    ITER_DEEPEN iter_deepen_limit (has_fewer_prems 1) (prolog_step_tac' horns);
paulson@9840
   745
blanchet@43964
   746
fun iter_deepen_meson_tac ctxt ths = ctxt |> MESON all_tac (make_clauses ctxt)
wenzelm@32091
   747
  (fn cls =>
wenzelm@32091
   748
    (case (gocls (cls @ ths)) of
wenzelm@32091
   749
      [] => no_tac  (*no goal clauses*)
wenzelm@32091
   750
    | goes =>
wenzelm@32091
   751
        let
wenzelm@32091
   752
          val horns = make_horns (cls @ ths)
blanchet@39979
   753
          val _ = trace_msg ctxt (fn () =>
wenzelm@32091
   754
            cat_lines ("meson method called:" ::
wenzelm@32262
   755
              map (Display.string_of_thm ctxt) (cls @ ths) @
wenzelm@32262
   756
              ["clauses:"] @ map (Display.string_of_thm ctxt) horns))
wenzelm@38802
   757
        in
wenzelm@38802
   758
          THEN_ITER_DEEPEN iter_deepen_limit
wenzelm@38802
   759
            (resolve_tac goes 1) (has_fewer_prems 1) (prolog_step_tac' horns)
wenzelm@38802
   760
        end));
paulson@9840
   761
wenzelm@32262
   762
fun meson_tac ctxt ths =
wenzelm@42793
   763
  SELECT_GOAL (TRY (safe_tac ctxt) THEN TRYALL (iter_deepen_meson_tac ctxt ths));
wenzelm@9869
   764
wenzelm@9869
   765
paulson@14813
   766
(**** Code to support ordinary resolution, rather than Model Elimination ****)
paulson@14744
   767
wenzelm@24300
   768
(*Convert a list of clauses (disjunctions) to meta-level clauses (==>),
paulson@15008
   769
  with no contrapositives, for ordinary resolution.*)
paulson@14744
   770
paulson@14744
   771
(*Rules to convert the head literal into a negated assumption. If the head
paulson@14744
   772
  literal is already negated, then using notEfalse instead of notEfalse'
paulson@14744
   773
  prevents a double negation.*)
wenzelm@27239
   774
val notEfalse = read_instantiate @{context} [(("R", 0), "False")] notE;
paulson@14744
   775
val notEfalse' = rotate_prems 1 notEfalse;
paulson@14744
   776
wenzelm@24300
   777
fun negated_asm_of_head th =
paulson@14744
   778
    th RS notEfalse handle THM _ => th RS notEfalse';
paulson@14744
   779
paulson@26066
   780
(*Converting one theorem from a disjunction to a meta-level clause*)
paulson@26066
   781
fun make_meta_clause th =
wenzelm@33832
   782
  let val (fth,thaw) = Drule.legacy_freeze_thaw_robust th
paulson@26066
   783
  in  
wenzelm@35845
   784
      (zero_var_indexes o Thm.varifyT_global o thaw 0 o 
paulson@26066
   785
       negated_asm_of_head o make_horn resolution_clause_rules) fth
paulson@26066
   786
  end;
wenzelm@24300
   787
paulson@14744
   788
fun make_meta_clauses ths =
paulson@14744
   789
    name_thms "MClause#"
wenzelm@22360
   790
      (distinct Thm.eq_thm_prop (map make_meta_clause ths));
paulson@14744
   791
paulson@9840
   792
end;