src/HOL/Tools/Sledgehammer/meson_clausify.ML
author blanchet
Thu Sep 30 20:44:53 2010 +0200 (2010-09-30)
changeset 39896 13b3a2ba9ea7
parent 39894 35ae5cf8c96a
child 39897 e26d5344e1b7
permissions -rw-r--r--
encode axiom number and cluster number in all zapped quantifiers to help discharging new skolemizer assumptions
blanchet@39890
     1
(*  Title:      HOL/Tools/Sledgehammer/meson_clausify.ML
blanchet@38027
     2
    Author:     Jia Meng, Cambridge University Computer Laboratory and NICTA
blanchet@36393
     3
    Author:     Jasmin Blanchette, TU Muenchen
paulson@15347
     4
wenzelm@20461
     5
Transformation of axiom rules (elim/intro/etc) into CNF forms.
paulson@15347
     6
*)
paulson@15347
     7
blanchet@39890
     8
signature MESON_CLAUSIFY =
wenzelm@21505
     9
sig
blanchet@39887
    10
  val new_skolem_var_prefix : string
blanchet@38632
    11
  val extensionalize_theorem : thm -> thm
blanchet@38001
    12
  val introduce_combinators_in_cterm : cterm -> thm
blanchet@38028
    13
  val introduce_combinators_in_theorem : thm -> thm
blanchet@39037
    14
  val to_definitional_cnf_with_quantifiers : theory -> thm -> thm
blanchet@39894
    15
  val cnf_axiom : theory -> bool -> int -> thm -> thm option * thm list
blanchet@39720
    16
  val meson_general_tac : Proof.context -> thm list -> int -> tactic
blanchet@39720
    17
  val setup: theory -> theory
wenzelm@21505
    18
end;
mengj@19196
    19
blanchet@39890
    20
structure Meson_Clausify : MESON_CLAUSIFY =
paulson@15997
    21
struct
paulson@15347
    22
blanchet@39896
    23
val new_skolem_var_prefix = "SK?"
blanchet@39896
    24
val new_nonskolem_var_prefix = "V?"
blanchet@39887
    25
paulson@15997
    26
(**** Transformation of Elimination Rules into First-Order Formulas****)
paulson@15347
    27
wenzelm@29064
    28
val cfalse = cterm_of @{theory HOL} HOLogic.false_const;
wenzelm@29064
    29
val ctp_false = cterm_of @{theory HOL} (HOLogic.mk_Trueprop HOLogic.false_const);
wenzelm@20461
    30
blanchet@38001
    31
(* Converts an elim-rule into an equivalent theorem that does not have the
blanchet@38001
    32
   predicate variable. Leaves other theorems unchanged. We simply instantiate
blanchet@38001
    33
   the conclusion variable to False. (Cf. "transform_elim_term" in
blanchet@38652
    34
   "Sledgehammer_Util".) *)
blanchet@38001
    35
fun transform_elim_theorem th =
paulson@21430
    36
  case concl_of th of    (*conclusion variable*)
blanchet@35963
    37
       @{const Trueprop} $ (v as Var (_, @{typ bool})) =>
wenzelm@29064
    38
           Thm.instantiate ([], [(cterm_of @{theory HOL} v, cfalse)]) th
blanchet@35963
    39
    | v as Var(_, @{typ prop}) =>
wenzelm@29064
    40
           Thm.instantiate ([], [(cterm_of @{theory HOL} v, ctp_false)]) th
blanchet@38001
    41
    | _ => th
paulson@15997
    42
wenzelm@28544
    43
paulson@16009
    44
(**** SKOLEMIZATION BY INFERENCE (lcp) ****)
paulson@16009
    45
blanchet@39886
    46
fun mk_old_skolem_term_wrapper t =
blanchet@37436
    47
  let val T = fastype_of t in
blanchet@39355
    48
    Const (@{const_name skolem}, T --> T) $ t
blanchet@37436
    49
  end
blanchet@37410
    50
blanchet@37617
    51
fun beta_eta_under_lambdas (Abs (s, T, t')) =
blanchet@37617
    52
    Abs (s, T, beta_eta_under_lambdas t')
blanchet@37617
    53
  | beta_eta_under_lambdas t = Envir.beta_eta_contract t
blanchet@37512
    54
paulson@18141
    55
(*Traverse a theorem, accumulating Skolem function definitions.*)
blanchet@39886
    56
fun old_skolem_defs th =
blanchet@37399
    57
  let
blanchet@39376
    58
    fun dec_sko (Const (@{const_name Ex}, _) $ (body as Abs (_, T, p))) rhss =
blanchet@37399
    59
        (*Existential: declare a Skolem function, then insert into body and continue*)
blanchet@37399
    60
        let
blanchet@37617
    61
          val args = OldTerm.term_frees body
blanchet@37500
    62
          (* Forms a lambda-abstraction over the formal parameters *)
blanchet@37500
    63
          val rhs =
blanchet@37500
    64
            list_abs_free (map dest_Free args,
blanchet@37617
    65
                           HOLogic.choice_const T $ beta_eta_under_lambdas body)
blanchet@39886
    66
            |> mk_old_skolem_term_wrapper
blanchet@37518
    67
          val comb = list_comb (rhs, args)
blanchet@37617
    68
        in dec_sko (subst_bound (comb, p)) (rhs :: rhss) end
blanchet@37617
    69
      | dec_sko (Const (@{const_name All},_) $ Abs (a, T, p)) rhss =
blanchet@37399
    70
        (*Universal quant: insert a free variable into body and continue*)
blanchet@37399
    71
        let val fname = Name.variant (OldTerm.add_term_names (p,[])) a
blanchet@37617
    72
        in dec_sko (subst_bound (Free(fname,T), p)) rhss end
haftmann@38795
    73
      | dec_sko (@{const HOL.conj} $ p $ q) rhss = rhss |> dec_sko p |> dec_sko q
haftmann@38795
    74
      | dec_sko (@{const HOL.disj} $ p $ q) rhss = rhss |> dec_sko p |> dec_sko q
blanchet@37617
    75
      | dec_sko (@{const Trueprop} $ p) rhss = dec_sko p rhss
blanchet@37617
    76
      | dec_sko _ rhss = rhss
paulson@20419
    77
  in  dec_sko (prop_of th) []  end;
paulson@20419
    78
paulson@20419
    79
paulson@24827
    80
(**** REPLACING ABSTRACTIONS BY COMBINATORS ****)
paulson@20419
    81
nipkow@39302
    82
val fun_cong_all = @{thm fun_eq_iff [THEN iffD1]}
paulson@20419
    83
blanchet@38001
    84
(* Removes the lambdas from an equation of the form "t = (%x. u)".
blanchet@38608
    85
   (Cf. "extensionalize_term" in "Sledgehammer_Translate".) *)
blanchet@38000
    86
fun extensionalize_theorem th =
blanchet@37540
    87
  case prop_of th of
haftmann@38864
    88
    _ $ (Const (@{const_name HOL.eq}, Type (_, [Type (@{type_name fun}, _), _]))
blanchet@39376
    89
         $ _ $ Abs _) => extensionalize_theorem (th RS fun_cong_all)
blanchet@37540
    90
  | _ => th
paulson@20419
    91
blanchet@39355
    92
fun is_quasi_lambda_free (Const (@{const_name skolem}, _) $ _) = true
blanchet@37416
    93
  | is_quasi_lambda_free (t1 $ t2) =
blanchet@37416
    94
    is_quasi_lambda_free t1 andalso is_quasi_lambda_free t2
blanchet@37416
    95
  | is_quasi_lambda_free (Abs _) = false
blanchet@37416
    96
  | is_quasi_lambda_free _ = true
wenzelm@20461
    97
wenzelm@32010
    98
val [f_B,g_B] = map (cterm_of @{theory}) (OldTerm.term_vars (prop_of @{thm abs_B}));
wenzelm@32010
    99
val [g_C,f_C] = map (cterm_of @{theory}) (OldTerm.term_vars (prop_of @{thm abs_C}));
wenzelm@32010
   100
val [f_S,g_S] = map (cterm_of @{theory}) (OldTerm.term_vars (prop_of @{thm abs_S}));
paulson@20863
   101
blanchet@38282
   102
(* FIXME: Requires more use of cterm constructors. *)
paulson@24827
   103
fun abstract ct =
wenzelm@28544
   104
  let
wenzelm@28544
   105
      val thy = theory_of_cterm ct
paulson@25256
   106
      val Abs(x,_,body) = term_of ct
blanchet@35963
   107
      val Type(@{type_name fun}, [xT,bodyT]) = typ_of (ctyp_of_term ct)
blanchet@38005
   108
      val cxT = ctyp_of thy xT
blanchet@38005
   109
      val cbodyT = ctyp_of thy bodyT
blanchet@38005
   110
      fun makeK () =
blanchet@38005
   111
        instantiate' [SOME cxT, SOME cbodyT] [SOME (cterm_of thy body)]
blanchet@38005
   112
                     @{thm abs_K}
paulson@24827
   113
  in
paulson@24827
   114
      case body of
paulson@24827
   115
          Const _ => makeK()
paulson@24827
   116
        | Free _ => makeK()
paulson@24827
   117
        | Var _ => makeK()  (*though Var isn't expected*)
wenzelm@27184
   118
        | Bound 0 => instantiate' [SOME cxT] [] @{thm abs_I} (*identity: I*)
paulson@24827
   119
        | rator$rand =>
wenzelm@27184
   120
            if loose_bvar1 (rator,0) then (*C or S*)
wenzelm@27179
   121
               if loose_bvar1 (rand,0) then (*S*)
wenzelm@27179
   122
                 let val crator = cterm_of thy (Abs(x,xT,rator))
wenzelm@27179
   123
                     val crand = cterm_of thy (Abs(x,xT,rand))
wenzelm@27184
   124
                     val abs_S' = cterm_instantiate [(f_S,crator),(g_S,crand)] @{thm abs_S}
wenzelm@27184
   125
                     val (_,rhs) = Thm.dest_equals (cprop_of abs_S')
wenzelm@27179
   126
                 in
wenzelm@27179
   127
                   Thm.transitive abs_S' (Conv.binop_conv abstract rhs)
wenzelm@27179
   128
                 end
wenzelm@27179
   129
               else (*C*)
wenzelm@27179
   130
                 let val crator = cterm_of thy (Abs(x,xT,rator))
wenzelm@27184
   131
                     val abs_C' = cterm_instantiate [(f_C,crator),(g_C,cterm_of thy rand)] @{thm abs_C}
wenzelm@27184
   132
                     val (_,rhs) = Thm.dest_equals (cprop_of abs_C')
wenzelm@27179
   133
                 in
wenzelm@27179
   134
                   Thm.transitive abs_C' (Conv.fun_conv (Conv.arg_conv abstract) rhs)
wenzelm@27179
   135
                 end
wenzelm@27184
   136
            else if loose_bvar1 (rand,0) then (*B or eta*)
wenzelm@36945
   137
               if rand = Bound 0 then Thm.eta_conversion ct
wenzelm@27179
   138
               else (*B*)
wenzelm@27179
   139
                 let val crand = cterm_of thy (Abs(x,xT,rand))
wenzelm@27179
   140
                     val crator = cterm_of thy rator
wenzelm@27184
   141
                     val abs_B' = cterm_instantiate [(f_B,crator),(g_B,crand)] @{thm abs_B}
wenzelm@27184
   142
                     val (_,rhs) = Thm.dest_equals (cprop_of abs_B')
blanchet@37349
   143
                 in Thm.transitive abs_B' (Conv.arg_conv abstract rhs) end
wenzelm@27179
   144
            else makeK()
blanchet@37349
   145
        | _ => raise Fail "abstract: Bad term"
paulson@24827
   146
  end;
paulson@20863
   147
blanchet@37349
   148
(* Traverse a theorem, remplacing lambda-abstractions with combinators. *)
blanchet@38001
   149
fun introduce_combinators_in_cterm ct =
blanchet@37416
   150
  if is_quasi_lambda_free (term_of ct) then
blanchet@37349
   151
    Thm.reflexive ct
blanchet@37349
   152
  else case term_of ct of
blanchet@37349
   153
    Abs _ =>
blanchet@37349
   154
    let
blanchet@37349
   155
      val (cv, cta) = Thm.dest_abs NONE ct
blanchet@37349
   156
      val (v, _) = dest_Free (term_of cv)
blanchet@38001
   157
      val u_th = introduce_combinators_in_cterm cta
blanchet@37349
   158
      val cu = Thm.rhs_of u_th
blanchet@37349
   159
      val comb_eq = abstract (Thm.cabs cv cu)
blanchet@37349
   160
    in Thm.transitive (Thm.abstract_rule v cv u_th) comb_eq end
blanchet@37349
   161
  | _ $ _ =>
blanchet@37349
   162
    let val (ct1, ct2) = Thm.dest_comb ct in
blanchet@38001
   163
        Thm.combination (introduce_combinators_in_cterm ct1)
blanchet@38001
   164
                        (introduce_combinators_in_cterm ct2)
blanchet@37349
   165
    end
blanchet@37349
   166
blanchet@38001
   167
fun introduce_combinators_in_theorem th =
blanchet@37416
   168
  if is_quasi_lambda_free (prop_of th) then
blanchet@37349
   169
    th
paulson@24827
   170
  else
blanchet@37349
   171
    let
blanchet@37349
   172
      val th = Drule.eta_contraction_rule th
blanchet@38001
   173
      val eqth = introduce_combinators_in_cterm (cprop_of th)
blanchet@37349
   174
    in Thm.equal_elim eqth th end
blanchet@37349
   175
    handle THM (msg, _, _) =>
blanchet@37349
   176
           (warning ("Error in the combinator translation of " ^
blanchet@37349
   177
                     Display.string_of_thm_without_context th ^
blanchet@37349
   178
                     "\nException message: " ^ msg ^ ".");
blanchet@37349
   179
            (* A type variable of sort "{}" will make abstraction fail. *)
blanchet@37349
   180
            TrueI)
paulson@16009
   181
paulson@16009
   182
(*cterms are used throughout for efficiency*)
blanchet@38280
   183
val cTrueprop = cterm_of @{theory HOL} HOLogic.Trueprop;
paulson@16009
   184
paulson@16009
   185
(*Given an abstraction over n variables, replace the bound variables by free
paulson@16009
   186
  ones. Return the body, along with the list of free variables.*)
wenzelm@20461
   187
fun c_variant_abs_multi (ct0, vars) =
paulson@16009
   188
      let val (cv,ct) = Thm.dest_abs NONE ct0
paulson@16009
   189
      in  c_variant_abs_multi (ct, cv::vars)  end
paulson@16009
   190
      handle CTERM _ => (ct0, rev vars);
paulson@16009
   191
blanchet@39355
   192
val skolem_def_raw = @{thms skolem_def_raw}
blanchet@37617
   193
blanchet@37617
   194
(* Given the definition of a Skolem function, return a theorem to replace
blanchet@37617
   195
   an existential formula by a use of that function.
paulson@18141
   196
   Example: "EX x. x : A & x ~: B ==> sko A B : A & sko A B ~: B"  [.] *)
blanchet@39886
   197
fun old_skolem_theorem_from_def thy rhs0 =
blanchet@37399
   198
  let
blanchet@38280
   199
    val rhs = rhs0 |> Type.legacy_freeze_thaw |> #1 |> cterm_of thy
blanchet@37617
   200
    val rhs' = rhs |> Thm.dest_comb |> snd
blanchet@37617
   201
    val (ch, frees) = c_variant_abs_multi (rhs', [])
blanchet@37617
   202
    val (hilbert, cabs) = ch |> Thm.dest_comb |>> term_of
blanchet@37617
   203
    val T =
blanchet@37617
   204
      case hilbert of
blanchet@37617
   205
        Const (@{const_name Eps}, Type (@{type_name fun}, [_, T])) => T
blanchet@39886
   206
      | _ => raise TERM ("old_skolem_theorem_from_def: expected \"Eps\"",
blanchet@39886
   207
                         [hilbert])
blanchet@38280
   208
    val cex = cterm_of thy (HOLogic.exists_const T)
blanchet@37617
   209
    val ex_tm = Thm.capply cTrueprop (Thm.capply cex cabs)
blanchet@37629
   210
    val conc =
blanchet@37617
   211
      Drule.list_comb (rhs, frees)
blanchet@37617
   212
      |> Drule.beta_conv cabs |> Thm.capply cTrueprop
blanchet@37617
   213
    fun tacf [prem] =
blanchet@39355
   214
      rewrite_goals_tac skolem_def_raw
blanchet@39355
   215
      THEN rtac ((prem |> rewrite_rule skolem_def_raw) RS @{thm someI_ex}) 1
blanchet@37617
   216
  in
blanchet@37629
   217
    Goal.prove_internal [ex_tm] conc tacf
blanchet@37629
   218
    |> forall_intr_list frees
blanchet@37629
   219
    |> Thm.forall_elim_vars 0  (*Introduce Vars, but don't discharge defs.*)
blanchet@37629
   220
    |> Thm.varifyT_global
blanchet@37617
   221
  end
paulson@24742
   222
blanchet@39036
   223
fun to_definitional_cnf_with_quantifiers thy th =
blanchet@39036
   224
  let
blanchet@39036
   225
    val eqth = cnf.make_cnfx_thm thy (HOLogic.dest_Trueprop (prop_of th))
blanchet@39036
   226
    val eqth = eqth RS @{thm eq_reflection}
blanchet@39036
   227
    val eqth = eqth RS @{thm TruepropI}
blanchet@39036
   228
  in Thm.equal_elim eqth th end
blanchet@39036
   229
blanchet@39896
   230
fun zapped_var_name ax_no (skolem, cluster_no) s =
blanchet@39896
   231
  (if skolem then new_skolem_var_prefix else new_nonskolem_var_prefix) ^
blanchet@39896
   232
  string_of_int ax_no ^ "_" ^ string_of_int cluster_no ^ "_" ^ s
blanchet@39896
   233
blanchet@39896
   234
fun zap_quantifiers ax_no =
blanchet@39887
   235
  let
blanchet@39896
   236
    fun conv (cluster as (cluster_skolem, cluster_no)) pos ct =
blanchet@39887
   237
      ct |> (case term_of ct of
blanchet@39887
   238
               Const (s, _) $ Abs (s', _, _) =>
blanchet@39887
   239
               if s = @{const_name all} orelse s = @{const_name All} orelse
blanchet@39887
   240
                  s = @{const_name Ex} then
blanchet@39896
   241
                 let
blanchet@39896
   242
                   val skolem = (pos = (s = @{const_name Ex}))
blanchet@39896
   243
                   val cluster =
blanchet@39896
   244
                     if skolem = cluster_skolem then cluster
blanchet@39896
   245
                     else (skolem, cluster_no |> cluster_skolem ? Integer.add 1)
blanchet@39896
   246
                 in
blanchet@39896
   247
                   Thm.dest_comb #> snd
blanchet@39896
   248
                   #> Thm.dest_abs (SOME (zapped_var_name ax_no cluster s'))
blanchet@39896
   249
                   #> snd #> conv cluster pos
blanchet@39896
   250
                 end
blanchet@39887
   251
               else
blanchet@39887
   252
                 Conv.all_conv
blanchet@39887
   253
             | Const (s, _) $ _ $ _ =>
blanchet@39887
   254
               if s = @{const_name "==>"} orelse
blanchet@39887
   255
                  s = @{const_name HOL.implies} then
blanchet@39896
   256
                 Conv.combination_conv (Conv.arg_conv (conv cluster (not pos)))
blanchet@39896
   257
                                       (conv cluster pos)
blanchet@39887
   258
               else if s = @{const_name HOL.conj} orelse
blanchet@39887
   259
                       s = @{const_name HOL.disj} then
blanchet@39896
   260
                 Conv.combination_conv (Conv.arg_conv (conv cluster pos))
blanchet@39896
   261
                                       (conv cluster pos)
blanchet@39887
   262
               else
blanchet@39887
   263
                 Conv.all_conv
blanchet@39887
   264
             | Const (s, _) $ _ =>
blanchet@39887
   265
               if s = @{const_name Trueprop} then
blanchet@39896
   266
                 Conv.arg_conv (conv cluster pos)
blanchet@39887
   267
               else if s = @{const_name Not} then
blanchet@39896
   268
                 Conv.arg_conv (conv cluster (not pos))
blanchet@39887
   269
               else
blanchet@39887
   270
                 Conv.all_conv
blanchet@39887
   271
             | _ => Conv.all_conv)
blanchet@39887
   272
  in
blanchet@39896
   273
    conv (true, 0) true #> Drule.export_without_context
blanchet@39887
   274
    #> cprop_of #> Thm.dest_equals #> snd
blanchet@39887
   275
  end
blanchet@39887
   276
blanchet@39887
   277
val pull_out_quant_ss =
blanchet@39887
   278
  MetaSimplifier.clear_ss HOL_basic_ss
blanchet@39887
   279
      addsimps @{thms all_simps[symmetric]}
blanchet@39887
   280
blanchet@39887
   281
(* Converts an Isabelle theorem into NNF. *)
blanchet@39896
   282
fun nnf_axiom new_skolemizer ax_no th ctxt =
blanchet@39887
   283
  let
blanchet@39887
   284
    val thy = ProofContext.theory_of ctxt
blanchet@39887
   285
    val th =
blanchet@39887
   286
      th |> transform_elim_theorem
blanchet@39887
   287
         |> zero_var_indexes
blanchet@39887
   288
         |> new_skolemizer ? forall_intr_vars
blanchet@39887
   289
    val (th, ctxt) = Variable.import true [th] ctxt |>> snd |>> the_single
blanchet@39887
   290
    val th = th |> Conv.fconv_rule Object_Logic.atomize
blanchet@39887
   291
                |> extensionalize_theorem
blanchet@39887
   292
                |> Meson.make_nnf ctxt
blanchet@39887
   293
  in
blanchet@39887
   294
    if new_skolemizer then
blanchet@39887
   295
      let
blanchet@39887
   296
        val th' = th |> Meson.skolemize ctxt
blanchet@39887
   297
                     |> simplify pull_out_quant_ss
blanchet@39887
   298
                     |> Drule.eta_contraction_rule
blanchet@39896
   299
        val t = th' |> cprop_of |> zap_quantifiers ax_no |> term_of
blanchet@39887
   300
      in
blanchet@39887
   301
        if exists_subterm (fn Var ((s, _), _) =>
blanchet@39887
   302
                              String.isPrefix new_skolem_var_prefix s
blanchet@39887
   303
                            | _ => false) t then
blanchet@39887
   304
          let
blanchet@39887
   305
            val (ct, ctxt) =
blanchet@39887
   306
              Variable.import_terms true [t] ctxt
blanchet@39887
   307
              |>> the_single |>> cterm_of thy
blanchet@39894
   308
          in (SOME (th', ct), Thm.assume ct, ctxt) end
blanchet@39887
   309
       else
blanchet@39887
   310
          (NONE, th, ctxt)
blanchet@39887
   311
      end
blanchet@39887
   312
    else
blanchet@39887
   313
      (NONE, th, ctxt)
blanchet@39887
   314
  end
blanchet@39887
   315
blanchet@39887
   316
(* Convert a theorem to CNF, with additional premises due to skolemization. *)
blanchet@39894
   317
fun cnf_axiom thy new_skolemizer ax_no th =
blanchet@37626
   318
  let
blanchet@37626
   319
    val ctxt0 = Variable.global_thm_context th
blanchet@39896
   320
    val (opt, nnf_th, ctxt) = nnf_axiom new_skolemizer ax_no th ctxt0
blanchet@39894
   321
    fun clausify th =
blanchet@39887
   322
      Meson.make_cnf (if new_skolemizer then
blanchet@39887
   323
                        []
blanchet@39887
   324
                      else
blanchet@39887
   325
                        map (old_skolem_theorem_from_def thy)
blanchet@39887
   326
                            (old_skolem_defs th)) th ctxt
blanchet@39261
   327
    val (cnf_ths, ctxt) =
blanchet@39894
   328
      clausify nnf_th
blanchet@39894
   329
      |> (fn ([], _) =>
blanchet@39894
   330
             clausify (to_definitional_cnf_with_quantifiers thy nnf_th)
blanchet@39268
   331
           | p => p)
blanchet@39887
   332
    val export = Variable.export ctxt ctxt0
blanchet@39894
   333
    fun intr_imp ct th =
blanchet@39894
   334
      Thm.instantiate ([], map (pairself (cterm_of @{theory}))
blanchet@39894
   335
                               [(Var (("i", 1), @{typ nat}),
blanchet@39894
   336
                                 HOLogic.mk_number @{typ nat} ax_no)])
blanchet@39894
   337
                      @{thm skolem_COMBK_D}
blanchet@39894
   338
      RS Thm.implies_intr ct th
blanchet@37626
   339
  in
blanchet@39887
   340
    (opt |> Option.map (singleton export o fst),
blanchet@39887
   341
     cnf_ths |> map (introduce_combinators_in_theorem
blanchet@39894
   342
                     #> (case opt of SOME (_, ct) => intr_imp ct | NONE => I))
blanchet@39887
   343
             |> export
blanchet@39887
   344
             |> Meson.finish_cnf
blanchet@39887
   345
             |> map Thm.close_derivation)
blanchet@37626
   346
  end
blanchet@39887
   347
  handle THM _ => (NONE, [])
wenzelm@27184
   348
blanchet@39720
   349
fun meson_general_tac ctxt ths =
blanchet@39720
   350
  let
blanchet@39720
   351
    val thy = ProofContext.theory_of ctxt
blanchet@39720
   352
    val ctxt0 = Classical.put_claset HOL_cs ctxt
blanchet@39894
   353
  in Meson.meson_tac ctxt0 (maps (snd o cnf_axiom thy false 0) ths) end
blanchet@39720
   354
blanchet@39720
   355
val setup =
blanchet@39891
   356
  Method.setup @{binding meson} (Attrib.thms >> (fn ths => fn ctxt =>
blanchet@39891
   357
     SIMPLE_METHOD' (CHANGED_PROP o meson_general_tac ctxt ths)))
blanchet@39891
   358
     "MESON resolution proof procedure"
blanchet@39720
   359
wenzelm@20461
   360
end;