src/HOL/cladata.ML
author haftmann
Mon Aug 14 13:46:06 2006 +0200 (2006-08-14)
changeset 20380 14f9f2a1caa6
parent 20223 89d2758ecddf
child 20944 34b2c1bb7178
permissions -rw-r--r--
simplified code generator setup
paulson@1985
     1
(*  Title:      HOL/cladata.ML
paulson@1985
     2
    ID:         $Id$
paulson@1985
     3
    Author:     Tobias Nipkow
paulson@1985
     4
    Copyright   1996  University of Cambridge
paulson@1985
     5
wenzelm@4085
     6
Setting up the classical reasoner.
paulson@1985
     7
*)
paulson@1985
     8
paulson@1985
     9
paulson@1985
    10
(** Applying HypsubstFun to generate hyp_subst_tac **)
paulson@1985
    11
section "Classical Reasoner";
paulson@1985
    12
paulson@1985
    13
structure Hypsubst_Data =
paulson@1985
    14
  struct
paulson@1985
    15
  structure Simplifier = Simplifier
paulson@1985
    16
  (*Take apart an equality judgement; otherwise raise Match!*)
paulson@4466
    17
  fun dest_eq (Const("op =",T)  $ t $ u) = (t, u, domain_type T)
paulson@4466
    18
  val dest_Trueprop = HOLogic.dest_Trueprop
paulson@4466
    19
  val dest_imp = HOLogic.dest_imp
paulson@1985
    20
  val eq_reflection = eq_reflection
wenzelm@9531
    21
  val rev_eq_reflection = def_imp_eq
paulson@1985
    22
  val imp_intr = impI
paulson@1985
    23
  val rev_mp = rev_mp
paulson@1985
    24
  val subst = subst
paulson@1985
    25
  val sym = sym
wenzelm@7357
    26
  val thin_refl = prove_goal (the_context ())
oheimb@4223
    27
		  "!!X. [|x=x; PROP W|] ==> PROP W" (K [atac 1]);
paulson@1985
    28
  end;
paulson@1985
    29
paulson@1985
    30
structure Hypsubst = HypsubstFun(Hypsubst_Data);
paulson@1985
    31
open Hypsubst;
paulson@1985
    32
wenzelm@12355
    33
(*prevent substitution on bool*)
wenzelm@12355
    34
fun hyp_subst_tac' i thm = if i <= Thm.nprems_of thm andalso
wenzelm@12355
    35
  Term.exists_Const (fn ("op =", Type (_, [T, _])) => T <> Type ("bool", []) | _ => false)
skalberg@15570
    36
    (List.nth (Thm.prems_of thm, i - 1)) then hyp_subst_tac i thm else no_tac thm;
wenzelm@12355
    37
wenzelm@12355
    38
paulson@1985
    39
(*** Applying ClassicalFun to create a classical prover ***)
paulson@1985
    40
structure Classical_Data = 
paulson@1985
    41
  struct
paulson@1985
    42
  val mp        = mp
paulson@1985
    43
  val not_elim  = notE
paulson@1985
    44
  val classical = classical
paulson@9158
    45
  val sizef     = size_of_thm
oheimb@4206
    46
  val hyp_subst_tacs=[hyp_subst_tac]
paulson@1985
    47
  end;
paulson@1985
    48
paulson@1985
    49
structure Classical = ClassicalFun(Classical_Data);
paulson@10197
    50
paulson@10197
    51
structure BasicClassical: BASIC_CLASSICAL = Classical; 
paulson@10197
    52
haftmann@18362
    53
open BasicClassical;
haftmann@18362
    54
paulson@1985
    55
(*Propositional rules*)
paulson@1985
    56
val prop_cs = empty_cs addSIs [refl,TrueI,conjI,disjCI,impI,notI,iffI]
paulson@4305
    57
                       addSEs [conjE,disjE,impCE,FalseE,iffCE];
paulson@1985
    58
paulson@1985
    59
(*Quantifier rules*)
paulson@11451
    60
val HOL_cs = prop_cs addSIs [allI,ex_ex1I] addIs [exI, the_equality] 
paulson@3004
    61
                     addSEs [exE] addEs [allE];
paulson@1985
    62
wenzelm@18708
    63
val clasetup = (fn thy => (change_claset_of thy (fn _ => HOL_cs); thy));