wenzelm@41959
|
1 |
(* Title: HOL/Algebra/Divisibility.thy
|
wenzelm@41959
|
2 |
Author: Clemens Ballarin
|
wenzelm@41959
|
3 |
Author: Stephan Hohe
|
ballarin@27701
|
4 |
*)
|
ballarin@27701
|
5 |
|
wenzelm@41959
|
6 |
header {* Divisibility in monoids and rings *}
|
wenzelm@41959
|
7 |
|
ballarin@27701
|
8 |
theory Divisibility
|
wenzelm@41413
|
9 |
imports "~~/src/HOL/Library/Permutation" Coset Group
|
ballarin@27701
|
10 |
begin
|
ballarin@27701
|
11 |
|
ballarin@27717
|
12 |
section {* Factorial Monoids *}
|
ballarin@27717
|
13 |
|
ballarin@27717
|
14 |
subsection {* Monoids with Cancellation Law *}
|
ballarin@27701
|
15 |
|
ballarin@27701
|
16 |
locale monoid_cancel = monoid +
|
ballarin@27701
|
17 |
assumes l_cancel:
|
ballarin@27701
|
18 |
"\<lbrakk>c \<otimes> a = c \<otimes> b; a \<in> carrier G; b \<in> carrier G; c \<in> carrier G\<rbrakk> \<Longrightarrow> a = b"
|
ballarin@27701
|
19 |
and r_cancel:
|
ballarin@27701
|
20 |
"\<lbrakk>a \<otimes> c = b \<otimes> c; a \<in> carrier G; b \<in> carrier G; c \<in> carrier G\<rbrakk> \<Longrightarrow> a = b"
|
ballarin@27701
|
21 |
|
ballarin@27701
|
22 |
lemma (in monoid) monoid_cancelI:
|
ballarin@27701
|
23 |
assumes l_cancel:
|
ballarin@27701
|
24 |
"\<And>a b c. \<lbrakk>c \<otimes> a = c \<otimes> b; a \<in> carrier G; b \<in> carrier G; c \<in> carrier G\<rbrakk> \<Longrightarrow> a = b"
|
ballarin@27701
|
25 |
and r_cancel:
|
ballarin@27701
|
26 |
"\<And>a b c. \<lbrakk>a \<otimes> c = b \<otimes> c; a \<in> carrier G; b \<in> carrier G; c \<in> carrier G\<rbrakk> \<Longrightarrow> a = b"
|
ballarin@27701
|
27 |
shows "monoid_cancel G"
|
wenzelm@44655
|
28 |
by default fact+
|
ballarin@27701
|
29 |
|
ballarin@27701
|
30 |
lemma (in monoid_cancel) is_monoid_cancel:
|
ballarin@27701
|
31 |
"monoid_cancel G"
|
haftmann@28823
|
32 |
..
|
ballarin@27701
|
33 |
|
ballarin@29237
|
34 |
sublocale group \<subseteq> monoid_cancel
|
wenzelm@44655
|
35 |
by default simp_all
|
ballarin@27701
|
36 |
|
ballarin@27701
|
37 |
|
ballarin@27701
|
38 |
locale comm_monoid_cancel = monoid_cancel + comm_monoid
|
ballarin@27701
|
39 |
|
ballarin@27701
|
40 |
lemma comm_monoid_cancelI:
|
ballarin@28599
|
41 |
fixes G (structure)
|
ballarin@28599
|
42 |
assumes "comm_monoid G"
|
ballarin@27701
|
43 |
assumes cancel:
|
ballarin@27701
|
44 |
"\<And>a b c. \<lbrakk>a \<otimes> c = b \<otimes> c; a \<in> carrier G; b \<in> carrier G; c \<in> carrier G\<rbrakk> \<Longrightarrow> a = b"
|
ballarin@27701
|
45 |
shows "comm_monoid_cancel G"
|
ballarin@28599
|
46 |
proof -
|
ballarin@29237
|
47 |
interpret comm_monoid G by fact
|
ballarin@28599
|
48 |
show "comm_monoid_cancel G"
|
paulson@36278
|
49 |
by unfold_locales (metis assms(2) m_ac(2))+
|
ballarin@28599
|
50 |
qed
|
ballarin@27701
|
51 |
|
ballarin@27701
|
52 |
lemma (in comm_monoid_cancel) is_comm_monoid_cancel:
|
ballarin@27701
|
53 |
"comm_monoid_cancel G"
|
haftmann@28823
|
54 |
by intro_locales
|
ballarin@27701
|
55 |
|
ballarin@29237
|
56 |
sublocale comm_group \<subseteq> comm_monoid_cancel
|
haftmann@28823
|
57 |
..
|
ballarin@27701
|
58 |
|
ballarin@27701
|
59 |
|
ballarin@27717
|
60 |
subsection {* Products of Units in Monoids *}
|
ballarin@27701
|
61 |
|
ballarin@27701
|
62 |
lemma (in monoid) Units_m_closed[simp, intro]:
|
ballarin@27701
|
63 |
assumes h1unit: "h1 \<in> Units G" and h2unit: "h2 \<in> Units G"
|
ballarin@27701
|
64 |
shows "h1 \<otimes> h2 \<in> Units G"
|
ballarin@27701
|
65 |
unfolding Units_def
|
ballarin@27701
|
66 |
using assms
|
paulson@36278
|
67 |
by auto (metis Units_inv_closed Units_l_inv Units_m_closed Units_r_inv)
|
ballarin@27701
|
68 |
|
ballarin@27701
|
69 |
lemma (in monoid) prod_unit_l:
|
ballarin@27701
|
70 |
assumes abunit[simp]: "a \<otimes> b \<in> Units G" and aunit[simp]: "a \<in> Units G"
|
ballarin@27701
|
71 |
and carr[simp]: "a \<in> carrier G" "b \<in> carrier G"
|
ballarin@27701
|
72 |
shows "b \<in> Units G"
|
ballarin@27701
|
73 |
proof -
|
ballarin@27701
|
74 |
have c: "inv (a \<otimes> b) \<otimes> a \<in> carrier G" by simp
|
ballarin@27701
|
75 |
|
ballarin@27701
|
76 |
have "(inv (a \<otimes> b) \<otimes> a) \<otimes> b = inv (a \<otimes> b) \<otimes> (a \<otimes> b)" by (simp add: m_assoc)
|
ballarin@27701
|
77 |
also have "\<dots> = \<one>" by (simp add: Units_l_inv)
|
ballarin@27701
|
78 |
finally have li: "(inv (a \<otimes> b) \<otimes> a) \<otimes> b = \<one>" .
|
ballarin@27701
|
79 |
|
ballarin@27701
|
80 |
have "\<one> = inv a \<otimes> a" by (simp add: Units_l_inv[symmetric])
|
ballarin@27701
|
81 |
also have "\<dots> = inv a \<otimes> \<one> \<otimes> a" by simp
|
ballarin@27701
|
82 |
also have "\<dots> = inv a \<otimes> ((a \<otimes> b) \<otimes> inv (a \<otimes> b)) \<otimes> a"
|
ballarin@27701
|
83 |
by (simp add: Units_r_inv[OF abunit, symmetric] del: Units_r_inv)
|
ballarin@27701
|
84 |
also have "\<dots> = ((inv a \<otimes> a) \<otimes> b) \<otimes> inv (a \<otimes> b) \<otimes> a"
|
ballarin@27701
|
85 |
by (simp add: m_assoc del: Units_l_inv)
|
ballarin@27701
|
86 |
also have "\<dots> = b \<otimes> inv (a \<otimes> b) \<otimes> a" by (simp add: Units_l_inv)
|
ballarin@27701
|
87 |
also have "\<dots> = b \<otimes> (inv (a \<otimes> b) \<otimes> a)" by (simp add: m_assoc)
|
ballarin@27701
|
88 |
finally have ri: "b \<otimes> (inv (a \<otimes> b) \<otimes> a) = \<one> " by simp
|
ballarin@27701
|
89 |
|
ballarin@27701
|
90 |
from c li ri
|
ballarin@27701
|
91 |
show "b \<in> Units G" by (simp add: Units_def, fast)
|
ballarin@27701
|
92 |
qed
|
ballarin@27701
|
93 |
|
ballarin@27701
|
94 |
lemma (in monoid) prod_unit_r:
|
ballarin@27701
|
95 |
assumes abunit[simp]: "a \<otimes> b \<in> Units G" and bunit[simp]: "b \<in> Units G"
|
ballarin@27701
|
96 |
and carr[simp]: "a \<in> carrier G" "b \<in> carrier G"
|
ballarin@27701
|
97 |
shows "a \<in> Units G"
|
ballarin@27701
|
98 |
proof -
|
ballarin@27701
|
99 |
have c: "b \<otimes> inv (a \<otimes> b) \<in> carrier G" by simp
|
ballarin@27701
|
100 |
|
ballarin@27701
|
101 |
have "a \<otimes> (b \<otimes> inv (a \<otimes> b)) = (a \<otimes> b) \<otimes> inv (a \<otimes> b)"
|
ballarin@27701
|
102 |
by (simp add: m_assoc del: Units_r_inv)
|
ballarin@27701
|
103 |
also have "\<dots> = \<one>" by simp
|
ballarin@27701
|
104 |
finally have li: "a \<otimes> (b \<otimes> inv (a \<otimes> b)) = \<one>" .
|
ballarin@27701
|
105 |
|
ballarin@27701
|
106 |
have "\<one> = b \<otimes> inv b" by (simp add: Units_r_inv[symmetric])
|
ballarin@27701
|
107 |
also have "\<dots> = b \<otimes> \<one> \<otimes> inv b" by simp
|
ballarin@27701
|
108 |
also have "\<dots> = b \<otimes> (inv (a \<otimes> b) \<otimes> (a \<otimes> b)) \<otimes> inv b"
|
ballarin@27701
|
109 |
by (simp add: Units_l_inv[OF abunit, symmetric] del: Units_l_inv)
|
ballarin@27701
|
110 |
also have "\<dots> = (b \<otimes> inv (a \<otimes> b) \<otimes> a) \<otimes> (b \<otimes> inv b)"
|
ballarin@27701
|
111 |
by (simp add: m_assoc del: Units_l_inv)
|
ballarin@27701
|
112 |
also have "\<dots> = b \<otimes> inv (a \<otimes> b) \<otimes> a" by simp
|
ballarin@27701
|
113 |
finally have ri: "(b \<otimes> inv (a \<otimes> b)) \<otimes> a = \<one> " by simp
|
ballarin@27701
|
114 |
|
ballarin@27701
|
115 |
from c li ri
|
ballarin@27701
|
116 |
show "a \<in> Units G" by (simp add: Units_def, fast)
|
ballarin@27701
|
117 |
qed
|
ballarin@27701
|
118 |
|
ballarin@27701
|
119 |
lemma (in comm_monoid) unit_factor:
|
ballarin@27701
|
120 |
assumes abunit: "a \<otimes> b \<in> Units G"
|
ballarin@27701
|
121 |
and [simp]: "a \<in> carrier G" "b \<in> carrier G"
|
ballarin@27701
|
122 |
shows "a \<in> Units G"
|
ballarin@27701
|
123 |
using abunit[simplified Units_def]
|
ballarin@27701
|
124 |
proof clarsimp
|
ballarin@27701
|
125 |
fix i
|
ballarin@27701
|
126 |
assume [simp]: "i \<in> carrier G"
|
ballarin@27701
|
127 |
and li: "i \<otimes> (a \<otimes> b) = \<one>"
|
ballarin@27701
|
128 |
and ri: "a \<otimes> b \<otimes> i = \<one>"
|
ballarin@27701
|
129 |
|
ballarin@27701
|
130 |
have carr': "b \<otimes> i \<in> carrier G" by simp
|
ballarin@27701
|
131 |
|
ballarin@27701
|
132 |
have "(b \<otimes> i) \<otimes> a = (i \<otimes> b) \<otimes> a" by (simp add: m_comm)
|
ballarin@27701
|
133 |
also have "\<dots> = i \<otimes> (b \<otimes> a)" by (simp add: m_assoc)
|
ballarin@27701
|
134 |
also have "\<dots> = i \<otimes> (a \<otimes> b)" by (simp add: m_comm)
|
ballarin@27701
|
135 |
also note li
|
ballarin@27701
|
136 |
finally have li': "(b \<otimes> i) \<otimes> a = \<one>" .
|
ballarin@27701
|
137 |
|
ballarin@27701
|
138 |
have "a \<otimes> (b \<otimes> i) = a \<otimes> b \<otimes> i" by (simp add: m_assoc)
|
ballarin@27701
|
139 |
also note ri
|
ballarin@27701
|
140 |
finally have ri': "a \<otimes> (b \<otimes> i) = \<one>" .
|
ballarin@27701
|
141 |
|
ballarin@27701
|
142 |
from carr' li' ri'
|
ballarin@27701
|
143 |
show "a \<in> Units G" by (simp add: Units_def, fast)
|
ballarin@27701
|
144 |
qed
|
ballarin@27701
|
145 |
|
wenzelm@35849
|
146 |
|
ballarin@27717
|
147 |
subsection {* Divisibility and Association *}
|
ballarin@27701
|
148 |
|
ballarin@27701
|
149 |
subsubsection {* Function definitions *}
|
ballarin@27701
|
150 |
|
wenzelm@35847
|
151 |
definition
|
ballarin@27701
|
152 |
factor :: "[_, 'a, 'a] \<Rightarrow> bool" (infix "divides\<index>" 65)
|
wenzelm@35848
|
153 |
where "a divides\<^bsub>G\<^esub> b \<longleftrightarrow> (\<exists>c\<in>carrier G. b = a \<otimes>\<^bsub>G\<^esub> c)"
|
wenzelm@35847
|
154 |
|
wenzelm@35847
|
155 |
definition
|
ballarin@27701
|
156 |
associated :: "[_, 'a, 'a] => bool" (infix "\<sim>\<index>" 55)
|
wenzelm@35848
|
157 |
where "a \<sim>\<^bsub>G\<^esub> b \<longleftrightarrow> a divides\<^bsub>G\<^esub> b \<and> b divides\<^bsub>G\<^esub> a"
|
ballarin@27701
|
158 |
|
ballarin@27701
|
159 |
abbreviation
|
ballarin@27701
|
160 |
"division_rel G == \<lparr>carrier = carrier G, eq = op \<sim>\<^bsub>G\<^esub>, le = op divides\<^bsub>G\<^esub>\<rparr>"
|
ballarin@27701
|
161 |
|
wenzelm@35847
|
162 |
definition
|
ballarin@27701
|
163 |
properfactor :: "[_, 'a, 'a] \<Rightarrow> bool"
|
wenzelm@35848
|
164 |
where "properfactor G a b \<longleftrightarrow> a divides\<^bsub>G\<^esub> b \<and> \<not>(b divides\<^bsub>G\<^esub> a)"
|
wenzelm@35847
|
165 |
|
wenzelm@35847
|
166 |
definition
|
ballarin@27701
|
167 |
irreducible :: "[_, 'a] \<Rightarrow> bool"
|
wenzelm@35848
|
168 |
where "irreducible G a \<longleftrightarrow> a \<notin> Units G \<and> (\<forall>b\<in>carrier G. properfactor G b a \<longrightarrow> b \<in> Units G)"
|
wenzelm@35847
|
169 |
|
wenzelm@35847
|
170 |
definition
|
wenzelm@35847
|
171 |
prime :: "[_, 'a] \<Rightarrow> bool" where
|
wenzelm@35848
|
172 |
"prime G p \<longleftrightarrow>
|
wenzelm@35847
|
173 |
p \<notin> Units G \<and>
|
wenzelm@35847
|
174 |
(\<forall>a\<in>carrier G. \<forall>b\<in>carrier G. p divides\<^bsub>G\<^esub> (a \<otimes>\<^bsub>G\<^esub> b) \<longrightarrow> p divides\<^bsub>G\<^esub> a \<or> p divides\<^bsub>G\<^esub> b)"
|
ballarin@27701
|
175 |
|
ballarin@27701
|
176 |
|
ballarin@27701
|
177 |
subsubsection {* Divisibility *}
|
ballarin@27701
|
178 |
|
ballarin@27701
|
179 |
lemma dividesI:
|
ballarin@27701
|
180 |
fixes G (structure)
|
ballarin@27701
|
181 |
assumes carr: "c \<in> carrier G"
|
ballarin@27701
|
182 |
and p: "b = a \<otimes> c"
|
ballarin@27701
|
183 |
shows "a divides b"
|
ballarin@27701
|
184 |
unfolding factor_def
|
ballarin@27701
|
185 |
using assms by fast
|
ballarin@27701
|
186 |
|
ballarin@27701
|
187 |
lemma dividesI' [intro]:
|
ballarin@27701
|
188 |
fixes G (structure)
|
ballarin@27701
|
189 |
assumes p: "b = a \<otimes> c"
|
ballarin@27701
|
190 |
and carr: "c \<in> carrier G"
|
ballarin@27701
|
191 |
shows "a divides b"
|
ballarin@27701
|
192 |
using assms
|
ballarin@27701
|
193 |
by (fast intro: dividesI)
|
ballarin@27701
|
194 |
|
ballarin@27701
|
195 |
lemma dividesD:
|
ballarin@27701
|
196 |
fixes G (structure)
|
ballarin@27701
|
197 |
assumes "a divides b"
|
ballarin@27701
|
198 |
shows "\<exists>c\<in>carrier G. b = a \<otimes> c"
|
ballarin@27701
|
199 |
using assms
|
ballarin@27701
|
200 |
unfolding factor_def
|
ballarin@27701
|
201 |
by fast
|
ballarin@27701
|
202 |
|
ballarin@27701
|
203 |
lemma dividesE [elim]:
|
ballarin@27701
|
204 |
fixes G (structure)
|
ballarin@27701
|
205 |
assumes d: "a divides b"
|
ballarin@27701
|
206 |
and elim: "\<And>c. \<lbrakk>b = a \<otimes> c; c \<in> carrier G\<rbrakk> \<Longrightarrow> P"
|
ballarin@27701
|
207 |
shows "P"
|
ballarin@27701
|
208 |
proof -
|
ballarin@27701
|
209 |
from dividesD[OF d]
|
ballarin@27701
|
210 |
obtain c
|
ballarin@27701
|
211 |
where "c\<in>carrier G"
|
ballarin@27701
|
212 |
and "b = a \<otimes> c"
|
ballarin@27701
|
213 |
by auto
|
ballarin@27701
|
214 |
thus "P" by (elim elim)
|
ballarin@27701
|
215 |
qed
|
ballarin@27701
|
216 |
|
ballarin@27701
|
217 |
lemma (in monoid) divides_refl[simp, intro!]:
|
ballarin@27701
|
218 |
assumes carr: "a \<in> carrier G"
|
ballarin@27701
|
219 |
shows "a divides a"
|
ballarin@27701
|
220 |
apply (intro dividesI[of "\<one>"])
|
ballarin@27701
|
221 |
apply (simp, simp add: carr)
|
ballarin@27701
|
222 |
done
|
ballarin@27701
|
223 |
|
ballarin@27701
|
224 |
lemma (in monoid) divides_trans [trans]:
|
ballarin@27701
|
225 |
assumes dvds: "a divides b" "b divides c"
|
ballarin@27701
|
226 |
and acarr: "a \<in> carrier G"
|
ballarin@27701
|
227 |
shows "a divides c"
|
ballarin@27701
|
228 |
using dvds[THEN dividesD]
|
ballarin@27701
|
229 |
by (blast intro: dividesI m_assoc acarr)
|
ballarin@27701
|
230 |
|
ballarin@27701
|
231 |
lemma (in monoid) divides_mult_lI [intro]:
|
ballarin@27701
|
232 |
assumes ab: "a divides b"
|
ballarin@27701
|
233 |
and carr: "a \<in> carrier G" "b \<in> carrier G" "c \<in> carrier G"
|
ballarin@27701
|
234 |
shows "(c \<otimes> a) divides (c \<otimes> b)"
|
ballarin@27701
|
235 |
using ab
|
ballarin@27701
|
236 |
apply (elim dividesE, simp add: m_assoc[symmetric] carr)
|
ballarin@27701
|
237 |
apply (fast intro: dividesI)
|
ballarin@27701
|
238 |
done
|
ballarin@27701
|
239 |
|
ballarin@27701
|
240 |
lemma (in monoid_cancel) divides_mult_l [simp]:
|
ballarin@27701
|
241 |
assumes carr: "a \<in> carrier G" "b \<in> carrier G" "c \<in> carrier G"
|
ballarin@27701
|
242 |
shows "(c \<otimes> a) divides (c \<otimes> b) = a divides b"
|
ballarin@27701
|
243 |
apply safe
|
ballarin@27701
|
244 |
apply (elim dividesE, intro dividesI, assumption)
|
ballarin@27701
|
245 |
apply (rule l_cancel[of c])
|
ballarin@27701
|
246 |
apply (simp add: m_assoc carr)+
|
bulwahn@50037
|
247 |
apply (fast intro: carr)
|
ballarin@27701
|
248 |
done
|
ballarin@27701
|
249 |
|
ballarin@27701
|
250 |
lemma (in comm_monoid) divides_mult_rI [intro]:
|
ballarin@27701
|
251 |
assumes ab: "a divides b"
|
ballarin@27701
|
252 |
and carr: "a \<in> carrier G" "b \<in> carrier G" "c \<in> carrier G"
|
ballarin@27701
|
253 |
shows "(a \<otimes> c) divides (b \<otimes> c)"
|
ballarin@27701
|
254 |
using carr ab
|
ballarin@27701
|
255 |
apply (simp add: m_comm[of a c] m_comm[of b c])
|
ballarin@27701
|
256 |
apply (rule divides_mult_lI, assumption+)
|
ballarin@27701
|
257 |
done
|
ballarin@27701
|
258 |
|
ballarin@27701
|
259 |
lemma (in comm_monoid_cancel) divides_mult_r [simp]:
|
ballarin@27701
|
260 |
assumes carr: "a \<in> carrier G" "b \<in> carrier G" "c \<in> carrier G"
|
ballarin@27701
|
261 |
shows "(a \<otimes> c) divides (b \<otimes> c) = a divides b"
|
ballarin@27701
|
262 |
using carr
|
ballarin@27701
|
263 |
by (simp add: m_comm[of a c] m_comm[of b c])
|
ballarin@27701
|
264 |
|
ballarin@27701
|
265 |
lemma (in monoid) divides_prod_r:
|
ballarin@27701
|
266 |
assumes ab: "a divides b"
|
ballarin@27701
|
267 |
and carr: "a \<in> carrier G" "b \<in> carrier G" "c \<in> carrier G"
|
ballarin@27701
|
268 |
shows "a divides (b \<otimes> c)"
|
ballarin@27701
|
269 |
using ab carr
|
ballarin@27701
|
270 |
by (fast intro: m_assoc)
|
ballarin@27701
|
271 |
|
ballarin@27701
|
272 |
lemma (in comm_monoid) divides_prod_l:
|
ballarin@27701
|
273 |
assumes carr[intro]: "a \<in> carrier G" "b \<in> carrier G" "c \<in> carrier G"
|
ballarin@27701
|
274 |
and ab: "a divides b"
|
ballarin@27701
|
275 |
shows "a divides (c \<otimes> b)"
|
ballarin@27701
|
276 |
using ab carr
|
ballarin@27701
|
277 |
apply (simp add: m_comm[of c b])
|
ballarin@27701
|
278 |
apply (fast intro: divides_prod_r)
|
ballarin@27701
|
279 |
done
|
ballarin@27701
|
280 |
|
ballarin@27701
|
281 |
lemma (in monoid) unit_divides:
|
ballarin@27701
|
282 |
assumes uunit: "u \<in> Units G"
|
ballarin@27701
|
283 |
and acarr: "a \<in> carrier G"
|
ballarin@27701
|
284 |
shows "u divides a"
|
ballarin@27701
|
285 |
proof (intro dividesI[of "(inv u) \<otimes> a"], fast intro: uunit acarr)
|
ballarin@27701
|
286 |
from uunit acarr
|
ballarin@27701
|
287 |
have xcarr: "inv u \<otimes> a \<in> carrier G" by fast
|
ballarin@27701
|
288 |
|
ballarin@27701
|
289 |
from uunit acarr
|
ballarin@27701
|
290 |
have "u \<otimes> (inv u \<otimes> a) = (u \<otimes> inv u) \<otimes> a" by (fast intro: m_assoc[symmetric])
|
ballarin@27701
|
291 |
also have "\<dots> = \<one> \<otimes> a" by (simp add: Units_r_inv[OF uunit])
|
ballarin@27701
|
292 |
also from acarr
|
ballarin@27701
|
293 |
have "\<dots> = a" by simp
|
ballarin@27701
|
294 |
finally
|
ballarin@27701
|
295 |
show "a = u \<otimes> (inv u \<otimes> a)" ..
|
ballarin@27701
|
296 |
qed
|
ballarin@27701
|
297 |
|
ballarin@27701
|
298 |
lemma (in comm_monoid) divides_unit:
|
ballarin@27701
|
299 |
assumes udvd: "a divides u"
|
ballarin@27701
|
300 |
and carr: "a \<in> carrier G" "u \<in> Units G"
|
ballarin@27701
|
301 |
shows "a \<in> Units G"
|
ballarin@27701
|
302 |
using udvd carr
|
ballarin@27701
|
303 |
by (blast intro: unit_factor)
|
ballarin@27701
|
304 |
|
ballarin@27701
|
305 |
lemma (in comm_monoid) Unit_eq_dividesone:
|
ballarin@27701
|
306 |
assumes ucarr: "u \<in> carrier G"
|
ballarin@27701
|
307 |
shows "u \<in> Units G = u divides \<one>"
|
ballarin@27701
|
308 |
using ucarr
|
ballarin@27701
|
309 |
by (fast dest: divides_unit intro: unit_divides)
|
ballarin@27701
|
310 |
|
ballarin@27701
|
311 |
|
ballarin@27701
|
312 |
subsubsection {* Association *}
|
ballarin@27701
|
313 |
|
ballarin@27701
|
314 |
lemma associatedI:
|
ballarin@27701
|
315 |
fixes G (structure)
|
ballarin@27701
|
316 |
assumes "a divides b" "b divides a"
|
ballarin@27701
|
317 |
shows "a \<sim> b"
|
ballarin@27701
|
318 |
using assms
|
ballarin@27701
|
319 |
by (simp add: associated_def)
|
ballarin@27701
|
320 |
|
ballarin@27701
|
321 |
lemma (in monoid) associatedI2:
|
ballarin@27701
|
322 |
assumes uunit[simp]: "u \<in> Units G"
|
ballarin@27701
|
323 |
and a: "a = b \<otimes> u"
|
ballarin@27701
|
324 |
and bcarr[simp]: "b \<in> carrier G"
|
ballarin@27701
|
325 |
shows "a \<sim> b"
|
ballarin@27701
|
326 |
using uunit bcarr
|
ballarin@27701
|
327 |
unfolding a
|
ballarin@27701
|
328 |
apply (intro associatedI)
|
ballarin@27701
|
329 |
apply (rule dividesI[of "inv u"], simp)
|
ballarin@27701
|
330 |
apply (simp add: m_assoc Units_closed Units_r_inv)
|
ballarin@27701
|
331 |
apply fast
|
ballarin@27701
|
332 |
done
|
ballarin@27701
|
333 |
|
ballarin@27701
|
334 |
lemma (in monoid) associatedI2':
|
ballarin@27701
|
335 |
assumes a: "a = b \<otimes> u"
|
ballarin@27701
|
336 |
and uunit: "u \<in> Units G"
|
ballarin@27701
|
337 |
and bcarr: "b \<in> carrier G"
|
ballarin@27701
|
338 |
shows "a \<sim> b"
|
ballarin@27701
|
339 |
using assms by (intro associatedI2)
|
ballarin@27701
|
340 |
|
ballarin@27701
|
341 |
lemma associatedD:
|
ballarin@27701
|
342 |
fixes G (structure)
|
ballarin@27701
|
343 |
assumes "a \<sim> b"
|
ballarin@27701
|
344 |
shows "a divides b"
|
ballarin@27701
|
345 |
using assms by (simp add: associated_def)
|
ballarin@27701
|
346 |
|
ballarin@27701
|
347 |
lemma (in monoid_cancel) associatedD2:
|
ballarin@27701
|
348 |
assumes assoc: "a \<sim> b"
|
ballarin@27701
|
349 |
and carr: "a \<in> carrier G" "b \<in> carrier G"
|
ballarin@27701
|
350 |
shows "\<exists>u\<in>Units G. a = b \<otimes> u"
|
ballarin@27701
|
351 |
using assoc
|
ballarin@27701
|
352 |
unfolding associated_def
|
ballarin@27701
|
353 |
proof clarify
|
ballarin@27701
|
354 |
assume "b divides a"
|
ballarin@27701
|
355 |
hence "\<exists>u\<in>carrier G. a = b \<otimes> u" by (rule dividesD)
|
ballarin@27701
|
356 |
from this obtain u
|
ballarin@27701
|
357 |
where ucarr: "u \<in> carrier G" and a: "a = b \<otimes> u"
|
ballarin@27701
|
358 |
by auto
|
ballarin@27701
|
359 |
|
ballarin@27701
|
360 |
assume "a divides b"
|
ballarin@27701
|
361 |
hence "\<exists>u'\<in>carrier G. b = a \<otimes> u'" by (rule dividesD)
|
ballarin@27701
|
362 |
from this obtain u'
|
ballarin@27701
|
363 |
where u'carr: "u' \<in> carrier G" and b: "b = a \<otimes> u'"
|
ballarin@27701
|
364 |
by auto
|
ballarin@27701
|
365 |
note carr = carr ucarr u'carr
|
ballarin@27701
|
366 |
|
ballarin@27701
|
367 |
from carr
|
ballarin@27701
|
368 |
have "a \<otimes> \<one> = a" by simp
|
ballarin@27701
|
369 |
also have "\<dots> = b \<otimes> u" by (simp add: a)
|
ballarin@27701
|
370 |
also have "\<dots> = a \<otimes> u' \<otimes> u" by (simp add: b)
|
ballarin@27701
|
371 |
also from carr
|
ballarin@27701
|
372 |
have "\<dots> = a \<otimes> (u' \<otimes> u)" by (simp add: m_assoc)
|
ballarin@27701
|
373 |
finally
|
ballarin@27701
|
374 |
have "a \<otimes> \<one> = a \<otimes> (u' \<otimes> u)" .
|
ballarin@27701
|
375 |
with carr
|
ballarin@27701
|
376 |
have u1: "\<one> = u' \<otimes> u" by (fast dest: l_cancel)
|
ballarin@27701
|
377 |
|
ballarin@27701
|
378 |
from carr
|
ballarin@27701
|
379 |
have "b \<otimes> \<one> = b" by simp
|
ballarin@27701
|
380 |
also have "\<dots> = a \<otimes> u'" by (simp add: b)
|
ballarin@27701
|
381 |
also have "\<dots> = b \<otimes> u \<otimes> u'" by (simp add: a)
|
ballarin@27701
|
382 |
also from carr
|
ballarin@27701
|
383 |
have "\<dots> = b \<otimes> (u \<otimes> u')" by (simp add: m_assoc)
|
ballarin@27701
|
384 |
finally
|
ballarin@27701
|
385 |
have "b \<otimes> \<one> = b \<otimes> (u \<otimes> u')" .
|
ballarin@27701
|
386 |
with carr
|
ballarin@27701
|
387 |
have u2: "\<one> = u \<otimes> u'" by (fast dest: l_cancel)
|
ballarin@27701
|
388 |
|
ballarin@27701
|
389 |
from u'carr u1[symmetric] u2[symmetric]
|
ballarin@27701
|
390 |
have "\<exists>u'\<in>carrier G. u' \<otimes> u = \<one> \<and> u \<otimes> u' = \<one>" by fast
|
ballarin@27701
|
391 |
hence "u \<in> Units G" by (simp add: Units_def ucarr)
|
ballarin@27701
|
392 |
|
ballarin@27701
|
393 |
from ucarr this a
|
ballarin@27701
|
394 |
show "\<exists>u\<in>Units G. a = b \<otimes> u" by fast
|
ballarin@27701
|
395 |
qed
|
ballarin@27701
|
396 |
|
ballarin@27701
|
397 |
lemma associatedE:
|
ballarin@27701
|
398 |
fixes G (structure)
|
ballarin@27701
|
399 |
assumes assoc: "a \<sim> b"
|
ballarin@27701
|
400 |
and e: "\<lbrakk>a divides b; b divides a\<rbrakk> \<Longrightarrow> P"
|
ballarin@27701
|
401 |
shows "P"
|
ballarin@27701
|
402 |
proof -
|
ballarin@27701
|
403 |
from assoc
|
ballarin@27701
|
404 |
have "a divides b" "b divides a"
|
ballarin@27701
|
405 |
by (simp add: associated_def)+
|
ballarin@27701
|
406 |
thus "P" by (elim e)
|
ballarin@27701
|
407 |
qed
|
ballarin@27701
|
408 |
|
ballarin@27701
|
409 |
lemma (in monoid_cancel) associatedE2:
|
ballarin@27701
|
410 |
assumes assoc: "a \<sim> b"
|
ballarin@27701
|
411 |
and e: "\<And>u. \<lbrakk>a = b \<otimes> u; u \<in> Units G\<rbrakk> \<Longrightarrow> P"
|
ballarin@27701
|
412 |
and carr: "a \<in> carrier G" "b \<in> carrier G"
|
ballarin@27701
|
413 |
shows "P"
|
ballarin@27701
|
414 |
proof -
|
ballarin@27701
|
415 |
from assoc and carr
|
ballarin@27701
|
416 |
have "\<exists>u\<in>Units G. a = b \<otimes> u" by (rule associatedD2)
|
ballarin@27701
|
417 |
from this obtain u
|
ballarin@27701
|
418 |
where "u \<in> Units G" "a = b \<otimes> u"
|
ballarin@27701
|
419 |
by auto
|
ballarin@27701
|
420 |
thus "P" by (elim e)
|
ballarin@27701
|
421 |
qed
|
ballarin@27701
|
422 |
|
ballarin@27701
|
423 |
lemma (in monoid) associated_refl [simp, intro!]:
|
ballarin@27701
|
424 |
assumes "a \<in> carrier G"
|
ballarin@27701
|
425 |
shows "a \<sim> a"
|
ballarin@27701
|
426 |
using assms
|
ballarin@27701
|
427 |
by (fast intro: associatedI)
|
ballarin@27701
|
428 |
|
ballarin@27701
|
429 |
lemma (in monoid) associated_sym [sym]:
|
ballarin@27701
|
430 |
assumes "a \<sim> b"
|
ballarin@27701
|
431 |
and "a \<in> carrier G" "b \<in> carrier G"
|
ballarin@27701
|
432 |
shows "b \<sim> a"
|
ballarin@27701
|
433 |
using assms
|
ballarin@27701
|
434 |
by (iprover intro: associatedI elim: associatedE)
|
ballarin@27701
|
435 |
|
ballarin@27701
|
436 |
lemma (in monoid) associated_trans [trans]:
|
ballarin@27701
|
437 |
assumes "a \<sim> b" "b \<sim> c"
|
ballarin@27701
|
438 |
and "a \<in> carrier G" "b \<in> carrier G" "c \<in> carrier G"
|
ballarin@27701
|
439 |
shows "a \<sim> c"
|
ballarin@27701
|
440 |
using assms
|
ballarin@27701
|
441 |
by (iprover intro: associatedI divides_trans elim: associatedE)
|
ballarin@27701
|
442 |
|
ballarin@27701
|
443 |
lemma (in monoid) division_equiv [intro, simp]:
|
ballarin@27701
|
444 |
"equivalence (division_rel G)"
|
ballarin@27701
|
445 |
apply unfold_locales
|
ballarin@27701
|
446 |
apply simp_all
|
paulson@36278
|
447 |
apply (metis associated_def)
|
ballarin@27701
|
448 |
apply (iprover intro: associated_trans)
|
ballarin@27701
|
449 |
done
|
ballarin@27701
|
450 |
|
ballarin@27701
|
451 |
|
ballarin@27701
|
452 |
subsubsection {* Division and associativity *}
|
ballarin@27701
|
453 |
|
ballarin@27701
|
454 |
lemma divides_antisym:
|
ballarin@27701
|
455 |
fixes G (structure)
|
ballarin@27701
|
456 |
assumes "a divides b" "b divides a"
|
ballarin@27701
|
457 |
and "a \<in> carrier G" "b \<in> carrier G"
|
ballarin@27701
|
458 |
shows "a \<sim> b"
|
ballarin@27701
|
459 |
using assms
|
ballarin@27701
|
460 |
by (fast intro: associatedI)
|
ballarin@27701
|
461 |
|
ballarin@27701
|
462 |
lemma (in monoid) divides_cong_l [trans]:
|
ballarin@27701
|
463 |
assumes xx': "x \<sim> x'"
|
ballarin@27701
|
464 |
and xdvdy: "x' divides y"
|
ballarin@27701
|
465 |
and carr [simp]: "x \<in> carrier G" "x' \<in> carrier G" "y \<in> carrier G"
|
ballarin@27701
|
466 |
shows "x divides y"
|
ballarin@27701
|
467 |
proof -
|
ballarin@27701
|
468 |
from xx'
|
ballarin@27701
|
469 |
have "x divides x'" by (simp add: associatedD)
|
ballarin@27701
|
470 |
also note xdvdy
|
ballarin@27701
|
471 |
finally
|
ballarin@27701
|
472 |
show "x divides y" by simp
|
ballarin@27701
|
473 |
qed
|
ballarin@27701
|
474 |
|
ballarin@27701
|
475 |
lemma (in monoid) divides_cong_r [trans]:
|
ballarin@27701
|
476 |
assumes xdvdy: "x divides y"
|
ballarin@27701
|
477 |
and yy': "y \<sim> y'"
|
ballarin@27701
|
478 |
and carr[simp]: "x \<in> carrier G" "y \<in> carrier G" "y' \<in> carrier G"
|
ballarin@27701
|
479 |
shows "x divides y'"
|
ballarin@27701
|
480 |
proof -
|
ballarin@27701
|
481 |
note xdvdy
|
ballarin@27701
|
482 |
also from yy'
|
ballarin@27701
|
483 |
have "y divides y'" by (simp add: associatedD)
|
ballarin@27701
|
484 |
finally
|
ballarin@27701
|
485 |
show "x divides y'" by simp
|
ballarin@27701
|
486 |
qed
|
ballarin@27701
|
487 |
|
ballarin@27713
|
488 |
lemma (in monoid) division_weak_partial_order [simp, intro!]:
|
ballarin@27713
|
489 |
"weak_partial_order (division_rel G)"
|
ballarin@27701
|
490 |
apply unfold_locales
|
ballarin@27701
|
491 |
apply simp_all
|
ballarin@27701
|
492 |
apply (simp add: associated_sym)
|
ballarin@27701
|
493 |
apply (blast intro: associated_trans)
|
ballarin@27701
|
494 |
apply (simp add: divides_antisym)
|
ballarin@27701
|
495 |
apply (blast intro: divides_trans)
|
ballarin@27701
|
496 |
apply (blast intro: divides_cong_l divides_cong_r associated_sym)
|
ballarin@27701
|
497 |
done
|
ballarin@27701
|
498 |
|
ballarin@27701
|
499 |
|
ballarin@27701
|
500 |
subsubsection {* Multiplication and associativity *}
|
ballarin@27701
|
501 |
|
ballarin@27701
|
502 |
lemma (in monoid_cancel) mult_cong_r:
|
ballarin@27701
|
503 |
assumes "b \<sim> b'"
|
ballarin@27701
|
504 |
and carr: "a \<in> carrier G" "b \<in> carrier G" "b' \<in> carrier G"
|
ballarin@27701
|
505 |
shows "a \<otimes> b \<sim> a \<otimes> b'"
|
ballarin@27701
|
506 |
using assms
|
ballarin@27701
|
507 |
apply (elim associatedE2, intro associatedI2)
|
ballarin@27701
|
508 |
apply (auto intro: m_assoc[symmetric])
|
ballarin@27701
|
509 |
done
|
ballarin@27701
|
510 |
|
ballarin@27701
|
511 |
lemma (in comm_monoid_cancel) mult_cong_l:
|
ballarin@27701
|
512 |
assumes "a \<sim> a'"
|
ballarin@27701
|
513 |
and carr: "a \<in> carrier G" "a' \<in> carrier G" "b \<in> carrier G"
|
ballarin@27701
|
514 |
shows "a \<otimes> b \<sim> a' \<otimes> b"
|
ballarin@27701
|
515 |
using assms
|
ballarin@27701
|
516 |
apply (elim associatedE2, intro associatedI2)
|
ballarin@27701
|
517 |
apply assumption
|
ballarin@27701
|
518 |
apply (simp add: m_assoc Units_closed)
|
ballarin@27701
|
519 |
apply (simp add: m_comm Units_closed)
|
ballarin@27701
|
520 |
apply simp+
|
ballarin@27701
|
521 |
done
|
ballarin@27701
|
522 |
|
ballarin@27701
|
523 |
lemma (in monoid_cancel) assoc_l_cancel:
|
ballarin@27701
|
524 |
assumes carr: "a \<in> carrier G" "b \<in> carrier G" "b' \<in> carrier G"
|
ballarin@27701
|
525 |
and "a \<otimes> b \<sim> a \<otimes> b'"
|
ballarin@27701
|
526 |
shows "b \<sim> b'"
|
ballarin@27701
|
527 |
using assms
|
ballarin@27701
|
528 |
apply (elim associatedE2, intro associatedI2)
|
ballarin@27701
|
529 |
apply assumption
|
ballarin@27701
|
530 |
apply (rule l_cancel[of a])
|
ballarin@27701
|
531 |
apply (simp add: m_assoc Units_closed)
|
ballarin@27701
|
532 |
apply fast+
|
ballarin@27701
|
533 |
done
|
ballarin@27701
|
534 |
|
ballarin@27701
|
535 |
lemma (in comm_monoid_cancel) assoc_r_cancel:
|
ballarin@27701
|
536 |
assumes "a \<otimes> b \<sim> a' \<otimes> b"
|
ballarin@27701
|
537 |
and carr: "a \<in> carrier G" "a' \<in> carrier G" "b \<in> carrier G"
|
ballarin@27701
|
538 |
shows "a \<sim> a'"
|
ballarin@27701
|
539 |
using assms
|
ballarin@27701
|
540 |
apply (elim associatedE2, intro associatedI2)
|
ballarin@27701
|
541 |
apply assumption
|
ballarin@27701
|
542 |
apply (rule r_cancel[of a b])
|
paulson@36278
|
543 |
apply (metis Units_closed assms(3) assms(4) m_ac)
|
ballarin@27701
|
544 |
apply fast+
|
ballarin@27701
|
545 |
done
|
ballarin@27701
|
546 |
|
ballarin@27701
|
547 |
|
ballarin@27701
|
548 |
subsubsection {* Units *}
|
ballarin@27701
|
549 |
|
ballarin@27701
|
550 |
lemma (in monoid_cancel) assoc_unit_l [trans]:
|
ballarin@27701
|
551 |
assumes asc: "a \<sim> b" and bunit: "b \<in> Units G"
|
ballarin@27701
|
552 |
and carr: "a \<in> carrier G"
|
ballarin@27701
|
553 |
shows "a \<in> Units G"
|
ballarin@27701
|
554 |
using assms
|
ballarin@27701
|
555 |
by (fast elim: associatedE2)
|
ballarin@27701
|
556 |
|
ballarin@27701
|
557 |
lemma (in monoid_cancel) assoc_unit_r [trans]:
|
ballarin@27701
|
558 |
assumes aunit: "a \<in> Units G" and asc: "a \<sim> b"
|
ballarin@27701
|
559 |
and bcarr: "b \<in> carrier G"
|
ballarin@27701
|
560 |
shows "b \<in> Units G"
|
ballarin@27701
|
561 |
using aunit bcarr associated_sym[OF asc]
|
ballarin@27701
|
562 |
by (blast intro: assoc_unit_l)
|
ballarin@27701
|
563 |
|
ballarin@27701
|
564 |
lemma (in comm_monoid) Units_cong:
|
ballarin@27701
|
565 |
assumes aunit: "a \<in> Units G" and asc: "a \<sim> b"
|
ballarin@27701
|
566 |
and bcarr: "b \<in> carrier G"
|
ballarin@27701
|
567 |
shows "b \<in> Units G"
|
ballarin@27701
|
568 |
using assms
|
ballarin@27701
|
569 |
by (blast intro: divides_unit elim: associatedE)
|
ballarin@27701
|
570 |
|
ballarin@27701
|
571 |
lemma (in monoid) Units_assoc:
|
ballarin@27701
|
572 |
assumes units: "a \<in> Units G" "b \<in> Units G"
|
ballarin@27701
|
573 |
shows "a \<sim> b"
|
ballarin@27701
|
574 |
using units
|
ballarin@27701
|
575 |
by (fast intro: associatedI unit_divides)
|
ballarin@27701
|
576 |
|
ballarin@27701
|
577 |
lemma (in monoid) Units_are_ones:
|
ballarin@27701
|
578 |
"Units G {.=}\<^bsub>(division_rel G)\<^esub> {\<one>}"
|
ballarin@27701
|
579 |
apply (simp add: set_eq_def elem_def, rule, simp_all)
|
ballarin@27701
|
580 |
proof clarsimp
|
ballarin@27701
|
581 |
fix a
|
ballarin@27701
|
582 |
assume aunit: "a \<in> Units G"
|
ballarin@27701
|
583 |
show "a \<sim> \<one>"
|
ballarin@27701
|
584 |
apply (rule associatedI)
|
ballarin@27701
|
585 |
apply (fast intro: dividesI[of "inv a"] aunit Units_r_inv[symmetric])
|
ballarin@27701
|
586 |
apply (fast intro: dividesI[of "a"] l_one[symmetric] Units_closed[OF aunit])
|
ballarin@27701
|
587 |
done
|
ballarin@27701
|
588 |
next
|
ballarin@27701
|
589 |
have "\<one> \<in> Units G" by simp
|
ballarin@27701
|
590 |
moreover have "\<one> \<sim> \<one>" by simp
|
ballarin@27701
|
591 |
ultimately show "\<exists>a \<in> Units G. \<one> \<sim> a" by fast
|
ballarin@27701
|
592 |
qed
|
ballarin@27701
|
593 |
|
ballarin@27701
|
594 |
lemma (in comm_monoid) Units_Lower:
|
ballarin@27701
|
595 |
"Units G = Lower (division_rel G) (carrier G)"
|
ballarin@27701
|
596 |
apply (simp add: Units_def Lower_def)
|
ballarin@27701
|
597 |
apply (rule, rule)
|
ballarin@27701
|
598 |
apply clarsimp
|
ballarin@27701
|
599 |
apply (rule unit_divides)
|
ballarin@27701
|
600 |
apply (unfold Units_def, fast)
|
ballarin@27701
|
601 |
apply assumption
|
ballarin@27701
|
602 |
apply clarsimp
|
paulson@36278
|
603 |
apply (metis Unit_eq_dividesone Units_r_inv_ex m_ac(2) one_closed)
|
paulson@36278
|
604 |
done
|
ballarin@27701
|
605 |
|
ballarin@27701
|
606 |
|
ballarin@27701
|
607 |
subsubsection {* Proper factors *}
|
ballarin@27701
|
608 |
|
ballarin@27701
|
609 |
lemma properfactorI:
|
ballarin@27701
|
610 |
fixes G (structure)
|
ballarin@27701
|
611 |
assumes "a divides b"
|
ballarin@27701
|
612 |
and "\<not>(b divides a)"
|
ballarin@27701
|
613 |
shows "properfactor G a b"
|
ballarin@27701
|
614 |
using assms
|
ballarin@27701
|
615 |
unfolding properfactor_def
|
ballarin@27701
|
616 |
by simp
|
ballarin@27701
|
617 |
|
ballarin@27701
|
618 |
lemma properfactorI2:
|
ballarin@27701
|
619 |
fixes G (structure)
|
ballarin@27701
|
620 |
assumes advdb: "a divides b"
|
ballarin@27701
|
621 |
and neq: "\<not>(a \<sim> b)"
|
ballarin@27701
|
622 |
shows "properfactor G a b"
|
ballarin@27701
|
623 |
apply (rule properfactorI, rule advdb)
|
ballarin@27701
|
624 |
proof (rule ccontr, simp)
|
ballarin@27701
|
625 |
assume "b divides a"
|
ballarin@27701
|
626 |
with advdb have "a \<sim> b" by (rule associatedI)
|
ballarin@27701
|
627 |
with neq show "False" by fast
|
ballarin@27701
|
628 |
qed
|
ballarin@27701
|
629 |
|
ballarin@27701
|
630 |
lemma (in comm_monoid_cancel) properfactorI3:
|
ballarin@27701
|
631 |
assumes p: "p = a \<otimes> b"
|
ballarin@27701
|
632 |
and nunit: "b \<notin> Units G"
|
ballarin@27701
|
633 |
and carr: "a \<in> carrier G" "b \<in> carrier G" "p \<in> carrier G"
|
ballarin@27701
|
634 |
shows "properfactor G a p"
|
ballarin@27701
|
635 |
unfolding p
|
ballarin@27701
|
636 |
using carr
|
ballarin@27701
|
637 |
apply (intro properfactorI, fast)
|
ballarin@27701
|
638 |
proof (clarsimp, elim dividesE)
|
ballarin@27701
|
639 |
fix c
|
ballarin@27701
|
640 |
assume ccarr: "c \<in> carrier G"
|
ballarin@27701
|
641 |
note [simp] = carr ccarr
|
ballarin@27701
|
642 |
|
ballarin@27701
|
643 |
have "a \<otimes> \<one> = a" by simp
|
ballarin@27701
|
644 |
also assume "a = a \<otimes> b \<otimes> c"
|
ballarin@27701
|
645 |
also have "\<dots> = a \<otimes> (b \<otimes> c)" by (simp add: m_assoc)
|
ballarin@27701
|
646 |
finally have "a \<otimes> \<one> = a \<otimes> (b \<otimes> c)" .
|
ballarin@27701
|
647 |
|
ballarin@27701
|
648 |
hence rinv: "\<one> = b \<otimes> c" by (intro l_cancel[of "a" "\<one>" "b \<otimes> c"], simp+)
|
ballarin@27701
|
649 |
also have "\<dots> = c \<otimes> b" by (simp add: m_comm)
|
ballarin@27701
|
650 |
finally have linv: "\<one> = c \<otimes> b" .
|
ballarin@27701
|
651 |
|
ballarin@27701
|
652 |
from ccarr linv[symmetric] rinv[symmetric]
|
nipkow@44890
|
653 |
have "b \<in> Units G" unfolding Units_def by fastforce
|
ballarin@27701
|
654 |
with nunit
|
ballarin@27701
|
655 |
show "False" ..
|
ballarin@27701
|
656 |
qed
|
ballarin@27701
|
657 |
|
ballarin@27701
|
658 |
lemma properfactorE:
|
ballarin@27701
|
659 |
fixes G (structure)
|
ballarin@27701
|
660 |
assumes pf: "properfactor G a b"
|
ballarin@27701
|
661 |
and r: "\<lbrakk>a divides b; \<not>(b divides a)\<rbrakk> \<Longrightarrow> P"
|
ballarin@27701
|
662 |
shows "P"
|
ballarin@27701
|
663 |
using pf
|
ballarin@27701
|
664 |
unfolding properfactor_def
|
ballarin@27701
|
665 |
by (fast intro: r)
|
ballarin@27701
|
666 |
|
ballarin@27701
|
667 |
lemma properfactorE2:
|
ballarin@27701
|
668 |
fixes G (structure)
|
ballarin@27701
|
669 |
assumes pf: "properfactor G a b"
|
ballarin@27701
|
670 |
and elim: "\<lbrakk>a divides b; \<not>(a \<sim> b)\<rbrakk> \<Longrightarrow> P"
|
ballarin@27701
|
671 |
shows "P"
|
ballarin@27701
|
672 |
using pf
|
ballarin@27701
|
673 |
unfolding properfactor_def
|
ballarin@27701
|
674 |
by (fast elim: elim associatedE)
|
ballarin@27701
|
675 |
|
ballarin@27701
|
676 |
lemma (in monoid) properfactor_unitE:
|
ballarin@27701
|
677 |
assumes uunit: "u \<in> Units G"
|
ballarin@27701
|
678 |
and pf: "properfactor G a u"
|
ballarin@27701
|
679 |
and acarr: "a \<in> carrier G"
|
ballarin@27701
|
680 |
shows "P"
|
ballarin@27701
|
681 |
using pf unit_divides[OF uunit acarr]
|
ballarin@27701
|
682 |
by (fast elim: properfactorE)
|
ballarin@27701
|
683 |
|
ballarin@27701
|
684 |
|
ballarin@27701
|
685 |
lemma (in monoid) properfactor_divides:
|
ballarin@27701
|
686 |
assumes pf: "properfactor G a b"
|
ballarin@27701
|
687 |
shows "a divides b"
|
ballarin@27701
|
688 |
using pf
|
ballarin@27701
|
689 |
by (elim properfactorE)
|
ballarin@27701
|
690 |
|
ballarin@27701
|
691 |
lemma (in monoid) properfactor_trans1 [trans]:
|
ballarin@27701
|
692 |
assumes dvds: "a divides b" "properfactor G b c"
|
ballarin@27701
|
693 |
and carr: "a \<in> carrier G" "b \<in> carrier G" "c \<in> carrier G"
|
ballarin@27701
|
694 |
shows "properfactor G a c"
|
ballarin@27701
|
695 |
using dvds carr
|
ballarin@27701
|
696 |
apply (elim properfactorE, intro properfactorI)
|
ballarin@27701
|
697 |
apply (iprover intro: divides_trans)+
|
ballarin@27701
|
698 |
done
|
ballarin@27701
|
699 |
|
ballarin@27701
|
700 |
lemma (in monoid) properfactor_trans2 [trans]:
|
ballarin@27701
|
701 |
assumes dvds: "properfactor G a b" "b divides c"
|
ballarin@27701
|
702 |
and carr: "a \<in> carrier G" "b \<in> carrier G" "c \<in> carrier G"
|
ballarin@27701
|
703 |
shows "properfactor G a c"
|
ballarin@27701
|
704 |
using dvds carr
|
ballarin@27701
|
705 |
apply (elim properfactorE, intro properfactorI)
|
ballarin@27701
|
706 |
apply (iprover intro: divides_trans)+
|
ballarin@27701
|
707 |
done
|
ballarin@27701
|
708 |
|
ballarin@27713
|
709 |
lemma properfactor_lless:
|
ballarin@27701
|
710 |
fixes G (structure)
|
ballarin@27713
|
711 |
shows "properfactor G = lless (division_rel G)"
|
ballarin@27701
|
712 |
apply (rule ext) apply (rule ext) apply rule
|
nipkow@44890
|
713 |
apply (fastforce elim: properfactorE2 intro: weak_llessI)
|
nipkow@44890
|
714 |
apply (fastforce elim: weak_llessE intro: properfactorI2)
|
ballarin@27701
|
715 |
done
|
ballarin@27701
|
716 |
|
ballarin@27701
|
717 |
lemma (in monoid) properfactor_cong_l [trans]:
|
ballarin@27701
|
718 |
assumes x'x: "x' \<sim> x"
|
ballarin@27701
|
719 |
and pf: "properfactor G x y"
|
ballarin@27701
|
720 |
and carr: "x \<in> carrier G" "x' \<in> carrier G" "y \<in> carrier G"
|
ballarin@27701
|
721 |
shows "properfactor G x' y"
|
ballarin@27701
|
722 |
using pf
|
ballarin@27713
|
723 |
unfolding properfactor_lless
|
ballarin@27701
|
724 |
proof -
|
ballarin@29237
|
725 |
interpret weak_partial_order "division_rel G" ..
|
ballarin@27701
|
726 |
from x'x
|
ballarin@27701
|
727 |
have "x' .=\<^bsub>division_rel G\<^esub> x" by simp
|
ballarin@27701
|
728 |
also assume "x \<sqsubset>\<^bsub>division_rel G\<^esub> y"
|
ballarin@27701
|
729 |
finally
|
ballarin@27701
|
730 |
show "x' \<sqsubset>\<^bsub>division_rel G\<^esub> y" by (simp add: carr)
|
ballarin@27701
|
731 |
qed
|
ballarin@27701
|
732 |
|
ballarin@27701
|
733 |
lemma (in monoid) properfactor_cong_r [trans]:
|
ballarin@27701
|
734 |
assumes pf: "properfactor G x y"
|
ballarin@27701
|
735 |
and yy': "y \<sim> y'"
|
ballarin@27701
|
736 |
and carr: "x \<in> carrier G" "y \<in> carrier G" "y' \<in> carrier G"
|
ballarin@27701
|
737 |
shows "properfactor G x y'"
|
ballarin@27701
|
738 |
using pf
|
ballarin@27713
|
739 |
unfolding properfactor_lless
|
ballarin@27701
|
740 |
proof -
|
ballarin@29237
|
741 |
interpret weak_partial_order "division_rel G" ..
|
ballarin@27701
|
742 |
assume "x \<sqsubset>\<^bsub>division_rel G\<^esub> y"
|
ballarin@27701
|
743 |
also from yy'
|
ballarin@27701
|
744 |
have "y .=\<^bsub>division_rel G\<^esub> y'" by simp
|
ballarin@27701
|
745 |
finally
|
ballarin@27701
|
746 |
show "x \<sqsubset>\<^bsub>division_rel G\<^esub> y'" by (simp add: carr)
|
ballarin@27701
|
747 |
qed
|
ballarin@27701
|
748 |
|
ballarin@27701
|
749 |
lemma (in monoid_cancel) properfactor_mult_lI [intro]:
|
ballarin@27701
|
750 |
assumes ab: "properfactor G a b"
|
ballarin@27701
|
751 |
and carr: "a \<in> carrier G" "b \<in> carrier G" "c \<in> carrier G"
|
ballarin@27701
|
752 |
shows "properfactor G (c \<otimes> a) (c \<otimes> b)"
|
ballarin@27701
|
753 |
using ab carr
|
nipkow@44890
|
754 |
by (fastforce elim: properfactorE intro: properfactorI)
|
ballarin@27701
|
755 |
|
ballarin@27701
|
756 |
lemma (in monoid_cancel) properfactor_mult_l [simp]:
|
ballarin@27701
|
757 |
assumes carr: "a \<in> carrier G" "b \<in> carrier G" "c \<in> carrier G"
|
ballarin@27701
|
758 |
shows "properfactor G (c \<otimes> a) (c \<otimes> b) = properfactor G a b"
|
ballarin@27701
|
759 |
using carr
|
nipkow@44890
|
760 |
by (fastforce elim: properfactorE intro: properfactorI)
|
ballarin@27701
|
761 |
|
ballarin@27701
|
762 |
lemma (in comm_monoid_cancel) properfactor_mult_rI [intro]:
|
ballarin@27701
|
763 |
assumes ab: "properfactor G a b"
|
ballarin@27701
|
764 |
and carr: "a \<in> carrier G" "b \<in> carrier G" "c \<in> carrier G"
|
ballarin@27701
|
765 |
shows "properfactor G (a \<otimes> c) (b \<otimes> c)"
|
ballarin@27701
|
766 |
using ab carr
|
nipkow@44890
|
767 |
by (fastforce elim: properfactorE intro: properfactorI)
|
ballarin@27701
|
768 |
|
ballarin@27701
|
769 |
lemma (in comm_monoid_cancel) properfactor_mult_r [simp]:
|
ballarin@27701
|
770 |
assumes carr: "a \<in> carrier G" "b \<in> carrier G" "c \<in> carrier G"
|
ballarin@27701
|
771 |
shows "properfactor G (a \<otimes> c) (b \<otimes> c) = properfactor G a b"
|
ballarin@27701
|
772 |
using carr
|
nipkow@44890
|
773 |
by (fastforce elim: properfactorE intro: properfactorI)
|
ballarin@27701
|
774 |
|
ballarin@27701
|
775 |
lemma (in monoid) properfactor_prod_r:
|
ballarin@27701
|
776 |
assumes ab: "properfactor G a b"
|
ballarin@27701
|
777 |
and carr[simp]: "a \<in> carrier G" "b \<in> carrier G" "c \<in> carrier G"
|
ballarin@27701
|
778 |
shows "properfactor G a (b \<otimes> c)"
|
ballarin@27701
|
779 |
by (intro properfactor_trans2[OF ab] divides_prod_r, simp+)
|
ballarin@27701
|
780 |
|
ballarin@27701
|
781 |
lemma (in comm_monoid) properfactor_prod_l:
|
ballarin@27701
|
782 |
assumes ab: "properfactor G a b"
|
ballarin@27701
|
783 |
and carr[simp]: "a \<in> carrier G" "b \<in> carrier G" "c \<in> carrier G"
|
ballarin@27701
|
784 |
shows "properfactor G a (c \<otimes> b)"
|
ballarin@27701
|
785 |
by (intro properfactor_trans2[OF ab] divides_prod_l, simp+)
|
ballarin@27701
|
786 |
|
ballarin@27701
|
787 |
|
ballarin@27717
|
788 |
subsection {* Irreducible Elements and Primes *}
|
ballarin@27701
|
789 |
|
ballarin@27701
|
790 |
subsubsection {* Irreducible elements *}
|
ballarin@27701
|
791 |
|
ballarin@27701
|
792 |
lemma irreducibleI:
|
ballarin@27701
|
793 |
fixes G (structure)
|
ballarin@27701
|
794 |
assumes "a \<notin> Units G"
|
ballarin@27701
|
795 |
and "\<And>b. \<lbrakk>b \<in> carrier G; properfactor G b a\<rbrakk> \<Longrightarrow> b \<in> Units G"
|
ballarin@27701
|
796 |
shows "irreducible G a"
|
ballarin@27701
|
797 |
using assms
|
ballarin@27701
|
798 |
unfolding irreducible_def
|
ballarin@27701
|
799 |
by blast
|
ballarin@27701
|
800 |
|
ballarin@27701
|
801 |
lemma irreducibleE:
|
ballarin@27701
|
802 |
fixes G (structure)
|
ballarin@27701
|
803 |
assumes irr: "irreducible G a"
|
ballarin@27701
|
804 |
and elim: "\<lbrakk>a \<notin> Units G; \<forall>b. b \<in> carrier G \<and> properfactor G b a \<longrightarrow> b \<in> Units G\<rbrakk> \<Longrightarrow> P"
|
ballarin@27701
|
805 |
shows "P"
|
ballarin@27701
|
806 |
using assms
|
ballarin@27701
|
807 |
unfolding irreducible_def
|
ballarin@27701
|
808 |
by blast
|
ballarin@27701
|
809 |
|
ballarin@27701
|
810 |
lemma irreducibleD:
|
ballarin@27701
|
811 |
fixes G (structure)
|
ballarin@27701
|
812 |
assumes irr: "irreducible G a"
|
ballarin@27701
|
813 |
and pf: "properfactor G b a"
|
ballarin@27701
|
814 |
and bcarr: "b \<in> carrier G"
|
ballarin@27701
|
815 |
shows "b \<in> Units G"
|
ballarin@27701
|
816 |
using assms
|
ballarin@27701
|
817 |
by (fast elim: irreducibleE)
|
ballarin@27701
|
818 |
|
ballarin@27701
|
819 |
lemma (in monoid_cancel) irreducible_cong [trans]:
|
ballarin@27701
|
820 |
assumes irred: "irreducible G a"
|
ballarin@27701
|
821 |
and aa': "a \<sim> a'"
|
ballarin@27701
|
822 |
and carr[simp]: "a \<in> carrier G" "a' \<in> carrier G"
|
ballarin@27701
|
823 |
shows "irreducible G a'"
|
ballarin@27701
|
824 |
using assms
|
ballarin@27701
|
825 |
apply (elim irreducibleE, intro irreducibleI)
|
ballarin@27701
|
826 |
apply simp_all
|
paulson@36278
|
827 |
apply (metis assms(2) assms(3) assoc_unit_l)
|
paulson@36278
|
828 |
apply (metis assms(2) assms(3) assms(4) associated_sym properfactor_cong_r)
|
paulson@36278
|
829 |
done
|
ballarin@27701
|
830 |
|
ballarin@27701
|
831 |
lemma (in monoid) irreducible_prod_rI:
|
ballarin@27701
|
832 |
assumes airr: "irreducible G a"
|
ballarin@27701
|
833 |
and bunit: "b \<in> Units G"
|
ballarin@27701
|
834 |
and carr[simp]: "a \<in> carrier G" "b \<in> carrier G"
|
ballarin@27701
|
835 |
shows "irreducible G (a \<otimes> b)"
|
ballarin@27701
|
836 |
using airr carr bunit
|
ballarin@27701
|
837 |
apply (elim irreducibleE, intro irreducibleI, clarify)
|
ballarin@27701
|
838 |
apply (subgoal_tac "a \<in> Units G", simp)
|
ballarin@27701
|
839 |
apply (intro prod_unit_r[of a b] carr bunit, assumption)
|
paulson@36278
|
840 |
apply (metis assms associatedI2 m_closed properfactor_cong_r)
|
paulson@36278
|
841 |
done
|
ballarin@27701
|
842 |
|
ballarin@27701
|
843 |
lemma (in comm_monoid) irreducible_prod_lI:
|
ballarin@27701
|
844 |
assumes birr: "irreducible G b"
|
ballarin@27701
|
845 |
and aunit: "a \<in> Units G"
|
ballarin@27701
|
846 |
and carr [simp]: "a \<in> carrier G" "b \<in> carrier G"
|
ballarin@27701
|
847 |
shows "irreducible G (a \<otimes> b)"
|
ballarin@27701
|
848 |
apply (subst m_comm, simp+)
|
ballarin@27701
|
849 |
apply (intro irreducible_prod_rI assms)
|
ballarin@27701
|
850 |
done
|
ballarin@27701
|
851 |
|
ballarin@27701
|
852 |
lemma (in comm_monoid_cancel) irreducible_prodE [elim]:
|
ballarin@27701
|
853 |
assumes irr: "irreducible G (a \<otimes> b)"
|
ballarin@27701
|
854 |
and carr[simp]: "a \<in> carrier G" "b \<in> carrier G"
|
ballarin@27701
|
855 |
and e1: "\<lbrakk>irreducible G a; b \<in> Units G\<rbrakk> \<Longrightarrow> P"
|
ballarin@27701
|
856 |
and e2: "\<lbrakk>a \<in> Units G; irreducible G b\<rbrakk> \<Longrightarrow> P"
|
ballarin@27701
|
857 |
shows "P"
|
ballarin@27701
|
858 |
using irr
|
ballarin@27701
|
859 |
proof (elim irreducibleE)
|
ballarin@27701
|
860 |
assume abnunit: "a \<otimes> b \<notin> Units G"
|
ballarin@27701
|
861 |
and isunit[rule_format]: "\<forall>ba. ba \<in> carrier G \<and> properfactor G ba (a \<otimes> b) \<longrightarrow> ba \<in> Units G"
|
ballarin@27701
|
862 |
|
ballarin@27701
|
863 |
show "P"
|
ballarin@27701
|
864 |
proof (cases "a \<in> Units G")
|
ballarin@27701
|
865 |
assume aunit: "a \<in> Units G"
|
ballarin@27701
|
866 |
have "irreducible G b"
|
ballarin@27701
|
867 |
apply (rule irreducibleI)
|
ballarin@27701
|
868 |
proof (rule ccontr, simp)
|
ballarin@27701
|
869 |
assume "b \<in> Units G"
|
ballarin@27701
|
870 |
with aunit have "(a \<otimes> b) \<in> Units G" by fast
|
ballarin@27701
|
871 |
with abnunit show "False" ..
|
ballarin@27701
|
872 |
next
|
ballarin@27701
|
873 |
fix c
|
ballarin@27701
|
874 |
assume ccarr: "c \<in> carrier G"
|
ballarin@27701
|
875 |
and "properfactor G c b"
|
ballarin@27701
|
876 |
hence "properfactor G c (a \<otimes> b)" by (simp add: properfactor_prod_l[of c b a])
|
ballarin@27701
|
877 |
from ccarr this show "c \<in> Units G" by (fast intro: isunit)
|
ballarin@27701
|
878 |
qed
|
ballarin@27701
|
879 |
|
ballarin@27701
|
880 |
from aunit this show "P" by (rule e2)
|
ballarin@27701
|
881 |
next
|
ballarin@27701
|
882 |
assume anunit: "a \<notin> Units G"
|
ballarin@27701
|
883 |
with carr have "properfactor G b (b \<otimes> a)" by (fast intro: properfactorI3)
|
ballarin@27701
|
884 |
hence bf: "properfactor G b (a \<otimes> b)" by (subst m_comm[of a b], simp+)
|
ballarin@27701
|
885 |
hence bunit: "b \<in> Units G" by (intro isunit, simp)
|
ballarin@27701
|
886 |
|
ballarin@27701
|
887 |
have "irreducible G a"
|
ballarin@27701
|
888 |
apply (rule irreducibleI)
|
ballarin@27701
|
889 |
proof (rule ccontr, simp)
|
ballarin@27701
|
890 |
assume "a \<in> Units G"
|
ballarin@27701
|
891 |
with bunit have "(a \<otimes> b) \<in> Units G" by fast
|
ballarin@27701
|
892 |
with abnunit show "False" ..
|
ballarin@27701
|
893 |
next
|
ballarin@27701
|
894 |
fix c
|
ballarin@27701
|
895 |
assume ccarr: "c \<in> carrier G"
|
ballarin@27701
|
896 |
and "properfactor G c a"
|
ballarin@27701
|
897 |
hence "properfactor G c (a \<otimes> b)" by (simp add: properfactor_prod_r[of c a b])
|
ballarin@27701
|
898 |
from ccarr this show "c \<in> Units G" by (fast intro: isunit)
|
ballarin@27701
|
899 |
qed
|
ballarin@27701
|
900 |
|
ballarin@27701
|
901 |
from this bunit show "P" by (rule e1)
|
ballarin@27701
|
902 |
qed
|
ballarin@27701
|
903 |
qed
|
ballarin@27701
|
904 |
|
ballarin@27701
|
905 |
|
ballarin@27701
|
906 |
subsubsection {* Prime elements *}
|
ballarin@27701
|
907 |
|
ballarin@27701
|
908 |
lemma primeI:
|
ballarin@27701
|
909 |
fixes G (structure)
|
ballarin@27701
|
910 |
assumes "p \<notin> Units G"
|
ballarin@27701
|
911 |
and "\<And>a b. \<lbrakk>a \<in> carrier G; b \<in> carrier G; p divides (a \<otimes> b)\<rbrakk> \<Longrightarrow> p divides a \<or> p divides b"
|
ballarin@27701
|
912 |
shows "prime G p"
|
ballarin@27701
|
913 |
using assms
|
ballarin@27701
|
914 |
unfolding prime_def
|
ballarin@27701
|
915 |
by blast
|
ballarin@27701
|
916 |
|
ballarin@27701
|
917 |
lemma primeE:
|
ballarin@27701
|
918 |
fixes G (structure)
|
ballarin@27701
|
919 |
assumes pprime: "prime G p"
|
ballarin@27701
|
920 |
and e: "\<lbrakk>p \<notin> Units G; \<forall>a\<in>carrier G. \<forall>b\<in>carrier G.
|
ballarin@27701
|
921 |
p divides a \<otimes> b \<longrightarrow> p divides a \<or> p divides b\<rbrakk> \<Longrightarrow> P"
|
ballarin@27701
|
922 |
shows "P"
|
ballarin@27701
|
923 |
using pprime
|
ballarin@27701
|
924 |
unfolding prime_def
|
ballarin@27701
|
925 |
by (blast dest: e)
|
ballarin@27701
|
926 |
|
ballarin@27701
|
927 |
lemma (in comm_monoid_cancel) prime_divides:
|
ballarin@27701
|
928 |
assumes carr: "a \<in> carrier G" "b \<in> carrier G"
|
ballarin@27701
|
929 |
and pprime: "prime G p"
|
ballarin@27701
|
930 |
and pdvd: "p divides a \<otimes> b"
|
ballarin@27701
|
931 |
shows "p divides a \<or> p divides b"
|
ballarin@27701
|
932 |
using assms
|
ballarin@27701
|
933 |
by (blast elim: primeE)
|
ballarin@27701
|
934 |
|
ballarin@27701
|
935 |
lemma (in monoid_cancel) prime_cong [trans]:
|
ballarin@27701
|
936 |
assumes pprime: "prime G p"
|
ballarin@27701
|
937 |
and pp': "p \<sim> p'"
|
ballarin@27701
|
938 |
and carr[simp]: "p \<in> carrier G" "p' \<in> carrier G"
|
ballarin@27701
|
939 |
shows "prime G p'"
|
ballarin@27701
|
940 |
using pprime
|
ballarin@27701
|
941 |
apply (elim primeE, intro primeI)
|
paulson@36278
|
942 |
apply (metis assms(2) assms(3) assoc_unit_l)
|
paulson@36278
|
943 |
apply (metis assms(2) assms(3) assms(4) associated_sym divides_cong_l m_closed)
|
paulson@36278
|
944 |
done
|
ballarin@27701
|
945 |
|
ballarin@27717
|
946 |
subsection {* Factorization and Factorial Monoids *}
|
ballarin@27701
|
947 |
|
ballarin@27701
|
948 |
subsubsection {* Function definitions *}
|
ballarin@27701
|
949 |
|
wenzelm@35847
|
950 |
definition
|
ballarin@27701
|
951 |
factors :: "[_, 'a list, 'a] \<Rightarrow> bool"
|
wenzelm@35848
|
952 |
where "factors G fs a \<longleftrightarrow> (\<forall>x \<in> (set fs). irreducible G x) \<and> foldr (op \<otimes>\<^bsub>G\<^esub>) fs \<one>\<^bsub>G\<^esub> = a"
|
wenzelm@35847
|
953 |
|
wenzelm@35847
|
954 |
definition
|
ballarin@27701
|
955 |
wfactors ::"[_, 'a list, 'a] \<Rightarrow> bool"
|
wenzelm@35848
|
956 |
where "wfactors G fs a \<longleftrightarrow> (\<forall>x \<in> (set fs). irreducible G x) \<and> foldr (op \<otimes>\<^bsub>G\<^esub>) fs \<one>\<^bsub>G\<^esub> \<sim>\<^bsub>G\<^esub> a"
|
ballarin@27701
|
957 |
|
ballarin@27701
|
958 |
abbreviation
|
wenzelm@35847
|
959 |
list_assoc :: "('a,_) monoid_scheme \<Rightarrow> 'a list \<Rightarrow> 'a list \<Rightarrow> bool" (infix "[\<sim>]\<index>" 44)
|
wenzelm@35847
|
960 |
where "list_assoc G == list_all2 (op \<sim>\<^bsub>G\<^esub>)"
|
wenzelm@35847
|
961 |
|
wenzelm@35847
|
962 |
definition
|
ballarin@27701
|
963 |
essentially_equal :: "[_, 'a list, 'a list] \<Rightarrow> bool"
|
wenzelm@35848
|
964 |
where "essentially_equal G fs1 fs2 \<longleftrightarrow> (\<exists>fs1'. fs1 <~~> fs1' \<and> fs1' [\<sim>]\<^bsub>G\<^esub> fs2)"
|
ballarin@27701
|
965 |
|
ballarin@27701
|
966 |
|
ballarin@27701
|
967 |
locale factorial_monoid = comm_monoid_cancel +
|
ballarin@27701
|
968 |
assumes factors_exist:
|
ballarin@27701
|
969 |
"\<lbrakk>a \<in> carrier G; a \<notin> Units G\<rbrakk> \<Longrightarrow> \<exists>fs. set fs \<subseteq> carrier G \<and> factors G fs a"
|
ballarin@27701
|
970 |
and factors_unique:
|
ballarin@27701
|
971 |
"\<lbrakk>factors G fs a; factors G fs' a; a \<in> carrier G; a \<notin> Units G;
|
ballarin@27701
|
972 |
set fs \<subseteq> carrier G; set fs' \<subseteq> carrier G\<rbrakk> \<Longrightarrow> essentially_equal G fs fs'"
|
ballarin@27701
|
973 |
|
ballarin@27701
|
974 |
|
ballarin@27701
|
975 |
subsubsection {* Comparing lists of elements *}
|
ballarin@27701
|
976 |
|
ballarin@27701
|
977 |
text {* Association on lists *}
|
ballarin@27701
|
978 |
|
ballarin@27701
|
979 |
lemma (in monoid) listassoc_refl [simp, intro]:
|
ballarin@27701
|
980 |
assumes "set as \<subseteq> carrier G"
|
ballarin@27701
|
981 |
shows "as [\<sim>] as"
|
ballarin@27701
|
982 |
using assms
|
ballarin@27701
|
983 |
by (induct as) simp+
|
ballarin@27701
|
984 |
|
ballarin@27701
|
985 |
lemma (in monoid) listassoc_sym [sym]:
|
ballarin@27701
|
986 |
assumes "as [\<sim>] bs"
|
ballarin@27701
|
987 |
and "set as \<subseteq> carrier G" and "set bs \<subseteq> carrier G"
|
ballarin@27701
|
988 |
shows "bs [\<sim>] as"
|
ballarin@27701
|
989 |
using assms
|
ballarin@27701
|
990 |
proof (induct as arbitrary: bs, simp)
|
ballarin@27701
|
991 |
case Cons
|
ballarin@27701
|
992 |
thus ?case
|
ballarin@27701
|
993 |
apply (induct bs, simp)
|
ballarin@27701
|
994 |
apply clarsimp
|
ballarin@27701
|
995 |
apply (iprover intro: associated_sym)
|
ballarin@27701
|
996 |
done
|
ballarin@27701
|
997 |
qed
|
ballarin@27701
|
998 |
|
ballarin@27701
|
999 |
lemma (in monoid) listassoc_trans [trans]:
|
ballarin@27701
|
1000 |
assumes "as [\<sim>] bs" and "bs [\<sim>] cs"
|
ballarin@27701
|
1001 |
and "set as \<subseteq> carrier G" and "set bs \<subseteq> carrier G" and "set cs \<subseteq> carrier G"
|
ballarin@27701
|
1002 |
shows "as [\<sim>] cs"
|
ballarin@27701
|
1003 |
using assms
|
ballarin@27701
|
1004 |
apply (simp add: list_all2_conv_all_nth set_conv_nth, safe)
|
ballarin@27701
|
1005 |
apply (rule associated_trans)
|
ballarin@27701
|
1006 |
apply (subgoal_tac "as ! i \<sim> bs ! i", assumption)
|
ballarin@27701
|
1007 |
apply (simp, simp)
|
ballarin@27701
|
1008 |
apply blast+
|
ballarin@27701
|
1009 |
done
|
ballarin@27701
|
1010 |
|
ballarin@27701
|
1011 |
lemma (in monoid_cancel) irrlist_listassoc_cong:
|
ballarin@27701
|
1012 |
assumes "\<forall>a\<in>set as. irreducible G a"
|
ballarin@27701
|
1013 |
and "as [\<sim>] bs"
|
ballarin@27701
|
1014 |
and "set as \<subseteq> carrier G" and "set bs \<subseteq> carrier G"
|
ballarin@27701
|
1015 |
shows "\<forall>a\<in>set bs. irreducible G a"
|
ballarin@27701
|
1016 |
using assms
|
ballarin@27701
|
1017 |
apply (clarsimp simp add: list_all2_conv_all_nth set_conv_nth)
|
ballarin@27701
|
1018 |
apply (blast intro: irreducible_cong)
|
ballarin@27701
|
1019 |
done
|
ballarin@27701
|
1020 |
|
ballarin@27701
|
1021 |
|
ballarin@27701
|
1022 |
text {* Permutations *}
|
ballarin@27701
|
1023 |
|
ballarin@27701
|
1024 |
lemma perm_map [intro]:
|
ballarin@27701
|
1025 |
assumes p: "a <~~> b"
|
ballarin@27701
|
1026 |
shows "map f a <~~> map f b"
|
ballarin@27701
|
1027 |
using p
|
ballarin@27701
|
1028 |
by induct auto
|
ballarin@27701
|
1029 |
|
ballarin@27701
|
1030 |
lemma perm_map_switch:
|
ballarin@27701
|
1031 |
assumes m: "map f a = map f b" and p: "b <~~> c"
|
ballarin@27701
|
1032 |
shows "\<exists>d. a <~~> d \<and> map f d = map f c"
|
ballarin@27701
|
1033 |
using p m
|
ballarin@27701
|
1034 |
by (induct arbitrary: a) (simp, force, force, blast)
|
ballarin@27701
|
1035 |
|
ballarin@27701
|
1036 |
lemma (in monoid) perm_assoc_switch:
|
ballarin@27701
|
1037 |
assumes a:"as [\<sim>] bs" and p: "bs <~~> cs"
|
ballarin@27701
|
1038 |
shows "\<exists>bs'. as <~~> bs' \<and> bs' [\<sim>] cs"
|
ballarin@27701
|
1039 |
using p a
|
ballarin@27701
|
1040 |
apply (induct bs cs arbitrary: as, simp)
|
ballarin@27701
|
1041 |
apply (clarsimp simp add: list_all2_Cons2, blast)
|
ballarin@27701
|
1042 |
apply (clarsimp simp add: list_all2_Cons2)
|
ballarin@27701
|
1043 |
apply blast
|
ballarin@27701
|
1044 |
apply blast
|
ballarin@27701
|
1045 |
done
|
ballarin@27701
|
1046 |
|
ballarin@27701
|
1047 |
lemma (in monoid) perm_assoc_switch_r:
|
ballarin@27701
|
1048 |
assumes p: "as <~~> bs" and a:"bs [\<sim>] cs"
|
ballarin@27701
|
1049 |
shows "\<exists>bs'. as [\<sim>] bs' \<and> bs' <~~> cs"
|
ballarin@27701
|
1050 |
using p a
|
ballarin@27701
|
1051 |
apply (induct as bs arbitrary: cs, simp)
|
ballarin@27701
|
1052 |
apply (clarsimp simp add: list_all2_Cons1, blast)
|
ballarin@27701
|
1053 |
apply (clarsimp simp add: list_all2_Cons1)
|
ballarin@27701
|
1054 |
apply blast
|
ballarin@27701
|
1055 |
apply blast
|
ballarin@27701
|
1056 |
done
|
ballarin@27701
|
1057 |
|
ballarin@27701
|
1058 |
declare perm_sym [sym]
|
ballarin@27701
|
1059 |
|
ballarin@27701
|
1060 |
lemma perm_setP:
|
ballarin@27701
|
1061 |
assumes perm: "as <~~> bs"
|
ballarin@27701
|
1062 |
and as: "P (set as)"
|
ballarin@27701
|
1063 |
shows "P (set bs)"
|
ballarin@27701
|
1064 |
proof -
|
ballarin@27701
|
1065 |
from perm
|
ballarin@27701
|
1066 |
have "multiset_of as = multiset_of bs"
|
ballarin@27701
|
1067 |
by (simp add: multiset_of_eq_perm)
|
ballarin@27701
|
1068 |
hence "set as = set bs" by (rule multiset_of_eq_setD)
|
ballarin@27701
|
1069 |
with as
|
ballarin@27701
|
1070 |
show "P (set bs)" by simp
|
ballarin@27701
|
1071 |
qed
|
ballarin@27701
|
1072 |
|
ballarin@27701
|
1073 |
lemmas (in monoid) perm_closed =
|
ballarin@27701
|
1074 |
perm_setP[of _ _ "\<lambda>as. as \<subseteq> carrier G"]
|
ballarin@27701
|
1075 |
|
ballarin@27701
|
1076 |
lemmas (in monoid) irrlist_perm_cong =
|
ballarin@27701
|
1077 |
perm_setP[of _ _ "\<lambda>as. \<forall>a\<in>as. irreducible G a"]
|
ballarin@27701
|
1078 |
|
ballarin@27701
|
1079 |
|
ballarin@27701
|
1080 |
text {* Essentially equal factorizations *}
|
ballarin@27701
|
1081 |
|
ballarin@27701
|
1082 |
lemma (in monoid) essentially_equalI:
|
ballarin@27701
|
1083 |
assumes ex: "fs1 <~~> fs1'" "fs1' [\<sim>] fs2"
|
ballarin@27701
|
1084 |
shows "essentially_equal G fs1 fs2"
|
ballarin@27701
|
1085 |
using ex
|
ballarin@27701
|
1086 |
unfolding essentially_equal_def
|
ballarin@27701
|
1087 |
by fast
|
ballarin@27701
|
1088 |
|
ballarin@27701
|
1089 |
lemma (in monoid) essentially_equalE:
|
ballarin@27701
|
1090 |
assumes ee: "essentially_equal G fs1 fs2"
|
ballarin@27701
|
1091 |
and e: "\<And>fs1'. \<lbrakk>fs1 <~~> fs1'; fs1' [\<sim>] fs2\<rbrakk> \<Longrightarrow> P"
|
ballarin@27701
|
1092 |
shows "P"
|
ballarin@27701
|
1093 |
using ee
|
ballarin@27701
|
1094 |
unfolding essentially_equal_def
|
ballarin@27701
|
1095 |
by (fast intro: e)
|
ballarin@27701
|
1096 |
|
ballarin@27701
|
1097 |
lemma (in monoid) ee_refl [simp,intro]:
|
ballarin@27701
|
1098 |
assumes carr: "set as \<subseteq> carrier G"
|
ballarin@27701
|
1099 |
shows "essentially_equal G as as"
|
ballarin@27701
|
1100 |
using carr
|
ballarin@27701
|
1101 |
by (fast intro: essentially_equalI)
|
ballarin@27701
|
1102 |
|
ballarin@27701
|
1103 |
lemma (in monoid) ee_sym [sym]:
|
ballarin@27701
|
1104 |
assumes ee: "essentially_equal G as bs"
|
ballarin@27701
|
1105 |
and carr: "set as \<subseteq> carrier G" "set bs \<subseteq> carrier G"
|
ballarin@27701
|
1106 |
shows "essentially_equal G bs as"
|
ballarin@27701
|
1107 |
using ee
|
ballarin@27701
|
1108 |
proof (elim essentially_equalE)
|
ballarin@27701
|
1109 |
fix fs
|
ballarin@27701
|
1110 |
assume "as <~~> fs" "fs [\<sim>] bs"
|
ballarin@27701
|
1111 |
hence "\<exists>fs'. as [\<sim>] fs' \<and> fs' <~~> bs" by (rule perm_assoc_switch_r)
|
ballarin@27701
|
1112 |
from this obtain fs'
|
ballarin@27701
|
1113 |
where a: "as [\<sim>] fs'" and p: "fs' <~~> bs"
|
ballarin@27701
|
1114 |
by auto
|
ballarin@27701
|
1115 |
from p have "bs <~~> fs'" by (rule perm_sym)
|
ballarin@27701
|
1116 |
with a[symmetric] carr
|
ballarin@27701
|
1117 |
show ?thesis
|
ballarin@27701
|
1118 |
by (iprover intro: essentially_equalI perm_closed)
|
ballarin@27701
|
1119 |
qed
|
ballarin@27701
|
1120 |
|
ballarin@27701
|
1121 |
lemma (in monoid) ee_trans [trans]:
|
ballarin@27701
|
1122 |
assumes ab: "essentially_equal G as bs" and bc: "essentially_equal G bs cs"
|
ballarin@27701
|
1123 |
and ascarr: "set as \<subseteq> carrier G"
|
ballarin@27701
|
1124 |
and bscarr: "set bs \<subseteq> carrier G"
|
ballarin@27701
|
1125 |
and cscarr: "set cs \<subseteq> carrier G"
|
ballarin@27701
|
1126 |
shows "essentially_equal G as cs"
|
ballarin@27701
|
1127 |
using ab bc
|
ballarin@27701
|
1128 |
proof (elim essentially_equalE)
|
ballarin@27701
|
1129 |
fix abs bcs
|
ballarin@27701
|
1130 |
assume "abs [\<sim>] bs" and pb: "bs <~~> bcs"
|
ballarin@27701
|
1131 |
hence "\<exists>bs'. abs <~~> bs' \<and> bs' [\<sim>] bcs" by (rule perm_assoc_switch)
|
ballarin@27701
|
1132 |
from this obtain bs'
|
ballarin@27701
|
1133 |
where p: "abs <~~> bs'" and a: "bs' [\<sim>] bcs"
|
ballarin@27701
|
1134 |
by auto
|
ballarin@27701
|
1135 |
|
ballarin@27701
|
1136 |
assume "as <~~> abs"
|
ballarin@27701
|
1137 |
with p
|
ballarin@27701
|
1138 |
have pp: "as <~~> bs'" by fast
|
ballarin@27701
|
1139 |
|
ballarin@27701
|
1140 |
from pp ascarr have c1: "set bs' \<subseteq> carrier G" by (rule perm_closed)
|
ballarin@27701
|
1141 |
from pb bscarr have c2: "set bcs \<subseteq> carrier G" by (rule perm_closed)
|
ballarin@27701
|
1142 |
note a
|
ballarin@27701
|
1143 |
also assume "bcs [\<sim>] cs"
|
ballarin@27701
|
1144 |
finally (listassoc_trans) have"bs' [\<sim>] cs" by (simp add: c1 c2 cscarr)
|
ballarin@27701
|
1145 |
|
ballarin@27701
|
1146 |
with pp
|
ballarin@27701
|
1147 |
show ?thesis
|
ballarin@27701
|
1148 |
by (rule essentially_equalI)
|
ballarin@27701
|
1149 |
qed
|
ballarin@27701
|
1150 |
|
ballarin@27701
|
1151 |
|
ballarin@27701
|
1152 |
subsubsection {* Properties of lists of elements *}
|
ballarin@27701
|
1153 |
|
ballarin@27701
|
1154 |
text {* Multiplication of factors in a list *}
|
ballarin@27701
|
1155 |
|
ballarin@27701
|
1156 |
lemma (in monoid) multlist_closed [simp, intro]:
|
ballarin@27701
|
1157 |
assumes ascarr: "set fs \<subseteq> carrier G"
|
ballarin@27701
|
1158 |
shows "foldr (op \<otimes>) fs \<one> \<in> carrier G"
|
ballarin@27701
|
1159 |
by (insert ascarr, induct fs, simp+)
|
ballarin@27701
|
1160 |
|
ballarin@27701
|
1161 |
lemma (in comm_monoid) multlist_dividesI (*[intro]*):
|
ballarin@27701
|
1162 |
assumes "f \<in> set fs" and "f \<in> carrier G" and "set fs \<subseteq> carrier G"
|
ballarin@27701
|
1163 |
shows "f divides (foldr (op \<otimes>) fs \<one>)"
|
ballarin@27701
|
1164 |
using assms
|
ballarin@27701
|
1165 |
apply (induct fs)
|
ballarin@27701
|
1166 |
apply simp
|
ballarin@27701
|
1167 |
apply (case_tac "f = a", simp)
|
ballarin@27701
|
1168 |
apply (fast intro: dividesI)
|
ballarin@27701
|
1169 |
apply clarsimp
|
paulson@36278
|
1170 |
apply (metis assms(2) divides_prod_l multlist_closed)
|
ballarin@27701
|
1171 |
done
|
ballarin@27701
|
1172 |
|
ballarin@27701
|
1173 |
lemma (in comm_monoid_cancel) multlist_listassoc_cong:
|
ballarin@27701
|
1174 |
assumes "fs [\<sim>] fs'"
|
ballarin@27701
|
1175 |
and "set fs \<subseteq> carrier G" and "set fs' \<subseteq> carrier G"
|
ballarin@27701
|
1176 |
shows "foldr (op \<otimes>) fs \<one> \<sim> foldr (op \<otimes>) fs' \<one>"
|
ballarin@27701
|
1177 |
using assms
|
ballarin@27701
|
1178 |
proof (induct fs arbitrary: fs', simp)
|
ballarin@27701
|
1179 |
case (Cons a as fs')
|
ballarin@27701
|
1180 |
thus ?case
|
ballarin@27701
|
1181 |
apply (induct fs', simp)
|
ballarin@27701
|
1182 |
proof clarsimp
|
ballarin@27701
|
1183 |
fix b bs
|
ballarin@27701
|
1184 |
assume "a \<sim> b"
|
ballarin@27701
|
1185 |
and acarr: "a \<in> carrier G" and bcarr: "b \<in> carrier G"
|
ballarin@27701
|
1186 |
and ascarr: "set as \<subseteq> carrier G"
|
ballarin@27701
|
1187 |
hence p: "a \<otimes> foldr op \<otimes> as \<one> \<sim> b \<otimes> foldr op \<otimes> as \<one>"
|
ballarin@27701
|
1188 |
by (fast intro: mult_cong_l)
|
ballarin@27701
|
1189 |
also
|
ballarin@27701
|
1190 |
assume "as [\<sim>] bs"
|
ballarin@27701
|
1191 |
and bscarr: "set bs \<subseteq> carrier G"
|
ballarin@27701
|
1192 |
and "\<And>fs'. \<lbrakk>as [\<sim>] fs'; set fs' \<subseteq> carrier G\<rbrakk> \<Longrightarrow> foldr op \<otimes> as \<one> \<sim> foldr op \<otimes> fs' \<one>"
|
ballarin@27701
|
1193 |
hence "foldr op \<otimes> as \<one> \<sim> foldr op \<otimes> bs \<one>" by simp
|
ballarin@27701
|
1194 |
with ascarr bscarr bcarr
|
ballarin@27701
|
1195 |
have "b \<otimes> foldr op \<otimes> as \<one> \<sim> b \<otimes> foldr op \<otimes> bs \<one>"
|
ballarin@27701
|
1196 |
by (fast intro: mult_cong_r)
|
ballarin@27701
|
1197 |
finally
|
ballarin@27701
|
1198 |
show "a \<otimes> foldr op \<otimes> as \<one> \<sim> b \<otimes> foldr op \<otimes> bs \<one>"
|
ballarin@27701
|
1199 |
by (simp add: ascarr bscarr acarr bcarr)
|
ballarin@27701
|
1200 |
qed
|
ballarin@27701
|
1201 |
qed
|
ballarin@27701
|
1202 |
|
ballarin@27701
|
1203 |
lemma (in comm_monoid) multlist_perm_cong:
|
ballarin@27701
|
1204 |
assumes prm: "as <~~> bs"
|
ballarin@27701
|
1205 |
and ascarr: "set as \<subseteq> carrier G"
|
ballarin@27701
|
1206 |
shows "foldr (op \<otimes>) as \<one> = foldr (op \<otimes>) bs \<one>"
|
ballarin@27701
|
1207 |
using prm ascarr
|
ballarin@27701
|
1208 |
apply (induct, simp, clarsimp simp add: m_ac, clarsimp)
|
ballarin@27701
|
1209 |
proof clarsimp
|
ballarin@27701
|
1210 |
fix xs ys zs
|
ballarin@27701
|
1211 |
assume "xs <~~> ys" "set xs \<subseteq> carrier G"
|
ballarin@27701
|
1212 |
hence "set ys \<subseteq> carrier G" by (rule perm_closed)
|
ballarin@27701
|
1213 |
moreover assume "set ys \<subseteq> carrier G \<Longrightarrow> foldr op \<otimes> ys \<one> = foldr op \<otimes> zs \<one>"
|
ballarin@27701
|
1214 |
ultimately show "foldr op \<otimes> ys \<one> = foldr op \<otimes> zs \<one>" by simp
|
ballarin@27701
|
1215 |
qed
|
ballarin@27701
|
1216 |
|
ballarin@27701
|
1217 |
lemma (in comm_monoid_cancel) multlist_ee_cong:
|
ballarin@27701
|
1218 |
assumes "essentially_equal G fs fs'"
|
ballarin@27701
|
1219 |
and "set fs \<subseteq> carrier G" and "set fs' \<subseteq> carrier G"
|
ballarin@27701
|
1220 |
shows "foldr (op \<otimes>) fs \<one> \<sim> foldr (op \<otimes>) fs' \<one>"
|
ballarin@27701
|
1221 |
using assms
|
ballarin@27701
|
1222 |
apply (elim essentially_equalE)
|
ballarin@27701
|
1223 |
apply (simp add: multlist_perm_cong multlist_listassoc_cong perm_closed)
|
ballarin@27701
|
1224 |
done
|
ballarin@27701
|
1225 |
|
ballarin@27701
|
1226 |
|
ballarin@27701
|
1227 |
subsubsection {* Factorization in irreducible elements *}
|
ballarin@27701
|
1228 |
|
ballarin@27701
|
1229 |
lemma wfactorsI:
|
ballarin@28599
|
1230 |
fixes G (structure)
|
ballarin@27701
|
1231 |
assumes "\<forall>f\<in>set fs. irreducible G f"
|
ballarin@27701
|
1232 |
and "foldr (op \<otimes>) fs \<one> \<sim> a"
|
ballarin@27701
|
1233 |
shows "wfactors G fs a"
|
ballarin@27701
|
1234 |
using assms
|
ballarin@27701
|
1235 |
unfolding wfactors_def
|
ballarin@27701
|
1236 |
by simp
|
ballarin@27701
|
1237 |
|
ballarin@27701
|
1238 |
lemma wfactorsE:
|
ballarin@28599
|
1239 |
fixes G (structure)
|
ballarin@27701
|
1240 |
assumes wf: "wfactors G fs a"
|
ballarin@27701
|
1241 |
and e: "\<lbrakk>\<forall>f\<in>set fs. irreducible G f; foldr (op \<otimes>) fs \<one> \<sim> a\<rbrakk> \<Longrightarrow> P"
|
ballarin@27701
|
1242 |
shows "P"
|
ballarin@27701
|
1243 |
using wf
|
ballarin@27701
|
1244 |
unfolding wfactors_def
|
ballarin@27701
|
1245 |
by (fast dest: e)
|
ballarin@27701
|
1246 |
|
ballarin@27701
|
1247 |
lemma (in monoid) factorsI:
|
ballarin@27701
|
1248 |
assumes "\<forall>f\<in>set fs. irreducible G f"
|
ballarin@27701
|
1249 |
and "foldr (op \<otimes>) fs \<one> = a"
|
ballarin@27701
|
1250 |
shows "factors G fs a"
|
ballarin@27701
|
1251 |
using assms
|
ballarin@27701
|
1252 |
unfolding factors_def
|
ballarin@27701
|
1253 |
by simp
|
ballarin@27701
|
1254 |
|
ballarin@27701
|
1255 |
lemma factorsE:
|
ballarin@28599
|
1256 |
fixes G (structure)
|
ballarin@27701
|
1257 |
assumes f: "factors G fs a"
|
ballarin@27701
|
1258 |
and e: "\<lbrakk>\<forall>f\<in>set fs. irreducible G f; foldr (op \<otimes>) fs \<one> = a\<rbrakk> \<Longrightarrow> P"
|
ballarin@27701
|
1259 |
shows "P"
|
ballarin@27701
|
1260 |
using f
|
ballarin@27701
|
1261 |
unfolding factors_def
|
ballarin@27701
|
1262 |
by (simp add: e)
|
ballarin@27701
|
1263 |
|
ballarin@27701
|
1264 |
lemma (in monoid) factors_wfactors:
|
ballarin@27701
|
1265 |
assumes "factors G as a" and "set as \<subseteq> carrier G"
|
ballarin@27701
|
1266 |
shows "wfactors G as a"
|
ballarin@27701
|
1267 |
using assms
|
ballarin@27701
|
1268 |
by (blast elim: factorsE intro: wfactorsI)
|
ballarin@27701
|
1269 |
|
ballarin@27701
|
1270 |
lemma (in monoid) wfactors_factors:
|
ballarin@27701
|
1271 |
assumes "wfactors G as a" and "set as \<subseteq> carrier G"
|
ballarin@27701
|
1272 |
shows "\<exists>a'. factors G as a' \<and> a' \<sim> a"
|
ballarin@27701
|
1273 |
using assms
|
ballarin@27701
|
1274 |
by (blast elim: wfactorsE intro: factorsI)
|
ballarin@27701
|
1275 |
|
ballarin@27701
|
1276 |
lemma (in monoid) factors_closed [dest]:
|
ballarin@27701
|
1277 |
assumes "factors G fs a" and "set fs \<subseteq> carrier G"
|
ballarin@27701
|
1278 |
shows "a \<in> carrier G"
|
ballarin@27701
|
1279 |
using assms
|
ballarin@27701
|
1280 |
by (elim factorsE, clarsimp)
|
ballarin@27701
|
1281 |
|
ballarin@27701
|
1282 |
lemma (in monoid) nunit_factors:
|
ballarin@27701
|
1283 |
assumes anunit: "a \<notin> Units G"
|
ballarin@27701
|
1284 |
and fs: "factors G as a"
|
ballarin@27701
|
1285 |
shows "length as > 0"
|
haftmann@46129
|
1286 |
proof -
|
haftmann@46129
|
1287 |
from anunit Units_one_closed have "a \<noteq> \<one>" by auto
|
haftmann@46129
|
1288 |
with fs show ?thesis by (auto elim: factorsE)
|
haftmann@46129
|
1289 |
qed
|
ballarin@27701
|
1290 |
|
ballarin@27701
|
1291 |
lemma (in monoid) unit_wfactors [simp]:
|
ballarin@27701
|
1292 |
assumes aunit: "a \<in> Units G"
|
ballarin@27701
|
1293 |
shows "wfactors G [] a"
|
ballarin@27701
|
1294 |
using aunit
|
ballarin@27701
|
1295 |
by (intro wfactorsI) (simp, simp add: Units_assoc)
|
ballarin@27701
|
1296 |
|
ballarin@27701
|
1297 |
lemma (in comm_monoid_cancel) unit_wfactors_empty:
|
ballarin@27701
|
1298 |
assumes aunit: "a \<in> Units G"
|
ballarin@27701
|
1299 |
and wf: "wfactors G fs a"
|
ballarin@27701
|
1300 |
and carr[simp]: "set fs \<subseteq> carrier G"
|
ballarin@27701
|
1301 |
shows "fs = []"
|
ballarin@27701
|
1302 |
proof (rule ccontr, cases fs, simp)
|
ballarin@27701
|
1303 |
fix f fs'
|
ballarin@27701
|
1304 |
assume fs: "fs = f # fs'"
|
ballarin@27701
|
1305 |
|
ballarin@27701
|
1306 |
from carr
|
ballarin@27701
|
1307 |
have fcarr[simp]: "f \<in> carrier G"
|
ballarin@27701
|
1308 |
and carr'[simp]: "set fs' \<subseteq> carrier G"
|
ballarin@27701
|
1309 |
by (simp add: fs)+
|
ballarin@27701
|
1310 |
|
ballarin@27701
|
1311 |
from fs wf
|
ballarin@27701
|
1312 |
have "irreducible G f" by (simp add: wfactors_def)
|
ballarin@27701
|
1313 |
hence fnunit: "f \<notin> Units G" by (fast elim: irreducibleE)
|
ballarin@27701
|
1314 |
|
ballarin@27701
|
1315 |
from fs wf
|
ballarin@27701
|
1316 |
have a: "f \<otimes> foldr (op \<otimes>) fs' \<one> \<sim> a" by (simp add: wfactors_def)
|
ballarin@27701
|
1317 |
|
ballarin@27701
|
1318 |
note aunit
|
ballarin@27701
|
1319 |
also from fs wf
|
ballarin@27701
|
1320 |
have a: "f \<otimes> foldr (op \<otimes>) fs' \<one> \<sim> a" by (simp add: wfactors_def)
|
ballarin@27701
|
1321 |
have "a \<sim> f \<otimes> foldr (op \<otimes>) fs' \<one>"
|
ballarin@27701
|
1322 |
by (simp add: Units_closed[OF aunit] a[symmetric])
|
ballarin@27701
|
1323 |
finally
|
ballarin@27701
|
1324 |
have "f \<otimes> foldr (op \<otimes>) fs' \<one> \<in> Units G" by simp
|
ballarin@27701
|
1325 |
hence "f \<in> Units G" by (intro unit_factor[of f], simp+)
|
ballarin@27701
|
1326 |
|
ballarin@27701
|
1327 |
with fnunit show "False" by simp
|
ballarin@27701
|
1328 |
qed
|
ballarin@27701
|
1329 |
|
ballarin@27701
|
1330 |
|
ballarin@27701
|
1331 |
text {* Comparing wfactors *}
|
ballarin@27701
|
1332 |
|
ballarin@27701
|
1333 |
lemma (in comm_monoid_cancel) wfactors_listassoc_cong_l:
|
ballarin@27701
|
1334 |
assumes fact: "wfactors G fs a"
|
ballarin@27701
|
1335 |
and asc: "fs [\<sim>] fs'"
|
ballarin@27701
|
1336 |
and carr: "a \<in> carrier G" "set fs \<subseteq> carrier G" "set fs' \<subseteq> carrier G"
|
ballarin@27701
|
1337 |
shows "wfactors G fs' a"
|
ballarin@27701
|
1338 |
using fact
|
ballarin@27701
|
1339 |
apply (elim wfactorsE, intro wfactorsI)
|
paulson@36278
|
1340 |
apply (metis assms(2) assms(4) assms(5) irrlist_listassoc_cong)
|
ballarin@27701
|
1341 |
proof -
|
ballarin@27701
|
1342 |
from asc[symmetric]
|
ballarin@27701
|
1343 |
have "foldr op \<otimes> fs' \<one> \<sim> foldr op \<otimes> fs \<one>"
|
ballarin@27701
|
1344 |
by (simp add: multlist_listassoc_cong carr)
|
ballarin@27701
|
1345 |
also assume "foldr op \<otimes> fs \<one> \<sim> a"
|
ballarin@27701
|
1346 |
finally
|
ballarin@27701
|
1347 |
show "foldr op \<otimes> fs' \<one> \<sim> a" by (simp add: carr)
|
ballarin@27701
|
1348 |
qed
|
ballarin@27701
|
1349 |
|
ballarin@27701
|
1350 |
lemma (in comm_monoid) wfactors_perm_cong_l:
|
ballarin@27701
|
1351 |
assumes "wfactors G fs a"
|
ballarin@27701
|
1352 |
and "fs <~~> fs'"
|
ballarin@27701
|
1353 |
and "set fs \<subseteq> carrier G"
|
ballarin@27701
|
1354 |
shows "wfactors G fs' a"
|
ballarin@27701
|
1355 |
using assms
|
ballarin@27701
|
1356 |
apply (elim wfactorsE, intro wfactorsI)
|
ballarin@27701
|
1357 |
apply (rule irrlist_perm_cong, assumption+)
|
ballarin@27701
|
1358 |
apply (simp add: multlist_perm_cong[symmetric])
|
ballarin@27701
|
1359 |
done
|
ballarin@27701
|
1360 |
|
ballarin@27701
|
1361 |
lemma (in comm_monoid_cancel) wfactors_ee_cong_l [trans]:
|
ballarin@27701
|
1362 |
assumes ee: "essentially_equal G as bs"
|
ballarin@27701
|
1363 |
and bfs: "wfactors G bs b"
|
ballarin@27701
|
1364 |
and carr: "b \<in> carrier G" "set as \<subseteq> carrier G" "set bs \<subseteq> carrier G"
|
ballarin@27701
|
1365 |
shows "wfactors G as b"
|
ballarin@27701
|
1366 |
using ee
|
ballarin@27701
|
1367 |
proof (elim essentially_equalE)
|
ballarin@27701
|
1368 |
fix fs
|
ballarin@27701
|
1369 |
assume prm: "as <~~> fs"
|
ballarin@27701
|
1370 |
with carr
|
ballarin@27701
|
1371 |
have fscarr: "set fs \<subseteq> carrier G" by (simp add: perm_closed)
|
ballarin@27701
|
1372 |
|
ballarin@27701
|
1373 |
note bfs
|
ballarin@27701
|
1374 |
also assume [symmetric]: "fs [\<sim>] bs"
|
ballarin@27701
|
1375 |
also (wfactors_listassoc_cong_l)
|
ballarin@27701
|
1376 |
note prm[symmetric]
|
ballarin@27701
|
1377 |
finally (wfactors_perm_cong_l)
|
ballarin@27701
|
1378 |
show "wfactors G as b" by (simp add: carr fscarr)
|
ballarin@27701
|
1379 |
qed
|
ballarin@27701
|
1380 |
|
ballarin@27701
|
1381 |
lemma (in monoid) wfactors_cong_r [trans]:
|
ballarin@27701
|
1382 |
assumes fac: "wfactors G fs a" and aa': "a \<sim> a'"
|
ballarin@27701
|
1383 |
and carr[simp]: "a \<in> carrier G" "a' \<in> carrier G" "set fs \<subseteq> carrier G"
|
ballarin@27701
|
1384 |
shows "wfactors G fs a'"
|
ballarin@27701
|
1385 |
using fac
|
ballarin@27701
|
1386 |
proof (elim wfactorsE, intro wfactorsI)
|
ballarin@27701
|
1387 |
assume "foldr op \<otimes> fs \<one> \<sim> a" also note aa'
|
ballarin@27701
|
1388 |
finally show "foldr op \<otimes> fs \<one> \<sim> a'" by simp
|
ballarin@27701
|
1389 |
qed
|
ballarin@27701
|
1390 |
|
ballarin@27701
|
1391 |
|
ballarin@27701
|
1392 |
subsubsection {* Essentially equal factorizations *}
|
ballarin@27701
|
1393 |
|
ballarin@27701
|
1394 |
lemma (in comm_monoid_cancel) unitfactor_ee:
|
ballarin@27701
|
1395 |
assumes uunit: "u \<in> Units G"
|
ballarin@27701
|
1396 |
and carr: "set as \<subseteq> carrier G"
|
ballarin@27701
|
1397 |
shows "essentially_equal G (as[0 := (as!0 \<otimes> u)]) as" (is "essentially_equal G ?as' as")
|
ballarin@27701
|
1398 |
using assms
|
ballarin@27701
|
1399 |
apply (intro essentially_equalI[of _ ?as'], simp)
|
ballarin@27701
|
1400 |
apply (cases as, simp)
|
ballarin@27701
|
1401 |
apply (clarsimp, fast intro: associatedI2[of u])
|
ballarin@27701
|
1402 |
done
|
ballarin@27701
|
1403 |
|
ballarin@27701
|
1404 |
lemma (in comm_monoid_cancel) factors_cong_unit:
|
ballarin@27701
|
1405 |
assumes uunit: "u \<in> Units G" and anunit: "a \<notin> Units G"
|
ballarin@27701
|
1406 |
and afs: "factors G as a"
|
ballarin@27701
|
1407 |
and ascarr: "set as \<subseteq> carrier G"
|
ballarin@27701
|
1408 |
shows "factors G (as[0 := (as!0 \<otimes> u)]) (a \<otimes> u)" (is "factors G ?as' ?a'")
|
ballarin@27701
|
1409 |
using assms
|
ballarin@27701
|
1410 |
apply (elim factorsE, clarify)
|
ballarin@27701
|
1411 |
apply (cases as)
|
ballarin@27701
|
1412 |
apply (simp add: nunit_factors)
|
ballarin@27701
|
1413 |
apply clarsimp
|
ballarin@27701
|
1414 |
apply (elim factorsE, intro factorsI)
|
ballarin@27701
|
1415 |
apply (clarsimp, fast intro: irreducible_prod_rI)
|
ballarin@27701
|
1416 |
apply (simp add: m_ac Units_closed)
|
ballarin@27701
|
1417 |
done
|
ballarin@27701
|
1418 |
|
ballarin@27701
|
1419 |
lemma (in comm_monoid) perm_wfactorsD:
|
ballarin@27701
|
1420 |
assumes prm: "as <~~> bs"
|
ballarin@27701
|
1421 |
and afs: "wfactors G as a" and bfs: "wfactors G bs b"
|
ballarin@27701
|
1422 |
and [simp]: "a \<in> carrier G" "b \<in> carrier G"
|
ballarin@27701
|
1423 |
and ascarr[simp]: "set as \<subseteq> carrier G"
|
ballarin@27701
|
1424 |
shows "a \<sim> b"
|
ballarin@27701
|
1425 |
using afs bfs
|
ballarin@27701
|
1426 |
proof (elim wfactorsE)
|
ballarin@27701
|
1427 |
from prm have [simp]: "set bs \<subseteq> carrier G" by (simp add: perm_closed)
|
ballarin@27701
|
1428 |
assume "foldr op \<otimes> as \<one> \<sim> a"
|
ballarin@27701
|
1429 |
hence "a \<sim> foldr op \<otimes> as \<one>" by (rule associated_sym, simp+)
|
ballarin@27701
|
1430 |
also from prm
|
ballarin@27701
|
1431 |
have "foldr op \<otimes> as \<one> = foldr op \<otimes> bs \<one>" by (rule multlist_perm_cong, simp)
|
ballarin@27701
|
1432 |
also assume "foldr op \<otimes> bs \<one> \<sim> b"
|
ballarin@27701
|
1433 |
finally
|
ballarin@27701
|
1434 |
show "a \<sim> b" by simp
|
ballarin@27701
|
1435 |
qed
|
ballarin@27701
|
1436 |
|
ballarin@27701
|
1437 |
lemma (in comm_monoid_cancel) listassoc_wfactorsD:
|
ballarin@27701
|
1438 |
assumes assoc: "as [\<sim>] bs"
|
ballarin@27701
|
1439 |
and afs: "wfactors G as a" and bfs: "wfactors G bs b"
|
ballarin@27701
|
1440 |
and [simp]: "a \<in> carrier G" "b \<in> carrier G"
|
ballarin@27701
|
1441 |
and [simp]: "set as \<subseteq> carrier G" "set bs \<subseteq> carrier G"
|
ballarin@27701
|
1442 |
shows "a \<sim> b"
|
ballarin@27701
|
1443 |
using afs bfs
|
ballarin@27701
|
1444 |
proof (elim wfactorsE)
|
ballarin@27701
|
1445 |
assume "foldr op \<otimes> as \<one> \<sim> a"
|
ballarin@27701
|
1446 |
hence "a \<sim> foldr op \<otimes> as \<one>" by (rule associated_sym, simp+)
|
ballarin@27701
|
1447 |
also from assoc
|
ballarin@27701
|
1448 |
have "foldr op \<otimes> as \<one> \<sim> foldr op \<otimes> bs \<one>" by (rule multlist_listassoc_cong, simp+)
|
ballarin@27701
|
1449 |
also assume "foldr op \<otimes> bs \<one> \<sim> b"
|
ballarin@27701
|
1450 |
finally
|
ballarin@27701
|
1451 |
show "a \<sim> b" by simp
|
ballarin@27701
|
1452 |
qed
|
ballarin@27701
|
1453 |
|
ballarin@27701
|
1454 |
lemma (in comm_monoid_cancel) ee_wfactorsD:
|
ballarin@27701
|
1455 |
assumes ee: "essentially_equal G as bs"
|
ballarin@27701
|
1456 |
and afs: "wfactors G as a" and bfs: "wfactors G bs b"
|
ballarin@27701
|
1457 |
and [simp]: "a \<in> carrier G" "b \<in> carrier G"
|
ballarin@27701
|
1458 |
and ascarr[simp]: "set as \<subseteq> carrier G" and bscarr[simp]: "set bs \<subseteq> carrier G"
|
ballarin@27701
|
1459 |
shows "a \<sim> b"
|
ballarin@27701
|
1460 |
using ee
|
ballarin@27701
|
1461 |
proof (elim essentially_equalE)
|
ballarin@27701
|
1462 |
fix fs
|
ballarin@27701
|
1463 |
assume prm: "as <~~> fs"
|
ballarin@27701
|
1464 |
hence as'carr[simp]: "set fs \<subseteq> carrier G" by (simp add: perm_closed)
|
ballarin@27701
|
1465 |
from afs prm
|
ballarin@27701
|
1466 |
have afs': "wfactors G fs a" by (rule wfactors_perm_cong_l, simp)
|
ballarin@27701
|
1467 |
assume "fs [\<sim>] bs"
|
ballarin@27701
|
1468 |
from this afs' bfs
|
ballarin@27701
|
1469 |
show "a \<sim> b" by (rule listassoc_wfactorsD, simp+)
|
ballarin@27701
|
1470 |
qed
|
ballarin@27701
|
1471 |
|
ballarin@27701
|
1472 |
lemma (in comm_monoid_cancel) ee_factorsD:
|
ballarin@27701
|
1473 |
assumes ee: "essentially_equal G as bs"
|
ballarin@27701
|
1474 |
and afs: "factors G as a" and bfs:"factors G bs b"
|
ballarin@27701
|
1475 |
and "set as \<subseteq> carrier G" "set bs \<subseteq> carrier G"
|
ballarin@27701
|
1476 |
shows "a \<sim> b"
|
ballarin@27701
|
1477 |
using assms
|
ballarin@27701
|
1478 |
by (blast intro: factors_wfactors dest: ee_wfactorsD)
|
ballarin@27701
|
1479 |
|
ballarin@27701
|
1480 |
lemma (in factorial_monoid) ee_factorsI:
|
ballarin@27701
|
1481 |
assumes ab: "a \<sim> b"
|
ballarin@27701
|
1482 |
and afs: "factors G as a" and anunit: "a \<notin> Units G"
|
ballarin@27701
|
1483 |
and bfs: "factors G bs b" and bnunit: "b \<notin> Units G"
|
ballarin@27701
|
1484 |
and ascarr: "set as \<subseteq> carrier G" and bscarr: "set bs \<subseteq> carrier G"
|
ballarin@27701
|
1485 |
shows "essentially_equal G as bs"
|
ballarin@27701
|
1486 |
proof -
|
ballarin@27701
|
1487 |
note carr[simp] = factors_closed[OF afs ascarr] ascarr[THEN subsetD]
|
ballarin@27701
|
1488 |
factors_closed[OF bfs bscarr] bscarr[THEN subsetD]
|
ballarin@27701
|
1489 |
|
ballarin@27701
|
1490 |
from ab carr
|
ballarin@27701
|
1491 |
have "\<exists>u\<in>Units G. a = b \<otimes> u" by (fast elim: associatedE2)
|
ballarin@27701
|
1492 |
from this obtain u
|
ballarin@27701
|
1493 |
where uunit: "u \<in> Units G"
|
ballarin@27701
|
1494 |
and a: "a = b \<otimes> u" by auto
|
ballarin@27701
|
1495 |
|
ballarin@27701
|
1496 |
from uunit bscarr
|
ballarin@27701
|
1497 |
have ee: "essentially_equal G (bs[0 := (bs!0 \<otimes> u)]) bs"
|
ballarin@27701
|
1498 |
(is "essentially_equal G ?bs' bs")
|
ballarin@27701
|
1499 |
by (rule unitfactor_ee)
|
ballarin@27701
|
1500 |
|
ballarin@27701
|
1501 |
from bscarr uunit
|
ballarin@27701
|
1502 |
have bs'carr: "set ?bs' \<subseteq> carrier G"
|
ballarin@27701
|
1503 |
by (cases bs) (simp add: Units_closed)+
|
ballarin@27701
|
1504 |
|
ballarin@27701
|
1505 |
from uunit bnunit bfs bscarr
|
ballarin@27701
|
1506 |
have fac: "factors G ?bs' (b \<otimes> u)"
|
ballarin@27701
|
1507 |
by (rule factors_cong_unit)
|
ballarin@27701
|
1508 |
|
ballarin@27701
|
1509 |
from afs fac[simplified a[symmetric]] ascarr bs'carr anunit
|
ballarin@27701
|
1510 |
have "essentially_equal G as ?bs'"
|
ballarin@27701
|
1511 |
by (blast intro: factors_unique)
|
ballarin@27701
|
1512 |
also note ee
|
ballarin@27701
|
1513 |
finally
|
ballarin@27701
|
1514 |
show "essentially_equal G as bs" by (simp add: ascarr bscarr bs'carr)
|
ballarin@27701
|
1515 |
qed
|
ballarin@27701
|
1516 |
|
ballarin@27701
|
1517 |
lemma (in factorial_monoid) ee_wfactorsI:
|
ballarin@27701
|
1518 |
assumes asc: "a \<sim> b"
|
ballarin@27701
|
1519 |
and asf: "wfactors G as a" and bsf: "wfactors G bs b"
|
ballarin@27701
|
1520 |
and acarr[simp]: "a \<in> carrier G" and bcarr[simp]: "b \<in> carrier G"
|
ballarin@27701
|
1521 |
and ascarr[simp]: "set as \<subseteq> carrier G" and bscarr[simp]: "set bs \<subseteq> carrier G"
|
ballarin@27701
|
1522 |
shows "essentially_equal G as bs"
|
ballarin@27701
|
1523 |
using assms
|
ballarin@27701
|
1524 |
proof (cases "a \<in> Units G")
|
ballarin@27701
|
1525 |
assume aunit: "a \<in> Units G"
|
ballarin@27701
|
1526 |
also note asc
|
ballarin@27701
|
1527 |
finally have bunit: "b \<in> Units G" by simp
|
ballarin@27701
|
1528 |
|
ballarin@27701
|
1529 |
from aunit asf ascarr
|
ballarin@27701
|
1530 |
have e: "as = []" by (rule unit_wfactors_empty)
|
ballarin@27701
|
1531 |
from bunit bsf bscarr
|
ballarin@27701
|
1532 |
have e': "bs = []" by (rule unit_wfactors_empty)
|
ballarin@27701
|
1533 |
|
ballarin@27701
|
1534 |
have "essentially_equal G [] []"
|
ballarin@27701
|
1535 |
by (fast intro: essentially_equalI)
|
ballarin@27701
|
1536 |
thus ?thesis by (simp add: e e')
|
ballarin@27701
|
1537 |
next
|
ballarin@27701
|
1538 |
assume anunit: "a \<notin> Units G"
|
ballarin@27701
|
1539 |
have bnunit: "b \<notin> Units G"
|
ballarin@27701
|
1540 |
proof clarify
|
ballarin@27701
|
1541 |
assume "b \<in> Units G"
|
ballarin@27701
|
1542 |
also note asc[symmetric]
|
ballarin@27701
|
1543 |
finally have "a \<in> Units G" by simp
|
ballarin@27701
|
1544 |
with anunit
|
ballarin@27701
|
1545 |
show "False" ..
|
ballarin@27701
|
1546 |
qed
|
ballarin@27701
|
1547 |
|
ballarin@27701
|
1548 |
have "\<exists>a'. factors G as a' \<and> a' \<sim> a" by (rule wfactors_factors[OF asf ascarr])
|
ballarin@27701
|
1549 |
from this obtain a'
|
ballarin@27701
|
1550 |
where fa': "factors G as a'"
|
ballarin@27701
|
1551 |
and a': "a' \<sim> a"
|
ballarin@27701
|
1552 |
by auto
|
ballarin@27701
|
1553 |
from fa' ascarr
|
ballarin@27701
|
1554 |
have a'carr[simp]: "a' \<in> carrier G" by fast
|
ballarin@27701
|
1555 |
|
ballarin@27701
|
1556 |
have a'nunit: "a' \<notin> Units G"
|
ballarin@27701
|
1557 |
proof (clarify)
|
ballarin@27701
|
1558 |
assume "a' \<in> Units G"
|
ballarin@27701
|
1559 |
also note a'
|
ballarin@27701
|
1560 |
finally have "a \<in> Units G" by simp
|
ballarin@27701
|
1561 |
with anunit
|
ballarin@27701
|
1562 |
show "False" ..
|
ballarin@27701
|
1563 |
qed
|
ballarin@27701
|
1564 |
|
ballarin@27701
|
1565 |
have "\<exists>b'. factors G bs b' \<and> b' \<sim> b" by (rule wfactors_factors[OF bsf bscarr])
|
ballarin@27701
|
1566 |
from this obtain b'
|
ballarin@27701
|
1567 |
where fb': "factors G bs b'"
|
ballarin@27701
|
1568 |
and b': "b' \<sim> b"
|
ballarin@27701
|
1569 |
by auto
|
ballarin@27701
|
1570 |
from fb' bscarr
|
ballarin@27701
|
1571 |
have b'carr[simp]: "b' \<in> carrier G" by fast
|
ballarin@27701
|
1572 |
|
ballarin@27701
|
1573 |
have b'nunit: "b' \<notin> Units G"
|
ballarin@27701
|
1574 |
proof (clarify)
|
ballarin@27701
|
1575 |
assume "b' \<in> Units G"
|
ballarin@27701
|
1576 |
also note b'
|
ballarin@27701
|
1577 |
finally have "b \<in> Units G" by simp
|
ballarin@27701
|
1578 |
with bnunit
|
ballarin@27701
|
1579 |
show "False" ..
|
ballarin@27701
|
1580 |
qed
|
ballarin@27701
|
1581 |
|
ballarin@27701
|
1582 |
note a'
|
ballarin@27701
|
1583 |
also note asc
|
ballarin@27701
|
1584 |
also note b'[symmetric]
|
ballarin@27701
|
1585 |
finally
|
ballarin@27701
|
1586 |
have "a' \<sim> b'" by simp
|
ballarin@27701
|
1587 |
|
ballarin@27701
|
1588 |
from this fa' a'nunit fb' b'nunit ascarr bscarr
|
ballarin@27701
|
1589 |
show "essentially_equal G as bs"
|
ballarin@27701
|
1590 |
by (rule ee_factorsI)
|
ballarin@27701
|
1591 |
qed
|
ballarin@27701
|
1592 |
|
ballarin@27701
|
1593 |
lemma (in factorial_monoid) ee_wfactors:
|
ballarin@27701
|
1594 |
assumes asf: "wfactors G as a"
|
ballarin@27701
|
1595 |
and bsf: "wfactors G bs b"
|
ballarin@27701
|
1596 |
and acarr: "a \<in> carrier G" and bcarr: "b \<in> carrier G"
|
ballarin@27701
|
1597 |
and ascarr: "set as \<subseteq> carrier G" and bscarr: "set bs \<subseteq> carrier G"
|
ballarin@27701
|
1598 |
shows asc: "a \<sim> b = essentially_equal G as bs"
|
ballarin@27701
|
1599 |
using assms
|
ballarin@27701
|
1600 |
by (fast intro: ee_wfactorsI ee_wfactorsD)
|
ballarin@27701
|
1601 |
|
ballarin@27701
|
1602 |
lemma (in factorial_monoid) wfactors_exist [intro, simp]:
|
ballarin@27701
|
1603 |
assumes acarr[simp]: "a \<in> carrier G"
|
ballarin@27701
|
1604 |
shows "\<exists>fs. set fs \<subseteq> carrier G \<and> wfactors G fs a"
|
ballarin@27701
|
1605 |
proof (cases "a \<in> Units G")
|
ballarin@27701
|
1606 |
assume "a \<in> Units G"
|
ballarin@27701
|
1607 |
hence "wfactors G [] a" by (rule unit_wfactors)
|
ballarin@27701
|
1608 |
thus ?thesis by (intro exI) force
|
ballarin@27701
|
1609 |
next
|
ballarin@27701
|
1610 |
assume "a \<notin> Units G"
|
ballarin@27701
|
1611 |
hence "\<exists>fs. set fs \<subseteq> carrier G \<and> factors G fs a" by (intro factors_exist acarr)
|
ballarin@27701
|
1612 |
from this obtain fs
|
ballarin@27701
|
1613 |
where fscarr: "set fs \<subseteq> carrier G"
|
ballarin@27701
|
1614 |
and f: "factors G fs a"
|
ballarin@27701
|
1615 |
by auto
|
ballarin@27701
|
1616 |
from f have "wfactors G fs a" by (rule factors_wfactors) fact
|
ballarin@27701
|
1617 |
from fscarr this
|
ballarin@27701
|
1618 |
show ?thesis by fast
|
ballarin@27701
|
1619 |
qed
|
ballarin@27701
|
1620 |
|
ballarin@27701
|
1621 |
lemma (in monoid) wfactors_prod_exists [intro, simp]:
|
ballarin@27701
|
1622 |
assumes "\<forall>a \<in> set as. irreducible G a" and "set as \<subseteq> carrier G"
|
ballarin@27701
|
1623 |
shows "\<exists>a. a \<in> carrier G \<and> wfactors G as a"
|
ballarin@27701
|
1624 |
unfolding wfactors_def
|
ballarin@27701
|
1625 |
using assms
|
ballarin@27701
|
1626 |
by blast
|
ballarin@27701
|
1627 |
|
ballarin@27701
|
1628 |
lemma (in factorial_monoid) wfactors_unique:
|
ballarin@27701
|
1629 |
assumes "wfactors G fs a" and "wfactors G fs' a"
|
ballarin@27701
|
1630 |
and "a \<in> carrier G"
|
ballarin@27701
|
1631 |
and "set fs \<subseteq> carrier G" and "set fs' \<subseteq> carrier G"
|
ballarin@27701
|
1632 |
shows "essentially_equal G fs fs'"
|
ballarin@27701
|
1633 |
using assms
|
ballarin@27701
|
1634 |
by (fast intro: ee_wfactorsI[of a a])
|
ballarin@27701
|
1635 |
|
ballarin@27701
|
1636 |
lemma (in monoid) factors_mult_single:
|
ballarin@27701
|
1637 |
assumes "irreducible G a" and "factors G fb b" and "a \<in> carrier G"
|
ballarin@27701
|
1638 |
shows "factors G (a # fb) (a \<otimes> b)"
|
ballarin@27701
|
1639 |
using assms
|
ballarin@27701
|
1640 |
unfolding factors_def
|
ballarin@27701
|
1641 |
by simp
|
ballarin@27701
|
1642 |
|
ballarin@27701
|
1643 |
lemma (in monoid_cancel) wfactors_mult_single:
|
ballarin@27701
|
1644 |
assumes f: "irreducible G a" "wfactors G fb b"
|
ballarin@27701
|
1645 |
"a \<in> carrier G" "b \<in> carrier G" "set fb \<subseteq> carrier G"
|
ballarin@27701
|
1646 |
shows "wfactors G (a # fb) (a \<otimes> b)"
|
ballarin@27701
|
1647 |
using assms
|
ballarin@27701
|
1648 |
unfolding wfactors_def
|
ballarin@27701
|
1649 |
by (simp add: mult_cong_r)
|
ballarin@27701
|
1650 |
|
ballarin@27701
|
1651 |
lemma (in monoid) factors_mult:
|
ballarin@27701
|
1652 |
assumes factors: "factors G fa a" "factors G fb b"
|
ballarin@27701
|
1653 |
and ascarr: "set fa \<subseteq> carrier G" and bscarr:"set fb \<subseteq> carrier G"
|
ballarin@27701
|
1654 |
shows "factors G (fa @ fb) (a \<otimes> b)"
|
ballarin@27701
|
1655 |
using assms
|
ballarin@27701
|
1656 |
unfolding factors_def
|
ballarin@27701
|
1657 |
apply (safe, force)
|
ballarin@27701
|
1658 |
apply (induct fa)
|
ballarin@27701
|
1659 |
apply simp
|
ballarin@27701
|
1660 |
apply (simp add: m_assoc)
|
ballarin@27701
|
1661 |
done
|
ballarin@27701
|
1662 |
|
ballarin@27701
|
1663 |
lemma (in comm_monoid_cancel) wfactors_mult [intro]:
|
ballarin@27701
|
1664 |
assumes asf: "wfactors G as a" and bsf:"wfactors G bs b"
|
ballarin@27701
|
1665 |
and acarr: "a \<in> carrier G" and bcarr: "b \<in> carrier G"
|
ballarin@27701
|
1666 |
and ascarr: "set as \<subseteq> carrier G" and bscarr:"set bs \<subseteq> carrier G"
|
ballarin@27701
|
1667 |
shows "wfactors G (as @ bs) (a \<otimes> b)"
|
ballarin@27701
|
1668 |
apply (insert wfactors_factors[OF asf ascarr])
|
ballarin@27701
|
1669 |
apply (insert wfactors_factors[OF bsf bscarr])
|
ballarin@27701
|
1670 |
proof (clarsimp)
|
ballarin@27701
|
1671 |
fix a' b'
|
ballarin@27701
|
1672 |
assume asf': "factors G as a'" and a'a: "a' \<sim> a"
|
ballarin@27701
|
1673 |
and bsf': "factors G bs b'" and b'b: "b' \<sim> b"
|
ballarin@27701
|
1674 |
from asf' have a'carr: "a' \<in> carrier G" by (rule factors_closed) fact
|
ballarin@27701
|
1675 |
from bsf' have b'carr: "b' \<in> carrier G" by (rule factors_closed) fact
|
ballarin@27701
|
1676 |
|
ballarin@27701
|
1677 |
note carr = acarr bcarr a'carr b'carr ascarr bscarr
|
ballarin@27701
|
1678 |
|
ballarin@27701
|
1679 |
from asf' bsf'
|
ballarin@27701
|
1680 |
have "factors G (as @ bs) (a' \<otimes> b')" by (rule factors_mult) fact+
|
ballarin@27701
|
1681 |
|
ballarin@27701
|
1682 |
with carr
|
ballarin@27701
|
1683 |
have abf': "wfactors G (as @ bs) (a' \<otimes> b')" by (intro factors_wfactors) simp+
|
ballarin@27701
|
1684 |
also from b'b carr
|
ballarin@27701
|
1685 |
have trb: "a' \<otimes> b' \<sim> a' \<otimes> b" by (intro mult_cong_r)
|
ballarin@27701
|
1686 |
also from a'a carr
|
ballarin@27701
|
1687 |
have tra: "a' \<otimes> b \<sim> a \<otimes> b" by (intro mult_cong_l)
|
ballarin@27701
|
1688 |
finally
|
ballarin@27701
|
1689 |
show "wfactors G (as @ bs) (a \<otimes> b)"
|
ballarin@27701
|
1690 |
by (simp add: carr)
|
ballarin@27701
|
1691 |
qed
|
ballarin@27701
|
1692 |
|
ballarin@27701
|
1693 |
lemma (in comm_monoid) factors_dividesI:
|
ballarin@27701
|
1694 |
assumes "factors G fs a" and "f \<in> set fs"
|
ballarin@27701
|
1695 |
and "set fs \<subseteq> carrier G"
|
ballarin@27701
|
1696 |
shows "f divides a"
|
ballarin@27701
|
1697 |
using assms
|
ballarin@27701
|
1698 |
by (fast elim: factorsE intro: multlist_dividesI)
|
ballarin@27701
|
1699 |
|
ballarin@27701
|
1700 |
lemma (in comm_monoid) wfactors_dividesI:
|
ballarin@27701
|
1701 |
assumes p: "wfactors G fs a"
|
ballarin@27701
|
1702 |
and fscarr: "set fs \<subseteq> carrier G" and acarr: "a \<in> carrier G"
|
ballarin@27701
|
1703 |
and f: "f \<in> set fs"
|
ballarin@27701
|
1704 |
shows "f divides a"
|
ballarin@27701
|
1705 |
apply (insert wfactors_factors[OF p fscarr], clarsimp)
|
ballarin@27701
|
1706 |
proof -
|
ballarin@27701
|
1707 |
fix a'
|
ballarin@27701
|
1708 |
assume fsa': "factors G fs a'"
|
ballarin@27701
|
1709 |
and a'a: "a' \<sim> a"
|
ballarin@27701
|
1710 |
with fscarr
|
ballarin@27701
|
1711 |
have a'carr: "a' \<in> carrier G" by (simp add: factors_closed)
|
ballarin@27701
|
1712 |
|
ballarin@27701
|
1713 |
from fsa' fscarr f
|
ballarin@27701
|
1714 |
have "f divides a'" by (fast intro: factors_dividesI)
|
ballarin@27701
|
1715 |
also note a'a
|
ballarin@27701
|
1716 |
finally
|
ballarin@27701
|
1717 |
show "f divides a" by (simp add: f fscarr[THEN subsetD] acarr a'carr)
|
ballarin@27701
|
1718 |
qed
|
ballarin@27701
|
1719 |
|
ballarin@27701
|
1720 |
|
ballarin@27701
|
1721 |
subsubsection {* Factorial monoids and wfactors *}
|
ballarin@27701
|
1722 |
|
ballarin@27701
|
1723 |
lemma (in comm_monoid_cancel) factorial_monoidI:
|
ballarin@27701
|
1724 |
assumes wfactors_exists:
|
ballarin@27701
|
1725 |
"\<And>a. a \<in> carrier G \<Longrightarrow> \<exists>fs. set fs \<subseteq> carrier G \<and> wfactors G fs a"
|
ballarin@27701
|
1726 |
and wfactors_unique:
|
ballarin@27701
|
1727 |
"\<And>a fs fs'. \<lbrakk>a \<in> carrier G; set fs \<subseteq> carrier G; set fs' \<subseteq> carrier G;
|
ballarin@27701
|
1728 |
wfactors G fs a; wfactors G fs' a\<rbrakk> \<Longrightarrow> essentially_equal G fs fs'"
|
ballarin@27701
|
1729 |
shows "factorial_monoid G"
|
haftmann@28823
|
1730 |
proof
|
ballarin@27701
|
1731 |
fix a
|
ballarin@27701
|
1732 |
assume acarr: "a \<in> carrier G" and anunit: "a \<notin> Units G"
|
ballarin@27701
|
1733 |
|
ballarin@27701
|
1734 |
from wfactors_exists[OF acarr]
|
ballarin@27701
|
1735 |
obtain as
|
ballarin@27701
|
1736 |
where ascarr: "set as \<subseteq> carrier G"
|
ballarin@27701
|
1737 |
and afs: "wfactors G as a"
|
ballarin@27701
|
1738 |
by auto
|
ballarin@27701
|
1739 |
from afs ascarr
|
ballarin@27701
|
1740 |
have "\<exists>a'. factors G as a' \<and> a' \<sim> a" by (rule wfactors_factors)
|
ballarin@27701
|
1741 |
from this obtain a'
|
ballarin@27701
|
1742 |
where afs': "factors G as a'"
|
ballarin@27701
|
1743 |
and a'a: "a' \<sim> a"
|
ballarin@27701
|
1744 |
by auto
|
ballarin@27701
|
1745 |
from afs' ascarr
|
ballarin@27701
|
1746 |
have a'carr: "a' \<in> carrier G" by fast
|
ballarin@27701
|
1747 |
have a'nunit: "a' \<notin> Units G"
|
ballarin@27701
|
1748 |
proof clarify
|
ballarin@27701
|
1749 |
assume "a' \<in> Units G"
|
ballarin@27701
|
1750 |
also note a'a
|
ballarin@27701
|
1751 |
finally have "a \<in> Units G" by (simp add: acarr)
|
ballarin@27701
|
1752 |
with anunit
|
ballarin@27701
|
1753 |
show "False" ..
|
ballarin@27701
|
1754 |
qed
|
ballarin@27701
|
1755 |
|
ballarin@27701
|
1756 |
from a'carr acarr a'a
|
ballarin@27701
|
1757 |
have "\<exists>u. u \<in> Units G \<and> a' = a \<otimes> u" by (blast elim: associatedE2)
|
ballarin@27701
|
1758 |
from this obtain u
|
ballarin@27701
|
1759 |
where uunit: "u \<in> Units G"
|
ballarin@27701
|
1760 |
and a': "a' = a \<otimes> u"
|
ballarin@27701
|
1761 |
by auto
|
ballarin@27701
|
1762 |
|
ballarin@27701
|
1763 |
note [simp] = acarr Units_closed[OF uunit] Units_inv_closed[OF uunit]
|
ballarin@27701
|
1764 |
|
ballarin@27701
|
1765 |
have "a = a \<otimes> \<one>" by simp
|
ballarin@27701
|
1766 |
also have "\<dots> = a \<otimes> (u \<otimes> inv u)" by (simp add: Units_r_inv uunit)
|
ballarin@27701
|
1767 |
also have "\<dots> = a' \<otimes> inv u" by (simp add: m_assoc[symmetric] a'[symmetric])
|
ballarin@27701
|
1768 |
finally
|
ballarin@27701
|
1769 |
have a: "a = a' \<otimes> inv u" .
|
ballarin@27701
|
1770 |
|
ballarin@27701
|
1771 |
from ascarr uunit
|
ballarin@27701
|
1772 |
have cr: "set (as[0:=(as!0 \<otimes> inv u)]) \<subseteq> carrier G"
|
ballarin@27701
|
1773 |
by (cases as, clarsimp+)
|
ballarin@27701
|
1774 |
|
ballarin@27701
|
1775 |
from afs' uunit a'nunit acarr ascarr
|
ballarin@27701
|
1776 |
have "factors G (as[0:=(as!0 \<otimes> inv u)]) a"
|
ballarin@27701
|
1777 |
by (simp add: a factors_cong_unit)
|
ballarin@27701
|
1778 |
|
ballarin@27701
|
1779 |
with cr
|
ballarin@27701
|
1780 |
show "\<exists>fs. set fs \<subseteq> carrier G \<and> factors G fs a" by fast
|
ballarin@27701
|
1781 |
qed (blast intro: factors_wfactors wfactors_unique)
|
ballarin@27701
|
1782 |
|
ballarin@27701
|
1783 |
|
ballarin@27717
|
1784 |
subsection {* Factorizations as Multisets *}
|
ballarin@27701
|
1785 |
|
ballarin@27701
|
1786 |
text {* Gives useful operations like intersection *}
|
ballarin@27701
|
1787 |
|
ballarin@27701
|
1788 |
(* FIXME: use class_of x instead of closure_of {x} *)
|
ballarin@27701
|
1789 |
|
ballarin@27701
|
1790 |
abbreviation
|
ballarin@27701
|
1791 |
"assocs G x == eq_closure_of (division_rel G) {x}"
|
ballarin@27701
|
1792 |
|
wenzelm@35847
|
1793 |
definition
|
wenzelm@35848
|
1794 |
"fmset G as = multiset_of (map (\<lambda>a. assocs G a) as)"
|
ballarin@27701
|
1795 |
|
ballarin@27701
|
1796 |
|
ballarin@27701
|
1797 |
text {* Helper lemmas *}
|
ballarin@27701
|
1798 |
|
ballarin@27701
|
1799 |
lemma (in monoid) assocs_repr_independence:
|
ballarin@27701
|
1800 |
assumes "y \<in> assocs G x"
|
ballarin@27701
|
1801 |
and "x \<in> carrier G"
|
ballarin@27701
|
1802 |
shows "assocs G x = assocs G y"
|
ballarin@27701
|
1803 |
using assms
|
ballarin@27701
|
1804 |
apply safe
|
ballarin@27701
|
1805 |
apply (elim closure_ofE2, intro closure_ofI2[of _ _ y])
|
ballarin@27701
|
1806 |
apply (clarsimp, iprover intro: associated_trans associated_sym, simp+)
|
ballarin@27701
|
1807 |
apply (elim closure_ofE2, intro closure_ofI2[of _ _ x])
|
ballarin@27701
|
1808 |
apply (clarsimp, iprover intro: associated_trans, simp+)
|
ballarin@27701
|
1809 |
done
|
ballarin@27701
|
1810 |
|
ballarin@27701
|
1811 |
lemma (in monoid) assocs_self:
|
ballarin@27701
|
1812 |
assumes "x \<in> carrier G"
|
ballarin@27701
|
1813 |
shows "x \<in> assocs G x"
|
ballarin@27701
|
1814 |
using assms
|
nipkow@44890
|
1815 |
by (fastforce intro: closure_ofI2)
|
ballarin@27701
|
1816 |
|
ballarin@27701
|
1817 |
lemma (in monoid) assocs_repr_independenceD:
|
ballarin@27701
|
1818 |
assumes repr: "assocs G x = assocs G y"
|
ballarin@27701
|
1819 |
and ycarr: "y \<in> carrier G"
|
ballarin@27701
|
1820 |
shows "y \<in> assocs G x"
|
ballarin@27701
|
1821 |
unfolding repr
|
ballarin@27701
|
1822 |
using ycarr
|
ballarin@27701
|
1823 |
by (intro assocs_self)
|
ballarin@27701
|
1824 |
|
ballarin@27701
|
1825 |
lemma (in comm_monoid) assocs_assoc:
|
ballarin@27701
|
1826 |
assumes "a \<in> assocs G b"
|
ballarin@27701
|
1827 |
and "b \<in> carrier G"
|
ballarin@27701
|
1828 |
shows "a \<sim> b"
|
ballarin@27701
|
1829 |
using assms
|
ballarin@27701
|
1830 |
by (elim closure_ofE2, simp)
|
ballarin@27701
|
1831 |
|
ballarin@27701
|
1832 |
lemmas (in comm_monoid) assocs_eqD =
|
ballarin@27701
|
1833 |
assocs_repr_independenceD[THEN assocs_assoc]
|
ballarin@27701
|
1834 |
|
ballarin@27701
|
1835 |
|
ballarin@27701
|
1836 |
subsubsection {* Comparing multisets *}
|
ballarin@27701
|
1837 |
|
ballarin@27701
|
1838 |
lemma (in monoid) fmset_perm_cong:
|
ballarin@27701
|
1839 |
assumes prm: "as <~~> bs"
|
ballarin@27701
|
1840 |
shows "fmset G as = fmset G bs"
|
ballarin@27701
|
1841 |
using perm_map[OF prm]
|
ballarin@27701
|
1842 |
by (simp add: multiset_of_eq_perm fmset_def)
|
ballarin@27701
|
1843 |
|
ballarin@27701
|
1844 |
lemma (in comm_monoid_cancel) eqc_listassoc_cong:
|
ballarin@27701
|
1845 |
assumes "as [\<sim>] bs"
|
ballarin@27701
|
1846 |
and "set as \<subseteq> carrier G" and "set bs \<subseteq> carrier G"
|
ballarin@27701
|
1847 |
shows "map (assocs G) as = map (assocs G) bs"
|
ballarin@27701
|
1848 |
using assms
|
ballarin@27701
|
1849 |
apply (induct as arbitrary: bs, simp)
|
ballarin@27701
|
1850 |
apply (clarsimp simp add: Cons_eq_map_conv list_all2_Cons1, safe)
|
ballarin@27701
|
1851 |
apply (clarsimp elim!: closure_ofE2) defer 1
|
ballarin@27701
|
1852 |
apply (clarsimp elim!: closure_ofE2) defer 1
|
ballarin@27701
|
1853 |
proof -
|
ballarin@27701
|
1854 |
fix a x z
|
ballarin@27701
|
1855 |
assume carr[simp]: "a \<in> carrier G" "x \<in> carrier G" "z \<in> carrier G"
|
ballarin@27701
|
1856 |
assume "x \<sim> a"
|
ballarin@27701
|
1857 |
also assume "a \<sim> z"
|
ballarin@27701
|
1858 |
finally have "x \<sim> z" by simp
|
ballarin@27701
|
1859 |
with carr
|
ballarin@27701
|
1860 |
show "x \<in> assocs G z"
|
ballarin@27701
|
1861 |
by (intro closure_ofI2) simp+
|
ballarin@27701
|
1862 |
next
|
ballarin@27701
|
1863 |
fix a x z
|
ballarin@27701
|
1864 |
assume carr[simp]: "a \<in> carrier G" "x \<in> carrier G" "z \<in> carrier G"
|
ballarin@27701
|
1865 |
assume "x \<sim> z"
|
ballarin@27701
|
1866 |
also assume [symmetric]: "a \<sim> z"
|
ballarin@27701
|
1867 |
finally have "x \<sim> a" by simp
|
ballarin@27701
|
1868 |
with carr
|
ballarin@27701
|
1869 |
show "x \<in> assocs G a"
|
ballarin@27701
|
1870 |
by (intro closure_ofI2) simp+
|
ballarin@27701
|
1871 |
qed
|
ballarin@27701
|
1872 |
|
ballarin@27701
|
1873 |
lemma (in comm_monoid_cancel) fmset_listassoc_cong:
|
ballarin@27701
|
1874 |
assumes "as [\<sim>] bs"
|
ballarin@27701
|
1875 |
and "set as \<subseteq> carrier G" and "set bs \<subseteq> carrier G"
|
ballarin@27701
|
1876 |
shows "fmset G as = fmset G bs"
|
ballarin@27701
|
1877 |
using assms
|
ballarin@27701
|
1878 |
unfolding fmset_def
|
ballarin@27701
|
1879 |
by (simp add: eqc_listassoc_cong)
|
ballarin@27701
|
1880 |
|
ballarin@27701
|
1881 |
lemma (in comm_monoid_cancel) ee_fmset:
|
ballarin@27701
|
1882 |
assumes ee: "essentially_equal G as bs"
|
ballarin@27701
|
1883 |
and ascarr: "set as \<subseteq> carrier G" and bscarr: "set bs \<subseteq> carrier G"
|
ballarin@27701
|
1884 |
shows "fmset G as = fmset G bs"
|
ballarin@27701
|
1885 |
using ee
|
ballarin@27701
|
1886 |
proof (elim essentially_equalE)
|
ballarin@27701
|
1887 |
fix as'
|
ballarin@27701
|
1888 |
assume prm: "as <~~> as'"
|
ballarin@27701
|
1889 |
from prm ascarr
|
ballarin@27701
|
1890 |
have as'carr: "set as' \<subseteq> carrier G" by (rule perm_closed)
|
ballarin@27701
|
1891 |
|
ballarin@27701
|
1892 |
from prm
|
ballarin@27701
|
1893 |
have "fmset G as = fmset G as'" by (rule fmset_perm_cong)
|
ballarin@27701
|
1894 |
also assume "as' [\<sim>] bs"
|
ballarin@27701
|
1895 |
with as'carr bscarr
|
ballarin@27701
|
1896 |
have "fmset G as' = fmset G bs" by (simp add: fmset_listassoc_cong)
|
ballarin@27701
|
1897 |
finally
|
ballarin@27701
|
1898 |
show "fmset G as = fmset G bs" .
|
ballarin@27701
|
1899 |
qed
|
ballarin@27701
|
1900 |
|
ballarin@27701
|
1901 |
lemma (in monoid_cancel) fmset_ee__hlp_induct:
|
ballarin@27701
|
1902 |
assumes prm: "cas <~~> cbs"
|
ballarin@27701
|
1903 |
and cdef: "cas = map (assocs G) as" "cbs = map (assocs G) bs"
|
ballarin@27701
|
1904 |
shows "\<forall>as bs. (cas <~~> cbs \<and> cas = map (assocs G) as \<and>
|
ballarin@27701
|
1905 |
cbs = map (assocs G) bs) \<longrightarrow> (\<exists>as'. as <~~> as' \<and> map (assocs G) as' = cbs)"
|
ballarin@27701
|
1906 |
apply (rule perm.induct[of cas cbs], rule prm)
|
ballarin@27701
|
1907 |
apply safe apply simp_all
|
ballarin@27701
|
1908 |
apply (simp add: map_eq_Cons_conv, blast)
|
ballarin@27701
|
1909 |
apply force
|
ballarin@27701
|
1910 |
proof -
|
ballarin@27701
|
1911 |
fix ys as bs
|
ballarin@27701
|
1912 |
assume p1: "map (assocs G) as <~~> ys"
|
ballarin@27701
|
1913 |
and r1[rule_format]:
|
ballarin@27701
|
1914 |
"\<forall>asa bs. map (assocs G) as = map (assocs G) asa \<and>
|
ballarin@27701
|
1915 |
ys = map (assocs G) bs
|
ballarin@27701
|
1916 |
\<longrightarrow> (\<exists>as'. asa <~~> as' \<and> map (assocs G) as' = map (assocs G) bs)"
|
ballarin@27701
|
1917 |
and p2: "ys <~~> map (assocs G) bs"
|
ballarin@27701
|
1918 |
and r2[rule_format]:
|
ballarin@27701
|
1919 |
"\<forall>as bsa. ys = map (assocs G) as \<and>
|
ballarin@27701
|
1920 |
map (assocs G) bs = map (assocs G) bsa
|
ballarin@27701
|
1921 |
\<longrightarrow> (\<exists>as'. as <~~> as' \<and> map (assocs G) as' = map (assocs G) bsa)"
|
ballarin@27701
|
1922 |
and p3: "map (assocs G) as <~~> map (assocs G) bs"
|
ballarin@27701
|
1923 |
|
ballarin@27701
|
1924 |
from p1
|
ballarin@27701
|
1925 |
have "multiset_of (map (assocs G) as) = multiset_of ys"
|
ballarin@27701
|
1926 |
by (simp add: multiset_of_eq_perm)
|
ballarin@27701
|
1927 |
hence setys: "set (map (assocs G) as) = set ys" by (rule multiset_of_eq_setD)
|
ballarin@27701
|
1928 |
|
ballarin@27701
|
1929 |
have "set (map (assocs G) as) = { assocs G x | x. x \<in> set as}" by clarsimp fast
|
ballarin@27701
|
1930 |
with setys have "set ys \<subseteq> { assocs G x | x. x \<in> set as}" by simp
|
ballarin@27701
|
1931 |
hence "\<exists>yy. ys = map (assocs G) yy"
|
ballarin@27701
|
1932 |
apply (induct ys, simp, clarsimp)
|
ballarin@27701
|
1933 |
proof -
|
ballarin@27701
|
1934 |
fix yy x
|
ballarin@27701
|
1935 |
show "\<exists>yya. (assocs G x) # map (assocs G) yy =
|
ballarin@27701
|
1936 |
map (assocs G) yya"
|
ballarin@27701
|
1937 |
by (rule exI[of _ "x#yy"], simp)
|
ballarin@27701
|
1938 |
qed
|
ballarin@27701
|
1939 |
from this obtain yy
|
ballarin@27701
|
1940 |
where ys: "ys = map (assocs G) yy"
|
ballarin@27701
|
1941 |
by auto
|
ballarin@27701
|
1942 |
|
ballarin@27701
|
1943 |
from p1 ys
|
ballarin@27701
|
1944 |
have "\<exists>as'. as <~~> as' \<and> map (assocs G) as' = map (assocs G) yy"
|
ballarin@27701
|
1945 |
by (intro r1, simp)
|
ballarin@27701
|
1946 |
from this obtain as'
|
ballarin@27701
|
1947 |
where asas': "as <~~> as'"
|
ballarin@27701
|
1948 |
and as'yy: "map (assocs G) as' = map (assocs G) yy"
|
ballarin@27701
|
1949 |
by auto
|
ballarin@27701
|
1950 |
|
ballarin@27701
|
1951 |
from p2 ys
|
ballarin@27701
|
1952 |
have "\<exists>as'. yy <~~> as' \<and> map (assocs G) as' = map (assocs G) bs"
|
ballarin@27701
|
1953 |
by (intro r2, simp)
|
ballarin@27701
|
1954 |
from this obtain as''
|
ballarin@27701
|
1955 |
where yyas'': "yy <~~> as''"
|
ballarin@27701
|
1956 |
and as''bs: "map (assocs G) as'' = map (assocs G) bs"
|
ballarin@27701
|
1957 |
by auto
|
ballarin@27701
|
1958 |
|
ballarin@27701
|
1959 |
from as'yy and yyas''
|
ballarin@27701
|
1960 |
have "\<exists>cs. as' <~~> cs \<and> map (assocs G) cs = map (assocs G) as''"
|
ballarin@27701
|
1961 |
by (rule perm_map_switch)
|
ballarin@27701
|
1962 |
from this obtain cs
|
ballarin@27701
|
1963 |
where as'cs: "as' <~~> cs"
|
ballarin@27701
|
1964 |
and csas'': "map (assocs G) cs = map (assocs G) as''"
|
ballarin@27701
|
1965 |
by auto
|
ballarin@27701
|
1966 |
|
ballarin@27701
|
1967 |
from asas' and as'cs
|
ballarin@27701
|
1968 |
have ascs: "as <~~> cs" by fast
|
ballarin@27701
|
1969 |
from csas'' and as''bs
|
ballarin@27701
|
1970 |
have "map (assocs G) cs = map (assocs G) bs" by simp
|
ballarin@27701
|
1971 |
from ascs and this
|
ballarin@27701
|
1972 |
show "\<exists>as'. as <~~> as' \<and> map (assocs G) as' = map (assocs G) bs" by fast
|
ballarin@27701
|
1973 |
qed
|
ballarin@27701
|
1974 |
|
ballarin@27701
|
1975 |
lemma (in comm_monoid_cancel) fmset_ee:
|
ballarin@27701
|
1976 |
assumes mset: "fmset G as = fmset G bs"
|
ballarin@27701
|
1977 |
and ascarr: "set as \<subseteq> carrier G" and bscarr: "set bs \<subseteq> carrier G"
|
ballarin@27701
|
1978 |
shows "essentially_equal G as bs"
|
ballarin@27701
|
1979 |
proof -
|
ballarin@27701
|
1980 |
from mset
|
ballarin@27701
|
1981 |
have mpp: "map (assocs G) as <~~> map (assocs G) bs"
|
ballarin@27701
|
1982 |
by (simp add: fmset_def multiset_of_eq_perm)
|
ballarin@27701
|
1983 |
|
ballarin@27701
|
1984 |
have "\<exists>cas. cas = map (assocs G) as" by simp
|
ballarin@27701
|
1985 |
from this obtain cas where cas: "cas = map (assocs G) as" by simp
|
ballarin@27701
|
1986 |
|
ballarin@27701
|
1987 |
have "\<exists>cbs. cbs = map (assocs G) bs" by simp
|
ballarin@27701
|
1988 |
from this obtain cbs where cbs: "cbs = map (assocs G) bs" by simp
|
ballarin@27701
|
1989 |
|
ballarin@27701
|
1990 |
from cas cbs mpp
|
ballarin@27701
|
1991 |
have [rule_format]:
|
ballarin@27701
|
1992 |
"\<forall>as bs. (cas <~~> cbs \<and> cas = map (assocs G) as \<and>
|
ballarin@27701
|
1993 |
cbs = map (assocs G) bs)
|
ballarin@27701
|
1994 |
\<longrightarrow> (\<exists>as'. as <~~> as' \<and> map (assocs G) as' = cbs)"
|
ballarin@27701
|
1995 |
by (intro fmset_ee__hlp_induct, simp+)
|
ballarin@27701
|
1996 |
with mpp cas cbs
|
ballarin@27701
|
1997 |
have "\<exists>as'. as <~~> as' \<and> map (assocs G) as' = map (assocs G) bs"
|
ballarin@27701
|
1998 |
by simp
|
ballarin@27701
|
1999 |
|
ballarin@27701
|
2000 |
from this obtain as'
|
ballarin@27701
|
2001 |
where tp: "as <~~> as'"
|
ballarin@27701
|
2002 |
and tm: "map (assocs G) as' = map (assocs G) bs"
|
ballarin@27701
|
2003 |
by auto
|
ballarin@27701
|
2004 |
from tm have lene: "length as' = length bs" by (rule map_eq_imp_length_eq)
|
ballarin@27701
|
2005 |
from tp have "set as = set as'" by (simp add: multiset_of_eq_perm multiset_of_eq_setD)
|
ballarin@27701
|
2006 |
with ascarr
|
ballarin@27701
|
2007 |
have as'carr: "set as' \<subseteq> carrier G" by simp
|
ballarin@27701
|
2008 |
|
ballarin@27701
|
2009 |
from tm as'carr[THEN subsetD] bscarr[THEN subsetD]
|
ballarin@27701
|
2010 |
have "as' [\<sim>] bs"
|
nipkow@44890
|
2011 |
by (induct as' arbitrary: bs) (simp, fastforce dest: assocs_eqD[THEN associated_sym])
|
ballarin@27701
|
2012 |
|
ballarin@27701
|
2013 |
from tp and this
|
ballarin@27701
|
2014 |
show "essentially_equal G as bs" by (fast intro: essentially_equalI)
|
ballarin@27701
|
2015 |
qed
|
ballarin@27701
|
2016 |
|
ballarin@27701
|
2017 |
lemma (in comm_monoid_cancel) ee_is_fmset:
|
ballarin@27701
|
2018 |
assumes "set as \<subseteq> carrier G" and "set bs \<subseteq> carrier G"
|
ballarin@27701
|
2019 |
shows "essentially_equal G as bs = (fmset G as = fmset G bs)"
|
ballarin@27701
|
2020 |
using assms
|
ballarin@27701
|
2021 |
by (fast intro: ee_fmset fmset_ee)
|
ballarin@27701
|
2022 |
|
ballarin@27701
|
2023 |
|
ballarin@27701
|
2024 |
subsubsection {* Interpreting multisets as factorizations *}
|
ballarin@27701
|
2025 |
|
ballarin@27701
|
2026 |
lemma (in monoid) mset_fmsetEx:
|
ballarin@27701
|
2027 |
assumes elems: "\<And>X. X \<in> set_of Cs \<Longrightarrow> \<exists>x. P x \<and> X = assocs G x"
|
ballarin@27701
|
2028 |
shows "\<exists>cs. (\<forall>c \<in> set cs. P c) \<and> fmset G cs = Cs"
|
ballarin@27701
|
2029 |
proof -
|
ballarin@27701
|
2030 |
have "\<exists>Cs'. Cs = multiset_of Cs'"
|
ballarin@27701
|
2031 |
by (rule surjE[OF surj_multiset_of], fast)
|
ballarin@27701
|
2032 |
from this obtain Cs'
|
ballarin@27701
|
2033 |
where Cs: "Cs = multiset_of Cs'"
|
ballarin@27701
|
2034 |
by auto
|
ballarin@27701
|
2035 |
|
ballarin@27701
|
2036 |
have "\<exists>cs. (\<forall>c \<in> set cs. P c) \<and> multiset_of (map (assocs G) cs) = Cs"
|
ballarin@27701
|
2037 |
using elems
|
ballarin@27701
|
2038 |
unfolding Cs
|
ballarin@27701
|
2039 |
apply (induct Cs', simp)
|
ballarin@27701
|
2040 |
apply clarsimp
|
ballarin@27701
|
2041 |
apply (subgoal_tac "\<exists>cs. (\<forall>x\<in>set cs. P x) \<and>
|
ballarin@27701
|
2042 |
multiset_of (map (assocs G) cs) = multiset_of Cs'")
|
ballarin@27701
|
2043 |
proof clarsimp
|
ballarin@27701
|
2044 |
fix a Cs' cs
|
ballarin@27701
|
2045 |
assume ih: "\<And>X. X = a \<or> X \<in> set Cs' \<Longrightarrow> \<exists>x. P x \<and> X = assocs G x"
|
ballarin@27701
|
2046 |
and csP: "\<forall>x\<in>set cs. P x"
|
ballarin@27701
|
2047 |
and mset: "multiset_of (map (assocs G) cs) = multiset_of Cs'"
|
ballarin@27701
|
2048 |
from ih
|
ballarin@27701
|
2049 |
have "\<exists>x. P x \<and> a = assocs G x" by fast
|
ballarin@27701
|
2050 |
from this obtain c
|
ballarin@27701
|
2051 |
where cP: "P c"
|
ballarin@27701
|
2052 |
and a: "a = assocs G c"
|
ballarin@27701
|
2053 |
by auto
|
ballarin@27701
|
2054 |
from cP csP
|
ballarin@27701
|
2055 |
have tP: "\<forall>x\<in>set (c#cs). P x" by simp
|
ballarin@27701
|
2056 |
from mset a
|
ballarin@27701
|
2057 |
have "multiset_of (map (assocs G) (c#cs)) = multiset_of Cs' + {#a#}" by simp
|
ballarin@27701
|
2058 |
from tP this
|
ballarin@27701
|
2059 |
show "\<exists>cs. (\<forall>x\<in>set cs. P x) \<and>
|
ballarin@27701
|
2060 |
multiset_of (map (assocs G) cs) =
|
ballarin@27701
|
2061 |
multiset_of Cs' + {#a#}" by fast
|
ballarin@27701
|
2062 |
qed simp
|
ballarin@27701
|
2063 |
thus ?thesis by (simp add: fmset_def)
|
ballarin@27701
|
2064 |
qed
|
ballarin@27701
|
2065 |
|
ballarin@27701
|
2066 |
lemma (in monoid) mset_wfactorsEx:
|
ballarin@27701
|
2067 |
assumes elems: "\<And>X. X \<in> set_of Cs
|
ballarin@27701
|
2068 |
\<Longrightarrow> \<exists>x. (x \<in> carrier G \<and> irreducible G x) \<and> X = assocs G x"
|
ballarin@27701
|
2069 |
shows "\<exists>c cs. c \<in> carrier G \<and> set cs \<subseteq> carrier G \<and> wfactors G cs c \<and> fmset G cs = Cs"
|
ballarin@27701
|
2070 |
proof -
|
ballarin@27701
|
2071 |
have "\<exists>cs. (\<forall>c\<in>set cs. c \<in> carrier G \<and> irreducible G c) \<and> fmset G cs = Cs"
|
ballarin@27701
|
2072 |
by (intro mset_fmsetEx, rule elems)
|
ballarin@27701
|
2073 |
from this obtain cs
|
ballarin@27701
|
2074 |
where p[rule_format]: "\<forall>c\<in>set cs. c \<in> carrier G \<and> irreducible G c"
|
ballarin@27701
|
2075 |
and Cs[symmetric]: "fmset G cs = Cs"
|
ballarin@27701
|
2076 |
by auto
|
ballarin@27701
|
2077 |
|
ballarin@27701
|
2078 |
from p
|
ballarin@27701
|
2079 |
have cscarr: "set cs \<subseteq> carrier G" by fast
|
ballarin@27701
|
2080 |
|
ballarin@27701
|
2081 |
from p
|
ballarin@27701
|
2082 |
have "\<exists>c. c \<in> carrier G \<and> wfactors G cs c"
|
ballarin@27701
|
2083 |
by (intro wfactors_prod_exists) fast+
|
ballarin@27701
|
2084 |
from this obtain c
|
ballarin@27701
|
2085 |
where ccarr: "c \<in> carrier G"
|
ballarin@27701
|
2086 |
and cfs: "wfactors G cs c"
|
ballarin@27701
|
2087 |
by auto
|
ballarin@27701
|
2088 |
|
ballarin@27701
|
2089 |
with cscarr Cs
|
ballarin@27701
|
2090 |
show ?thesis by fast
|
ballarin@27701
|
2091 |
qed
|
ballarin@27701
|
2092 |
|
ballarin@27701
|
2093 |
|
ballarin@27701
|
2094 |
subsubsection {* Multiplication on multisets *}
|
ballarin@27701
|
2095 |
|
ballarin@27701
|
2096 |
lemma (in factorial_monoid) mult_wfactors_fmset:
|
ballarin@27701
|
2097 |
assumes afs: "wfactors G as a" and bfs: "wfactors G bs b" and cfs: "wfactors G cs (a \<otimes> b)"
|
ballarin@27701
|
2098 |
and carr: "a \<in> carrier G" "b \<in> carrier G"
|
ballarin@27701
|
2099 |
"set as \<subseteq> carrier G" "set bs \<subseteq> carrier G" "set cs \<subseteq> carrier G"
|
ballarin@27701
|
2100 |
shows "fmset G cs = fmset G as + fmset G bs"
|
ballarin@27701
|
2101 |
proof -
|
ballarin@27701
|
2102 |
from assms
|
ballarin@27701
|
2103 |
have "wfactors G (as @ bs) (a \<otimes> b)" by (intro wfactors_mult)
|
ballarin@27701
|
2104 |
with carr cfs
|
ballarin@27701
|
2105 |
have "essentially_equal G cs (as@bs)" by (intro ee_wfactorsI[of "a\<otimes>b" "a\<otimes>b"], simp+)
|
ballarin@27701
|
2106 |
with carr
|
ballarin@27701
|
2107 |
have "fmset G cs = fmset G (as@bs)" by (intro ee_fmset, simp+)
|
ballarin@27701
|
2108 |
also have "fmset G (as@bs) = fmset G as + fmset G bs" by (simp add: fmset_def)
|
ballarin@27701
|
2109 |
finally show "fmset G cs = fmset G as + fmset G bs" .
|
ballarin@27701
|
2110 |
qed
|
ballarin@27701
|
2111 |
|
ballarin@27701
|
2112 |
lemma (in factorial_monoid) mult_factors_fmset:
|
ballarin@27701
|
2113 |
assumes afs: "factors G as a" and bfs: "factors G bs b" and cfs: "factors G cs (a \<otimes> b)"
|
ballarin@27701
|
2114 |
and "set as \<subseteq> carrier G" "set bs \<subseteq> carrier G" "set cs \<subseteq> carrier G"
|
ballarin@27701
|
2115 |
shows "fmset G cs = fmset G as + fmset G bs"
|
ballarin@27701
|
2116 |
using assms
|
ballarin@27701
|
2117 |
by (blast intro: factors_wfactors mult_wfactors_fmset)
|
ballarin@27701
|
2118 |
|
ballarin@27701
|
2119 |
lemma (in comm_monoid_cancel) fmset_wfactors_mult:
|
ballarin@27701
|
2120 |
assumes mset: "fmset G cs = fmset G as + fmset G bs"
|
ballarin@27701
|
2121 |
and carr: "a \<in> carrier G" "b \<in> carrier G" "c \<in> carrier G"
|
ballarin@27701
|
2122 |
"set as \<subseteq> carrier G" "set bs \<subseteq> carrier G" "set cs \<subseteq> carrier G"
|
ballarin@27701
|
2123 |
and fs: "wfactors G as a" "wfactors G bs b" "wfactors G cs c"
|
ballarin@27701
|
2124 |
shows "c \<sim> a \<otimes> b"
|
ballarin@27701
|
2125 |
proof -
|
ballarin@27701
|
2126 |
from carr fs
|
ballarin@27701
|
2127 |
have m: "wfactors G (as @ bs) (a \<otimes> b)" by (intro wfactors_mult)
|
ballarin@27701
|
2128 |
|
ballarin@27701
|
2129 |
from mset
|
ballarin@27701
|
2130 |
have "fmset G cs = fmset G (as@bs)" by (simp add: fmset_def)
|
ballarin@27701
|
2131 |
then have "essentially_equal G cs (as@bs)" by (rule fmset_ee) (simp add: carr)+
|
ballarin@27701
|
2132 |
then show "c \<sim> a \<otimes> b" by (rule ee_wfactorsD[of "cs" "as@bs"]) (simp add: assms m)+
|
ballarin@27701
|
2133 |
qed
|
ballarin@27701
|
2134 |
|
ballarin@27701
|
2135 |
|
ballarin@27701
|
2136 |
subsubsection {* Divisibility on multisets *}
|
ballarin@27701
|
2137 |
|
ballarin@27701
|
2138 |
lemma (in factorial_monoid) divides_fmsubset:
|
ballarin@27701
|
2139 |
assumes ab: "a divides b"
|
ballarin@27701
|
2140 |
and afs: "wfactors G as a" and bfs: "wfactors G bs b"
|
ballarin@27701
|
2141 |
and carr: "a \<in> carrier G" "b \<in> carrier G" "set as \<subseteq> carrier G" "set bs \<subseteq> carrier G"
|
haftmann@35272
|
2142 |
shows "fmset G as \<le> fmset G bs"
|
ballarin@27701
|
2143 |
using ab
|
ballarin@27701
|
2144 |
proof (elim dividesE)
|
ballarin@27701
|
2145 |
fix c
|
ballarin@27701
|
2146 |
assume ccarr: "c \<in> carrier G"
|
ballarin@27701
|
2147 |
hence "\<exists>cs. set cs \<subseteq> carrier G \<and> wfactors G cs c" by (rule wfactors_exist)
|
ballarin@27701
|
2148 |
from this obtain cs
|
ballarin@27701
|
2149 |
where cscarr: "set cs \<subseteq> carrier G"
|
ballarin@27701
|
2150 |
and cfs: "wfactors G cs c" by auto
|
ballarin@27701
|
2151 |
note carr = carr ccarr cscarr
|
ballarin@27701
|
2152 |
|
ballarin@27701
|
2153 |
assume "b = a \<otimes> c"
|
ballarin@27701
|
2154 |
with afs bfs cfs carr
|
ballarin@27701
|
2155 |
have "fmset G bs = fmset G as + fmset G cs"
|
ballarin@27701
|
2156 |
by (intro mult_wfactors_fmset[OF afs cfs]) simp+
|
ballarin@27701
|
2157 |
|
ballarin@27701
|
2158 |
thus ?thesis by simp
|
ballarin@27701
|
2159 |
qed
|
ballarin@27701
|
2160 |
|
ballarin@27701
|
2161 |
lemma (in comm_monoid_cancel) fmsubset_divides:
|
haftmann@35272
|
2162 |
assumes msubset: "fmset G as \<le> fmset G bs"
|
ballarin@27701
|
2163 |
and afs: "wfactors G as a" and bfs: "wfactors G bs b"
|
ballarin@27701
|
2164 |
and acarr: "a \<in> carrier G" and bcarr: "b \<in> carrier G"
|
ballarin@27701
|
2165 |
and ascarr: "set as \<subseteq> carrier G" and bscarr: "set bs \<subseteq> carrier G"
|
ballarin@27701
|
2166 |
shows "a divides b"
|
ballarin@27701
|
2167 |
proof -
|
ballarin@27701
|
2168 |
from afs have airr: "\<forall>a \<in> set as. irreducible G a" by (fast elim: wfactorsE)
|
ballarin@27701
|
2169 |
from bfs have birr: "\<forall>b \<in> set bs. irreducible G b" by (fast elim: wfactorsE)
|
ballarin@27701
|
2170 |
|
ballarin@27701
|
2171 |
have "\<exists>c cs. c \<in> carrier G \<and> set cs \<subseteq> carrier G \<and> wfactors G cs c \<and> fmset G cs = fmset G bs - fmset G as"
|
ballarin@27701
|
2172 |
proof (intro mset_wfactorsEx, simp)
|
ballarin@27701
|
2173 |
fix X
|
ballarin@27701
|
2174 |
assume "count (fmset G as) X < count (fmset G bs) X"
|
ballarin@27701
|
2175 |
hence "0 < count (fmset G bs) X" by simp
|
ballarin@27701
|
2176 |
hence "X \<in> set_of (fmset G bs)" by simp
|
ballarin@27701
|
2177 |
hence "X \<in> set (map (assocs G) bs)" by (simp add: fmset_def)
|
ballarin@27701
|
2178 |
hence "\<exists>x. x \<in> set bs \<and> X = assocs G x" by (induct bs) auto
|
ballarin@27701
|
2179 |
from this obtain x
|
ballarin@27701
|
2180 |
where xbs: "x \<in> set bs"
|
ballarin@27701
|
2181 |
and X: "X = assocs G x"
|
ballarin@27701
|
2182 |
by auto
|
ballarin@27701
|
2183 |
|
ballarin@27701
|
2184 |
with bscarr have xcarr: "x \<in> carrier G" by fast
|
ballarin@27701
|
2185 |
from xbs birr have xirr: "irreducible G x" by simp
|
ballarin@27701
|
2186 |
|
ballarin@27701
|
2187 |
from xcarr and xirr and X
|
ballarin@27701
|
2188 |
show "\<exists>x. x \<in> carrier G \<and> irreducible G x \<and> X = assocs G x" by fast
|
ballarin@27701
|
2189 |
qed
|
ballarin@27701
|
2190 |
from this obtain c cs
|
ballarin@27701
|
2191 |
where ccarr: "c \<in> carrier G"
|
ballarin@27701
|
2192 |
and cscarr: "set cs \<subseteq> carrier G"
|
ballarin@27701
|
2193 |
and csf: "wfactors G cs c"
|
ballarin@27701
|
2194 |
and csmset: "fmset G cs = fmset G bs - fmset G as" by auto
|
ballarin@27701
|
2195 |
|
ballarin@27701
|
2196 |
from csmset msubset
|
ballarin@27701
|
2197 |
have "fmset G bs = fmset G as + fmset G cs"
|
nipkow@39302
|
2198 |
by (simp add: multiset_eq_iff mset_le_def)
|
ballarin@27701
|
2199 |
hence basc: "b \<sim> a \<otimes> c"
|
ballarin@27701
|
2200 |
by (rule fmset_wfactors_mult) fact+
|
ballarin@27701
|
2201 |
|
ballarin@27701
|
2202 |
thus ?thesis
|
ballarin@27701
|
2203 |
proof (elim associatedE2)
|
ballarin@27701
|
2204 |
fix u
|
ballarin@27701
|
2205 |
assume "u \<in> Units G" "b = a \<otimes> c \<otimes> u"
|
ballarin@27701
|
2206 |
with acarr ccarr
|
ballarin@27701
|
2207 |
show "a divides b" by (fast intro: dividesI[of "c \<otimes> u"] m_assoc)
|
ballarin@27701
|
2208 |
qed (simp add: acarr bcarr ccarr)+
|
ballarin@27701
|
2209 |
qed
|
ballarin@27701
|
2210 |
|
ballarin@27701
|
2211 |
lemma (in factorial_monoid) divides_as_fmsubset:
|
ballarin@27701
|
2212 |
assumes "wfactors G as a" and "wfactors G bs b"
|
ballarin@27701
|
2213 |
and "a \<in> carrier G" and "b \<in> carrier G"
|
ballarin@27701
|
2214 |
and "set as \<subseteq> carrier G" and "set bs \<subseteq> carrier G"
|
haftmann@35272
|
2215 |
shows "a divides b = (fmset G as \<le> fmset G bs)"
|
ballarin@27701
|
2216 |
using assms
|
ballarin@27701
|
2217 |
by (blast intro: divides_fmsubset fmsubset_divides)
|
ballarin@27701
|
2218 |
|
ballarin@27701
|
2219 |
|
ballarin@27701
|
2220 |
text {* Proper factors on multisets *}
|
ballarin@27701
|
2221 |
|
ballarin@27701
|
2222 |
lemma (in factorial_monoid) fmset_properfactor:
|
haftmann@35272
|
2223 |
assumes asubb: "fmset G as \<le> fmset G bs"
|
ballarin@27701
|
2224 |
and anb: "fmset G as \<noteq> fmset G bs"
|
ballarin@27701
|
2225 |
and "wfactors G as a" and "wfactors G bs b"
|
ballarin@27701
|
2226 |
and "a \<in> carrier G" and "b \<in> carrier G"
|
ballarin@27701
|
2227 |
and "set as \<subseteq> carrier G" and "set bs \<subseteq> carrier G"
|
ballarin@27701
|
2228 |
shows "properfactor G a b"
|
ballarin@27701
|
2229 |
apply (rule properfactorI)
|
ballarin@27701
|
2230 |
apply (rule fmsubset_divides[of as bs], fact+)
|
ballarin@27701
|
2231 |
proof
|
ballarin@27701
|
2232 |
assume "b divides a"
|
haftmann@35272
|
2233 |
hence "fmset G bs \<le> fmset G as"
|
ballarin@27701
|
2234 |
by (rule divides_fmsubset) fact+
|
ballarin@27701
|
2235 |
with asubb
|
haftmann@35272
|
2236 |
have "fmset G as = fmset G bs" by (rule order_antisym)
|
ballarin@27701
|
2237 |
with anb
|
ballarin@27701
|
2238 |
show "False" ..
|
ballarin@27701
|
2239 |
qed
|
ballarin@27701
|
2240 |
|
ballarin@27701
|
2241 |
lemma (in factorial_monoid) properfactor_fmset:
|
ballarin@27701
|
2242 |
assumes pf: "properfactor G a b"
|
ballarin@27701
|
2243 |
and "wfactors G as a" and "wfactors G bs b"
|
ballarin@27701
|
2244 |
and "a \<in> carrier G" and "b \<in> carrier G"
|
ballarin@27701
|
2245 |
and "set as \<subseteq> carrier G" and "set bs \<subseteq> carrier G"
|
haftmann@35272
|
2246 |
shows "fmset G as \<le> fmset G bs \<and> fmset G as \<noteq> fmset G bs"
|
ballarin@27701
|
2247 |
using pf
|
ballarin@27701
|
2248 |
apply (elim properfactorE)
|
ballarin@27701
|
2249 |
apply rule
|
ballarin@27701
|
2250 |
apply (intro divides_fmsubset, assumption)
|
ballarin@27701
|
2251 |
apply (rule assms)+
|
paulson@36278
|
2252 |
apply (metis assms divides_fmsubset fmsubset_divides)
|
paulson@36278
|
2253 |
done
|
ballarin@27701
|
2254 |
|
ballarin@27717
|
2255 |
subsection {* Irreducible Elements are Prime *}
|
ballarin@27701
|
2256 |
|
ballarin@27701
|
2257 |
lemma (in factorial_monoid) irreducible_is_prime:
|
ballarin@27701
|
2258 |
assumes pirr: "irreducible G p"
|
ballarin@27701
|
2259 |
and pcarr: "p \<in> carrier G"
|
ballarin@27701
|
2260 |
shows "prime G p"
|
ballarin@27701
|
2261 |
using pirr
|
ballarin@27701
|
2262 |
proof (elim irreducibleE, intro primeI)
|
ballarin@27701
|
2263 |
fix a b
|
ballarin@27701
|
2264 |
assume acarr: "a \<in> carrier G" and bcarr: "b \<in> carrier G"
|
ballarin@27701
|
2265 |
and pdvdab: "p divides (a \<otimes> b)"
|
ballarin@27701
|
2266 |
and pnunit: "p \<notin> Units G"
|
ballarin@27701
|
2267 |
assume irreduc[rule_format]:
|
ballarin@27701
|
2268 |
"\<forall>b. b \<in> carrier G \<and> properfactor G b p \<longrightarrow> b \<in> Units G"
|
ballarin@27701
|
2269 |
from pdvdab
|
ballarin@27701
|
2270 |
have "\<exists>c\<in>carrier G. a \<otimes> b = p \<otimes> c" by (rule dividesD)
|
ballarin@27701
|
2271 |
from this obtain c
|
ballarin@27701
|
2272 |
where ccarr: "c \<in> carrier G"
|
ballarin@27701
|
2273 |
and abpc: "a \<otimes> b = p \<otimes> c"
|
ballarin@27701
|
2274 |
by auto
|
ballarin@27701
|
2275 |
|
ballarin@27701
|
2276 |
from acarr have "\<exists>fs. set fs \<subseteq> carrier G \<and> wfactors G fs a" by (rule wfactors_exist)
|
ballarin@27701
|
2277 |
from this obtain as where ascarr: "set as \<subseteq> carrier G" and afs: "wfactors G as a" by auto
|
ballarin@27701
|
2278 |
|
ballarin@27701
|
2279 |
from bcarr have "\<exists>fs. set fs \<subseteq> carrier G \<and> wfactors G fs b" by (rule wfactors_exist)
|
ballarin@27701
|
2280 |
from this obtain bs where bscarr: "set bs \<subseteq> carrier G" and bfs: "wfactors G bs b" by auto
|
ballarin@27701
|
2281 |
|
ballarin@27701
|
2282 |
from ccarr have "\<exists>fs. set fs \<subseteq> carrier G \<and> wfactors G fs c" by (rule wfactors_exist)
|
ballarin@27701
|
2283 |
from this obtain cs where cscarr: "set cs \<subseteq> carrier G" and cfs: "wfactors G cs c" by auto
|
ballarin@27701
|
2284 |
|
ballarin@27701
|
2285 |
note carr[simp] = pcarr acarr bcarr ccarr ascarr bscarr cscarr
|
ballarin@27701
|
2286 |
|
ballarin@27701
|
2287 |
from afs and bfs
|
ballarin@27701
|
2288 |
have abfs: "wfactors G (as @ bs) (a \<otimes> b)" by (rule wfactors_mult) fact+
|
ballarin@27701
|
2289 |
|
ballarin@27701
|
2290 |
from pirr cfs
|
ballarin@27701
|
2291 |
have pcfs: "wfactors G (p # cs) (p \<otimes> c)" by (rule wfactors_mult_single) fact+
|
ballarin@27701
|
2292 |
with abpc
|
ballarin@27701
|
2293 |
have abfs': "wfactors G (p # cs) (a \<otimes> b)" by simp
|
ballarin@27701
|
2294 |
|
ballarin@27701
|
2295 |
from abfs' abfs
|
ballarin@27701
|
2296 |
have "essentially_equal G (p # cs) (as @ bs)"
|
ballarin@27701
|
2297 |
by (rule wfactors_unique) simp+
|
ballarin@27701
|
2298 |
|
ballarin@27701
|
2299 |
hence "\<exists>ds. p # cs <~~> ds \<and> ds [\<sim>] (as @ bs)"
|
ballarin@27701
|
2300 |
by (fast elim: essentially_equalE)
|
ballarin@27701
|
2301 |
from this obtain ds
|
ballarin@27701
|
2302 |
where "p # cs <~~> ds"
|
ballarin@27701
|
2303 |
and dsassoc: "ds [\<sim>] (as @ bs)"
|
ballarin@27701
|
2304 |
by auto
|
ballarin@27701
|
2305 |
|
ballarin@27701
|
2306 |
then have "p \<in> set ds"
|
ballarin@27701
|
2307 |
by (simp add: perm_set_eq[symmetric])
|
ballarin@27701
|
2308 |
with dsassoc
|
ballarin@27701
|
2309 |
have "\<exists>p'. p' \<in> set (as@bs) \<and> p \<sim> p'"
|
ballarin@27701
|
2310 |
unfolding list_all2_conv_all_nth set_conv_nth
|
ballarin@27701
|
2311 |
by force
|
ballarin@27701
|
2312 |
|
ballarin@27701
|
2313 |
from this obtain p'
|
ballarin@27701
|
2314 |
where "p' \<in> set (as@bs)"
|
ballarin@27701
|
2315 |
and pp': "p \<sim> p'"
|
ballarin@27701
|
2316 |
by auto
|
ballarin@27701
|
2317 |
|
ballarin@27701
|
2318 |
hence "p' \<in> set as \<or> p' \<in> set bs" by simp
|
ballarin@27701
|
2319 |
moreover
|
ballarin@27701
|
2320 |
{
|
ballarin@27701
|
2321 |
assume p'elem: "p' \<in> set as"
|
ballarin@27701
|
2322 |
with ascarr have [simp]: "p' \<in> carrier G" by fast
|
ballarin@27701
|
2323 |
|
ballarin@27701
|
2324 |
note pp'
|
ballarin@27701
|
2325 |
also from afs
|
ballarin@27701
|
2326 |
have "p' divides a" by (rule wfactors_dividesI) fact+
|
ballarin@27701
|
2327 |
finally
|
ballarin@27701
|
2328 |
have "p divides a" by simp
|
ballarin@27701
|
2329 |
}
|
ballarin@27701
|
2330 |
moreover
|
ballarin@27701
|
2331 |
{
|
ballarin@27701
|
2332 |
assume p'elem: "p' \<in> set bs"
|
ballarin@27701
|
2333 |
with bscarr have [simp]: "p' \<in> carrier G" by fast
|
ballarin@27701
|
2334 |
|
ballarin@27701
|
2335 |
note pp'
|
ballarin@27701
|
2336 |
also from bfs
|
ballarin@27701
|
2337 |
have "p' divides b" by (rule wfactors_dividesI) fact+
|
ballarin@27701
|
2338 |
finally
|
ballarin@27701
|
2339 |
have "p divides b" by simp
|
ballarin@27701
|
2340 |
}
|
ballarin@27701
|
2341 |
ultimately
|
ballarin@27701
|
2342 |
show "p divides a \<or> p divides b" by fast
|
ballarin@27701
|
2343 |
qed
|
ballarin@27701
|
2344 |
|
ballarin@27701
|
2345 |
|
ballarin@27701
|
2346 |
--"A version using @{const factors}, more complicated"
|
ballarin@27701
|
2347 |
lemma (in factorial_monoid) factors_irreducible_is_prime:
|
ballarin@27701
|
2348 |
assumes pirr: "irreducible G p"
|
ballarin@27701
|
2349 |
and pcarr: "p \<in> carrier G"
|
ballarin@27701
|
2350 |
shows "prime G p"
|
ballarin@27701
|
2351 |
using pirr
|
ballarin@27701
|
2352 |
apply (elim irreducibleE, intro primeI)
|
ballarin@27701
|
2353 |
apply assumption
|
ballarin@27701
|
2354 |
proof -
|
ballarin@27701
|
2355 |
fix a b
|
ballarin@27701
|
2356 |
assume acarr: "a \<in> carrier G"
|
ballarin@27701
|
2357 |
and bcarr: "b \<in> carrier G"
|
ballarin@27701
|
2358 |
and pdvdab: "p divides (a \<otimes> b)"
|
ballarin@27701
|
2359 |
assume irreduc[rule_format]:
|
ballarin@27701
|
2360 |
"\<forall>b. b \<in> carrier G \<and> properfactor G b p \<longrightarrow> b \<in> Units G"
|
ballarin@27701
|
2361 |
from pdvdab
|
ballarin@27701
|
2362 |
have "\<exists>c\<in>carrier G. a \<otimes> b = p \<otimes> c" by (rule dividesD)
|
ballarin@27701
|
2363 |
from this obtain c
|
ballarin@27701
|
2364 |
where ccarr: "c \<in> carrier G"
|
ballarin@27701
|
2365 |
and abpc: "a \<otimes> b = p \<otimes> c"
|
ballarin@27701
|
2366 |
by auto
|
ballarin@27701
|
2367 |
note [simp] = pcarr acarr bcarr ccarr
|
ballarin@27701
|
2368 |
|
ballarin@27701
|
2369 |
show "p divides a \<or> p divides b"
|
ballarin@27701
|
2370 |
proof (cases "a \<in> Units G")
|
ballarin@27701
|
2371 |
assume aunit: "a \<in> Units G"
|
ballarin@27701
|
2372 |
|
ballarin@27701
|
2373 |
note pdvdab
|
ballarin@27701
|
2374 |
also have "a \<otimes> b = b \<otimes> a" by (simp add: m_comm)
|
ballarin@27701
|
2375 |
also from aunit
|
ballarin@27701
|
2376 |
have bab: "b \<otimes> a \<sim> b"
|
ballarin@27701
|
2377 |
by (intro associatedI2[of "a"], simp+)
|
ballarin@27701
|
2378 |
finally
|
ballarin@27701
|
2379 |
have "p divides b" by simp
|
ballarin@27701
|
2380 |
thus "p divides a \<or> p divides b" ..
|
ballarin@27701
|
2381 |
next
|
ballarin@27701
|
2382 |
assume anunit: "a \<notin> Units G"
|
ballarin@27701
|
2383 |
|
ballarin@27701
|
2384 |
show "p divides a \<or> p divides b"
|
ballarin@27701
|
2385 |
proof (cases "b \<in> Units G")
|
ballarin@27701
|
2386 |
assume bunit: "b \<in> Units G"
|
ballarin@27701
|
2387 |
|
ballarin@27701
|
2388 |
note pdvdab
|
ballarin@27701
|
2389 |
also from bunit
|
ballarin@27701
|
2390 |
have baa: "a \<otimes> b \<sim> a"
|
ballarin@27701
|
2391 |
by (intro associatedI2[of "b"], simp+)
|
ballarin@27701
|
2392 |
finally
|
ballarin@27701
|
2393 |
have "p divides a" by simp
|
ballarin@27701
|
2394 |
thus "p divides a \<or> p divides b" ..
|
ballarin@27701
|
2395 |
next
|
ballarin@27701
|
2396 |
assume bnunit: "b \<notin> Units G"
|
ballarin@27701
|
2397 |
|
ballarin@27701
|
2398 |
have cnunit: "c \<notin> Units G"
|
ballarin@27701
|
2399 |
proof (rule ccontr, simp)
|
ballarin@27701
|
2400 |
assume cunit: "c \<in> Units G"
|
ballarin@27701
|
2401 |
from bnunit
|
ballarin@27701
|
2402 |
have "properfactor G a (a \<otimes> b)"
|
ballarin@27701
|
2403 |
by (intro properfactorI3[of _ _ b], simp+)
|
ballarin@27701
|
2404 |
also note abpc
|
ballarin@27701
|
2405 |
also from cunit
|
ballarin@27701
|
2406 |
have "p \<otimes> c \<sim> p"
|
ballarin@27701
|
2407 |
by (intro associatedI2[of c], simp+)
|
ballarin@27701
|
2408 |
finally
|
ballarin@27701
|
2409 |
have "properfactor G a p" by simp
|
ballarin@27701
|
2410 |
|
ballarin@27701
|
2411 |
with acarr
|
ballarin@27701
|
2412 |
have "a \<in> Units G" by (fast intro: irreduc)
|
ballarin@27701
|
2413 |
with anunit
|
ballarin@27701
|
2414 |
show "False" ..
|
ballarin@27701
|
2415 |
qed
|
ballarin@27701
|
2416 |
|
ballarin@27701
|
2417 |
have abnunit: "a \<otimes> b \<notin> Units G"
|
ballarin@27701
|
2418 |
proof clarsimp
|
ballarin@27701
|
2419 |
assume abunit: "a \<otimes> b \<in> Units G"
|
ballarin@27701
|
2420 |
hence "a \<in> Units G" by (rule unit_factor) fact+
|
ballarin@27701
|
2421 |
with anunit
|
ballarin@27701
|
2422 |
show "False" ..
|
ballarin@27701
|
2423 |
qed
|
ballarin@27701
|
2424 |
|
ballarin@27701
|
2425 |
from acarr anunit have "\<exists>fs. set fs \<subseteq> carrier G \<and> factors G fs a" by (rule factors_exist)
|
ballarin@27701
|
2426 |
then obtain as where ascarr: "set as \<subseteq> carrier G" and afac: "factors G as a" by auto
|
ballarin@27701
|
2427 |
|
ballarin@27701
|
2428 |
from bcarr bnunit have "\<exists>fs. set fs \<subseteq> carrier G \<and> factors G fs b" by (rule factors_exist)
|
ballarin@27701
|
2429 |
then obtain bs where bscarr: "set bs \<subseteq> carrier G" and bfac: "factors G bs b" by auto
|
ballarin@27701
|
2430 |
|
ballarin@27701
|
2431 |
from ccarr cnunit have "\<exists>fs. set fs \<subseteq> carrier G \<and> factors G fs c" by (rule factors_exist)
|
ballarin@27701
|
2432 |
then obtain cs where cscarr: "set cs \<subseteq> carrier G" and cfac: "factors G cs c" by auto
|
ballarin@27701
|
2433 |
|
ballarin@27701
|
2434 |
note [simp] = ascarr bscarr cscarr
|
ballarin@27701
|
2435 |
|
ballarin@27701
|
2436 |
from afac and bfac
|
ballarin@27701
|
2437 |
have abfac: "factors G (as @ bs) (a \<otimes> b)" by (rule factors_mult) fact+
|
ballarin@27701
|
2438 |
|
ballarin@27701
|
2439 |
from pirr cfac
|
ballarin@27701
|
2440 |
have pcfac: "factors G (p # cs) (p \<otimes> c)" by (rule factors_mult_single) fact+
|
ballarin@27701
|
2441 |
with abpc
|
ballarin@27701
|
2442 |
have abfac': "factors G (p # cs) (a \<otimes> b)" by simp
|
ballarin@27701
|
2443 |
|
ballarin@27701
|
2444 |
from abfac' abfac
|
ballarin@27701
|
2445 |
have "essentially_equal G (p # cs) (as @ bs)"
|
ballarin@27701
|
2446 |
by (rule factors_unique) (fact | simp)+
|
ballarin@27701
|
2447 |
|
ballarin@27701
|
2448 |
hence "\<exists>ds. p # cs <~~> ds \<and> ds [\<sim>] (as @ bs)"
|
ballarin@27701
|
2449 |
by (fast elim: essentially_equalE)
|
ballarin@27701
|
2450 |
from this obtain ds
|
ballarin@27701
|
2451 |
where "p # cs <~~> ds"
|
ballarin@27701
|
2452 |
and dsassoc: "ds [\<sim>] (as @ bs)"
|
ballarin@27701
|
2453 |
by auto
|
ballarin@27701
|
2454 |
|
ballarin@27701
|
2455 |
then have "p \<in> set ds"
|
ballarin@27701
|
2456 |
by (simp add: perm_set_eq[symmetric])
|
ballarin@27701
|
2457 |
with dsassoc
|
ballarin@27701
|
2458 |
have "\<exists>p'. p' \<in> set (as@bs) \<and> p \<sim> p'"
|
ballarin@27701
|
2459 |
unfolding list_all2_conv_all_nth set_conv_nth
|
ballarin@27701
|
2460 |
by force
|
ballarin@27701
|
2461 |
|
ballarin@27701
|
2462 |
from this obtain p'
|
wenzelm@32960
|
2463 |
where "p' \<in> set (as@bs)"
|
wenzelm@32960
|
2464 |
and pp': "p \<sim> p'" by auto
|
ballarin@27701
|
2465 |
|
ballarin@27701
|
2466 |
hence "p' \<in> set as \<or> p' \<in> set bs" by simp
|
ballarin@27701
|
2467 |
moreover
|
ballarin@27701
|
2468 |
{
|
wenzelm@32960
|
2469 |
assume p'elem: "p' \<in> set as"
|
wenzelm@32960
|
2470 |
with ascarr have [simp]: "p' \<in> carrier G" by fast
|
wenzelm@32960
|
2471 |
|
wenzelm@32960
|
2472 |
note pp'
|
wenzelm@32960
|
2473 |
also from afac p'elem
|
wenzelm@32960
|
2474 |
have "p' divides a" by (rule factors_dividesI) fact+
|
wenzelm@32960
|
2475 |
finally
|
wenzelm@32960
|
2476 |
have "p divides a" by simp
|
ballarin@27701
|
2477 |
}
|
ballarin@27701
|
2478 |
moreover
|
ballarin@27701
|
2479 |
{
|
wenzelm@32960
|
2480 |
assume p'elem: "p' \<in> set bs"
|
wenzelm@32960
|
2481 |
with bscarr have [simp]: "p' \<in> carrier G" by fast
|
wenzelm@32960
|
2482 |
|
wenzelm@32960
|
2483 |
note pp'
|
wenzelm@32960
|
2484 |
also from bfac
|
wenzelm@32960
|
2485 |
have "p' divides b" by (rule factors_dividesI) fact+
|
wenzelm@32960
|
2486 |
finally have "p divides b" by simp
|
ballarin@27701
|
2487 |
}
|
ballarin@27701
|
2488 |
ultimately
|
wenzelm@32960
|
2489 |
show "p divides a \<or> p divides b" by fast
|
ballarin@27701
|
2490 |
qed
|
ballarin@27701
|
2491 |
qed
|
ballarin@27701
|
2492 |
qed
|
ballarin@27701
|
2493 |
|
ballarin@27701
|
2494 |
|
ballarin@27717
|
2495 |
subsection {* Greatest Common Divisors and Lowest Common Multiples *}
|
ballarin@27701
|
2496 |
|
ballarin@27701
|
2497 |
subsubsection {* Definitions *}
|
ballarin@27701
|
2498 |
|
wenzelm@35847
|
2499 |
definition
|
ballarin@27701
|
2500 |
isgcd :: "[('a,_) monoid_scheme, 'a, 'a, 'a] \<Rightarrow> bool" ("(_ gcdof\<index> _ _)" [81,81,81] 80)
|
wenzelm@35848
|
2501 |
where "x gcdof\<^bsub>G\<^esub> a b \<longleftrightarrow> x divides\<^bsub>G\<^esub> a \<and> x divides\<^bsub>G\<^esub> b \<and>
|
wenzelm@35847
|
2502 |
(\<forall>y\<in>carrier G. (y divides\<^bsub>G\<^esub> a \<and> y divides\<^bsub>G\<^esub> b \<longrightarrow> y divides\<^bsub>G\<^esub> x))"
|
wenzelm@35847
|
2503 |
|
wenzelm@35847
|
2504 |
definition
|
ballarin@27701
|
2505 |
islcm :: "[_, 'a, 'a, 'a] \<Rightarrow> bool" ("(_ lcmof\<index> _ _)" [81,81,81] 80)
|
wenzelm@35848
|
2506 |
where "x lcmof\<^bsub>G\<^esub> a b \<longleftrightarrow> a divides\<^bsub>G\<^esub> x \<and> b divides\<^bsub>G\<^esub> x \<and>
|
wenzelm@35847
|
2507 |
(\<forall>y\<in>carrier G. (a divides\<^bsub>G\<^esub> y \<and> b divides\<^bsub>G\<^esub> y \<longrightarrow> x divides\<^bsub>G\<^esub> y))"
|
wenzelm@35847
|
2508 |
|
wenzelm@35847
|
2509 |
definition
|
ballarin@27701
|
2510 |
somegcd :: "('a,_) monoid_scheme \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> 'a"
|
wenzelm@35848
|
2511 |
where "somegcd G a b = (SOME x. x \<in> carrier G \<and> x gcdof\<^bsub>G\<^esub> a b)"
|
wenzelm@35847
|
2512 |
|
wenzelm@35847
|
2513 |
definition
|
ballarin@27701
|
2514 |
somelcm :: "('a,_) monoid_scheme \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> 'a"
|
wenzelm@35848
|
2515 |
where "somelcm G a b = (SOME x. x \<in> carrier G \<and> x lcmof\<^bsub>G\<^esub> a b)"
|
wenzelm@35847
|
2516 |
|
wenzelm@35847
|
2517 |
definition
|
wenzelm@35848
|
2518 |
"SomeGcd G A = inf (division_rel G) A"
|
ballarin@27701
|
2519 |
|
ballarin@27701
|
2520 |
|
ballarin@27701
|
2521 |
locale gcd_condition_monoid = comm_monoid_cancel +
|
ballarin@27701
|
2522 |
assumes gcdof_exists:
|
ballarin@27701
|
2523 |
"\<lbrakk>a \<in> carrier G; b \<in> carrier G\<rbrakk> \<Longrightarrow> \<exists>c. c \<in> carrier G \<and> c gcdof a b"
|
ballarin@27701
|
2524 |
|
ballarin@27701
|
2525 |
locale primeness_condition_monoid = comm_monoid_cancel +
|
ballarin@27701
|
2526 |
assumes irreducible_prime:
|
ballarin@27701
|
2527 |
"\<lbrakk>a \<in> carrier G; irreducible G a\<rbrakk> \<Longrightarrow> prime G a"
|
ballarin@27701
|
2528 |
|
ballarin@27701
|
2529 |
locale divisor_chain_condition_monoid = comm_monoid_cancel +
|
ballarin@27701
|
2530 |
assumes division_wellfounded:
|
ballarin@27701
|
2531 |
"wf {(x, y). x \<in> carrier G \<and> y \<in> carrier G \<and> properfactor G x y}"
|
ballarin@27701
|
2532 |
|
ballarin@27701
|
2533 |
|
ballarin@27701
|
2534 |
subsubsection {* Connections to \texttt{Lattice.thy} *}
|
ballarin@27701
|
2535 |
|
ballarin@27713
|
2536 |
lemma gcdof_greatestLower:
|
ballarin@27701
|
2537 |
fixes G (structure)
|
ballarin@27701
|
2538 |
assumes carr[simp]: "a \<in> carrier G" "b \<in> carrier G"
|
ballarin@27701
|
2539 |
shows "(x \<in> carrier G \<and> x gcdof a b) =
|
ballarin@27713
|
2540 |
greatest (division_rel G) x (Lower (division_rel G) {a, b})"
|
ballarin@27713
|
2541 |
unfolding isgcd_def greatest_def Lower_def elem_def
|
nipkow@32456
|
2542 |
by auto
|
ballarin@27701
|
2543 |
|
ballarin@27713
|
2544 |
lemma lcmof_leastUpper:
|
ballarin@27701
|
2545 |
fixes G (structure)
|
ballarin@27701
|
2546 |
assumes carr[simp]: "a \<in> carrier G" "b \<in> carrier G"
|
ballarin@27701
|
2547 |
shows "(x \<in> carrier G \<and> x lcmof a b) =
|
ballarin@27713
|
2548 |
least (division_rel G) x (Upper (division_rel G) {a, b})"
|
ballarin@27713
|
2549 |
unfolding islcm_def least_def Upper_def elem_def
|
nipkow@32456
|
2550 |
by auto
|
ballarin@27701
|
2551 |
|
ballarin@27713
|
2552 |
lemma somegcd_meet:
|
ballarin@27701
|
2553 |
fixes G (structure)
|
ballarin@27701
|
2554 |
assumes carr: "a \<in> carrier G" "b \<in> carrier G"
|
ballarin@27713
|
2555 |
shows "somegcd G a b = meet (division_rel G) a b"
|
ballarin@27713
|
2556 |
unfolding somegcd_def meet_def inf_def
|
ballarin@27713
|
2557 |
by (simp add: gcdof_greatestLower[OF carr])
|
ballarin@27701
|
2558 |
|
ballarin@27701
|
2559 |
lemma (in monoid) isgcd_divides_l:
|
ballarin@27701
|
2560 |
assumes "a divides b"
|
ballarin@27701
|
2561 |
and "a \<in> carrier G" "b \<in> carrier G"
|
ballarin@27701
|
2562 |
shows "a gcdof a b"
|
ballarin@27701
|
2563 |
using assms
|
ballarin@27701
|
2564 |
unfolding isgcd_def
|
ballarin@27701
|
2565 |
by fast
|
ballarin@27701
|
2566 |
|
ballarin@27701
|
2567 |
lemma (in monoid) isgcd_divides_r:
|
ballarin@27701
|
2568 |
assumes "b divides a"
|
ballarin@27701
|
2569 |
and "a \<in> carrier G" "b \<in> carrier G"
|
ballarin@27701
|
2570 |
shows "b gcdof a b"
|
ballarin@27701
|
2571 |
using assms
|
ballarin@27701
|
2572 |
unfolding isgcd_def
|
ballarin@27701
|
2573 |
by fast
|
ballarin@27701
|
2574 |
|
ballarin@27701
|
2575 |
|
ballarin@27701
|
2576 |
subsubsection {* Existence of gcd and lcm *}
|
ballarin@27701
|
2577 |
|
ballarin@27701
|
2578 |
lemma (in factorial_monoid) gcdof_exists:
|
ballarin@27701
|
2579 |
assumes acarr: "a \<in> carrier G" and bcarr: "b \<in> carrier G"
|
ballarin@27701
|
2580 |
shows "\<exists>c. c \<in> carrier G \<and> c gcdof a b"
|
ballarin@27701
|
2581 |
proof -
|
ballarin@27701
|
2582 |
from acarr have "\<exists>as. set as \<subseteq> carrier G \<and> wfactors G as a" by (rule wfactors_exist)
|
ballarin@27701
|
2583 |
from this obtain as
|
ballarin@27701
|
2584 |
where ascarr: "set as \<subseteq> carrier G"
|
ballarin@27701
|
2585 |
and afs: "wfactors G as a"
|
ballarin@27701
|
2586 |
by auto
|
ballarin@27701
|
2587 |
from afs have airr: "\<forall>a \<in> set as. irreducible G a" by (fast elim: wfactorsE)
|
ballarin@27701
|
2588 |
|
ballarin@27701
|
2589 |
from bcarr have "\<exists>bs. set bs \<subseteq> carrier G \<and> wfactors G bs b" by (rule wfactors_exist)
|
ballarin@27701
|
2590 |
from this obtain bs
|
ballarin@27701
|
|