src/Pure/meta_simplifier.ML
author haftmann
Fri Sep 02 15:54:47 2005 +0200 (2005-09-02)
changeset 17232 148c241d2492
parent 17203 29b2563f5c11
child 17496 26535df536ae
permissions -rw-r--r--
some 'assoc' etc. refactoring
berghofe@10413
     1
(*  Title:      Pure/meta_simplifier.ML
berghofe@10413
     2
    ID:         $Id$
wenzelm@11672
     3
    Author:     Tobias Nipkow and Stefan Berghofer
berghofe@10413
     4
wenzelm@11672
     5
Meta-level Simplification.
berghofe@10413
     6
*)
berghofe@10413
     7
skalberg@15006
     8
infix 4
wenzelm@15023
     9
  addsimps delsimps addeqcongs deleqcongs addcongs delcongs addsimprocs delsimprocs
nipkow@15199
    10
  setmksimps setmkcong setmksym setmkeqTrue settermless setsubgoaler
wenzelm@15023
    11
  setloop addloop delloop setSSolver addSSolver setSolver addSolver;
skalberg@15006
    12
wenzelm@11672
    13
signature BASIC_META_SIMPLIFIER =
wenzelm@11672
    14
sig
wenzelm@15023
    15
  val debug_simp: bool ref
wenzelm@11672
    16
  val trace_simp: bool ref
nipkow@13828
    17
  val simp_depth_limit: int ref
nipkow@16042
    18
  val trace_simp_depth_limit: int ref
wenzelm@15023
    19
  type rrule
wenzelm@16807
    20
  val eq_rrule: rrule * rrule -> bool
wenzelm@15023
    21
  type cong
skalberg@15006
    22
  type solver
skalberg@15006
    23
  val mk_solver: string -> (thm list -> int -> tactic) -> solver
wenzelm@15023
    24
  type simpset
wenzelm@15023
    25
  type proc
skalberg@15006
    26
  val rep_ss: simpset ->
wenzelm@15023
    27
   {rules: rrule Net.net,
wenzelm@15023
    28
    prems: thm list,
wenzelm@16985
    29
    bounds: int * (string * (string * typ)) list} *
wenzelm@15023
    30
   {congs: (string * cong) list * string list,
wenzelm@15023
    31
    procs: proc Net.net,
wenzelm@15023
    32
    mk_rews:
wenzelm@15023
    33
     {mk: thm -> thm list,
wenzelm@15023
    34
      mk_cong: thm -> thm,
wenzelm@15023
    35
      mk_sym: thm -> thm option,
wenzelm@15023
    36
      mk_eq_True: thm -> thm option},
wenzelm@15023
    37
    termless: term * term -> bool,
skalberg@15006
    38
    subgoal_tac: simpset -> int -> tactic,
skalberg@15006
    39
    loop_tacs: (string * (int -> tactic)) list,
wenzelm@15023
    40
    solvers: solver list * solver list}
skalberg@15006
    41
  val print_ss: simpset -> unit
wenzelm@15023
    42
  val empty_ss: simpset
wenzelm@15023
    43
  val merge_ss: simpset * simpset -> simpset
wenzelm@15023
    44
  type simproc
wenzelm@15023
    45
  val mk_simproc: string -> cterm list ->
wenzelm@16458
    46
    (theory -> simpset -> term -> thm option) -> simproc
wenzelm@15023
    47
  val add_prems: thm list -> simpset -> simpset
wenzelm@15023
    48
  val prems_of_ss: simpset -> thm list
wenzelm@15023
    49
  val addsimps: simpset * thm list -> simpset
wenzelm@15023
    50
  val delsimps: simpset * thm list -> simpset
wenzelm@15023
    51
  val addeqcongs: simpset * thm list -> simpset
wenzelm@15023
    52
  val deleqcongs: simpset * thm list -> simpset
wenzelm@15023
    53
  val addcongs: simpset * thm list -> simpset
wenzelm@15023
    54
  val delcongs: simpset * thm list -> simpset
wenzelm@15023
    55
  val addsimprocs: simpset * simproc list -> simpset
wenzelm@15023
    56
  val delsimprocs: simpset * simproc list -> simpset
wenzelm@15023
    57
  val setmksimps: simpset * (thm -> thm list) -> simpset
wenzelm@15023
    58
  val setmkcong: simpset * (thm -> thm) -> simpset
wenzelm@15023
    59
  val setmksym: simpset * (thm -> thm option) -> simpset
wenzelm@15023
    60
  val setmkeqTrue: simpset * (thm -> thm option) -> simpset
wenzelm@15023
    61
  val settermless: simpset * (term * term -> bool) -> simpset
wenzelm@15023
    62
  val setsubgoaler: simpset * (simpset -> int -> tactic) -> simpset
wenzelm@15023
    63
  val setloop: simpset * (int -> tactic) -> simpset
wenzelm@15023
    64
  val addloop: simpset * (string * (int -> tactic)) -> simpset
wenzelm@15023
    65
  val delloop: simpset * string -> simpset
wenzelm@15023
    66
  val setSSolver: simpset * solver -> simpset
wenzelm@15023
    67
  val addSSolver: simpset * solver -> simpset
wenzelm@15023
    68
  val setSolver: simpset * solver -> simpset
wenzelm@15023
    69
  val addSolver: simpset * solver -> simpset
skalberg@15006
    70
  val generic_simp_tac: bool -> bool * bool * bool -> simpset -> int -> tactic
skalberg@15006
    71
end;
skalberg@15006
    72
berghofe@10413
    73
signature META_SIMPLIFIER =
berghofe@10413
    74
sig
wenzelm@11672
    75
  include BASIC_META_SIMPLIFIER
berghofe@10413
    76
  exception SIMPLIFIER of string * thm
wenzelm@15023
    77
  val clear_ss: simpset -> simpset
wenzelm@15023
    78
  exception SIMPROC_FAIL of string * exn
wenzelm@16458
    79
  val simproc_i: theory -> string -> term list
wenzelm@16458
    80
    -> (theory -> simpset -> term -> thm option) -> simproc
wenzelm@16458
    81
  val simproc: theory -> string -> string list
wenzelm@16458
    82
    -> (theory -> simpset -> term -> thm option) -> simproc
wenzelm@16985
    83
  val inherit_bounds: simpset -> simpset -> simpset
wenzelm@11672
    84
  val rewrite_cterm: bool * bool * bool ->
wenzelm@15023
    85
    (simpset -> thm -> thm option) -> simpset -> cterm -> thm
wenzelm@15023
    86
  val rewrite_aux: (simpset -> thm -> thm option) -> bool -> thm list -> cterm -> thm
wenzelm@15023
    87
  val simplify_aux: (simpset -> thm -> thm option) -> bool -> thm list -> thm -> thm
wenzelm@16458
    88
  val rewrite_term: theory -> thm list -> (term -> term option) list -> term -> term
wenzelm@15023
    89
  val rewrite_thm: bool * bool * bool ->
wenzelm@15023
    90
    (simpset -> thm -> thm option) -> simpset -> thm -> thm
wenzelm@15023
    91
  val rewrite_goals_rule_aux: (simpset -> thm -> thm option) -> thm list -> thm -> thm
wenzelm@15023
    92
  val rewrite_goal_rule: bool * bool * bool ->
wenzelm@15023
    93
    (simpset -> thm -> thm option) -> simpset -> int -> thm -> thm
wenzelm@15023
    94
  val asm_rewrite_goal_tac: bool * bool * bool ->
wenzelm@15023
    95
    (simpset -> tactic) -> simpset -> int -> tactic
wenzelm@15023
    96
  val simp_thm: bool * bool * bool -> simpset -> thm -> thm
wenzelm@15023
    97
  val simp_cterm: bool * bool * bool -> simpset -> cterm -> thm
berghofe@10413
    98
end;
berghofe@10413
    99
wenzelm@15023
   100
structure MetaSimplifier: META_SIMPLIFIER =
berghofe@10413
   101
struct
berghofe@10413
   102
wenzelm@15023
   103
wenzelm@15023
   104
(** datatype simpset **)
wenzelm@15023
   105
wenzelm@15023
   106
(* rewrite rules *)
berghofe@10413
   107
berghofe@13607
   108
type rrule = {thm: thm, name: string, lhs: term, elhs: cterm, fo: bool, perm: bool};
wenzelm@15023
   109
wenzelm@15023
   110
(*thm: the rewrite rule;
wenzelm@15023
   111
  name: name of theorem from which rewrite rule was extracted;
wenzelm@15023
   112
  lhs: the left-hand side;
wenzelm@15023
   113
  elhs: the etac-contracted lhs;
wenzelm@15023
   114
  fo: use first-order matching;
wenzelm@15023
   115
  perm: the rewrite rule is permutative;
wenzelm@15023
   116
wenzelm@12603
   117
Remarks:
berghofe@10413
   118
  - elhs is used for matching,
wenzelm@15023
   119
    lhs only for preservation of bound variable names;
berghofe@10413
   120
  - fo is set iff
berghofe@10413
   121
    either elhs is first-order (no Var is applied),
wenzelm@15023
   122
      in which case fo-matching is complete,
berghofe@10413
   123
    or elhs is not a pattern,
wenzelm@15023
   124
      in which case there is nothing better to do;*)
berghofe@10413
   125
berghofe@10413
   126
fun eq_rrule ({thm = thm1, ...}: rrule, {thm = thm2, ...}: rrule) =
wenzelm@15023
   127
  Drule.eq_thm_prop (thm1, thm2);
wenzelm@15023
   128
wenzelm@15023
   129
wenzelm@15023
   130
(* congruences *)
wenzelm@15023
   131
wenzelm@15023
   132
type cong = {thm: thm, lhs: cterm};
berghofe@10413
   133
wenzelm@12603
   134
fun eq_cong ({thm = thm1, ...}: cong, {thm = thm2, ...}: cong) =
wenzelm@15023
   135
  Drule.eq_thm_prop (thm1, thm2);
berghofe@10413
   136
berghofe@10413
   137
wenzelm@15023
   138
(* solvers *)
wenzelm@15023
   139
wenzelm@15023
   140
datatype solver =
wenzelm@15023
   141
  Solver of
wenzelm@15023
   142
   {name: string,
wenzelm@15023
   143
    solver: thm list -> int -> tactic,
wenzelm@15023
   144
    id: stamp};
wenzelm@15023
   145
wenzelm@15023
   146
fun mk_solver name solver = Solver {name = name, solver = solver, id = stamp ()};
wenzelm@15023
   147
wenzelm@15034
   148
fun solver_name (Solver {name, ...}) = name;
wenzelm@15023
   149
fun solver ths (Solver {solver = tacf, ...}) = tacf ths;
wenzelm@15023
   150
fun eq_solver (Solver {id = id1, ...}, Solver {id = id2, ...}) = (id1 = id2);
wenzelm@15023
   151
val merge_solvers = gen_merge_lists eq_solver;
wenzelm@15023
   152
wenzelm@15023
   153
wenzelm@15023
   154
(* simplification sets and procedures *)
wenzelm@15023
   155
wenzelm@15023
   156
(*A simpset contains data required during conversion:
berghofe@10413
   157
    rules: discrimination net of rewrite rules;
wenzelm@15023
   158
    prems: current premises;
berghofe@15249
   159
    bounds: maximal index of bound variables already used
wenzelm@15023
   160
      (for generating new names when rewriting under lambda abstractions);
berghofe@10413
   161
    congs: association list of congruence rules and
berghofe@10413
   162
           a list of `weak' congruence constants.
berghofe@10413
   163
           A congruence is `weak' if it avoids normalization of some argument.
berghofe@10413
   164
    procs: discrimination net of simplification procedures
berghofe@10413
   165
      (functions that prove rewrite rules on the fly);
wenzelm@15023
   166
    mk_rews:
wenzelm@15023
   167
      mk: turn simplification thms into rewrite rules;
wenzelm@15023
   168
      mk_cong: prepare congruence rules;
wenzelm@15023
   169
      mk_sym: turn == around;
wenzelm@15023
   170
      mk_eq_True: turn P into P == True;
wenzelm@15023
   171
    termless: relation for ordered rewriting;*)
skalberg@15011
   172
wenzelm@15023
   173
type mk_rews =
wenzelm@15023
   174
 {mk: thm -> thm list,
wenzelm@15023
   175
  mk_cong: thm -> thm,
wenzelm@15023
   176
  mk_sym: thm -> thm option,
wenzelm@15023
   177
  mk_eq_True: thm -> thm option};
wenzelm@15023
   178
wenzelm@15023
   179
datatype simpset =
wenzelm@15023
   180
  Simpset of
wenzelm@15023
   181
   {rules: rrule Net.net,
berghofe@10413
   182
    prems: thm list,
wenzelm@16985
   183
    bounds: int * (string * (string * typ)) list} *
wenzelm@15023
   184
   {congs: (string * cong) list * string list,
wenzelm@15023
   185
    procs: proc Net.net,
wenzelm@15023
   186
    mk_rews: mk_rews,
nipkow@11504
   187
    termless: term * term -> bool,
skalberg@15011
   188
    subgoal_tac: simpset -> int -> tactic,
skalberg@15011
   189
    loop_tacs: (string * (int -> tactic)) list,
wenzelm@15023
   190
    solvers: solver list * solver list}
wenzelm@15023
   191
and proc =
wenzelm@15023
   192
  Proc of
wenzelm@15023
   193
   {name: string,
wenzelm@15023
   194
    lhs: cterm,
wenzelm@16458
   195
    proc: theory -> simpset -> term -> thm option,
wenzelm@15023
   196
    id: stamp};
wenzelm@15023
   197
wenzelm@15023
   198
fun eq_proc (Proc {id = id1, ...}, Proc {id = id2, ...}) = (id1 = id2);
wenzelm@15023
   199
wenzelm@15023
   200
fun rep_ss (Simpset args) = args;
berghofe@10413
   201
nipkow@16042
   202
fun make_ss1 (rules, prems, bounds) =
nipkow@16042
   203
  {rules = rules, prems = prems, bounds = bounds};
wenzelm@15023
   204
nipkow@16042
   205
fun map_ss1 f {rules, prems, bounds} =
nipkow@16042
   206
  make_ss1 (f (rules, prems, bounds));
berghofe@10413
   207
wenzelm@15023
   208
fun make_ss2 (congs, procs, mk_rews, termless, subgoal_tac, loop_tacs, solvers) =
wenzelm@15023
   209
  {congs = congs, procs = procs, mk_rews = mk_rews, termless = termless,
wenzelm@15023
   210
    subgoal_tac = subgoal_tac, loop_tacs = loop_tacs, solvers = solvers};
wenzelm@15023
   211
wenzelm@15023
   212
fun map_ss2 f {congs, procs, mk_rews, termless, subgoal_tac, loop_tacs, solvers} =
wenzelm@15023
   213
  make_ss2 (f (congs, procs, mk_rews, termless, subgoal_tac, loop_tacs, solvers));
wenzelm@15023
   214
wenzelm@15023
   215
fun make_simpset (args1, args2) = Simpset (make_ss1 args1, make_ss2 args2);
berghofe@10413
   216
nipkow@16042
   217
fun map_simpset f (Simpset ({rules, prems, bounds},
wenzelm@15023
   218
    {congs, procs, mk_rews, termless, subgoal_tac, loop_tacs, solvers})) =
nipkow@16042
   219
  make_simpset (f ((rules, prems, bounds),
wenzelm@15023
   220
    (congs, procs, mk_rews, termless, subgoal_tac, loop_tacs, solvers)));
berghofe@10413
   221
wenzelm@15023
   222
fun map_simpset1 f (Simpset (r1, r2)) = Simpset (map_ss1 f r1, r2);
wenzelm@15023
   223
fun map_simpset2 f (Simpset (r1, r2)) = Simpset (r1, map_ss2 f r2);
wenzelm@15023
   224
wenzelm@15023
   225
wenzelm@16985
   226
(* diagnostics *)
wenzelm@16985
   227
wenzelm@16985
   228
exception SIMPLIFIER of string * thm;
wenzelm@16985
   229
wenzelm@16985
   230
val debug_simp = ref false;
wenzelm@16985
   231
val trace_simp = ref false;
wenzelm@16985
   232
val simp_depth = ref 0;
wenzelm@16985
   233
val simp_depth_limit = ref 100;
wenzelm@16985
   234
val trace_simp_depth_limit = ref 100;
wenzelm@16985
   235
wenzelm@16985
   236
local
wenzelm@16985
   237
wenzelm@16985
   238
fun println a =
wenzelm@16985
   239
  if ! simp_depth > ! trace_simp_depth_limit then ()
wenzelm@16985
   240
  else tracing (enclose "[" "]" (string_of_int (! simp_depth)) ^ a);
wenzelm@16985
   241
wenzelm@16985
   242
fun prnt warn a = if warn then warning a else println a;
wenzelm@16985
   243
wenzelm@16985
   244
fun show_bounds (Simpset ({bounds = (_, bs), ...}, _)) t =
wenzelm@16985
   245
  let
wenzelm@16985
   246
    val used = Term.add_term_names (t, []);
wenzelm@16985
   247
    val xs = rev (Term.variantlist (rev (map #1 bs), used));
wenzelm@16985
   248
    fun subst ((_, (b, T)), x) = (Free (b, T), Syntax.mark_boundT (x, T));
wenzelm@16985
   249
  in Term.subst_atomic (ListPair.map subst (bs, xs)) t end;
wenzelm@16985
   250
wenzelm@16985
   251
fun prtm warn a ss thy t = prnt warn (a ^ "\n" ^
wenzelm@16985
   252
  Sign.string_of_term thy (if ! debug_simp then t else show_bounds ss t));
wenzelm@16985
   253
wenzelm@16985
   254
in
wenzelm@16985
   255
wenzelm@16985
   256
fun debug warn a = if ! debug_simp then prnt warn a else ();
wenzelm@16985
   257
fun trace warn a = if ! trace_simp then prnt warn a else ();
wenzelm@16985
   258
wenzelm@16985
   259
fun debug_term warn a ss thy t = if ! debug_simp then prtm warn a ss thy t else ();
wenzelm@16985
   260
fun trace_term warn a ss thy t = if ! trace_simp then prtm warn a ss thy t else ();
wenzelm@16985
   261
wenzelm@16985
   262
fun trace_cterm warn a ss ct =
wenzelm@16985
   263
  if ! trace_simp then prtm warn a ss (Thm.theory_of_cterm ct) (Thm.term_of ct) else ();
wenzelm@16985
   264
wenzelm@16985
   265
fun trace_thm a ss th =
wenzelm@16985
   266
  if ! trace_simp then prtm false a ss (Thm.theory_of_thm th) (Thm.full_prop_of th) else ();
wenzelm@16985
   267
wenzelm@16985
   268
fun trace_named_thm a ss (th, name) =
wenzelm@16985
   269
  if ! trace_simp then
wenzelm@16985
   270
    prtm false (if name = "" then a else a ^ " " ^ quote name ^ ":") ss
wenzelm@16985
   271
      (Thm.theory_of_thm th) (Thm.full_prop_of th)
wenzelm@16985
   272
  else ();
wenzelm@16985
   273
wenzelm@16985
   274
fun warn_thm a ss th = prtm true a ss (Thm.theory_of_thm th) (Thm.full_prop_of th);
wenzelm@16985
   275
wenzelm@16985
   276
end;
wenzelm@16985
   277
wenzelm@16985
   278
wenzelm@15023
   279
(* print simpsets *)
berghofe@10413
   280
wenzelm@15023
   281
fun print_ss ss =
wenzelm@15023
   282
  let
wenzelm@15034
   283
    val pretty_thms = map Display.pretty_thm;
wenzelm@15023
   284
wenzelm@15034
   285
    fun pretty_cong (name, th) =
wenzelm@15034
   286
      Pretty.block [Pretty.str (name ^ ":"), Pretty.brk 1, Display.pretty_thm th];
wenzelm@15023
   287
    fun pretty_proc (name, lhss) =
wenzelm@15023
   288
      Pretty.big_list (name ^ ":") (map Display.pretty_cterm lhss);
wenzelm@15034
   289
wenzelm@15034
   290
    val Simpset ({rules, ...}, {congs, procs, loop_tacs, solvers, ...}) = ss;
wenzelm@16807
   291
    val smps = map #thm (Net.entries rules);
wenzelm@15034
   292
    val cngs = map (fn (name, {thm, ...}) => (name, thm)) (#1 congs);
wenzelm@16807
   293
    val prcs = Net.entries procs |>
wenzelm@16807
   294
      map (fn Proc {name, lhs, id, ...} => ((name, lhs), id))
wenzelm@15034
   295
      |> partition_eq eq_snd
wenzelm@15034
   296
      |> map (fn ps => (#1 (#1 (hd ps)), map (#2 o #1) ps))
wenzelm@15034
   297
      |> Library.sort_wrt #1;
wenzelm@15023
   298
  in
wenzelm@15034
   299
    [Pretty.big_list "simplification rules:" (pretty_thms smps),
wenzelm@15034
   300
      Pretty.big_list "simplification procedures:" (map pretty_proc prcs),
wenzelm@15034
   301
      Pretty.big_list "congruences:" (map pretty_cong cngs),
wenzelm@15088
   302
      Pretty.strs ("loopers:" :: map (quote o #1) loop_tacs),
wenzelm@15088
   303
      Pretty.strs ("unsafe solvers:" :: map (quote o solver_name) (#1 solvers)),
wenzelm@15088
   304
      Pretty.strs ("safe solvers:" :: map (quote o solver_name) (#2 solvers))]
wenzelm@15023
   305
    |> Pretty.chunks |> Pretty.writeln
nipkow@13828
   306
  end;
berghofe@10413
   307
wenzelm@15023
   308
wenzelm@15023
   309
(* empty simpsets *)
wenzelm@15023
   310
wenzelm@15023
   311
local
wenzelm@15023
   312
wenzelm@15023
   313
fun init_ss mk_rews termless subgoal_tac solvers =
wenzelm@16985
   314
  make_simpset ((Net.empty, [], (0, [])),
wenzelm@15023
   315
    (([], []), Net.empty, mk_rews, termless, subgoal_tac, [], solvers));
wenzelm@15023
   316
wenzelm@15023
   317
val basic_mk_rews: mk_rews =
wenzelm@15023
   318
 {mk = fn th => if can Logic.dest_equals (Thm.concl_of th) then [th] else [],
wenzelm@15023
   319
  mk_cong = I,
skalberg@15531
   320
  mk_sym = SOME o Drule.symmetric_fun,
skalberg@15531
   321
  mk_eq_True = K NONE};
wenzelm@15023
   322
wenzelm@15023
   323
in
wenzelm@15023
   324
wenzelm@15023
   325
val empty_ss = init_ss basic_mk_rews Term.termless (K (K no_tac)) ([], []);
wenzelm@15023
   326
wenzelm@15023
   327
fun clear_ss (Simpset (_, {mk_rews, termless, subgoal_tac, solvers, ...})) =
wenzelm@15023
   328
  init_ss mk_rews termless subgoal_tac solvers;
wenzelm@15023
   329
wenzelm@15023
   330
end;
wenzelm@15023
   331
wenzelm@15023
   332
wenzelm@15023
   333
(* merge simpsets *)            (*NOTE: ignores some fields of 2nd simpset*)
skalberg@15011
   334
wenzelm@15023
   335
fun merge_ss (ss1, ss2) =
wenzelm@15023
   336
  let
nipkow@16042
   337
    val Simpset ({rules = rules1, prems = prems1, bounds = bounds1},
wenzelm@15023
   338
     {congs = (congs1, weak1), procs = procs1, mk_rews, termless, subgoal_tac,
wenzelm@15023
   339
      loop_tacs = loop_tacs1, solvers = (unsafe_solvers1, solvers1)}) = ss1;
nipkow@16042
   340
    val Simpset ({rules = rules2, prems = prems2, bounds = bounds2},
wenzelm@15023
   341
     {congs = (congs2, weak2), procs = procs2, mk_rews = _, termless = _, subgoal_tac = _,
wenzelm@15023
   342
      loop_tacs = loop_tacs2, solvers = (unsafe_solvers2, solvers2)}) = ss2;
skalberg@15011
   343
wenzelm@16807
   344
    val rules' = Net.merge eq_rrule (rules1, rules2);
wenzelm@15023
   345
    val prems' = gen_merge_lists Drule.eq_thm_prop prems1 prems2;
wenzelm@16985
   346
    val bounds' = if #1 bounds1 < #1 bounds2 then bounds2 else bounds1;
wenzelm@15023
   347
    val congs' = gen_merge_lists (eq_cong o pairself #2) congs1 congs2;
wenzelm@15023
   348
    val weak' = merge_lists weak1 weak2;
wenzelm@16807
   349
    val procs' = Net.merge eq_proc (procs1, procs2);
wenzelm@15023
   350
    val loop_tacs' = merge_alists loop_tacs1 loop_tacs2;
wenzelm@15023
   351
    val unsafe_solvers' = merge_solvers unsafe_solvers1 unsafe_solvers2;
wenzelm@15023
   352
    val solvers' = merge_solvers solvers1 solvers2;
wenzelm@15023
   353
  in
nipkow@16042
   354
    make_simpset ((rules', prems', bounds'), ((congs', weak'), procs',
wenzelm@15023
   355
      mk_rews, termless, subgoal_tac, loop_tacs', (unsafe_solvers', solvers')))
wenzelm@15023
   356
  end;
wenzelm@15023
   357
wenzelm@15023
   358
wenzelm@15023
   359
(* simprocs *)
wenzelm@15023
   360
wenzelm@15023
   361
exception SIMPROC_FAIL of string * exn;
wenzelm@15023
   362
wenzelm@15023
   363
datatype simproc = Simproc of proc list;
wenzelm@15023
   364
wenzelm@15023
   365
fun mk_simproc name lhss proc =
wenzelm@15023
   366
  let val id = stamp () in
wenzelm@15023
   367
    Simproc (lhss |> map (fn lhs =>
wenzelm@15023
   368
      Proc {name = name, lhs = lhs, proc = proc, id = id}))
wenzelm@15023
   369
  end;
wenzelm@15023
   370
wenzelm@16458
   371
fun simproc_i thy name = mk_simproc name o map (Thm.cterm_of thy o Logic.varify);
wenzelm@16807
   372
fun simproc thy name = simproc_i thy name o map (Sign.read_term thy);
wenzelm@15023
   373
skalberg@15011
   374
berghofe@10413
   375
berghofe@10413
   376
(** simpset operations **)
berghofe@10413
   377
wenzelm@15023
   378
(* bounds and prems *)
berghofe@10413
   379
wenzelm@16985
   380
fun inherit_bounds (Simpset ({bounds, ...}, _)) =
wenzelm@16985
   381
  map_simpset1 (fn (rules, prems, _) => (rules, prems, bounds));
wenzelm@16985
   382
wenzelm@16985
   383
fun add_bound bound = map_simpset1 (fn (rules, prems, (count, bounds)) =>
wenzelm@16985
   384
  (rules, prems, (count + 1, bound :: bounds)));
berghofe@10413
   385
nipkow@16042
   386
fun add_prems ths = map_simpset1 (fn (rules, prems, bounds) =>
nipkow@16042
   387
  (rules, ths @ prems, bounds));
wenzelm@15023
   388
wenzelm@15023
   389
fun prems_of_ss (Simpset ({prems, ...}, _)) = prems;
berghofe@10413
   390
berghofe@10413
   391
wenzelm@15023
   392
(* addsimps *)
berghofe@10413
   393
wenzelm@15023
   394
fun mk_rrule2 {thm, name, lhs, elhs, perm} =
wenzelm@15023
   395
  let
wenzelm@15023
   396
    val fo = Pattern.first_order (term_of elhs) orelse not (Pattern.pattern (term_of elhs))
wenzelm@15023
   397
  in {thm = thm, name = name, lhs = lhs, elhs = elhs, fo = fo, perm = perm} end;
berghofe@10413
   398
wenzelm@15023
   399
fun insert_rrule quiet (ss, rrule as {thm, name, lhs, elhs, perm}) =
wenzelm@16985
   400
 (trace_named_thm "Adding rewrite rule" ss (thm, name);
nipkow@16042
   401
  ss |> map_simpset1 (fn (rules, prems, bounds) =>
wenzelm@15023
   402
    let
wenzelm@15023
   403
      val rrule2 as {elhs, ...} = mk_rrule2 rrule;
wenzelm@16807
   404
      val rules' = Net.insert_term eq_rrule (term_of elhs, rrule2) rules;
nipkow@16042
   405
    in (rules', prems, bounds) end)
wenzelm@15023
   406
  handle Net.INSERT =>
wenzelm@16985
   407
    (if quiet then () else warn_thm "Ignoring duplicate rewrite rule:" ss thm; ss));
berghofe@10413
   408
berghofe@10413
   409
fun vperm (Var _, Var _) = true
berghofe@10413
   410
  | vperm (Abs (_, _, s), Abs (_, _, t)) = vperm (s, t)
berghofe@10413
   411
  | vperm (t1 $ t2, u1 $ u2) = vperm (t1, u1) andalso vperm (t2, u2)
berghofe@10413
   412
  | vperm (t, u) = (t = u);
berghofe@10413
   413
berghofe@10413
   414
fun var_perm (t, u) =
berghofe@10413
   415
  vperm (t, u) andalso eq_set (term_varnames t, term_varnames u);
berghofe@10413
   416
berghofe@10413
   417
(* FIXME: it seems that the conditions on extra variables are too liberal if
berghofe@10413
   418
prems are nonempty: does solving the prems really guarantee instantiation of
berghofe@10413
   419
all its Vars? Better: a dynamic check each time a rule is applied.
berghofe@10413
   420
*)
berghofe@10413
   421
fun rewrite_rule_extra_vars prems elhs erhs =
wenzelm@16861
   422
  not (term_varnames erhs subset fold add_term_varnames prems (term_varnames elhs))
berghofe@10413
   423
  orelse
wenzelm@15023
   424
  not (term_tvars erhs subset (term_tvars elhs union List.concat (map term_tvars prems)));
berghofe@10413
   425
wenzelm@15023
   426
(*simple test for looping rewrite rules and stupid orientations*)
wenzelm@16458
   427
fun reorient thy prems lhs rhs =
wenzelm@15023
   428
  rewrite_rule_extra_vars prems lhs rhs
wenzelm@15023
   429
    orelse
wenzelm@15023
   430
  is_Var (head_of lhs)
wenzelm@15023
   431
    orelse
nipkow@16305
   432
(* turns t = x around, which causes a headache if x is a local variable -
nipkow@16305
   433
   usually it is very useful :-(
nipkow@16305
   434
  is_Free rhs andalso not(is_Free lhs) andalso not(Logic.occs(rhs,lhs))
nipkow@16305
   435
  andalso not(exists_subterm is_Var lhs)
nipkow@16305
   436
    orelse
nipkow@16305
   437
*)
wenzelm@16842
   438
  exists (fn t => Logic.occs (lhs, t)) (rhs :: prems)
wenzelm@15023
   439
    orelse
wenzelm@17203
   440
  null prems andalso Pattern.matches thy (lhs, rhs)
berghofe@10413
   441
    (*the condition "null prems" is necessary because conditional rewrites
berghofe@10413
   442
      with extra variables in the conditions may terminate although
wenzelm@15023
   443
      the rhs is an instance of the lhs; example: ?m < ?n ==> f(?n) == f(?m)*)
wenzelm@15023
   444
    orelse
wenzelm@15023
   445
  is_Const lhs andalso not (is_Const rhs);
berghofe@10413
   446
berghofe@10413
   447
fun decomp_simp thm =
wenzelm@15023
   448
  let
wenzelm@16458
   449
    val {thy, prop, ...} = Thm.rep_thm thm;
wenzelm@15023
   450
    val prems = Logic.strip_imp_prems prop;
wenzelm@15023
   451
    val concl = Drule.strip_imp_concl (Thm.cprop_of thm);
wenzelm@15023
   452
    val (lhs, rhs) = Drule.dest_equals concl handle TERM _ =>
wenzelm@15023
   453
      raise SIMPLIFIER ("Rewrite rule not a meta-equality", thm);
wenzelm@15023
   454
    val (_, elhs) = Drule.dest_equals (Thm.cprop_of (Thm.eta_conversion lhs));
wenzelm@16665
   455
    val elhs = if term_of elhs aconv term_of lhs then lhs else elhs;  (*share identical copies*)
wenzelm@15023
   456
    val erhs = Pattern.eta_contract (term_of rhs);
wenzelm@15023
   457
    val perm =
wenzelm@15023
   458
      var_perm (term_of elhs, erhs) andalso
wenzelm@15023
   459
      not (term_of elhs aconv erhs) andalso
wenzelm@15023
   460
      not (is_Var (term_of elhs));
wenzelm@16458
   461
  in (thy, prems, term_of lhs, elhs, term_of rhs, perm) end;
berghofe@10413
   462
wenzelm@12783
   463
fun decomp_simp' thm =
wenzelm@12979
   464
  let val (_, _, lhs, _, rhs, _) = decomp_simp thm in
wenzelm@12783
   465
    if Thm.nprems_of thm > 0 then raise SIMPLIFIER ("Bad conditional rewrite rule", thm)
wenzelm@12979
   466
    else (lhs, rhs)
wenzelm@12783
   467
  end;
wenzelm@12783
   468
wenzelm@15023
   469
fun mk_eq_True (Simpset (_, {mk_rews = {mk_eq_True, ...}, ...})) (thm, name) =
wenzelm@15023
   470
  (case mk_eq_True thm of
skalberg@15531
   471
    NONE => []
skalberg@15531
   472
  | SOME eq_True =>
wenzelm@15023
   473
      let val (_, _, lhs, elhs, _, _) = decomp_simp eq_True
wenzelm@15023
   474
      in [{thm = eq_True, name = name, lhs = lhs, elhs = elhs, perm = false}] end);
berghofe@10413
   475
wenzelm@15023
   476
(*create the rewrite rule and possibly also the eq_True variant,
wenzelm@15023
   477
  in case there are extra vars on the rhs*)
wenzelm@15023
   478
fun rrule_eq_True (thm, name, lhs, elhs, rhs, ss, thm2) =
wenzelm@15023
   479
  let val rrule = {thm = thm, name = name, lhs = lhs, elhs = elhs, perm = false} in
wenzelm@15023
   480
    if term_varnames rhs subset term_varnames lhs andalso
wenzelm@15023
   481
      term_tvars rhs subset term_tvars lhs then [rrule]
wenzelm@15023
   482
    else mk_eq_True ss (thm2, name) @ [rrule]
berghofe@10413
   483
  end;
berghofe@10413
   484
wenzelm@15023
   485
fun mk_rrule ss (thm, name) =
wenzelm@15023
   486
  let val (_, prems, lhs, elhs, rhs, perm) = decomp_simp thm in
wenzelm@15023
   487
    if perm then [{thm = thm, name = name, lhs = lhs, elhs = elhs, perm = true}]
wenzelm@15023
   488
    else
wenzelm@15023
   489
      (*weak test for loops*)
wenzelm@15023
   490
      if rewrite_rule_extra_vars prems lhs rhs orelse is_Var (term_of elhs)
wenzelm@15023
   491
      then mk_eq_True ss (thm, name)
wenzelm@15023
   492
      else rrule_eq_True (thm, name, lhs, elhs, rhs, ss, thm)
berghofe@10413
   493
  end;
berghofe@10413
   494
wenzelm@15023
   495
fun orient_rrule ss (thm, name) =
wenzelm@16458
   496
  let val (thy, prems, lhs, elhs, rhs, perm) = decomp_simp thm in
wenzelm@15023
   497
    if perm then [{thm = thm, name = name, lhs = lhs, elhs = elhs, perm = true}]
wenzelm@16458
   498
    else if reorient thy prems lhs rhs then
wenzelm@16458
   499
      if reorient thy prems rhs lhs
wenzelm@15023
   500
      then mk_eq_True ss (thm, name)
wenzelm@15023
   501
      else
wenzelm@15023
   502
        let val Simpset (_, {mk_rews = {mk_sym, ...}, ...}) = ss in
wenzelm@15023
   503
          (case mk_sym thm of
skalberg@15531
   504
            NONE => []
skalberg@15531
   505
          | SOME thm' =>
wenzelm@15023
   506
              let val (_, _, lhs', elhs', rhs', _) = decomp_simp thm'
wenzelm@15023
   507
              in rrule_eq_True (thm', name, lhs', elhs', rhs', ss, thm) end)
wenzelm@15023
   508
        end
wenzelm@15023
   509
    else rrule_eq_True (thm, name, lhs, elhs, rhs, ss, thm)
berghofe@10413
   510
  end;
berghofe@10413
   511
nipkow@15199
   512
fun extract_rews (Simpset (_, {mk_rews = {mk, ...}, ...}), thms) =
skalberg@15570
   513
  List.concat (map (fn thm => map (rpair (Thm.name_of_thm thm)) (mk thm)) thms);
berghofe@10413
   514
wenzelm@15023
   515
fun orient_comb_simps comb mk_rrule (ss, thms) =
wenzelm@15023
   516
  let
wenzelm@15023
   517
    val rews = extract_rews (ss, thms);
skalberg@15570
   518
    val rrules = List.concat (map mk_rrule rews);
skalberg@15570
   519
  in Library.foldl comb (ss, rrules) end;
berghofe@10413
   520
wenzelm@15023
   521
fun extract_safe_rrules (ss, thm) =
skalberg@15570
   522
  List.concat (map (orient_rrule ss) (extract_rews (ss, [thm])));
berghofe@10413
   523
wenzelm@15023
   524
(*add rewrite rules explicitly; do not reorient!*)
wenzelm@15023
   525
fun ss addsimps thms =
wenzelm@15023
   526
  orient_comb_simps (insert_rrule false) (mk_rrule ss) (ss, thms);
berghofe@10413
   527
berghofe@10413
   528
wenzelm@15023
   529
(* delsimps *)
berghofe@10413
   530
wenzelm@15023
   531
fun del_rrule (ss, rrule as {thm, elhs, ...}) =
nipkow@16042
   532
  ss |> map_simpset1 (fn (rules, prems, bounds) =>
wenzelm@16807
   533
    (Net.delete_term eq_rrule (term_of elhs, rrule) rules, prems, bounds))
wenzelm@16985
   534
  handle Net.DELETE => (warn_thm "Rewrite rule not in simpset:" ss thm; ss);
berghofe@10413
   535
wenzelm@15023
   536
fun ss delsimps thms =
wenzelm@15023
   537
  orient_comb_simps del_rrule (map mk_rrule2 o mk_rrule ss) (ss, thms);
wenzelm@15023
   538
wenzelm@15023
   539
wenzelm@15023
   540
(* congs *)
berghofe@10413
   541
skalberg@15531
   542
fun cong_name (Const (a, _)) = SOME a
skalberg@15531
   543
  | cong_name (Free (a, _)) = SOME ("Free: " ^ a)
skalberg@15531
   544
  | cong_name _ = NONE;
ballarin@13835
   545
wenzelm@15023
   546
local
wenzelm@15023
   547
wenzelm@15023
   548
fun is_full_cong_prems [] [] = true
wenzelm@15023
   549
  | is_full_cong_prems [] _ = false
wenzelm@15023
   550
  | is_full_cong_prems (p :: prems) varpairs =
wenzelm@15023
   551
      (case Logic.strip_assums_concl p of
wenzelm@15023
   552
        Const ("==", _) $ lhs $ rhs =>
wenzelm@15023
   553
          let val (x, xs) = strip_comb lhs and (y, ys) = strip_comb rhs in
wenzelm@15023
   554
            is_Var x andalso forall is_Bound xs andalso
wenzelm@15023
   555
            null (findrep xs) andalso xs = ys andalso
wenzelm@15023
   556
            (x, y) mem varpairs andalso
wenzelm@15023
   557
            is_full_cong_prems prems (varpairs \ (x, y))
wenzelm@15023
   558
          end
wenzelm@15023
   559
      | _ => false);
wenzelm@15023
   560
wenzelm@15023
   561
fun is_full_cong thm =
berghofe@10413
   562
  let
wenzelm@15023
   563
    val prems = prems_of thm and concl = concl_of thm;
wenzelm@15023
   564
    val (lhs, rhs) = Logic.dest_equals concl;
wenzelm@15023
   565
    val (f, xs) = strip_comb lhs and (g, ys) = strip_comb rhs;
berghofe@10413
   566
  in
wenzelm@15023
   567
    f = g andalso null (findrep (xs @ ys)) andalso length xs = length ys andalso
wenzelm@15023
   568
    is_full_cong_prems prems (xs ~~ ys)
berghofe@10413
   569
  end;
berghofe@10413
   570
wenzelm@15023
   571
fun add_cong (ss, thm) = ss |>
wenzelm@15023
   572
  map_simpset2 (fn (congs, procs, mk_rews, termless, subgoal_tac, loop_tacs, solvers) =>
wenzelm@15023
   573
    let
wenzelm@15023
   574
      val (lhs, _) = Drule.dest_equals (Drule.strip_imp_concl (Thm.cprop_of thm))
wenzelm@15023
   575
        handle TERM _ => raise SIMPLIFIER ("Congruence not a meta-equality", thm);
wenzelm@15023
   576
    (*val lhs = Pattern.eta_contract lhs;*)
skalberg@15570
   577
      val a = valOf (cong_name (head_of (term_of lhs))) handle Option =>
wenzelm@15023
   578
        raise SIMPLIFIER ("Congruence must start with a constant or free variable", thm);
wenzelm@15023
   579
      val (alist, weak) = congs;
wenzelm@15023
   580
      val alist2 = overwrite_warn (alist, (a, {lhs = lhs, thm = thm}))
wenzelm@15023
   581
        ("Overwriting congruence rule for " ^ quote a);
wenzelm@15023
   582
      val weak2 = if is_full_cong thm then weak else a :: weak;
wenzelm@15023
   583
    in ((alist2, weak2), procs, mk_rews, termless, subgoal_tac, loop_tacs, solvers) end);
berghofe@10413
   584
wenzelm@15023
   585
fun del_cong (ss, thm) = ss |>
wenzelm@15023
   586
  map_simpset2 (fn (congs, procs, mk_rews, termless, subgoal_tac, loop_tacs, solvers) =>
wenzelm@15023
   587
    let
wenzelm@15023
   588
      val (lhs, _) = Logic.dest_equals (Thm.concl_of thm) handle TERM _ =>
wenzelm@15023
   589
        raise SIMPLIFIER ("Congruence not a meta-equality", thm);
wenzelm@15023
   590
    (*val lhs = Pattern.eta_contract lhs;*)
skalberg@15570
   591
      val a = valOf (cong_name (head_of lhs)) handle Option =>
wenzelm@15023
   592
        raise SIMPLIFIER ("Congruence must start with a constant", thm);
wenzelm@15023
   593
      val (alist, _) = congs;
skalberg@15570
   594
      val alist2 = List.filter (fn (x, _) => x <> a) alist;
skalberg@15570
   595
      val weak2 = alist2 |> List.mapPartial (fn (a, {thm, ...}) =>
skalberg@15531
   596
        if is_full_cong thm then NONE else SOME a);
wenzelm@15023
   597
    in ((alist2, weak2), procs, mk_rews, termless, subgoal_tac, loop_tacs, solvers) end);
berghofe@10413
   598
wenzelm@15023
   599
fun mk_cong (Simpset (_, {mk_rews = {mk_cong = f, ...}, ...})) = f;
wenzelm@15023
   600
wenzelm@15023
   601
in
wenzelm@15023
   602
skalberg@15570
   603
val (op addeqcongs) = Library.foldl add_cong;
skalberg@15570
   604
val (op deleqcongs) = Library.foldl del_cong;
wenzelm@15023
   605
wenzelm@15023
   606
fun ss addcongs congs = ss addeqcongs map (mk_cong ss) congs;
wenzelm@15023
   607
fun ss delcongs congs = ss deleqcongs map (mk_cong ss) congs;
wenzelm@15023
   608
wenzelm@15023
   609
end;
berghofe@10413
   610
berghofe@10413
   611
wenzelm@15023
   612
(* simprocs *)
wenzelm@15023
   613
wenzelm@15023
   614
local
berghofe@10413
   615
wenzelm@16985
   616
fun add_proc (proc as Proc {name, lhs, ...}) ss =
wenzelm@16985
   617
 (trace_cterm false ("Adding simplification procedure " ^ quote name ^ " for") ss lhs;
wenzelm@15023
   618
  map_simpset2 (fn (congs, procs, mk_rews, termless, subgoal_tac, loop_tacs, solvers) =>
wenzelm@16807
   619
    (congs, Net.insert_term eq_proc (term_of lhs, proc) procs,
wenzelm@15023
   620
      mk_rews, termless, subgoal_tac, loop_tacs, solvers)) ss
wenzelm@15023
   621
  handle Net.INSERT =>
wenzelm@15023
   622
    (warning ("Ignoring duplicate simplification procedure " ^ quote name); ss));
berghofe@10413
   623
wenzelm@16985
   624
fun del_proc (proc as Proc {name, lhs, ...}) ss =
wenzelm@15023
   625
  map_simpset2 (fn (congs, procs, mk_rews, termless, subgoal_tac, loop_tacs, solvers) =>
wenzelm@16807
   626
    (congs, Net.delete_term eq_proc (term_of lhs, proc) procs,
wenzelm@15023
   627
      mk_rews, termless, subgoal_tac, loop_tacs, solvers)) ss
wenzelm@15023
   628
  handle Net.DELETE =>
wenzelm@15023
   629
    (warning ("Simplification procedure " ^ quote name ^ " not in simpset"); ss);
berghofe@10413
   630
wenzelm@15023
   631
in
berghofe@10413
   632
wenzelm@16985
   633
fun ss addsimprocs ps = fold (fn Simproc procs => fold add_proc procs) ps ss;
wenzelm@16985
   634
fun ss delsimprocs ps = fold (fn Simproc procs => fold del_proc procs) ps ss;
berghofe@10413
   635
wenzelm@15023
   636
end;
berghofe@10413
   637
berghofe@10413
   638
berghofe@10413
   639
(* mk_rews *)
berghofe@10413
   640
wenzelm@15023
   641
local
wenzelm@15023
   642
nipkow@15199
   643
fun map_mk_rews f = map_simpset2 (fn (congs, procs, {mk, mk_cong, mk_sym, mk_eq_True},
wenzelm@15023
   644
      termless, subgoal_tac, loop_tacs, solvers) =>
nipkow@15199
   645
  let val (mk', mk_cong', mk_sym', mk_eq_True') = f (mk, mk_cong, mk_sym, mk_eq_True) in
nipkow@15199
   646
    (congs, procs, {mk = mk', mk_cong = mk_cong', mk_sym = mk_sym', mk_eq_True = mk_eq_True'},
wenzelm@15023
   647
      termless, subgoal_tac, loop_tacs, solvers)
wenzelm@15023
   648
  end);
wenzelm@15023
   649
wenzelm@15023
   650
in
berghofe@10413
   651
nipkow@15199
   652
fun ss setmksimps mk = ss |> map_mk_rews (fn (_, mk_cong, mk_sym, mk_eq_True) =>
nipkow@15199
   653
  (mk, mk_cong, mk_sym, mk_eq_True));
wenzelm@15023
   654
nipkow@15199
   655
fun ss setmkcong mk_cong = ss |> map_mk_rews (fn (mk, _, mk_sym, mk_eq_True) =>
nipkow@15199
   656
  (mk, mk_cong, mk_sym, mk_eq_True));
berghofe@10413
   657
nipkow@15199
   658
fun ss setmksym mk_sym = ss |> map_mk_rews (fn (mk, mk_cong, _, mk_eq_True) =>
nipkow@15199
   659
  (mk, mk_cong, mk_sym, mk_eq_True));
berghofe@10413
   660
nipkow@15199
   661
fun ss setmkeqTrue mk_eq_True = ss |> map_mk_rews (fn (mk, mk_cong, mk_sym, _) =>
nipkow@15199
   662
  (mk, mk_cong, mk_sym, mk_eq_True));
wenzelm@15023
   663
wenzelm@15023
   664
end;
wenzelm@15023
   665
skalberg@14242
   666
berghofe@10413
   667
(* termless *)
berghofe@10413
   668
wenzelm@15023
   669
fun ss settermless termless = ss |>
wenzelm@15023
   670
  map_simpset2 (fn (congs, procs, mk_rews, _, subgoal_tac, loop_tacs, solvers) =>
wenzelm@15023
   671
   (congs, procs, mk_rews, termless, subgoal_tac, loop_tacs, solvers));
skalberg@15006
   672
skalberg@15006
   673
wenzelm@15023
   674
(* tactics *)
skalberg@15006
   675
wenzelm@15023
   676
fun ss setsubgoaler subgoal_tac = ss |>
wenzelm@15023
   677
  map_simpset2 (fn (congs, procs, mk_rews, termless, _, loop_tacs, solvers) =>
wenzelm@15023
   678
   (congs, procs, mk_rews, termless, subgoal_tac, loop_tacs, solvers));
skalberg@15006
   679
wenzelm@15023
   680
fun ss setloop tac = ss |>
wenzelm@15023
   681
  map_simpset2 (fn (congs, procs, mk_rews, termless, subgoal_tac, _, solvers) =>
wenzelm@15023
   682
   (congs, procs, mk_rews, termless, subgoal_tac, [("", tac)], solvers));
skalberg@15006
   683
wenzelm@15023
   684
fun ss addloop (name, tac) = ss |>
wenzelm@15023
   685
  map_simpset2 (fn (congs, procs, mk_rews, termless, subgoal_tac, loop_tacs, solvers) =>
wenzelm@15023
   686
    (congs, procs, mk_rews, termless, subgoal_tac,
wenzelm@15023
   687
      overwrite_warn (loop_tacs, (name, tac)) ("Overwriting looper " ^ quote name),
wenzelm@15023
   688
      solvers));
skalberg@15006
   689
wenzelm@15023
   690
fun ss delloop name = ss |>
wenzelm@15023
   691
  map_simpset2 (fn (congs, procs, mk_rews, termless, subgoal_tac, loop_tacs, solvers) =>
wenzelm@15034
   692
    let val loop_tacs' = filter_out (equal name o #1) loop_tacs in
wenzelm@15034
   693
      if length loop_tacs <> length loop_tacs' then ()
wenzelm@15034
   694
      else warning ("No such looper in simpset: " ^ quote name);
wenzelm@15034
   695
      (congs, procs, mk_rews, termless, subgoal_tac, loop_tacs', solvers)
wenzelm@15023
   696
    end);
skalberg@15006
   697
wenzelm@15023
   698
fun ss setSSolver solver = ss |> map_simpset2 (fn (congs, procs, mk_rews, termless,
wenzelm@15023
   699
  subgoal_tac, loop_tacs, (unsafe_solvers, _)) =>
wenzelm@15023
   700
    (congs, procs, mk_rews, termless, subgoal_tac, loop_tacs, (unsafe_solvers, [solver])));
skalberg@15006
   701
wenzelm@15023
   702
fun ss addSSolver solver = ss |> map_simpset2 (fn (congs, procs, mk_rews, termless,
wenzelm@15023
   703
  subgoal_tac, loop_tacs, (unsafe_solvers, solvers)) => (congs, procs, mk_rews, termless,
wenzelm@15023
   704
    subgoal_tac, loop_tacs, (unsafe_solvers, merge_solvers solvers [solver])));
skalberg@15006
   705
wenzelm@15023
   706
fun ss setSolver solver = ss |> map_simpset2 (fn (congs, procs, mk_rews, termless,
wenzelm@15023
   707
  subgoal_tac, loop_tacs, (_, solvers)) => (congs, procs, mk_rews, termless,
wenzelm@15023
   708
    subgoal_tac, loop_tacs, ([solver], solvers)));
skalberg@15006
   709
wenzelm@15023
   710
fun ss addSolver solver = ss |> map_simpset2 (fn (congs, procs, mk_rews, termless,
wenzelm@15023
   711
  subgoal_tac, loop_tacs, (unsafe_solvers, solvers)) => (congs, procs, mk_rews, termless,
wenzelm@15023
   712
    subgoal_tac, loop_tacs, (merge_solvers unsafe_solvers [solver], solvers)));
skalberg@15006
   713
wenzelm@15023
   714
fun set_solvers solvers = map_simpset2 (fn (congs, procs, mk_rews, termless,
wenzelm@15023
   715
  subgoal_tac, loop_tacs, _) => (congs, procs, mk_rews, termless,
wenzelm@15023
   716
  subgoal_tac, loop_tacs, (solvers, solvers)));
skalberg@15006
   717
skalberg@15006
   718
skalberg@15006
   719
berghofe@10413
   720
(** rewriting **)
berghofe@10413
   721
berghofe@10413
   722
(*
berghofe@10413
   723
  Uses conversions, see:
berghofe@10413
   724
    L C Paulson, A higher-order implementation of rewriting,
berghofe@10413
   725
    Science of Computer Programming 3 (1983), pages 119-149.
berghofe@10413
   726
*)
berghofe@10413
   727
wenzelm@15023
   728
val dest_eq = Drule.dest_equals o Thm.cprop_of;
wenzelm@15023
   729
val lhs_of = #1 o dest_eq;
wenzelm@15023
   730
val rhs_of = #2 o dest_eq;
berghofe@10413
   731
wenzelm@16985
   732
fun check_conv msg ss thm thm' =
berghofe@10413
   733
  let
berghofe@10413
   734
    val thm'' = transitive thm (transitive
skalberg@15001
   735
      (symmetric (Drule.beta_eta_conversion (lhs_of thm'))) thm')
wenzelm@16985
   736
  in if msg then trace_thm "SUCCEEDED" ss thm' else (); SOME thm'' end
berghofe@10413
   737
  handle THM _ =>
wenzelm@16458
   738
    let val {thy, prop = _ $ _ $ prop0, ...} = Thm.rep_thm thm in
wenzelm@16985
   739
      trace_thm "Proved wrong thm (Check subgoaler?)" ss thm';
wenzelm@16985
   740
      trace_term false "Should have proved:" ss thy prop0;
skalberg@15531
   741
      NONE
berghofe@10413
   742
    end;
berghofe@10413
   743
berghofe@10413
   744
berghofe@10413
   745
(* mk_procrule *)
berghofe@10413
   746
wenzelm@16985
   747
fun mk_procrule ss thm =
wenzelm@15023
   748
  let val (_, prems, lhs, elhs, rhs, _) = decomp_simp thm in
wenzelm@15023
   749
    if rewrite_rule_extra_vars prems lhs rhs
wenzelm@16985
   750
    then (warn_thm "Extra vars on rhs:" ss thm; [])
wenzelm@15023
   751
    else [mk_rrule2 {thm = thm, name = "", lhs = lhs, elhs = elhs, perm = false}]
berghofe@10413
   752
  end;
berghofe@10413
   753
berghofe@10413
   754
wenzelm@15023
   755
(* rewritec: conversion to apply the meta simpset to a term *)
berghofe@10413
   756
wenzelm@15023
   757
(*Since the rewriting strategy is bottom-up, we avoid re-normalizing already
wenzelm@15023
   758
  normalized terms by carrying around the rhs of the rewrite rule just
wenzelm@15023
   759
  applied. This is called the `skeleton'. It is decomposed in parallel
wenzelm@15023
   760
  with the term. Once a Var is encountered, the corresponding term is
wenzelm@15023
   761
  already in normal form.
wenzelm@15023
   762
  skel0 is a dummy skeleton that is to enforce complete normalization.*)
wenzelm@15023
   763
berghofe@10413
   764
val skel0 = Bound 0;
berghofe@10413
   765
wenzelm@15023
   766
(*Use rhs as skeleton only if the lhs does not contain unnormalized bits.
wenzelm@15023
   767
  The latter may happen iff there are weak congruence rules for constants
wenzelm@15023
   768
  in the lhs.*)
berghofe@10413
   769
wenzelm@15023
   770
fun uncond_skel ((_, weak), (lhs, rhs)) =
wenzelm@15023
   771
  if null weak then rhs  (*optimization*)
wenzelm@15023
   772
  else if exists_Const (fn (c, _) => c mem weak) lhs then skel0
wenzelm@15023
   773
  else rhs;
wenzelm@15023
   774
wenzelm@15023
   775
(*Behaves like unconditional rule if rhs does not contain vars not in the lhs.
wenzelm@15023
   776
  Otherwise those vars may become instantiated with unnormalized terms
wenzelm@15023
   777
  while the premises are solved.*)
wenzelm@15023
   778
wenzelm@15023
   779
fun cond_skel (args as (congs, (lhs, rhs))) =
wenzelm@15023
   780
  if term_varnames rhs subset term_varnames lhs then uncond_skel args
berghofe@10413
   781
  else skel0;
berghofe@10413
   782
berghofe@10413
   783
(*
wenzelm@15023
   784
  Rewriting -- we try in order:
berghofe@10413
   785
    (1) beta reduction
berghofe@10413
   786
    (2) unconditional rewrite rules
berghofe@10413
   787
    (3) conditional rewrite rules
berghofe@10413
   788
    (4) simplification procedures
berghofe@10413
   789
berghofe@10413
   790
  IMPORTANT: rewrite rules must not introduce new Vars or TVars!
berghofe@10413
   791
*)
berghofe@10413
   792
wenzelm@16458
   793
fun rewritec (prover, thyt, maxt) ss t =
berghofe@10413
   794
  let
wenzelm@15023
   795
    val Simpset ({rules, ...}, {congs, procs, termless, ...}) = ss;
berghofe@10413
   796
    val eta_thm = Thm.eta_conversion t;
berghofe@10413
   797
    val eta_t' = rhs_of eta_thm;
berghofe@10413
   798
    val eta_t = term_of eta_t';
berghofe@13607
   799
    fun rew {thm, name, lhs, elhs, fo, perm} =
berghofe@10413
   800
      let
wenzelm@16458
   801
        val {thy, prop, maxidx, ...} = rep_thm thm;
berghofe@10413
   802
        val (rthm, elhs') = if maxt = ~1 then (thm, elhs)
berghofe@10413
   803
          else (Thm.incr_indexes (maxt+1) thm, Thm.cterm_incr_indexes (maxt+1) elhs);
berghofe@10413
   804
        val insts = if fo then Thm.cterm_first_order_match (elhs', eta_t')
berghofe@10413
   805
                          else Thm.cterm_match (elhs', eta_t');
berghofe@10413
   806
        val thm' = Thm.instantiate insts (Thm.rename_boundvars lhs eta_t rthm);
wenzelm@14643
   807
        val prop' = Thm.prop_of thm';
berghofe@10413
   808
        val unconditional = (Logic.count_prems (prop',0) = 0);
berghofe@10413
   809
        val (lhs', rhs') = Logic.dest_equals (Logic.strip_imp_concl prop')
berghofe@10413
   810
      in
nipkow@11295
   811
        if perm andalso not (termless (rhs', lhs'))
wenzelm@16985
   812
        then (trace_named_thm "Cannot apply permutative rewrite rule" ss (thm, name);
wenzelm@16985
   813
              trace_thm "Term does not become smaller:" ss thm'; NONE)
wenzelm@16985
   814
        else (trace_named_thm "Applying instance of rewrite rule" ss (thm, name);
berghofe@10413
   815
           if unconditional
berghofe@10413
   816
           then
wenzelm@16985
   817
             (trace_thm "Rewriting:" ss thm';
berghofe@10413
   818
              let val lr = Logic.dest_equals prop;
wenzelm@16985
   819
                  val SOME thm'' = check_conv false ss eta_thm thm'
skalberg@15531
   820
              in SOME (thm'', uncond_skel (congs, lr)) end)
berghofe@10413
   821
           else
wenzelm@16985
   822
             (trace_thm "Trying to rewrite:" ss thm';
nipkow@16042
   823
              if !simp_depth > !simp_depth_limit
nipkow@16042
   824
              then let val s = "simp_depth_limit exceeded - giving up"
nipkow@16042
   825
                   in trace false s; warning s; NONE end
nipkow@16042
   826
              else
nipkow@16042
   827
              case prover ss thm' of
wenzelm@16985
   828
                NONE => (trace_thm "FAILED" ss thm'; NONE)
skalberg@15531
   829
              | SOME thm2 =>
wenzelm@16985
   830
                  (case check_conv true ss eta_thm thm2 of
skalberg@15531
   831
                     NONE => NONE |
skalberg@15531
   832
                     SOME thm2' =>
berghofe@10413
   833
                       let val concl = Logic.strip_imp_concl prop
berghofe@10413
   834
                           val lr = Logic.dest_equals concl
nipkow@16042
   835
                       in SOME (thm2', cond_skel (congs, lr)) end)))
berghofe@10413
   836
      end
berghofe@10413
   837
skalberg@15531
   838
    fun rews [] = NONE
berghofe@10413
   839
      | rews (rrule :: rrules) =
skalberg@15531
   840
          let val opt = rew rrule handle Pattern.MATCH => NONE
skalberg@15531
   841
          in case opt of NONE => rews rrules | some => some end;
berghofe@10413
   842
berghofe@10413
   843
    fun sort_rrules rrs = let
wenzelm@14643
   844
      fun is_simple({thm, ...}:rrule) = case Thm.prop_of thm of
berghofe@10413
   845
                                      Const("==",_) $ _ $ _ => true
wenzelm@12603
   846
                                      | _                   => false
berghofe@10413
   847
      fun sort []        (re1,re2) = re1 @ re2
wenzelm@12603
   848
        | sort (rr::rrs) (re1,re2) = if is_simple rr
berghofe@10413
   849
                                     then sort rrs (rr::re1,re2)
berghofe@10413
   850
                                     else sort rrs (re1,rr::re2)
berghofe@10413
   851
    in sort rrs ([],[]) end
berghofe@10413
   852
skalberg@15531
   853
    fun proc_rews [] = NONE
wenzelm@15023
   854
      | proc_rews (Proc {name, proc, lhs, ...} :: ps) =
wenzelm@17203
   855
          if Pattern.matches thyt (Thm.term_of lhs, Thm.term_of t) then
wenzelm@16985
   856
            (debug_term false ("Trying procedure " ^ quote name ^ " on:") ss thyt eta_t;
wenzelm@13486
   857
             case transform_failure (curry SIMPROC_FAIL name)
wenzelm@16458
   858
                 (fn () => proc thyt ss eta_t) () of
skalberg@15531
   859
               NONE => (debug false "FAILED"; proc_rews ps)
skalberg@15531
   860
             | SOME raw_thm =>
wenzelm@16985
   861
                 (trace_thm ("Procedure " ^ quote name ^ " produced rewrite rule:") ss raw_thm;
wenzelm@16985
   862
                  (case rews (mk_procrule ss raw_thm) of
skalberg@15531
   863
                    NONE => (trace_cterm true ("IGNORED result of simproc " ^ quote name ^
wenzelm@16985
   864
                      " -- does not match") ss t; proc_rews ps)
berghofe@10413
   865
                  | some => some)))
berghofe@10413
   866
          else proc_rews ps;
berghofe@10413
   867
  in case eta_t of
skalberg@15531
   868
       Abs _ $ _ => SOME (transitive eta_thm
berghofe@12155
   869
         (beta_conversion false eta_t'), skel0)
berghofe@10413
   870
     | _ => (case rews (sort_rrules (Net.match_term rules eta_t)) of
skalberg@15531
   871
               NONE => proc_rews (Net.match_term procs eta_t)
berghofe@10413
   872
             | some => some)
berghofe@10413
   873
  end;
berghofe@10413
   874
berghofe@10413
   875
berghofe@10413
   876
(* conversion to apply a congruence rule to a term *)
berghofe@10413
   877
wenzelm@16985
   878
fun congc prover ss maxt {thm=cong,lhs=lhs} t =
wenzelm@16985
   879
  let val rthm = Thm.incr_indexes (maxt+1) cong;
berghofe@10413
   880
      val rlhs = fst (Drule.dest_equals (Drule.strip_imp_concl (cprop_of rthm)));
berghofe@10413
   881
      val insts = Thm.cterm_match (rlhs, t)
berghofe@10413
   882
      (* Pattern.match can raise Pattern.MATCH;
berghofe@10413
   883
         is handled when congc is called *)
berghofe@10413
   884
      val thm' = Thm.instantiate insts (Thm.rename_boundvars (term_of rlhs) (term_of t) rthm);
wenzelm@16985
   885
      val unit = trace_thm "Applying congruence rule:" ss thm';
wenzelm@16985
   886
      fun err (msg, thm) = (trace_thm msg ss thm; NONE)
berghofe@10413
   887
  in case prover thm' of
skalberg@15531
   888
       NONE => err ("Congruence proof failed.  Could not prove", thm')
wenzelm@16985
   889
     | SOME thm2 => (case check_conv true ss (Drule.beta_eta_conversion t) thm2 of
skalberg@15531
   890
          NONE => err ("Congruence proof failed.  Should not have proved", thm2)
skalberg@15531
   891
        | SOME thm2' =>
berghofe@12155
   892
            if op aconv (pairself term_of (dest_equals (cprop_of thm2')))
skalberg@15531
   893
            then NONE else SOME thm2')
berghofe@10413
   894
  end;
berghofe@10413
   895
berghofe@10413
   896
val (cA, (cB, cC)) =
berghofe@10413
   897
  apsnd dest_equals (dest_implies (hd (cprems_of Drule.imp_cong)));
berghofe@10413
   898
skalberg@15531
   899
fun transitive1 NONE NONE = NONE
skalberg@15531
   900
  | transitive1 (SOME thm1) NONE = SOME thm1
skalberg@15531
   901
  | transitive1 NONE (SOME thm2) = SOME thm2
skalberg@15531
   902
  | transitive1 (SOME thm1) (SOME thm2) = SOME (transitive thm1 thm2)
berghofe@10413
   903
skalberg@15531
   904
fun transitive2 thm = transitive1 (SOME thm);
skalberg@15531
   905
fun transitive3 thm = transitive1 thm o SOME;
berghofe@13607
   906
wenzelm@16458
   907
fun bottomc ((simprem, useprem, mutsimp), prover, thy, maxidx) =
berghofe@10413
   908
  let
wenzelm@15023
   909
    fun botc skel ss t =
skalberg@15531
   910
          if is_Var skel then NONE
berghofe@10413
   911
          else
wenzelm@15023
   912
          (case subc skel ss t of
skalberg@15531
   913
             some as SOME thm1 =>
wenzelm@16458
   914
               (case rewritec (prover, thy, maxidx) ss (rhs_of thm1) of
skalberg@15531
   915
                  SOME (thm2, skel2) =>
berghofe@13607
   916
                    transitive2 (transitive thm1 thm2)
wenzelm@15023
   917
                      (botc skel2 ss (rhs_of thm2))
skalberg@15531
   918
                | NONE => some)
skalberg@15531
   919
           | NONE =>
wenzelm@16458
   920
               (case rewritec (prover, thy, maxidx) ss t of
skalberg@15531
   921
                  SOME (thm2, skel2) => transitive2 thm2
wenzelm@15023
   922
                    (botc skel2 ss (rhs_of thm2))
skalberg@15531
   923
                | NONE => NONE))
berghofe@10413
   924
wenzelm@15023
   925
    and try_botc ss t =
wenzelm@15023
   926
          (case botc skel0 ss t of
skalberg@15531
   927
             SOME trec1 => trec1 | NONE => (reflexive t))
berghofe@10413
   928
wenzelm@15023
   929
    and subc skel (ss as Simpset ({bounds, ...}, {congs, ...})) t0 =
berghofe@10413
   930
       (case term_of t0 of
berghofe@10413
   931
           Abs (a, T, t) =>
wenzelm@15023
   932
             let
wenzelm@16985
   933
                 val b = Term.bound (#1 bounds);
wenzelm@16985
   934
                 val (v, t') = Thm.dest_abs (SOME b) t0;
wenzelm@16985
   935
                 val b' = #1 (Term.dest_Free (Thm.term_of v));
wenzelm@16985
   936
                 val _ = conditional (b <> b') (fn () =>
wenzelm@16985
   937
                   warning ("Simplifier: renamed bound variable " ^ quote b ^ " to " ^ quote b'));
wenzelm@16985
   938
                 val ss' = add_bound (a, (b', T)) ss;
wenzelm@15023
   939
                 val skel' = case skel of Abs (_, _, sk) => sk | _ => skel0;
wenzelm@15023
   940
             in case botc skel' ss' t' of
skalberg@15531
   941
                  SOME thm => SOME (abstract_rule a v thm)
skalberg@15531
   942
                | NONE => NONE
berghofe@10413
   943
             end
berghofe@10413
   944
         | t $ _ => (case t of
wenzelm@15023
   945
             Const ("==>", _) $ _  => impc t0 ss
berghofe@10413
   946
           | Abs _ =>
berghofe@10413
   947
               let val thm = beta_conversion false t0
wenzelm@15023
   948
               in case subc skel0 ss (rhs_of thm) of
skalberg@15531
   949
                    NONE => SOME thm
skalberg@15531
   950
                  | SOME thm' => SOME (transitive thm thm')
berghofe@10413
   951
               end
berghofe@10413
   952
           | _  =>
berghofe@10413
   953
               let fun appc () =
berghofe@10413
   954
                     let
berghofe@10413
   955
                       val (tskel, uskel) = case skel of
berghofe@10413
   956
                           tskel $ uskel => (tskel, uskel)
berghofe@10413
   957
                         | _ => (skel0, skel0);
wenzelm@10767
   958
                       val (ct, cu) = Thm.dest_comb t0
berghofe@10413
   959
                     in
wenzelm@15023
   960
                     (case botc tskel ss ct of
skalberg@15531
   961
                        SOME thm1 =>
wenzelm@15023
   962
                          (case botc uskel ss cu of
skalberg@15531
   963
                             SOME thm2 => SOME (combination thm1 thm2)
skalberg@15531
   964
                           | NONE => SOME (combination thm1 (reflexive cu)))
skalberg@15531
   965
                      | NONE =>
wenzelm@15023
   966
                          (case botc uskel ss cu of
skalberg@15531
   967
                             SOME thm1 => SOME (combination (reflexive ct) thm1)
skalberg@15531
   968
                           | NONE => NONE))
berghofe@10413
   969
                     end
berghofe@10413
   970
                   val (h, ts) = strip_comb t
ballarin@13835
   971
               in case cong_name h of
skalberg@15531
   972
                    SOME a =>
haftmann@17232
   973
                      (case AList.lookup (op =) (fst congs) a of
skalberg@15531
   974
                         NONE => appc ()
skalberg@15531
   975
                       | SOME cong =>
wenzelm@15023
   976
  (*post processing: some partial applications h t1 ... tj, j <= length ts,
wenzelm@15023
   977
    may be a redex. Example: map (%x. x) = (%xs. xs) wrt map_cong*)
berghofe@10413
   978
                          (let
wenzelm@16985
   979
                             val thm = congc (prover ss) ss maxidx cong t0;
skalberg@15570
   980
                             val t = getOpt (Option.map rhs_of thm, t0);
wenzelm@10767
   981
                             val (cl, cr) = Thm.dest_comb t
berghofe@10413
   982
                             val dVar = Var(("", 0), dummyT)
berghofe@10413
   983
                             val skel =
berghofe@10413
   984
                               list_comb (h, replicate (length ts) dVar)
wenzelm@15023
   985
                           in case botc skel ss cl of
skalberg@15531
   986
                                NONE => thm
skalberg@15531
   987
                              | SOME thm' => transitive3 thm
berghofe@12155
   988
                                  (combination thm' (reflexive cr))
berghofe@10413
   989
                           end handle TERM _ => error "congc result"
berghofe@10413
   990
                                    | Pattern.MATCH => appc ()))
berghofe@10413
   991
                  | _ => appc ()
berghofe@10413
   992
               end)
skalberg@15531
   993
         | _ => NONE)
berghofe@10413
   994
wenzelm@15023
   995
    and impc ct ss =
wenzelm@15023
   996
      if mutsimp then mut_impc0 [] ct [] [] ss else nonmut_impc ct ss
berghofe@10413
   997
wenzelm@15023
   998
    and rules_of_prem ss prem =
berghofe@13607
   999
      if maxidx_of_term (term_of prem) <> ~1
berghofe@13607
  1000
      then (trace_cterm true
wenzelm@16985
  1001
        "Cannot add premise as rewrite rule because it contains (type) unknowns:" ss prem; ([], NONE))
berghofe@13607
  1002
      else
berghofe@13607
  1003
        let val asm = assume prem
skalberg@15531
  1004
        in (extract_safe_rrules (ss, asm), SOME asm) end
berghofe@10413
  1005
wenzelm@15023
  1006
    and add_rrules (rrss, asms) ss =
skalberg@15570
  1007
      Library.foldl (insert_rrule true) (ss, List.concat rrss) |> add_prems (List.mapPartial I asms)
berghofe@10413
  1008
berghofe@13607
  1009
    and disch r (prem, eq) =
berghofe@13607
  1010
      let
berghofe@13607
  1011
        val (lhs, rhs) = dest_eq eq;
berghofe@13607
  1012
        val eq' = implies_elim (Thm.instantiate
berghofe@13607
  1013
          ([], [(cA, prem), (cB, lhs), (cC, rhs)]) Drule.imp_cong)
berghofe@13607
  1014
          (implies_intr prem eq)
berghofe@13607
  1015
      in if not r then eq' else
berghofe@10413
  1016
        let
berghofe@13607
  1017
          val (prem', concl) = dest_implies lhs;
berghofe@13607
  1018
          val (prem'', _) = dest_implies rhs
berghofe@13607
  1019
        in transitive (transitive
berghofe@13607
  1020
          (Thm.instantiate ([], [(cA, prem'), (cB, prem), (cC, concl)])
berghofe@13607
  1021
             Drule.swap_prems_eq) eq')
berghofe@13607
  1022
          (Thm.instantiate ([], [(cA, prem), (cB, prem''), (cC, concl)])
berghofe@13607
  1023
             Drule.swap_prems_eq)
berghofe@10413
  1024
        end
berghofe@10413
  1025
      end
berghofe@10413
  1026
berghofe@13607
  1027
    and rebuild [] _ _ _ _ eq = eq
wenzelm@15023
  1028
      | rebuild (prem :: prems) concl (rrs :: rrss) (asm :: asms) ss eq =
berghofe@13607
  1029
          let
wenzelm@15023
  1030
            val ss' = add_rrules (rev rrss, rev asms) ss;
berghofe@13607
  1031
            val concl' =
skalberg@15570
  1032
              Drule.mk_implies (prem, getOpt (Option.map rhs_of eq, concl));
skalberg@15570
  1033
            val dprem = Option.map (curry (disch false) prem)
wenzelm@16458
  1034
          in case rewritec (prover, thy, maxidx) ss' concl' of
skalberg@15531
  1035
              NONE => rebuild prems concl' rrss asms ss (dprem eq)
skalberg@15570
  1036
            | SOME (eq', _) => transitive2 (Library.foldl (disch false o swap)
skalberg@15570
  1037
                  (valOf (transitive3 (dprem eq) eq'), prems))
wenzelm@15023
  1038
                (mut_impc0 (rev prems) (rhs_of eq') (rev rrss) (rev asms) ss)
berghofe@13607
  1039
          end
wenzelm@15023
  1040
wenzelm@15023
  1041
    and mut_impc0 prems concl rrss asms ss =
berghofe@13607
  1042
      let
berghofe@13607
  1043
        val prems' = strip_imp_prems concl;
wenzelm@15023
  1044
        val (rrss', asms') = split_list (map (rules_of_prem ss) prems')
berghofe@13607
  1045
      in mut_impc (prems @ prems') (strip_imp_concl concl) (rrss @ rrss')
wenzelm@15023
  1046
        (asms @ asms') [] [] [] [] ss ~1 ~1
berghofe@13607
  1047
      end
wenzelm@15023
  1048
wenzelm@15023
  1049
    and mut_impc [] concl [] [] prems' rrss' asms' eqns ss changed k =
skalberg@15570
  1050
        transitive1 (Library.foldl (fn (eq2, (eq1, prem)) => transitive1 eq1
skalberg@15570
  1051
            (Option.map (curry (disch false) prem) eq2)) (NONE, eqns ~~ prems'))
berghofe@13607
  1052
          (if changed > 0 then
berghofe@13607
  1053
             mut_impc (rev prems') concl (rev rrss') (rev asms')
wenzelm@15023
  1054
               [] [] [] [] ss ~1 changed
wenzelm@15023
  1055
           else rebuild prems' concl rrss' asms' ss
wenzelm@15023
  1056
             (botc skel0 (add_rrules (rev rrss', rev asms') ss) concl))
berghofe@13607
  1057
berghofe@13607
  1058
      | mut_impc (prem :: prems) concl (rrs :: rrss) (asm :: asms)
wenzelm@15023
  1059
          prems' rrss' asms' eqns ss changed k =
skalberg@15531
  1060
        case (if k = 0 then NONE else botc skel0 (add_rrules
wenzelm@15023
  1061
          (rev rrss' @ rrss, rev asms' @ asms) ss) prem) of
skalberg@15531
  1062
            NONE => mut_impc prems concl rrss asms (prem :: prems')
skalberg@15531
  1063
              (rrs :: rrss') (asm :: asms') (NONE :: eqns) ss changed
berghofe@13607
  1064
              (if k = 0 then 0 else k - 1)
skalberg@15531
  1065
          | SOME eqn =>
berghofe@13607
  1066
            let
berghofe@13607
  1067
              val prem' = rhs_of eqn;
berghofe@13607
  1068
              val tprems = map term_of prems;
skalberg@15570
  1069
              val i = 1 + Library.foldl Int.max (~1, map (fn p =>
berghofe@13607
  1070
                find_index_eq p tprems) (#hyps (rep_thm eqn)));
wenzelm@15023
  1071
              val (rrs', asm') = rules_of_prem ss prem'
berghofe@13607
  1072
            in mut_impc prems concl rrss asms (prem' :: prems')
skalberg@15574
  1073
              (rrs' :: rrss') (asm' :: asms') (SOME (foldr (disch true)
skalberg@15574
  1074
                (Drule.imp_cong' eqn (reflexive (Drule.list_implies
skalberg@15574
  1075
                  (Library.drop (i, prems), concl)))) (Library.take (i, prems))) :: eqns) ss (length prems') ~1
berghofe@13607
  1076
            end
berghofe@13607
  1077
wenzelm@15023
  1078
     (*legacy code - only for backwards compatibility*)
wenzelm@15023
  1079
     and nonmut_impc ct ss =
berghofe@13607
  1080
       let val (prem, conc) = dest_implies ct;
skalberg@15531
  1081
           val thm1 = if simprem then botc skel0 ss prem else NONE;
skalberg@15570
  1082
           val prem1 = getOpt (Option.map rhs_of thm1, prem);
wenzelm@15023
  1083
           val ss1 = if not useprem then ss else add_rrules
wenzelm@15023
  1084
             (apsnd single (apfst single (rules_of_prem ss prem1))) ss
wenzelm@15023
  1085
       in (case botc skel0 ss1 conc of
skalberg@15531
  1086
           NONE => (case thm1 of
skalberg@15531
  1087
               NONE => NONE
skalberg@15531
  1088
             | SOME thm1' => SOME (Drule.imp_cong' thm1' (reflexive conc)))
skalberg@15531
  1089
         | SOME thm2 =>
berghofe@13607
  1090
           let val thm2' = disch false (prem1, thm2)
berghofe@10413
  1091
           in (case thm1 of
skalberg@15531
  1092
               NONE => SOME thm2'
skalberg@15531
  1093
             | SOME thm1' =>
skalberg@15531
  1094
                 SOME (transitive (Drule.imp_cong' thm1' (reflexive conc)) thm2'))
berghofe@10413
  1095
           end)
berghofe@10413
  1096
       end
berghofe@10413
  1097
wenzelm@15023
  1098
 in try_botc end;
berghofe@10413
  1099
berghofe@10413
  1100
wenzelm@15023
  1101
(* Meta-rewriting: rewrites t to u and returns the theorem t==u *)
berghofe@10413
  1102
berghofe@10413
  1103
(*
berghofe@10413
  1104
  Parameters:
berghofe@10413
  1105
    mode = (simplify A,
berghofe@10413
  1106
            use A in simplifying B,
berghofe@10413
  1107
            use prems of B (if B is again a meta-impl.) to simplify A)
berghofe@10413
  1108
           when simplifying A ==> B
berghofe@10413
  1109
    prover: how to solve premises in conditional rewrites and congruences
berghofe@10413
  1110
*)
berghofe@10413
  1111
wenzelm@15023
  1112
fun rewrite_cterm mode prover ss ct =
wenzelm@16985
  1113
  (inc simp_depth;
nipkow@17046
  1114
   if !simp_depth mod 20 = 0
nipkow@16042
  1115
   then warning ("Simplification depth " ^ string_of_int (!simp_depth))
nipkow@16042
  1116
   else ();
wenzelm@16985
  1117
   trace_cterm false "SIMPLIFIER INVOKED ON THE FOLLOWING TERM:" ss ct;
wenzelm@16458
  1118
   let val {thy, t, maxidx, ...} = Thm.rep_cterm ct
wenzelm@16458
  1119
       val res = bottomc (mode, prover, thy, maxidx) ss ct
nipkow@16042
  1120
         handle THM (s, _, thms) =>
nipkow@16042
  1121
         error ("Exception THM was raised in simplifier:\n" ^ s ^ "\n" ^
nipkow@16042
  1122
           Pretty.string_of (Display.pretty_thms thms))
wenzelm@16985
  1123
   in dec simp_depth; res end
wenzelm@16985
  1124
  ) handle exn => (dec simp_depth; raise exn);
berghofe@10413
  1125
wenzelm@11760
  1126
(*Rewrite a cterm*)
wenzelm@11767
  1127
fun rewrite_aux _ _ [] = (fn ct => Thm.reflexive ct)
wenzelm@15023
  1128
  | rewrite_aux prover full thms =
wenzelm@15023
  1129
      rewrite_cterm (full, false, false) prover (empty_ss addsimps thms);
wenzelm@11672
  1130
berghofe@10413
  1131
(*Rewrite a theorem*)
wenzelm@11767
  1132
fun simplify_aux _ _ [] = (fn th => th)
wenzelm@11767
  1133
  | simplify_aux prover full thms =
wenzelm@15023
  1134
      Drule.fconv_rule (rewrite_cterm (full, false, false) prover (empty_ss addsimps thms));
berghofe@10413
  1135
wenzelm@15023
  1136
(*simple term rewriting -- no proof*)
wenzelm@16458
  1137
fun rewrite_term thy rules procs =
wenzelm@17203
  1138
  Pattern.rewrite_term thy (map decomp_simp' rules) procs;
wenzelm@15023
  1139
wenzelm@15023
  1140
fun rewrite_thm mode prover ss = Drule.fconv_rule (rewrite_cterm mode prover ss);
berghofe@10413
  1141
berghofe@10413
  1142
(*Rewrite the subgoals of a proof state (represented by a theorem) *)
berghofe@10413
  1143
fun rewrite_goals_rule_aux _ []   th = th
berghofe@10413
  1144
  | rewrite_goals_rule_aux prover thms th =
skalberg@15001
  1145
      Drule.fconv_rule (Drule.goals_conv (K true) (rewrite_cterm (true, true, false) prover
wenzelm@15023
  1146
        (empty_ss addsimps thms))) th;
berghofe@10413
  1147
wenzelm@15023
  1148
(*Rewrite the subgoal of a proof state (represented by a theorem)*)
skalberg@15011
  1149
fun rewrite_goal_rule mode prover ss i thm =
berghofe@10413
  1150
  if 0 < i  andalso  i <= nprems_of thm
skalberg@15011
  1151
  then Drule.fconv_rule (Drule.goals_conv (fn j => j=i) (rewrite_cterm mode prover ss)) thm
berghofe@10413
  1152
  else raise THM("rewrite_goal_rule",i,[thm]);
berghofe@10413
  1153
wenzelm@15023
  1154
(*Rewrite subgoal i only.  SELECT_GOAL avoids inefficiencies in goals_conv.*)
wenzelm@15023
  1155
fun asm_rewrite_goal_tac mode prover_tac ss =
wenzelm@15023
  1156
  SELECT_GOAL
wenzelm@15023
  1157
    (PRIMITIVE (rewrite_goal_rule mode (SINGLE o prover_tac) ss 1));
wenzelm@12783
  1158
wenzelm@15023
  1159
skalberg@15006
  1160
wenzelm@15023
  1161
(** simplification tactics and rules **)
skalberg@15006
  1162
wenzelm@15023
  1163
fun solve_all_tac solvers ss =
skalberg@15006
  1164
  let
wenzelm@15023
  1165
    val Simpset (_, {subgoal_tac, ...}) = ss;
wenzelm@15023
  1166
    val solve_tac = subgoal_tac (set_solvers solvers ss) THEN_ALL_NEW (K no_tac);
wenzelm@15023
  1167
  in DEPTH_SOLVE (solve_tac 1) end;
skalberg@15006
  1168
wenzelm@15023
  1169
(*NOTE: may instantiate unknowns that appear also in other subgoals*)
wenzelm@15023
  1170
fun generic_simp_tac safe mode ss =
wenzelm@15023
  1171
  let
wenzelm@15023
  1172
    val Simpset ({prems, ...}, {loop_tacs, solvers = (unsafe_solvers, solvers), ...}) = ss;
wenzelm@15023
  1173
    val loop_tac = FIRST' (map #2 loop_tacs);
wenzelm@15023
  1174
    val solve_tac = FIRST' (map (solver prems) (if safe then solvers else unsafe_solvers));
skalberg@15006
  1175
wenzelm@15023
  1176
    fun simp_loop_tac i =
wenzelm@15023
  1177
      asm_rewrite_goal_tac mode (solve_all_tac unsafe_solvers) ss i THEN
wenzelm@15023
  1178
      (solve_tac i ORELSE TRY ((loop_tac THEN_ALL_NEW simp_loop_tac) i));
wenzelm@15023
  1179
  in simp_loop_tac end;
skalberg@15006
  1180
wenzelm@15023
  1181
fun simp rew mode ss thm =
skalberg@15006
  1182
  let
wenzelm@15023
  1183
    val Simpset (_, {solvers = (unsafe_solvers, _), ...}) = ss;
wenzelm@15023
  1184
    val tacf = solve_all_tac unsafe_solvers;
skalberg@15570
  1185
    fun prover s th = Option.map #1 (Seq.pull (tacf s th));
skalberg@15011
  1186
  in rew mode prover ss thm end;
skalberg@15006
  1187
skalberg@15006
  1188
val simp_thm = simp rewrite_thm;
skalberg@15006
  1189
val simp_cterm = simp rewrite_cterm;
skalberg@15006
  1190
berghofe@10413
  1191
end;
berghofe@10413
  1192
wenzelm@11672
  1193
structure BasicMetaSimplifier: BASIC_META_SIMPLIFIER = MetaSimplifier;
wenzelm@11672
  1194
open BasicMetaSimplifier;