src/Pure/drule.ML
author wenzelm
Fri Apr 16 14:42:44 1999 +0200 (1999-04-16)
changeset 6435 154b88d2b62e
parent 6390 5d58c100ca3f
child 6930 4b40fb299f9f
permissions -rw-r--r--
added incr_indexes, incr_indexes_wrt;
wenzelm@252
     1
(*  Title:      Pure/drule.ML
clasohm@0
     2
    ID:         $Id$
wenzelm@252
     3
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
clasohm@0
     4
    Copyright   1993  University of Cambridge
clasohm@0
     5
wenzelm@3766
     6
Derived rules and other operations on theorems.
clasohm@0
     7
*)
clasohm@0
     8
lcp@11
     9
infix 0 RS RSN RL RLN MRS MRL COMP;
clasohm@0
    10
wenzelm@5903
    11
signature BASIC_DRULE =
wenzelm@3766
    12
sig
wenzelm@4285
    13
  val dest_implies      : cterm -> cterm * cterm
wenzelm@4285
    14
  val skip_flexpairs	: cterm -> cterm
wenzelm@4285
    15
  val strip_imp_prems	: cterm -> cterm list
clasohm@1460
    16
  val cprems_of		: thm -> cterm list
wenzelm@4285
    17
  val read_insts	:
wenzelm@4285
    18
          Sign.sg -> (indexname -> typ option) * (indexname -> sort option)
wenzelm@4285
    19
                  -> (indexname -> typ option) * (indexname -> sort option)
wenzelm@4285
    20
                  -> string list -> (string*string)list
wenzelm@4285
    21
                  -> (indexname*ctyp)list * (cterm*cterm)list
wenzelm@4285
    22
  val types_sorts: thm -> (indexname-> typ option) * (indexname-> sort option)
clasohm@1460
    23
  val forall_intr_list	: cterm list -> thm -> thm
clasohm@1460
    24
  val forall_intr_frees	: thm -> thm
clasohm@1460
    25
  val forall_intr_vars	: thm -> thm
clasohm@1460
    26
  val forall_elim_list	: cterm list -> thm -> thm
clasohm@1460
    27
  val forall_elim_var	: int -> thm -> thm
clasohm@1460
    28
  val forall_elim_vars	: int -> thm -> thm
paulson@4610
    29
  val freeze_thaw	: thm -> thm * (thm -> thm)
clasohm@1460
    30
  val implies_elim_list	: thm -> thm list -> thm
clasohm@1460
    31
  val implies_intr_list	: cterm list -> thm -> thm
wenzelm@4285
    32
  val zero_var_indexes	: thm -> thm
wenzelm@4285
    33
  val standard		: thm -> thm
paulson@4610
    34
  val rotate_prems      : int -> thm -> thm
wenzelm@4285
    35
  val assume_ax		: theory -> string -> thm
wenzelm@4285
    36
  val RSN		: thm * (int * thm) -> thm
wenzelm@4285
    37
  val RS		: thm * thm -> thm
wenzelm@4285
    38
  val RLN		: thm list * (int * thm list) -> thm list
wenzelm@4285
    39
  val RL		: thm list * thm list -> thm list
wenzelm@4285
    40
  val MRS		: thm list * thm -> thm
clasohm@1460
    41
  val MRL		: thm list list * thm list -> thm list
wenzelm@4285
    42
  val compose		: thm * int * thm -> thm list
wenzelm@4285
    43
  val COMP		: thm * thm -> thm
clasohm@0
    44
  val read_instantiate_sg: Sign.sg -> (string*string)list -> thm -> thm
wenzelm@4285
    45
  val read_instantiate	: (string*string)list -> thm -> thm
wenzelm@4285
    46
  val cterm_instantiate	: (cterm*cterm)list -> thm -> thm
wenzelm@4285
    47
  val weak_eq_thm	: thm * thm -> bool
wenzelm@4285
    48
  val eq_thm_sg		: thm * thm -> bool
wenzelm@4285
    49
  val size_of_thm	: thm -> int
clasohm@1460
    50
  val reflexive_thm	: thm
wenzelm@4285
    51
  val symmetric_thm	: thm
wenzelm@4285
    52
  val transitive_thm	: thm
paulson@2004
    53
  val refl_implies      : thm
nipkow@4679
    54
  val symmetric_fun     : thm -> thm
wenzelm@3575
    55
  val rewrite_rule_aux	: (meta_simpset -> thm -> thm option) -> thm list -> thm -> thm
nipkow@4713
    56
  val rewrite_thm	: bool * bool * bool
nipkow@4713
    57
                          -> (meta_simpset -> thm -> thm option)
nipkow@4713
    58
                          -> meta_simpset -> thm -> thm
wenzelm@5079
    59
  val rewrite_cterm	: bool * bool * bool
wenzelm@5079
    60
                          -> (meta_simpset -> thm -> thm option)
wenzelm@5079
    61
                          -> meta_simpset -> cterm -> thm
wenzelm@4285
    62
  val rewrite_goals_rule_aux: (meta_simpset -> thm -> thm option) -> thm list -> thm -> thm
nipkow@4713
    63
  val rewrite_goal_rule	: bool* bool * bool
nipkow@4713
    64
                          -> (meta_simpset -> thm -> thm option)
nipkow@4713
    65
                          -> meta_simpset -> int -> thm -> thm
wenzelm@4285
    66
  val equal_abs_elim	: cterm  -> thm -> thm
wenzelm@4285
    67
  val equal_abs_elim_list: cterm list -> thm -> thm
wenzelm@4285
    68
  val flexpair_abs_elim_list: cterm list -> thm -> thm
wenzelm@4285
    69
  val asm_rl		: thm
wenzelm@4285
    70
  val cut_rl		: thm
wenzelm@4285
    71
  val revcut_rl		: thm
wenzelm@4285
    72
  val thin_rl		: thm
wenzelm@4285
    73
  val triv_forall_equality: thm
nipkow@1756
    74
  val swap_prems_rl     : thm
wenzelm@4285
    75
  val equal_intr_rule   : thm
wenzelm@5903
    76
  val instantiate'	: ctyp option list -> cterm option list -> thm -> thm
wenzelm@6435
    77
  val incr_indexes	: int -> thm -> thm
wenzelm@6435
    78
  val incr_indexes_wrt	: int list -> ctyp list -> cterm list -> thm list -> thm -> thm
wenzelm@5903
    79
end;
wenzelm@5903
    80
wenzelm@5903
    81
signature DRULE =
wenzelm@5903
    82
sig
wenzelm@5903
    83
  include BASIC_DRULE
paulson@5311
    84
  val triv_goal		: thm
paulson@5311
    85
  val rev_triv_goal	: thm
paulson@5311
    86
  val mk_triv_goal      : cterm -> thm
wenzelm@5903
    87
  val tvars_of_terms	: term list -> (indexname * sort) list
wenzelm@5903
    88
  val vars_of_terms	: term list -> (indexname * typ) list
wenzelm@5903
    89
  val tvars_of		: thm -> (indexname * sort) list
wenzelm@5903
    90
  val vars_of		: thm -> (indexname * typ) list
wenzelm@5688
    91
  val unvarifyT		: thm -> thm
wenzelm@5688
    92
  val unvarify		: thm -> thm
wenzelm@6086
    93
  val rule_attribute	: ('a -> thm -> thm) -> 'a attribute
wenzelm@6086
    94
  val tag		: tag -> 'a attribute
wenzelm@6086
    95
  val untag		: tag -> 'a attribute
wenzelm@6086
    96
  val tag_lemma		: 'a attribute
wenzelm@6086
    97
  val tag_assumption	: 'a attribute
wenzelm@6086
    98
  val tag_internal	: 'a attribute
wenzelm@3766
    99
end;
clasohm@0
   100
wenzelm@5903
   101
structure Drule: DRULE =
clasohm@0
   102
struct
clasohm@0
   103
wenzelm@3991
   104
lcp@708
   105
(** some cterm->cterm operations: much faster than calling cterm_of! **)
lcp@708
   106
paulson@2004
   107
(** SAME NAMES as in structure Logic: use compound identifiers! **)
paulson@2004
   108
clasohm@1703
   109
(*dest_implies for cterms. Note T=prop below*)
paulson@2004
   110
fun dest_implies ct =
paulson@2004
   111
    case term_of ct of 
paulson@2004
   112
	(Const("==>", _) $ _ $ _) => 
paulson@2004
   113
	    let val (ct1,ct2) = dest_comb ct
paulson@2004
   114
	    in  (#2 (dest_comb ct1), ct2)  end	     
paulson@2004
   115
      | _ => raise TERM ("dest_implies", [term_of ct]) ;
clasohm@1703
   116
clasohm@1703
   117
lcp@708
   118
(*Discard flexflex pairs; return a cterm*)
paulson@2004
   119
fun skip_flexpairs ct =
lcp@708
   120
    case term_of ct of
clasohm@1460
   121
	(Const("==>", _) $ (Const("=?=",_)$_$_) $ _) =>
paulson@2004
   122
	    skip_flexpairs (#2 (dest_implies ct))
lcp@708
   123
      | _ => ct;
lcp@708
   124
lcp@708
   125
(* A1==>...An==>B  goes to  [A1,...,An], where B is not an implication *)
paulson@2004
   126
fun strip_imp_prems ct =
paulson@2004
   127
    let val (cA,cB) = dest_implies ct
paulson@2004
   128
    in  cA :: strip_imp_prems cB  end
lcp@708
   129
    handle TERM _ => [];
lcp@708
   130
paulson@2004
   131
(* A1==>...An==>B  goes to B, where B is not an implication *)
paulson@2004
   132
fun strip_imp_concl ct =
paulson@2004
   133
    case term_of ct of (Const("==>", _) $ _ $ _) => 
paulson@2004
   134
	strip_imp_concl (#2 (dest_comb ct))
paulson@2004
   135
  | _ => ct;
paulson@2004
   136
lcp@708
   137
(*The premises of a theorem, as a cterm list*)
paulson@2004
   138
val cprems_of = strip_imp_prems o skip_flexpairs o cprop_of;
lcp@708
   139
lcp@708
   140
lcp@229
   141
(** reading of instantiations **)
lcp@229
   142
lcp@229
   143
fun absent ixn =
lcp@229
   144
  error("No such variable in term: " ^ Syntax.string_of_vname ixn);
lcp@229
   145
lcp@229
   146
fun inst_failure ixn =
lcp@229
   147
  error("Instantiation of " ^ Syntax.string_of_vname ixn ^ " fails");
lcp@229
   148
nipkow@4281
   149
fun read_insts sign (rtypes,rsorts) (types,sorts) used insts =
nipkow@4281
   150
let val {tsig,...} = Sign.rep_sg sign
nipkow@4281
   151
    fun split([],tvs,vs) = (tvs,vs)
wenzelm@4691
   152
      | split((sv,st)::l,tvs,vs) = (case Symbol.explode sv of
wenzelm@4691
   153
                  "'"::cs => split(l,(Syntax.indexname cs,st)::tvs,vs)
wenzelm@4691
   154
                | cs => split(l,tvs,(Syntax.indexname cs,st)::vs));
nipkow@4281
   155
    val (tvs,vs) = split(insts,[],[]);
nipkow@4281
   156
    fun readT((a,i),st) =
nipkow@4281
   157
        let val ixn = ("'" ^ a,i);
nipkow@4281
   158
            val S = case rsorts ixn of Some S => S | None => absent ixn;
nipkow@4281
   159
            val T = Sign.read_typ (sign,sorts) st;
nipkow@4281
   160
        in if Type.typ_instance(tsig,T,TVar(ixn,S)) then (ixn,T)
nipkow@4281
   161
           else inst_failure ixn
nipkow@4281
   162
        end
nipkow@4281
   163
    val tye = map readT tvs;
nipkow@4281
   164
    fun mkty(ixn,st) = (case rtypes ixn of
nipkow@4281
   165
                          Some T => (ixn,(st,typ_subst_TVars tye T))
nipkow@4281
   166
                        | None => absent ixn);
nipkow@4281
   167
    val ixnsTs = map mkty vs;
nipkow@4281
   168
    val ixns = map fst ixnsTs
nipkow@4281
   169
    and sTs  = map snd ixnsTs
nipkow@4281
   170
    val (cts,tye2) = read_def_cterms(sign,types,sorts) used false sTs;
nipkow@4281
   171
    fun mkcVar(ixn,T) =
nipkow@4281
   172
        let val U = typ_subst_TVars tye2 T
nipkow@4281
   173
        in cterm_of sign (Var(ixn,U)) end
nipkow@4281
   174
    val ixnTs = ListPair.zip(ixns, map snd sTs)
nipkow@4281
   175
in (map (fn (ixn,T) => (ixn,ctyp_of sign T)) (tye2 @ tye),
nipkow@4281
   176
    ListPair.zip(map mkcVar ixnTs,cts))
nipkow@4281
   177
end;
lcp@229
   178
lcp@229
   179
wenzelm@252
   180
(*** Find the type (sort) associated with a (T)Var or (T)Free in a term
clasohm@0
   181
     Used for establishing default types (of variables) and sorts (of
clasohm@0
   182
     type variables) when reading another term.
clasohm@0
   183
     Index -1 indicates that a (T)Free rather than a (T)Var is wanted.
clasohm@0
   184
***)
clasohm@0
   185
clasohm@0
   186
fun types_sorts thm =
clasohm@0
   187
    let val {prop,hyps,...} = rep_thm thm;
wenzelm@252
   188
        val big = list_comb(prop,hyps); (* bogus term! *)
wenzelm@252
   189
        val vars = map dest_Var (term_vars big);
wenzelm@252
   190
        val frees = map dest_Free (term_frees big);
wenzelm@252
   191
        val tvars = term_tvars big;
wenzelm@252
   192
        val tfrees = term_tfrees big;
wenzelm@252
   193
        fun typ(a,i) = if i<0 then assoc(frees,a) else assoc(vars,(a,i));
wenzelm@252
   194
        fun sort(a,i) = if i<0 then assoc(tfrees,a) else assoc(tvars,(a,i));
clasohm@0
   195
    in (typ,sort) end;
clasohm@0
   196
clasohm@0
   197
(** Standardization of rules **)
clasohm@0
   198
clasohm@0
   199
(*Generalization over a list of variables, IGNORING bad ones*)
clasohm@0
   200
fun forall_intr_list [] th = th
clasohm@0
   201
  | forall_intr_list (y::ys) th =
wenzelm@252
   202
        let val gth = forall_intr_list ys th
wenzelm@252
   203
        in  forall_intr y gth   handle THM _ =>  gth  end;
clasohm@0
   204
clasohm@0
   205
(*Generalization over all suitable Free variables*)
clasohm@0
   206
fun forall_intr_frees th =
clasohm@0
   207
    let val {prop,sign,...} = rep_thm th
clasohm@0
   208
    in  forall_intr_list
wenzelm@4440
   209
         (map (cterm_of sign) (sort (make_ord atless) (term_frees prop)))
clasohm@0
   210
         th
clasohm@0
   211
    end;
clasohm@0
   212
clasohm@0
   213
(*Replace outermost quantified variable by Var of given index.
clasohm@0
   214
    Could clash with Vars already present.*)
wenzelm@252
   215
fun forall_elim_var i th =
clasohm@0
   216
    let val {prop,sign,...} = rep_thm th
clasohm@0
   217
    in case prop of
wenzelm@252
   218
          Const("all",_) $ Abs(a,T,_) =>
wenzelm@252
   219
              forall_elim (cterm_of sign (Var((a,i), T)))  th
wenzelm@252
   220
        | _ => raise THM("forall_elim_var", i, [th])
clasohm@0
   221
    end;
clasohm@0
   222
clasohm@0
   223
(*Repeat forall_elim_var until all outer quantifiers are removed*)
wenzelm@252
   224
fun forall_elim_vars i th =
clasohm@0
   225
    forall_elim_vars i (forall_elim_var i th)
wenzelm@252
   226
        handle THM _ => th;
clasohm@0
   227
clasohm@0
   228
(*Specialization over a list of cterms*)
clasohm@0
   229
fun forall_elim_list cts th = foldr (uncurry forall_elim) (rev cts, th);
clasohm@0
   230
clasohm@0
   231
(* maps [A1,...,An], B   to   [| A1;...;An |] ==> B  *)
clasohm@0
   232
fun implies_intr_list cAs th = foldr (uncurry implies_intr) (cAs,th);
clasohm@0
   233
clasohm@0
   234
(* maps [| A1;...;An |] ==> B and [A1,...,An]   to   B *)
clasohm@0
   235
fun implies_elim_list impth ths = foldl (uncurry implies_elim) (impth,ths);
clasohm@0
   236
clasohm@0
   237
(*Reset Var indexes to zero, renaming to preserve distinctness*)
wenzelm@252
   238
fun zero_var_indexes th =
clasohm@0
   239
    let val {prop,sign,...} = rep_thm th;
clasohm@0
   240
        val vars = term_vars prop
clasohm@0
   241
        val bs = foldl add_new_id ([], map (fn Var((a,_),_)=>a) vars)
wenzelm@252
   242
        val inrs = add_term_tvars(prop,[]);
wenzelm@252
   243
        val nms' = rev(foldl add_new_id ([], map (#1 o #1) inrs));
paulson@2266
   244
        val tye = ListPair.map (fn ((v,rs),a) => (v, TVar((a,0),rs)))
paulson@2266
   245
	             (inrs, nms')
wenzelm@252
   246
        val ctye = map (fn (v,T) => (v,ctyp_of sign T)) tye;
wenzelm@252
   247
        fun varpairs([],[]) = []
wenzelm@252
   248
          | varpairs((var as Var(v,T)) :: vars, b::bs) =
wenzelm@252
   249
                let val T' = typ_subst_TVars tye T
wenzelm@252
   250
                in (cterm_of sign (Var(v,T')),
wenzelm@252
   251
                    cterm_of sign (Var((b,0),T'))) :: varpairs(vars,bs)
wenzelm@252
   252
                end
wenzelm@252
   253
          | varpairs _ = raise TERM("varpairs", []);
clasohm@0
   254
    in instantiate (ctye, varpairs(vars,rev bs)) th end;
clasohm@0
   255
clasohm@0
   256
clasohm@0
   257
(*Standard form of object-rule: no hypotheses, Frees, or outer quantifiers;
clasohm@0
   258
    all generality expressed by Vars having index 0.*)
clasohm@0
   259
fun standard th =
wenzelm@1218
   260
  let val {maxidx,...} = rep_thm th
wenzelm@1237
   261
  in
wenzelm@1218
   262
    th |> implies_intr_hyps
paulson@1412
   263
       |> forall_intr_frees |> forall_elim_vars (maxidx + 1)
wenzelm@1439
   264
       |> Thm.strip_shyps |> Thm.implies_intr_shyps
paulson@1412
   265
       |> zero_var_indexes |> Thm.varifyT |> Thm.compress
wenzelm@1218
   266
  end;
wenzelm@1218
   267
clasohm@0
   268
paulson@4610
   269
(*Convert all Vars in a theorem to Frees.  Also return a function for 
paulson@4610
   270
  reversing that operation.  DOES NOT WORK FOR TYPE VARIABLES.
paulson@4610
   271
  Similar code in type/freeze_thaw*)
paulson@4610
   272
fun freeze_thaw th =
paulson@4610
   273
  let val fth = freezeT th
paulson@4610
   274
      val {prop,sign,...} = rep_thm fth
paulson@4610
   275
      val used = add_term_names (prop, [])
paulson@4610
   276
      and vars = term_vars prop
paulson@4610
   277
      fun newName (Var(ix,_), (pairs,used)) = 
paulson@4610
   278
	    let val v = variant used (string_of_indexname ix)
paulson@4610
   279
	    in  ((ix,v)::pairs, v::used)  end;
paulson@4610
   280
      val (alist, _) = foldr newName (vars, ([], used))
paulson@4610
   281
      fun mk_inst (Var(v,T)) = 
paulson@4610
   282
	  (cterm_of sign (Var(v,T)),
paulson@4610
   283
	   cterm_of sign (Free(the (assoc(alist,v)), T)))
paulson@4610
   284
      val insts = map mk_inst vars
paulson@4610
   285
      fun thaw th' = 
paulson@4610
   286
	  th' |> forall_intr_list (map #2 insts)
paulson@4610
   287
	      |> forall_elim_list (map #1 insts)
paulson@4610
   288
  in  (instantiate ([],insts) fth, thaw)  end;
paulson@4610
   289
paulson@4610
   290
paulson@4610
   291
(*Rotates a rule's premises to the left by k.  Does nothing if k=0 or
paulson@4610
   292
  if k equals the number of premises.  Useful, for instance, with etac.
paulson@4610
   293
  Similar to tactic/defer_tac*)
paulson@4610
   294
fun rotate_prems k rl = 
paulson@4610
   295
    let val (rl',thaw) = freeze_thaw rl
paulson@4610
   296
	val hyps = strip_imp_prems (adjust_maxidx (cprop_of rl'))
paulson@4610
   297
	val hyps' = List.drop(hyps, k)
paulson@4610
   298
    in  implies_elim_list rl' (map assume hyps)
paulson@4610
   299
        |> implies_intr_list (hyps' @ List.take(hyps, k))
paulson@4610
   300
        |> thaw |> varifyT
paulson@4610
   301
    end;
paulson@4610
   302
paulson@4610
   303
wenzelm@252
   304
(*Assume a new formula, read following the same conventions as axioms.
clasohm@0
   305
  Generalizes over Free variables,
clasohm@0
   306
  creates the assumption, and then strips quantifiers.
clasohm@0
   307
  Example is [| ALL x:?A. ?P(x) |] ==> [| ?P(?a) |]
wenzelm@252
   308
             [ !(A,P,a)[| ALL x:A. P(x) |] ==> [| P(a) |] ]    *)
clasohm@0
   309
fun assume_ax thy sP =
wenzelm@6390
   310
    let val sign = Theory.sign_of thy
paulson@4610
   311
        val prop = Logic.close_form (term_of (read_cterm sign (sP, propT)))
lcp@229
   312
    in forall_elim_vars 0 (assume (cterm_of sign prop))  end;
clasohm@0
   313
wenzelm@252
   314
(*Resolution: exactly one resolvent must be produced.*)
clasohm@0
   315
fun tha RSN (i,thb) =
wenzelm@4270
   316
  case Seq.chop (2, biresolution false [(false,tha)] i thb) of
clasohm@0
   317
      ([th],_) => th
clasohm@0
   318
    | ([],_)   => raise THM("RSN: no unifiers", i, [tha,thb])
clasohm@0
   319
    |      _   => raise THM("RSN: multiple unifiers", i, [tha,thb]);
clasohm@0
   320
clasohm@0
   321
(*resolution: P==>Q, Q==>R gives P==>R. *)
clasohm@0
   322
fun tha RS thb = tha RSN (1,thb);
clasohm@0
   323
clasohm@0
   324
(*For joining lists of rules*)
wenzelm@252
   325
fun thas RLN (i,thbs) =
clasohm@0
   326
  let val resolve = biresolution false (map (pair false) thas) i
wenzelm@4270
   327
      fun resb thb = Seq.list_of (resolve thb) handle THM _ => []
paulson@2672
   328
  in  List.concat (map resb thbs)  end;
clasohm@0
   329
clasohm@0
   330
fun thas RL thbs = thas RLN (1,thbs);
clasohm@0
   331
lcp@11
   332
(*Resolve a list of rules against bottom_rl from right to left;
lcp@11
   333
  makes proof trees*)
wenzelm@252
   334
fun rls MRS bottom_rl =
lcp@11
   335
  let fun rs_aux i [] = bottom_rl
wenzelm@252
   336
        | rs_aux i (rl::rls) = rl RSN (i, rs_aux (i+1) rls)
lcp@11
   337
  in  rs_aux 1 rls  end;
lcp@11
   338
lcp@11
   339
(*As above, but for rule lists*)
wenzelm@252
   340
fun rlss MRL bottom_rls =
lcp@11
   341
  let fun rs_aux i [] = bottom_rls
wenzelm@252
   342
        | rs_aux i (rls::rlss) = rls RLN (i, rs_aux (i+1) rlss)
lcp@11
   343
  in  rs_aux 1 rlss  end;
lcp@11
   344
wenzelm@252
   345
(*compose Q and [...,Qi,Q(i+1),...]==>R to [...,Q(i+1),...]==>R
clasohm@0
   346
  with no lifting or renaming!  Q may contain ==> or meta-quants
clasohm@0
   347
  ALWAYS deletes premise i *)
wenzelm@252
   348
fun compose(tha,i,thb) =
wenzelm@4270
   349
    Seq.list_of (bicompose false (false,tha,0) i thb);
clasohm@0
   350
clasohm@0
   351
(*compose Q and [Q1,Q2,...,Qk]==>R to [Q2,...,Qk]==>R getting unique result*)
clasohm@0
   352
fun tha COMP thb =
clasohm@0
   353
    case compose(tha,1,thb) of
wenzelm@252
   354
        [th] => th
clasohm@0
   355
      | _ =>   raise THM("COMP", 1, [tha,thb]);
clasohm@0
   356
clasohm@0
   357
(*Instantiate theorem th, reading instantiations under signature sg*)
clasohm@0
   358
fun read_instantiate_sg sg sinsts th =
clasohm@0
   359
    let val ts = types_sorts th;
nipkow@952
   360
        val used = add_term_tvarnames(#prop(rep_thm th),[]);
nipkow@952
   361
    in  instantiate (read_insts sg ts ts used sinsts) th  end;
clasohm@0
   362
clasohm@0
   363
(*Instantiate theorem th, reading instantiations under theory of th*)
clasohm@0
   364
fun read_instantiate sinsts th =
clasohm@0
   365
    read_instantiate_sg (#sign (rep_thm th)) sinsts th;
clasohm@0
   366
clasohm@0
   367
clasohm@0
   368
(*Left-to-right replacements: tpairs = [...,(vi,ti),...].
clasohm@0
   369
  Instantiates distinct Vars by terms, inferring type instantiations. *)
clasohm@0
   370
local
nipkow@1435
   371
  fun add_types ((ct,cu), (sign,tye,maxidx)) =
paulson@2152
   372
    let val {sign=signt, t=t, T= T, maxidx=maxt,...} = rep_cterm ct
paulson@2152
   373
        and {sign=signu, t=u, T= U, maxidx=maxu,...} = rep_cterm cu;
paulson@2152
   374
        val maxi = Int.max(maxidx, Int.max(maxt, maxu));
clasohm@0
   375
        val sign' = Sign.merge(sign, Sign.merge(signt, signu))
nipkow@1435
   376
        val (tye',maxi') = Type.unify (#tsig(Sign.rep_sg sign')) maxi tye (T,U)
wenzelm@252
   377
          handle Type.TUNIFY => raise TYPE("add_types", [T,U], [t,u])
nipkow@1435
   378
    in  (sign', tye', maxi')  end;
clasohm@0
   379
in
wenzelm@252
   380
fun cterm_instantiate ctpairs0 th =
nipkow@1435
   381
  let val (sign,tye,_) = foldr add_types (ctpairs0, (#sign(rep_thm th),[],0))
clasohm@0
   382
      val tsig = #tsig(Sign.rep_sg sign);
clasohm@0
   383
      fun instT(ct,cu) = let val inst = subst_TVars tye
wenzelm@252
   384
                         in (cterm_fun inst ct, cterm_fun inst cu) end
lcp@229
   385
      fun ctyp2 (ix,T) = (ix, ctyp_of sign T)
clasohm@0
   386
  in  instantiate (map ctyp2 tye, map instT ctpairs0) th  end
wenzelm@252
   387
  handle TERM _ =>
clasohm@0
   388
           raise THM("cterm_instantiate: incompatible signatures",0,[th])
wenzelm@4057
   389
       | TYPE (msg, _, _) => raise THM("cterm_instantiate: " ^ msg, 0, [th])
clasohm@0
   390
end;
clasohm@0
   391
clasohm@0
   392
wenzelm@4016
   393
(** theorem equality **)
clasohm@0
   394
clasohm@0
   395
(*Do the two theorems have the same signature?*)
wenzelm@252
   396
fun eq_thm_sg (th1,th2) = Sign.eq_sg(#sign(rep_thm th1), #sign(rep_thm th2));
clasohm@0
   397
clasohm@0
   398
(*Useful "distance" function for BEST_FIRST*)
clasohm@0
   399
val size_of_thm = size_of_term o #prop o rep_thm;
clasohm@0
   400
clasohm@0
   401
lcp@1194
   402
(** Mark Staples's weaker version of eq_thm: ignores variable renaming and
lcp@1194
   403
    (some) type variable renaming **)
lcp@1194
   404
lcp@1194
   405
 (* Can't use term_vars, because it sorts the resulting list of variable names.
lcp@1194
   406
    We instead need the unique list noramlised by the order of appearance
lcp@1194
   407
    in the term. *)
lcp@1194
   408
fun term_vars' (t as Var(v,T)) = [t]
lcp@1194
   409
  | term_vars' (Abs(_,_,b)) = term_vars' b
lcp@1194
   410
  | term_vars' (f$a) = (term_vars' f) @ (term_vars' a)
lcp@1194
   411
  | term_vars' _ = [];
lcp@1194
   412
lcp@1194
   413
fun forall_intr_vars th =
lcp@1194
   414
  let val {prop,sign,...} = rep_thm th;
lcp@1194
   415
      val vars = distinct (term_vars' prop);
lcp@1194
   416
  in forall_intr_list (map (cterm_of sign) vars) th end;
lcp@1194
   417
wenzelm@1237
   418
fun weak_eq_thm (tha,thb) =
lcp@1194
   419
    eq_thm(forall_intr_vars (freezeT tha), forall_intr_vars (freezeT thb));
lcp@1194
   420
lcp@1194
   421
lcp@1194
   422
clasohm@0
   423
(*** Meta-Rewriting Rules ***)
clasohm@0
   424
wenzelm@6390
   425
val proto_sign = Theory.sign_of ProtoPure.thy;
paulson@4610
   426
paulson@4610
   427
fun read_prop s = read_cterm proto_sign (s, propT);
paulson@4610
   428
wenzelm@4016
   429
fun store_thm name thm = PureThy.smart_store_thm (name, standard thm);
wenzelm@4016
   430
clasohm@0
   431
val reflexive_thm =
paulson@4610
   432
  let val cx = cterm_of proto_sign (Var(("x",0),TVar(("'a",0),logicS)))
wenzelm@4016
   433
  in store_thm "reflexive" (Thm.reflexive cx) end;
clasohm@0
   434
clasohm@0
   435
val symmetric_thm =
paulson@4610
   436
  let val xy = read_prop "x::'a::logic == y"
paulson@4610
   437
  in store_thm "symmetric" 
paulson@4610
   438
      (Thm.implies_intr_hyps(Thm.symmetric(Thm.assume xy)))
paulson@4610
   439
   end;
clasohm@0
   440
clasohm@0
   441
val transitive_thm =
paulson@4610
   442
  let val xy = read_prop "x::'a::logic == y"
paulson@4610
   443
      val yz = read_prop "y::'a::logic == z"
clasohm@0
   444
      val xythm = Thm.assume xy and yzthm = Thm.assume yz
paulson@4610
   445
  in store_thm "transitive" (Thm.implies_intr yz (Thm.transitive xythm yzthm))
paulson@4610
   446
  end;
clasohm@0
   447
nipkow@4679
   448
fun symmetric_fun thm = thm RS symmetric_thm;
nipkow@4679
   449
lcp@229
   450
(** Below, a "conversion" has type cterm -> thm **)
lcp@229
   451
paulson@4610
   452
val refl_implies = reflexive (cterm_of proto_sign implies);
clasohm@0
   453
clasohm@0
   454
(*In [A1,...,An]==>B, rewrite the selected A's only -- for rewrite_goals_tac*)
nipkow@214
   455
(*Do not rewrite flex-flex pairs*)
wenzelm@252
   456
fun goals_conv pred cv =
lcp@229
   457
  let fun gconv i ct =
paulson@2004
   458
        let val (A,B) = dest_implies ct
lcp@229
   459
            val (thA,j) = case term_of A of
lcp@229
   460
                  Const("=?=",_)$_$_ => (reflexive A, i)
lcp@229
   461
                | _ => (if pred i then cv A else reflexive A, i+1)
paulson@2004
   462
        in  combination (combination refl_implies thA) (gconv j B) end
lcp@229
   463
        handle TERM _ => reflexive ct
clasohm@0
   464
  in gconv 1 end;
clasohm@0
   465
clasohm@0
   466
(*Use a conversion to transform a theorem*)
lcp@229
   467
fun fconv_rule cv th = equal_elim (cv (cprop_of th)) th;
clasohm@0
   468
clasohm@0
   469
(*rewriting conversion*)
lcp@229
   470
fun rew_conv mode prover mss = rewrite_cterm mode mss prover;
clasohm@0
   471
clasohm@0
   472
(*Rewrite a theorem*)
wenzelm@3575
   473
fun rewrite_rule_aux _ []   th = th
wenzelm@3575
   474
  | rewrite_rule_aux prover thms th =
nipkow@4713
   475
      fconv_rule (rew_conv (true,false,false) prover (Thm.mss_of thms)) th;
clasohm@0
   476
wenzelm@3555
   477
fun rewrite_thm mode prover mss = fconv_rule (rew_conv mode prover mss);
wenzelm@5079
   478
fun rewrite_cterm mode prover mss = Thm.rewrite_cterm mode mss prover;
wenzelm@3555
   479
clasohm@0
   480
(*Rewrite the subgoals of a proof state (represented by a theorem) *)
wenzelm@3575
   481
fun rewrite_goals_rule_aux _ []   th = th
wenzelm@3575
   482
  | rewrite_goals_rule_aux prover thms th =
nipkow@4713
   483
      fconv_rule (goals_conv (K true) (rew_conv (true, true, false) prover
wenzelm@3575
   484
        (Thm.mss_of thms))) th;
clasohm@0
   485
clasohm@0
   486
(*Rewrite the subgoal of a proof state (represented by a theorem) *)
nipkow@214
   487
fun rewrite_goal_rule mode prover mss i thm =
nipkow@214
   488
  if 0 < i  andalso  i <= nprems_of thm
nipkow@214
   489
  then fconv_rule (goals_conv (fn j => j=i) (rew_conv mode prover mss)) thm
nipkow@214
   490
  else raise THM("rewrite_goal_rule",i,[thm]);
clasohm@0
   491
clasohm@0
   492
clasohm@0
   493
(** Derived rules mainly for METAHYPS **)
clasohm@0
   494
clasohm@0
   495
(*Given the term "a", takes (%x.t)==(%x.u) to t[a/x]==u[a/x]*)
clasohm@0
   496
fun equal_abs_elim ca eqth =
lcp@229
   497
  let val {sign=signa, t=a, ...} = rep_cterm ca
clasohm@0
   498
      and combth = combination eqth (reflexive ca)
clasohm@0
   499
      val {sign,prop,...} = rep_thm eqth
clasohm@0
   500
      val (abst,absu) = Logic.dest_equals prop
lcp@229
   501
      val cterm = cterm_of (Sign.merge (sign,signa))
clasohm@0
   502
  in  transitive (symmetric (beta_conversion (cterm (abst$a))))
clasohm@0
   503
           (transitive combth (beta_conversion (cterm (absu$a))))
clasohm@0
   504
  end
clasohm@0
   505
  handle THM _ => raise THM("equal_abs_elim", 0, [eqth]);
clasohm@0
   506
clasohm@0
   507
(*Calling equal_abs_elim with multiple terms*)
clasohm@0
   508
fun equal_abs_elim_list cts th = foldr (uncurry equal_abs_elim) (rev cts, th);
clasohm@0
   509
clasohm@0
   510
local
clasohm@0
   511
  val alpha = TVar(("'a",0), [])     (*  type ?'a::{}  *)
clasohm@0
   512
  fun err th = raise THM("flexpair_inst: ", 0, [th])
clasohm@0
   513
  fun flexpair_inst def th =
clasohm@0
   514
    let val {prop = Const _ $ t $ u,  sign,...} = rep_thm th
wenzelm@252
   515
        val cterm = cterm_of sign
wenzelm@252
   516
        fun cvar a = cterm(Var((a,0),alpha))
wenzelm@252
   517
        val def' = cterm_instantiate [(cvar"t", cterm t), (cvar"u", cterm u)]
wenzelm@252
   518
                   def
clasohm@0
   519
    in  equal_elim def' th
clasohm@0
   520
    end
clasohm@0
   521
    handle THM _ => err th | bind => err th
clasohm@0
   522
in
wenzelm@3991
   523
val flexpair_intr = flexpair_inst (symmetric ProtoPure.flexpair_def)
wenzelm@3991
   524
and flexpair_elim = flexpair_inst ProtoPure.flexpair_def
clasohm@0
   525
end;
clasohm@0
   526
clasohm@0
   527
(*Version for flexflex pairs -- this supports lifting.*)
wenzelm@252
   528
fun flexpair_abs_elim_list cts =
clasohm@0
   529
    flexpair_intr o equal_abs_elim_list cts o flexpair_elim;
clasohm@0
   530
clasohm@0
   531
clasohm@0
   532
(*** Some useful meta-theorems ***)
clasohm@0
   533
clasohm@0
   534
(*The rule V/V, obtains assumption solving for eresolve_tac*)
wenzelm@4016
   535
val asm_rl =
paulson@4610
   536
  store_thm "asm_rl" (trivial(read_prop "PROP ?psi"));
clasohm@0
   537
clasohm@0
   538
(*Meta-level cut rule: [| V==>W; V |] ==> W *)
wenzelm@4016
   539
val cut_rl =
wenzelm@4016
   540
  store_thm "cut_rl"
paulson@4610
   541
    (trivial(read_prop "PROP ?psi ==> PROP ?theta"));
clasohm@0
   542
wenzelm@252
   543
(*Generalized elim rule for one conclusion; cut_rl with reversed premises:
clasohm@0
   544
     [| PROP V;  PROP V ==> PROP W |] ==> PROP W *)
clasohm@0
   545
val revcut_rl =
paulson@4610
   546
  let val V = read_prop "PROP V"
paulson@4610
   547
      and VW = read_prop "PROP V ==> PROP W";
wenzelm@4016
   548
  in
wenzelm@4016
   549
    store_thm "revcut_rl"
wenzelm@4016
   550
      (implies_intr V (implies_intr VW (implies_elim (assume VW) (assume V))))
clasohm@0
   551
  end;
clasohm@0
   552
lcp@668
   553
(*for deleting an unwanted assumption*)
lcp@668
   554
val thin_rl =
paulson@4610
   555
  let val V = read_prop "PROP V"
paulson@4610
   556
      and W = read_prop "PROP W";
wenzelm@4016
   557
  in  store_thm "thin_rl" (implies_intr V (implies_intr W (assume W)))
lcp@668
   558
  end;
lcp@668
   559
clasohm@0
   560
(* (!!x. PROP ?V) == PROP ?V       Allows removal of redundant parameters*)
clasohm@0
   561
val triv_forall_equality =
paulson@4610
   562
  let val V  = read_prop "PROP V"
paulson@4610
   563
      and QV = read_prop "!!x::'a. PROP V"
paulson@4610
   564
      and x  = read_cterm proto_sign ("x", TFree("'a",logicS));
wenzelm@4016
   565
  in
wenzelm@4016
   566
    store_thm "triv_forall_equality"
wenzelm@4016
   567
      (equal_intr (implies_intr QV (forall_elim x (assume QV)))
wenzelm@4016
   568
        (implies_intr V  (forall_intr x (assume V))))
clasohm@0
   569
  end;
clasohm@0
   570
nipkow@1756
   571
(* (PROP ?PhiA ==> PROP ?PhiB ==> PROP ?Psi) ==>
nipkow@1756
   572
   (PROP ?PhiB ==> PROP ?PhiA ==> PROP ?Psi)
nipkow@1756
   573
   `thm COMP swap_prems_rl' swaps the first two premises of `thm'
nipkow@1756
   574
*)
nipkow@1756
   575
val swap_prems_rl =
paulson@4610
   576
  let val cmajor = read_prop "PROP PhiA ==> PROP PhiB ==> PROP Psi";
nipkow@1756
   577
      val major = assume cmajor;
paulson@4610
   578
      val cminor1 = read_prop "PROP PhiA";
nipkow@1756
   579
      val minor1 = assume cminor1;
paulson@4610
   580
      val cminor2 = read_prop "PROP PhiB";
nipkow@1756
   581
      val minor2 = assume cminor2;
wenzelm@4016
   582
  in store_thm "swap_prems_rl"
nipkow@1756
   583
       (implies_intr cmajor (implies_intr cminor2 (implies_intr cminor1
nipkow@1756
   584
         (implies_elim (implies_elim major minor1) minor2))))
nipkow@1756
   585
  end;
nipkow@1756
   586
nipkow@3653
   587
(* [| PROP ?phi ==> PROP ?psi; PROP ?psi ==> PROP ?phi |]
nipkow@3653
   588
   ==> PROP ?phi == PROP ?psi
paulson@4610
   589
   Introduction rule for == as a meta-theorem.  
nipkow@3653
   590
*)
nipkow@3653
   591
val equal_intr_rule =
paulson@4610
   592
  let val PQ = read_prop "PROP phi ==> PROP psi"
paulson@4610
   593
      and QP = read_prop "PROP psi ==> PROP phi"
wenzelm@4016
   594
  in
wenzelm@4016
   595
    store_thm "equal_intr_rule"
wenzelm@4016
   596
      (implies_intr PQ (implies_intr QP (equal_intr (assume PQ) (assume QP))))
nipkow@3653
   597
  end;
nipkow@3653
   598
wenzelm@4285
   599
wenzelm@4789
   600
(* GOAL (PROP A) <==> PROP A *)
wenzelm@4789
   601
wenzelm@4789
   602
local
wenzelm@4789
   603
  val A = read_prop "PROP A";
wenzelm@4789
   604
  val G = read_prop "GOAL (PROP A)";
wenzelm@4789
   605
  val (G_def, _) = freeze_thaw ProtoPure.Goal_def;
wenzelm@4789
   606
in
wenzelm@4789
   607
  val triv_goal = store_thm "triv_goal" (Thm.equal_elim (Thm.symmetric G_def) (Thm.assume A));
wenzelm@4789
   608
  val rev_triv_goal = store_thm "rev_triv_goal" (Thm.equal_elim G_def (Thm.assume G));
wenzelm@4789
   609
end;
wenzelm@4789
   610
wenzelm@4789
   611
wenzelm@4285
   612
wenzelm@5688
   613
(** variations on instantiate **)
wenzelm@4285
   614
wenzelm@4285
   615
(* collect vars *)
wenzelm@4285
   616
wenzelm@4285
   617
val add_tvarsT = foldl_atyps (fn (vs, TVar v) => v ins vs | (vs, _) => vs);
wenzelm@4285
   618
val add_tvars = foldl_types add_tvarsT;
wenzelm@4285
   619
val add_vars = foldl_aterms (fn (vs, Var v) => v ins vs | (vs, _) => vs);
wenzelm@4285
   620
wenzelm@5903
   621
fun tvars_of_terms ts = rev (foldl add_tvars ([], ts));
wenzelm@5903
   622
fun vars_of_terms ts = rev (foldl add_vars ([], ts));
wenzelm@5903
   623
wenzelm@5903
   624
fun tvars_of thm = tvars_of_terms [#prop (Thm.rep_thm thm)];
wenzelm@5903
   625
fun vars_of thm = vars_of_terms [#prop (Thm.rep_thm thm)];
wenzelm@4285
   626
wenzelm@4285
   627
wenzelm@4285
   628
(* instantiate by left-to-right occurrence of variables *)
wenzelm@4285
   629
wenzelm@4285
   630
fun instantiate' cTs cts thm =
wenzelm@4285
   631
  let
wenzelm@4285
   632
    fun err msg =
wenzelm@4285
   633
      raise TYPE ("instantiate': " ^ msg,
wenzelm@4285
   634
        mapfilter (apsome Thm.typ_of) cTs,
wenzelm@4285
   635
        mapfilter (apsome Thm.term_of) cts);
wenzelm@4285
   636
wenzelm@4285
   637
    fun inst_of (v, ct) =
wenzelm@4285
   638
      (Thm.cterm_of (#sign (Thm.rep_cterm ct)) (Var v), ct)
wenzelm@4285
   639
        handle TYPE (msg, _, _) => err msg;
wenzelm@4285
   640
wenzelm@4285
   641
    fun zip_vars _ [] = []
wenzelm@4285
   642
      | zip_vars (_ :: vs) (None :: opt_ts) = zip_vars vs opt_ts
wenzelm@4285
   643
      | zip_vars (v :: vs) (Some t :: opt_ts) = (v, t) :: zip_vars vs opt_ts
wenzelm@4285
   644
      | zip_vars [] _ = err "more instantiations than variables in thm";
wenzelm@4285
   645
wenzelm@4285
   646
    (*instantiate types first!*)
wenzelm@4285
   647
    val thm' =
wenzelm@4285
   648
      if forall is_none cTs then thm
wenzelm@4285
   649
      else Thm.instantiate (zip_vars (map fst (tvars_of thm)) cTs, []) thm;
wenzelm@4285
   650
    in
wenzelm@4285
   651
      if forall is_none cts then thm'
wenzelm@4285
   652
      else Thm.instantiate ([], map inst_of (zip_vars (vars_of thm') cts)) thm'
wenzelm@4285
   653
    end;
wenzelm@4285
   654
wenzelm@4285
   655
wenzelm@5688
   656
(* unvarify(T) *)
wenzelm@5688
   657
wenzelm@5688
   658
(*assume thm in standard form, i.e. no frees, 0 var indexes*)
wenzelm@5688
   659
wenzelm@5688
   660
fun unvarifyT thm =
wenzelm@5688
   661
  let
wenzelm@5688
   662
    val cT = Thm.ctyp_of (Thm.sign_of_thm thm);
wenzelm@5688
   663
    val tfrees = map (fn ((x, _), S) => Some (cT (TFree (x, S)))) (tvars_of thm);
wenzelm@5688
   664
  in instantiate' tfrees [] thm end;
wenzelm@5688
   665
wenzelm@5688
   666
fun unvarify raw_thm =
wenzelm@5688
   667
  let
wenzelm@5688
   668
    val thm = unvarifyT raw_thm;
wenzelm@5688
   669
    val ct = Thm.cterm_of (Thm.sign_of_thm thm);
wenzelm@5688
   670
    val frees = map (fn ((x, _), T) => Some (ct (Free (x, T)))) (vars_of thm);
wenzelm@5688
   671
  in instantiate' [] frees thm end;
wenzelm@5688
   672
wenzelm@5688
   673
wenzelm@6435
   674
(* increment var indexes *)
wenzelm@6435
   675
wenzelm@6435
   676
fun incr_indexes 0 thm = thm
wenzelm@6435
   677
  | incr_indexes inc thm =
wenzelm@6435
   678
      let
wenzelm@6435
   679
        val sign = Thm.sign_of_thm thm;
wenzelm@6435
   680
wenzelm@6435
   681
        fun inc_tvar ((x, i), S) = Some (Thm.ctyp_of sign (TVar ((x, i + inc), S)));
wenzelm@6435
   682
        fun inc_var ((x, i), T) = Some (Thm.cterm_of sign (Var ((x, i + inc), T)));
wenzelm@6435
   683
      in instantiate' (map inc_tvar (tvars_of thm)) (map inc_var (vars_of thm)) thm end;
wenzelm@6435
   684
wenzelm@6435
   685
fun incr_indexes_wrt is cTs cts thms =
wenzelm@6435
   686
  let
wenzelm@6435
   687
    val maxidx =
wenzelm@6435
   688
      foldl Int.max (~1, is @
wenzelm@6435
   689
        map (maxidx_of_typ o #T o Thm.rep_ctyp) cTs @
wenzelm@6435
   690
        map (#maxidx o Thm.rep_cterm) cts @
wenzelm@6435
   691
        map (#maxidx o Thm.rep_thm) thms);
wenzelm@6435
   692
  in incr_indexes (maxidx + 1) end;
wenzelm@6435
   693
wenzelm@6435
   694
wenzelm@5688
   695
(* mk_triv_goal *)
wenzelm@5688
   696
wenzelm@5688
   697
(*make an initial proof state, "PROP A ==> (PROP A)" *)
paulson@5311
   698
fun mk_triv_goal ct = instantiate' [] [Some ct] triv_goal;
paulson@5311
   699
wenzelm@5688
   700
wenzelm@6086
   701
wenzelm@6086
   702
(** basic attributes **)
wenzelm@6086
   703
wenzelm@6086
   704
(* dependent rules *)
wenzelm@6086
   705
wenzelm@6086
   706
fun rule_attribute f (x, thm) = (x, (f x thm));
wenzelm@6086
   707
wenzelm@6086
   708
wenzelm@6086
   709
(* add / delete tags *)
wenzelm@6086
   710
wenzelm@6086
   711
fun map_tags f thm =
wenzelm@6086
   712
  Thm.put_name_tags (Thm.name_of_thm thm, f (#2 (Thm.get_name_tags thm))) thm;
wenzelm@6086
   713
wenzelm@6086
   714
fun tag tg x = rule_attribute (K (map_tags (fn tgs => if tg mem tgs then tgs else tgs @ [tg]))) x;
wenzelm@6086
   715
fun untag tg x = rule_attribute (K (map_tags (fn tgs => tgs \ tg))) x;
wenzelm@6086
   716
wenzelm@6086
   717
fun simple_tag name x = tag (name, []) x;
wenzelm@6086
   718
wenzelm@6086
   719
fun tag_lemma x = simple_tag "lemma" x;
wenzelm@6086
   720
fun tag_assumption x = simple_tag "assumption" x;
wenzelm@6086
   721
fun tag_internal x = simple_tag "internal" x;
wenzelm@6086
   722
wenzelm@6086
   723
clasohm@0
   724
end;
wenzelm@252
   725
wenzelm@5903
   726
wenzelm@5903
   727
structure BasicDrule: BASIC_DRULE = Drule;
wenzelm@5903
   728
open BasicDrule;