src/HOL/Complete_Lattices.thy
author hoelzl
Tue Mar 26 12:20:58 2013 +0100 (2013-03-26)
changeset 51526 155263089e7b
parent 51489 f738e6dbd844
child 51540 eea5c4ca4a0e
permissions -rw-r--r--
move SEQ.thy and Lim.thy to Limits.thy
haftmann@44103
     1
 (*  Author:     Tobias Nipkow, Lawrence C Paulson and Markus Wenzel; Florian Haftmann, TU Muenchen *)
wenzelm@11979
     2
haftmann@44104
     3
header {* Complete lattices *}
haftmann@32077
     4
haftmann@44860
     5
theory Complete_Lattices
haftmann@32139
     6
imports Set
haftmann@32139
     7
begin
haftmann@32077
     8
haftmann@32077
     9
notation
haftmann@34007
    10
  less_eq (infix "\<sqsubseteq>" 50) and
haftmann@46691
    11
  less (infix "\<sqsubset>" 50)
haftmann@32077
    12
haftmann@32139
    13
haftmann@32879
    14
subsection {* Syntactic infimum and supremum operations *}
haftmann@32879
    15
haftmann@32879
    16
class Inf =
haftmann@32879
    17
  fixes Inf :: "'a set \<Rightarrow> 'a" ("\<Sqinter>_" [900] 900)
haftmann@32879
    18
haftmann@32879
    19
class Sup =
haftmann@32879
    20
  fixes Sup :: "'a set \<Rightarrow> 'a" ("\<Squnion>_" [900] 900)
haftmann@32879
    21
haftmann@46691
    22
haftmann@32139
    23
subsection {* Abstract complete lattices *}
haftmann@32139
    24
haftmann@34007
    25
class complete_lattice = bounded_lattice + Inf + Sup +
haftmann@32077
    26
  assumes Inf_lower: "x \<in> A \<Longrightarrow> \<Sqinter>A \<sqsubseteq> x"
haftmann@32077
    27
     and Inf_greatest: "(\<And>x. x \<in> A \<Longrightarrow> z \<sqsubseteq> x) \<Longrightarrow> z \<sqsubseteq> \<Sqinter>A"
haftmann@32077
    28
  assumes Sup_upper: "x \<in> A \<Longrightarrow> x \<sqsubseteq> \<Squnion>A"
haftmann@32077
    29
     and Sup_least: "(\<And>x. x \<in> A \<Longrightarrow> x \<sqsubseteq> z) \<Longrightarrow> \<Squnion>A \<sqsubseteq> z"
haftmann@32077
    30
begin
haftmann@32077
    31
haftmann@32678
    32
lemma dual_complete_lattice:
krauss@44845
    33
  "class.complete_lattice Sup Inf sup (op \<ge>) (op >) inf \<top> \<bottom>"
haftmann@36635
    34
  by (auto intro!: class.complete_lattice.intro dual_bounded_lattice)
haftmann@34007
    35
    (unfold_locales, (fact bot_least top_greatest
haftmann@34007
    36
        Sup_upper Sup_least Inf_lower Inf_greatest)+)
haftmann@32678
    37
haftmann@44040
    38
definition INFI :: "'b set \<Rightarrow> ('b \<Rightarrow> 'a) \<Rightarrow> 'a" where
haftmann@44040
    39
  INF_def: "INFI A f = \<Sqinter>(f ` A)"
haftmann@44040
    40
haftmann@44040
    41
definition SUPR :: "'b set \<Rightarrow> ('b \<Rightarrow> 'a) \<Rightarrow> 'a" where
haftmann@44040
    42
  SUP_def: "SUPR A f = \<Squnion>(f ` A)"
haftmann@44040
    43
haftmann@44040
    44
text {*
haftmann@44040
    45
  Note: must use names @{const INFI} and @{const SUPR} here instead of
haftmann@44040
    46
  @{text INF} and @{text SUP} to allow the following syntax coexist
haftmann@44040
    47
  with the plain constant names.
haftmann@44040
    48
*}
haftmann@44040
    49
haftmann@44040
    50
end
haftmann@44040
    51
haftmann@44040
    52
syntax
haftmann@44040
    53
  "_INF1"     :: "pttrns \<Rightarrow> 'b \<Rightarrow> 'b"           ("(3INF _./ _)" [0, 10] 10)
haftmann@44040
    54
  "_INF"      :: "pttrn \<Rightarrow> 'a set \<Rightarrow> 'b \<Rightarrow> 'b"  ("(3INF _:_./ _)" [0, 0, 10] 10)
haftmann@44040
    55
  "_SUP1"     :: "pttrns \<Rightarrow> 'b \<Rightarrow> 'b"           ("(3SUP _./ _)" [0, 10] 10)
haftmann@44040
    56
  "_SUP"      :: "pttrn \<Rightarrow> 'a set \<Rightarrow> 'b \<Rightarrow> 'b"  ("(3SUP _:_./ _)" [0, 0, 10] 10)
haftmann@44040
    57
haftmann@44040
    58
syntax (xsymbols)
haftmann@44040
    59
  "_INF1"     :: "pttrns \<Rightarrow> 'b \<Rightarrow> 'b"           ("(3\<Sqinter>_./ _)" [0, 10] 10)
haftmann@44040
    60
  "_INF"      :: "pttrn \<Rightarrow> 'a set \<Rightarrow> 'b \<Rightarrow> 'b"  ("(3\<Sqinter>_\<in>_./ _)" [0, 0, 10] 10)
haftmann@44040
    61
  "_SUP1"     :: "pttrns \<Rightarrow> 'b \<Rightarrow> 'b"           ("(3\<Squnion>_./ _)" [0, 10] 10)
haftmann@44040
    62
  "_SUP"      :: "pttrn \<Rightarrow> 'a set \<Rightarrow> 'b \<Rightarrow> 'b"  ("(3\<Squnion>_\<in>_./ _)" [0, 0, 10] 10)
haftmann@44040
    63
haftmann@44040
    64
translations
haftmann@44040
    65
  "INF x y. B"   == "INF x. INF y. B"
haftmann@44040
    66
  "INF x. B"     == "CONST INFI CONST UNIV (%x. B)"
haftmann@44040
    67
  "INF x. B"     == "INF x:CONST UNIV. B"
haftmann@44040
    68
  "INF x:A. B"   == "CONST INFI A (%x. B)"
haftmann@44040
    69
  "SUP x y. B"   == "SUP x. SUP y. B"
haftmann@44040
    70
  "SUP x. B"     == "CONST SUPR CONST UNIV (%x. B)"
haftmann@44040
    71
  "SUP x. B"     == "SUP x:CONST UNIV. B"
haftmann@44040
    72
  "SUP x:A. B"   == "CONST SUPR A (%x. B)"
haftmann@44040
    73
haftmann@44040
    74
print_translation {*
haftmann@44040
    75
  [Syntax_Trans.preserve_binder_abs2_tr' @{const_syntax INFI} @{syntax_const "_INF"},
haftmann@44040
    76
    Syntax_Trans.preserve_binder_abs2_tr' @{const_syntax SUPR} @{syntax_const "_SUP"}]
haftmann@44040
    77
*} -- {* to avoid eta-contraction of body *}
haftmann@44040
    78
haftmann@44040
    79
context complete_lattice
haftmann@44040
    80
begin
haftmann@32077
    81
haftmann@44040
    82
lemma INF_foundation_dual [no_atp]:
haftmann@44040
    83
  "complete_lattice.SUPR Inf = INFI"
huffman@44921
    84
  by (simp add: fun_eq_iff INF_def
huffman@44921
    85
    complete_lattice.SUP_def [OF dual_complete_lattice])
haftmann@44040
    86
haftmann@44040
    87
lemma SUP_foundation_dual [no_atp]:
haftmann@44040
    88
  "complete_lattice.INFI Sup = SUPR"
huffman@44921
    89
  by (simp add: fun_eq_iff SUP_def
huffman@44921
    90
    complete_lattice.INF_def [OF dual_complete_lattice])
haftmann@44040
    91
hoelzl@51328
    92
lemma Sup_eqI:
hoelzl@51328
    93
  "(\<And>y. y \<in> A \<Longrightarrow> y \<le> x) \<Longrightarrow> (\<And>y. (\<And>z. z \<in> A \<Longrightarrow> z \<le> y) \<Longrightarrow> x \<le> y) \<Longrightarrow> \<Squnion>A = x"
hoelzl@51328
    94
  by (blast intro: antisym Sup_least Sup_upper)
hoelzl@51328
    95
hoelzl@51328
    96
lemma Inf_eqI:
hoelzl@51328
    97
  "(\<And>i. i \<in> A \<Longrightarrow> x \<le> i) \<Longrightarrow> (\<And>y. (\<And>i. i \<in> A \<Longrightarrow> y \<le> i) \<Longrightarrow> y \<le> x) \<Longrightarrow> \<Sqinter>A = x"
hoelzl@51328
    98
  by (blast intro: antisym Inf_greatest Inf_lower)
hoelzl@51328
    99
hoelzl@51328
   100
lemma SUP_eqI:
hoelzl@51328
   101
  "(\<And>i. i \<in> A \<Longrightarrow> f i \<le> x) \<Longrightarrow> (\<And>y. (\<And>i. i \<in> A \<Longrightarrow> f i \<le> y) \<Longrightarrow> x \<le> y) \<Longrightarrow> (\<Squnion>i\<in>A. f i) = x"
hoelzl@51328
   102
  unfolding SUP_def by (rule Sup_eqI) auto
hoelzl@51328
   103
hoelzl@51328
   104
lemma INF_eqI:
hoelzl@51328
   105
  "(\<And>i. i \<in> A \<Longrightarrow> x \<le> f i) \<Longrightarrow> (\<And>y. (\<And>i. i \<in> A \<Longrightarrow> f i \<ge> y) \<Longrightarrow> x \<ge> y) \<Longrightarrow> (\<Sqinter>i\<in>A. f i) = x"
hoelzl@51328
   106
  unfolding INF_def by (rule Inf_eqI) auto
hoelzl@51328
   107
haftmann@44103
   108
lemma INF_lower: "i \<in> A \<Longrightarrow> (\<Sqinter>i\<in>A. f i) \<sqsubseteq> f i"
haftmann@44040
   109
  by (auto simp add: INF_def intro: Inf_lower)
haftmann@44040
   110
haftmann@44103
   111
lemma INF_greatest: "(\<And>i. i \<in> A \<Longrightarrow> u \<sqsubseteq> f i) \<Longrightarrow> u \<sqsubseteq> (\<Sqinter>i\<in>A. f i)"
haftmann@44103
   112
  by (auto simp add: INF_def intro: Inf_greatest)
haftmann@44103
   113
haftmann@44103
   114
lemma SUP_upper: "i \<in> A \<Longrightarrow> f i \<sqsubseteq> (\<Squnion>i\<in>A. f i)"
haftmann@44040
   115
  by (auto simp add: SUP_def intro: Sup_upper)
haftmann@44040
   116
haftmann@44103
   117
lemma SUP_least: "(\<And>i. i \<in> A \<Longrightarrow> f i \<sqsubseteq> u) \<Longrightarrow> (\<Squnion>i\<in>A. f i) \<sqsubseteq> u"
haftmann@44040
   118
  by (auto simp add: SUP_def intro: Sup_least)
haftmann@44040
   119
haftmann@44040
   120
lemma Inf_lower2: "u \<in> A \<Longrightarrow> u \<sqsubseteq> v \<Longrightarrow> \<Sqinter>A \<sqsubseteq> v"
haftmann@44040
   121
  using Inf_lower [of u A] by auto
haftmann@44040
   122
haftmann@44103
   123
lemma INF_lower2: "i \<in> A \<Longrightarrow> f i \<sqsubseteq> u \<Longrightarrow> (\<Sqinter>i\<in>A. f i) \<sqsubseteq> u"
haftmann@44103
   124
  using INF_lower [of i A f] by auto
haftmann@44040
   125
haftmann@44040
   126
lemma Sup_upper2: "u \<in> A \<Longrightarrow> v \<sqsubseteq> u \<Longrightarrow> v \<sqsubseteq> \<Squnion>A"
haftmann@44040
   127
  using Sup_upper [of u A] by auto
haftmann@44040
   128
haftmann@44103
   129
lemma SUP_upper2: "i \<in> A \<Longrightarrow> u \<sqsubseteq> f i \<Longrightarrow> u \<sqsubseteq> (\<Squnion>i\<in>A. f i)"
haftmann@44103
   130
  using SUP_upper [of i A f] by auto
haftmann@44040
   131
noschinl@44918
   132
lemma le_Inf_iff: "b \<sqsubseteq> \<Sqinter>A \<longleftrightarrow> (\<forall>a\<in>A. b \<sqsubseteq> a)"
haftmann@44040
   133
  by (auto intro: Inf_greatest dest: Inf_lower)
haftmann@44040
   134
noschinl@44918
   135
lemma le_INF_iff: "u \<sqsubseteq> (\<Sqinter>i\<in>A. f i) \<longleftrightarrow> (\<forall>i\<in>A. u \<sqsubseteq> f i)"
haftmann@44040
   136
  by (auto simp add: INF_def le_Inf_iff)
haftmann@44040
   137
noschinl@44918
   138
lemma Sup_le_iff: "\<Squnion>A \<sqsubseteq> b \<longleftrightarrow> (\<forall>a\<in>A. a \<sqsubseteq> b)"
haftmann@44040
   139
  by (auto intro: Sup_least dest: Sup_upper)
haftmann@44040
   140
noschinl@44918
   141
lemma SUP_le_iff: "(\<Squnion>i\<in>A. f i) \<sqsubseteq> u \<longleftrightarrow> (\<forall>i\<in>A. f i \<sqsubseteq> u)"
haftmann@44040
   142
  by (auto simp add: SUP_def Sup_le_iff)
haftmann@32077
   143
haftmann@41080
   144
lemma Inf_empty [simp]:
haftmann@34007
   145
  "\<Sqinter>{} = \<top>"
haftmann@34007
   146
  by (auto intro: antisym Inf_greatest)
haftmann@32077
   147
huffman@44067
   148
lemma INF_empty [simp]: "(\<Sqinter>x\<in>{}. f x) = \<top>"
haftmann@44040
   149
  by (simp add: INF_def)
haftmann@44040
   150
haftmann@41080
   151
lemma Sup_empty [simp]:
haftmann@34007
   152
  "\<Squnion>{} = \<bottom>"
haftmann@34007
   153
  by (auto intro: antisym Sup_least)
haftmann@32077
   154
huffman@44067
   155
lemma SUP_empty [simp]: "(\<Squnion>x\<in>{}. f x) = \<bottom>"
haftmann@44040
   156
  by (simp add: SUP_def)
haftmann@44040
   157
haftmann@41080
   158
lemma Inf_UNIV [simp]:
haftmann@41080
   159
  "\<Sqinter>UNIV = \<bottom>"
haftmann@44040
   160
  by (auto intro!: antisym Inf_lower)
haftmann@41080
   161
haftmann@41080
   162
lemma Sup_UNIV [simp]:
haftmann@41080
   163
  "\<Squnion>UNIV = \<top>"
haftmann@44040
   164
  by (auto intro!: antisym Sup_upper)
haftmann@41080
   165
noschinl@44918
   166
lemma Inf_insert [simp]: "\<Sqinter>insert a A = a \<sqinter> \<Sqinter>A"
haftmann@32077
   167
  by (auto intro: le_infI le_infI1 le_infI2 antisym Inf_greatest Inf_lower)
haftmann@32077
   168
haftmann@44040
   169
lemma INF_insert: "(\<Sqinter>x\<in>insert a A. f x) = f a \<sqinter> INFI A f"
noschinl@44919
   170
  by (simp add: INF_def)
haftmann@44040
   171
noschinl@44918
   172
lemma Sup_insert [simp]: "\<Squnion>insert a A = a \<squnion> \<Squnion>A"
haftmann@32077
   173
  by (auto intro: le_supI le_supI1 le_supI2 antisym Sup_least Sup_upper)
haftmann@32077
   174
haftmann@44040
   175
lemma SUP_insert: "(\<Squnion>x\<in>insert a A. f x) = f a \<squnion> SUPR A f"
noschinl@44919
   176
  by (simp add: SUP_def)
haftmann@44040
   177
noschinl@44918
   178
lemma INF_image [simp]: "(\<Sqinter>x\<in>f`A. g x) = (\<Sqinter>x\<in>A. g (f x))"
huffman@44068
   179
  by (simp add: INF_def image_image)
huffman@44068
   180
noschinl@44918
   181
lemma SUP_image [simp]: "(\<Squnion>x\<in>f`A. g x) = (\<Squnion>x\<in>A. g (f x))"
huffman@44068
   182
  by (simp add: SUP_def image_image)
huffman@44068
   183
haftmann@44040
   184
lemma Inf_Sup: "\<Sqinter>A = \<Squnion>{b. \<forall>a \<in> A. b \<sqsubseteq> a}"
haftmann@44040
   185
  by (auto intro: antisym Inf_lower Inf_greatest Sup_upper Sup_least)
haftmann@44040
   186
haftmann@44040
   187
lemma Sup_Inf:  "\<Squnion>A = \<Sqinter>{b. \<forall>a \<in> A. a \<sqsubseteq> b}"
haftmann@44040
   188
  by (auto intro: antisym Inf_lower Inf_greatest Sup_upper Sup_least)
haftmann@44040
   189
haftmann@43899
   190
lemma Inf_superset_mono: "B \<subseteq> A \<Longrightarrow> \<Sqinter>A \<sqsubseteq> \<Sqinter>B"
haftmann@43899
   191
  by (auto intro: Inf_greatest Inf_lower)
haftmann@43899
   192
haftmann@43899
   193
lemma Sup_subset_mono: "A \<subseteq> B \<Longrightarrow> \<Squnion>A \<sqsubseteq> \<Squnion>B"
haftmann@43899
   194
  by (auto intro: Sup_least Sup_upper)
haftmann@43899
   195
haftmann@44041
   196
lemma INF_cong:
haftmann@44041
   197
  "A = B \<Longrightarrow> (\<And>x. x \<in> B \<Longrightarrow> C x = D x) \<Longrightarrow> (\<Sqinter>x\<in>A. C x) = (\<Sqinter>x\<in>B. D x)"
haftmann@44041
   198
  by (simp add: INF_def image_def)
haftmann@44041
   199
haftmann@44041
   200
lemma SUP_cong:
haftmann@44041
   201
  "A = B \<Longrightarrow> (\<And>x. x \<in> B \<Longrightarrow> C x = D x) \<Longrightarrow> (\<Squnion>x\<in>A. C x) = (\<Squnion>x\<in>B. D x)"
haftmann@44041
   202
  by (simp add: SUP_def image_def)
haftmann@44041
   203
hoelzl@38705
   204
lemma Inf_mono:
hoelzl@41971
   205
  assumes "\<And>b. b \<in> B \<Longrightarrow> \<exists>a\<in>A. a \<sqsubseteq> b"
haftmann@43741
   206
  shows "\<Sqinter>A \<sqsubseteq> \<Sqinter>B"
hoelzl@38705
   207
proof (rule Inf_greatest)
hoelzl@38705
   208
  fix b assume "b \<in> B"
hoelzl@41971
   209
  with assms obtain a where "a \<in> A" and "a \<sqsubseteq> b" by blast
haftmann@43741
   210
  from `a \<in> A` have "\<Sqinter>A \<sqsubseteq> a" by (rule Inf_lower)
haftmann@43741
   211
  with `a \<sqsubseteq> b` show "\<Sqinter>A \<sqsubseteq> b" by auto
hoelzl@38705
   212
qed
hoelzl@38705
   213
haftmann@44041
   214
lemma INF_mono:
haftmann@44041
   215
  "(\<And>m. m \<in> B \<Longrightarrow> \<exists>n\<in>A. f n \<sqsubseteq> g m) \<Longrightarrow> (\<Sqinter>n\<in>A. f n) \<sqsubseteq> (\<Sqinter>n\<in>B. g n)"
noschinl@44918
   216
  unfolding INF_def by (rule Inf_mono) fast
haftmann@44041
   217
haftmann@41082
   218
lemma Sup_mono:
hoelzl@41971
   219
  assumes "\<And>a. a \<in> A \<Longrightarrow> \<exists>b\<in>B. a \<sqsubseteq> b"
haftmann@43741
   220
  shows "\<Squnion>A \<sqsubseteq> \<Squnion>B"
haftmann@41082
   221
proof (rule Sup_least)
haftmann@41082
   222
  fix a assume "a \<in> A"
hoelzl@41971
   223
  with assms obtain b where "b \<in> B" and "a \<sqsubseteq> b" by blast
haftmann@43741
   224
  from `b \<in> B` have "b \<sqsubseteq> \<Squnion>B" by (rule Sup_upper)
haftmann@43741
   225
  with `a \<sqsubseteq> b` show "a \<sqsubseteq> \<Squnion>B" by auto
haftmann@41082
   226
qed
haftmann@32077
   227
haftmann@44041
   228
lemma SUP_mono:
haftmann@44041
   229
  "(\<And>n. n \<in> A \<Longrightarrow> \<exists>m\<in>B. f n \<sqsubseteq> g m) \<Longrightarrow> (\<Squnion>n\<in>A. f n) \<sqsubseteq> (\<Squnion>n\<in>B. g n)"
noschinl@44918
   230
  unfolding SUP_def by (rule Sup_mono) fast
haftmann@44041
   231
haftmann@44041
   232
lemma INF_superset_mono:
haftmann@44041
   233
  "B \<subseteq> A \<Longrightarrow> (\<And>x. x \<in> B \<Longrightarrow> f x \<sqsubseteq> g x) \<Longrightarrow> (\<Sqinter>x\<in>A. f x) \<sqsubseteq> (\<Sqinter>x\<in>B. g x)"
haftmann@44041
   234
  -- {* The last inclusion is POSITIVE! *}
haftmann@44041
   235
  by (blast intro: INF_mono dest: subsetD)
haftmann@44041
   236
haftmann@44041
   237
lemma SUP_subset_mono:
haftmann@44041
   238
  "A \<subseteq> B \<Longrightarrow> (\<And>x. x \<in> A \<Longrightarrow> f x \<sqsubseteq> g x) \<Longrightarrow> (\<Squnion>x\<in>A. f x) \<sqsubseteq> (\<Squnion>x\<in>B. g x)"
haftmann@44041
   239
  by (blast intro: SUP_mono dest: subsetD)
haftmann@44041
   240
haftmann@43868
   241
lemma Inf_less_eq:
haftmann@43868
   242
  assumes "\<And>v. v \<in> A \<Longrightarrow> v \<sqsubseteq> u"
haftmann@43868
   243
    and "A \<noteq> {}"
haftmann@43868
   244
  shows "\<Sqinter>A \<sqsubseteq> u"
haftmann@43868
   245
proof -
haftmann@43868
   246
  from `A \<noteq> {}` obtain v where "v \<in> A" by blast
haftmann@43868
   247
  moreover with assms have "v \<sqsubseteq> u" by blast
haftmann@43868
   248
  ultimately show ?thesis by (rule Inf_lower2)
haftmann@43868
   249
qed
haftmann@43868
   250
haftmann@43868
   251
lemma less_eq_Sup:
haftmann@43868
   252
  assumes "\<And>v. v \<in> A \<Longrightarrow> u \<sqsubseteq> v"
haftmann@43868
   253
    and "A \<noteq> {}"
haftmann@43868
   254
  shows "u \<sqsubseteq> \<Squnion>A"
haftmann@43868
   255
proof -
haftmann@43868
   256
  from `A \<noteq> {}` obtain v where "v \<in> A" by blast
haftmann@43868
   257
  moreover with assms have "u \<sqsubseteq> v" by blast
haftmann@43868
   258
  ultimately show ?thesis by (rule Sup_upper2)
haftmann@43868
   259
qed
haftmann@43868
   260
hoelzl@51328
   261
lemma SUPR_eq:
hoelzl@51328
   262
  assumes "\<And>i. i \<in> A \<Longrightarrow> \<exists>j\<in>B. f i \<le> g j"
hoelzl@51328
   263
  assumes "\<And>j. j \<in> B \<Longrightarrow> \<exists>i\<in>A. g j \<le> f i"
hoelzl@51328
   264
  shows "(SUP i:A. f i) = (SUP j:B. g j)"
hoelzl@51328
   265
  by (intro antisym SUP_least) (blast intro: SUP_upper2 dest: assms)+
hoelzl@51328
   266
hoelzl@51328
   267
lemma INFI_eq:
hoelzl@51328
   268
  assumes "\<And>i. i \<in> A \<Longrightarrow> \<exists>j\<in>B. f i \<ge> g j"
hoelzl@51328
   269
  assumes "\<And>j. j \<in> B \<Longrightarrow> \<exists>i\<in>A. g j \<ge> f i"
hoelzl@51328
   270
  shows "(INF i:A. f i) = (INF j:B. g j)"
hoelzl@51328
   271
  by (intro antisym INF_greatest) (blast intro: INF_lower2 dest: assms)+
hoelzl@51328
   272
haftmann@43899
   273
lemma less_eq_Inf_inter: "\<Sqinter>A \<squnion> \<Sqinter>B \<sqsubseteq> \<Sqinter>(A \<inter> B)"
haftmann@43868
   274
  by (auto intro: Inf_greatest Inf_lower)
haftmann@43868
   275
haftmann@43899
   276
lemma Sup_inter_less_eq: "\<Squnion>(A \<inter> B) \<sqsubseteq> \<Squnion>A \<sqinter> \<Squnion>B "
haftmann@43868
   277
  by (auto intro: Sup_least Sup_upper)
haftmann@43868
   278
haftmann@43868
   279
lemma Inf_union_distrib: "\<Sqinter>(A \<union> B) = \<Sqinter>A \<sqinter> \<Sqinter>B"
haftmann@43868
   280
  by (rule antisym) (auto intro: Inf_greatest Inf_lower le_infI1 le_infI2)
haftmann@43868
   281
haftmann@44041
   282
lemma INF_union:
haftmann@44041
   283
  "(\<Sqinter>i \<in> A \<union> B. M i) = (\<Sqinter>i \<in> A. M i) \<sqinter> (\<Sqinter>i\<in>B. M i)"
haftmann@44103
   284
  by (auto intro!: antisym INF_mono intro: le_infI1 le_infI2 INF_greatest INF_lower)
haftmann@44041
   285
haftmann@43868
   286
lemma Sup_union_distrib: "\<Squnion>(A \<union> B) = \<Squnion>A \<squnion> \<Squnion>B"
haftmann@43868
   287
  by (rule antisym) (auto intro: Sup_least Sup_upper le_supI1 le_supI2)
haftmann@43868
   288
haftmann@44041
   289
lemma SUP_union:
haftmann@44041
   290
  "(\<Squnion>i \<in> A \<union> B. M i) = (\<Squnion>i \<in> A. M i) \<squnion> (\<Squnion>i\<in>B. M i)"
haftmann@44103
   291
  by (auto intro!: antisym SUP_mono intro: le_supI1 le_supI2 SUP_least SUP_upper)
haftmann@44041
   292
haftmann@44041
   293
lemma INF_inf_distrib: "(\<Sqinter>a\<in>A. f a) \<sqinter> (\<Sqinter>a\<in>A. g a) = (\<Sqinter>a\<in>A. f a \<sqinter> g a)"
haftmann@44103
   294
  by (rule antisym) (rule INF_greatest, auto intro: le_infI1 le_infI2 INF_lower INF_mono)
haftmann@44041
   295
noschinl@44918
   296
lemma SUP_sup_distrib: "(\<Squnion>a\<in>A. f a) \<squnion> (\<Squnion>a\<in>A. g a) = (\<Squnion>a\<in>A. f a \<squnion> g a)" (is "?L = ?R")
noschinl@44918
   297
proof (rule antisym)
noschinl@44918
   298
  show "?L \<le> ?R" by (auto intro: le_supI1 le_supI2 SUP_upper SUP_mono)
noschinl@44918
   299
next
noschinl@44918
   300
  show "?R \<le> ?L" by (rule SUP_least) (auto intro: le_supI1 le_supI2 SUP_upper)
noschinl@44918
   301
qed
haftmann@44041
   302
noschinl@44918
   303
lemma Inf_top_conv [simp, no_atp]:
haftmann@43868
   304
  "\<Sqinter>A = \<top> \<longleftrightarrow> (\<forall>x\<in>A. x = \<top>)"
haftmann@43868
   305
  "\<top> = \<Sqinter>A \<longleftrightarrow> (\<forall>x\<in>A. x = \<top>)"
haftmann@43868
   306
proof -
haftmann@43868
   307
  show "\<Sqinter>A = \<top> \<longleftrightarrow> (\<forall>x\<in>A. x = \<top>)"
haftmann@43868
   308
  proof
haftmann@43868
   309
    assume "\<forall>x\<in>A. x = \<top>"
haftmann@43868
   310
    then have "A = {} \<or> A = {\<top>}" by auto
noschinl@44919
   311
    then show "\<Sqinter>A = \<top>" by auto
haftmann@43868
   312
  next
haftmann@43868
   313
    assume "\<Sqinter>A = \<top>"
haftmann@43868
   314
    show "\<forall>x\<in>A. x = \<top>"
haftmann@43868
   315
    proof (rule ccontr)
haftmann@43868
   316
      assume "\<not> (\<forall>x\<in>A. x = \<top>)"
haftmann@43868
   317
      then obtain x where "x \<in> A" and "x \<noteq> \<top>" by blast
haftmann@43868
   318
      then obtain B where "A = insert x B" by blast
noschinl@44919
   319
      with `\<Sqinter>A = \<top>` `x \<noteq> \<top>` show False by simp
haftmann@43868
   320
    qed
haftmann@43868
   321
  qed
haftmann@43868
   322
  then show "\<top> = \<Sqinter>A \<longleftrightarrow> (\<forall>x\<in>A. x = \<top>)" by auto
haftmann@43868
   323
qed
haftmann@43868
   324
noschinl@44918
   325
lemma INF_top_conv [simp]:
haftmann@44041
   326
 "(\<Sqinter>x\<in>A. B x) = \<top> \<longleftrightarrow> (\<forall>x\<in>A. B x = \<top>)"
haftmann@44041
   327
 "\<top> = (\<Sqinter>x\<in>A. B x) \<longleftrightarrow> (\<forall>x\<in>A. B x = \<top>)"
noschinl@44919
   328
  by (auto simp add: INF_def)
haftmann@44041
   329
noschinl@44918
   330
lemma Sup_bot_conv [simp, no_atp]:
haftmann@43868
   331
  "\<Squnion>A = \<bottom> \<longleftrightarrow> (\<forall>x\<in>A. x = \<bottom>)" (is ?P)
haftmann@43868
   332
  "\<bottom> = \<Squnion>A \<longleftrightarrow> (\<forall>x\<in>A. x = \<bottom>)" (is ?Q)
huffman@44920
   333
  using dual_complete_lattice
huffman@44920
   334
  by (rule complete_lattice.Inf_top_conv)+
haftmann@43868
   335
noschinl@44918
   336
lemma SUP_bot_conv [simp]:
haftmann@44041
   337
 "(\<Squnion>x\<in>A. B x) = \<bottom> \<longleftrightarrow> (\<forall>x\<in>A. B x = \<bottom>)"
haftmann@44041
   338
 "\<bottom> = (\<Squnion>x\<in>A. B x) \<longleftrightarrow> (\<forall>x\<in>A. B x = \<bottom>)"
noschinl@44919
   339
  by (auto simp add: SUP_def)
haftmann@44041
   340
haftmann@43865
   341
lemma INF_const [simp]: "A \<noteq> {} \<Longrightarrow> (\<Sqinter>i\<in>A. f) = f"
haftmann@44103
   342
  by (auto intro: antisym INF_lower INF_greatest)
haftmann@32077
   343
haftmann@43870
   344
lemma SUP_const [simp]: "A \<noteq> {} \<Longrightarrow> (\<Squnion>i\<in>A. f) = f"
haftmann@44103
   345
  by (auto intro: antisym SUP_upper SUP_least)
haftmann@43870
   346
noschinl@44918
   347
lemma INF_top [simp]: "(\<Sqinter>x\<in>A. \<top>) = \<top>"
huffman@44921
   348
  by (cases "A = {}") simp_all
haftmann@43900
   349
noschinl@44918
   350
lemma SUP_bot [simp]: "(\<Squnion>x\<in>A. \<bottom>) = \<bottom>"
huffman@44921
   351
  by (cases "A = {}") simp_all
haftmann@43900
   352
haftmann@43865
   353
lemma INF_commute: "(\<Sqinter>i\<in>A. \<Sqinter>j\<in>B. f i j) = (\<Sqinter>j\<in>B. \<Sqinter>i\<in>A. f i j)"
haftmann@44103
   354
  by (iprover intro: INF_lower INF_greatest order_trans antisym)
haftmann@43865
   355
haftmann@43870
   356
lemma SUP_commute: "(\<Squnion>i\<in>A. \<Squnion>j\<in>B. f i j) = (\<Squnion>j\<in>B. \<Squnion>i\<in>A. f i j)"
haftmann@44103
   357
  by (iprover intro: SUP_upper SUP_least order_trans antisym)
haftmann@43870
   358
haftmann@43871
   359
lemma INF_absorb:
haftmann@43868
   360
  assumes "k \<in> I"
haftmann@43868
   361
  shows "A k \<sqinter> (\<Sqinter>i\<in>I. A i) = (\<Sqinter>i\<in>I. A i)"
haftmann@43868
   362
proof -
haftmann@43868
   363
  from assms obtain J where "I = insert k J" by blast
haftmann@43868
   364
  then show ?thesis by (simp add: INF_insert)
haftmann@43868
   365
qed
haftmann@43868
   366
haftmann@43871
   367
lemma SUP_absorb:
haftmann@43871
   368
  assumes "k \<in> I"
haftmann@43871
   369
  shows "A k \<squnion> (\<Squnion>i\<in>I. A i) = (\<Squnion>i\<in>I. A i)"
haftmann@43871
   370
proof -
haftmann@43871
   371
  from assms obtain J where "I = insert k J" by blast
haftmann@43871
   372
  then show ?thesis by (simp add: SUP_insert)
haftmann@43871
   373
qed
haftmann@43871
   374
haftmann@43871
   375
lemma INF_constant:
haftmann@43868
   376
  "(\<Sqinter>y\<in>A. c) = (if A = {} then \<top> else c)"
huffman@44921
   377
  by simp
haftmann@43868
   378
haftmann@43871
   379
lemma SUP_constant:
haftmann@43871
   380
  "(\<Squnion>y\<in>A. c) = (if A = {} then \<bottom> else c)"
huffman@44921
   381
  by simp
haftmann@43871
   382
haftmann@43943
   383
lemma less_INF_D:
haftmann@43943
   384
  assumes "y < (\<Sqinter>i\<in>A. f i)" "i \<in> A" shows "y < f i"
haftmann@43943
   385
proof -
haftmann@43943
   386
  note `y < (\<Sqinter>i\<in>A. f i)`
haftmann@43943
   387
  also have "(\<Sqinter>i\<in>A. f i) \<le> f i" using `i \<in> A`
haftmann@44103
   388
    by (rule INF_lower)
haftmann@43943
   389
  finally show "y < f i" .
haftmann@43943
   390
qed
haftmann@43943
   391
haftmann@43943
   392
lemma SUP_lessD:
haftmann@43943
   393
  assumes "(\<Squnion>i\<in>A. f i) < y" "i \<in> A" shows "f i < y"
haftmann@43943
   394
proof -
haftmann@43943
   395
  have "f i \<le> (\<Squnion>i\<in>A. f i)" using `i \<in> A`
haftmann@44103
   396
    by (rule SUP_upper)
haftmann@43943
   397
  also note `(\<Squnion>i\<in>A. f i) < y`
haftmann@43943
   398
  finally show "f i < y" .
haftmann@43943
   399
qed
haftmann@43943
   400
haftmann@43873
   401
lemma INF_UNIV_bool_expand:
haftmann@43868
   402
  "(\<Sqinter>b. A b) = A True \<sqinter> A False"
huffman@44921
   403
  by (simp add: UNIV_bool INF_insert inf_commute)
haftmann@43868
   404
haftmann@43873
   405
lemma SUP_UNIV_bool_expand:
haftmann@43871
   406
  "(\<Squnion>b. A b) = A True \<squnion> A False"
huffman@44921
   407
  by (simp add: UNIV_bool SUP_insert sup_commute)
haftmann@43871
   408
hoelzl@51328
   409
lemma Inf_le_Sup: "A \<noteq> {} \<Longrightarrow> Inf A \<le> Sup A"
hoelzl@51328
   410
  by (blast intro: Sup_upper2 Inf_lower ex_in_conv)
hoelzl@51328
   411
hoelzl@51328
   412
lemma INF_le_SUP: "A \<noteq> {} \<Longrightarrow> INFI A f \<le> SUPR A f"
hoelzl@51328
   413
  unfolding INF_def SUP_def by (rule Inf_le_Sup) auto
hoelzl@51328
   414
haftmann@32077
   415
end
haftmann@32077
   416
haftmann@44024
   417
class complete_distrib_lattice = complete_lattice +
haftmann@44039
   418
  assumes sup_Inf: "a \<squnion> \<Sqinter>B = (\<Sqinter>b\<in>B. a \<squnion> b)"
haftmann@44024
   419
  assumes inf_Sup: "a \<sqinter> \<Squnion>B = (\<Squnion>b\<in>B. a \<sqinter> b)"
haftmann@44024
   420
begin
haftmann@44024
   421
haftmann@44039
   422
lemma sup_INF:
haftmann@44039
   423
  "a \<squnion> (\<Sqinter>b\<in>B. f b) = (\<Sqinter>b\<in>B. a \<squnion> f b)"
haftmann@44039
   424
  by (simp add: INF_def sup_Inf image_image)
haftmann@44039
   425
haftmann@44039
   426
lemma inf_SUP:
haftmann@44039
   427
  "a \<sqinter> (\<Squnion>b\<in>B. f b) = (\<Squnion>b\<in>B. a \<sqinter> f b)"
haftmann@44039
   428
  by (simp add: SUP_def inf_Sup image_image)
haftmann@44039
   429
haftmann@44032
   430
lemma dual_complete_distrib_lattice:
krauss@44845
   431
  "class.complete_distrib_lattice Sup Inf sup (op \<ge>) (op >) inf \<top> \<bottom>"
haftmann@44024
   432
  apply (rule class.complete_distrib_lattice.intro)
haftmann@44024
   433
  apply (fact dual_complete_lattice)
haftmann@44024
   434
  apply (rule class.complete_distrib_lattice_axioms.intro)
haftmann@44032
   435
  apply (simp_all only: INF_foundation_dual SUP_foundation_dual inf_Sup sup_Inf)
haftmann@44032
   436
  done
haftmann@44024
   437
haftmann@44322
   438
subclass distrib_lattice proof
haftmann@44024
   439
  fix a b c
haftmann@44024
   440
  from sup_Inf have "a \<squnion> \<Sqinter>{b, c} = (\<Sqinter>d\<in>{b, c}. a \<squnion> d)" .
noschinl@44919
   441
  then show "a \<squnion> b \<sqinter> c = (a \<squnion> b) \<sqinter> (a \<squnion> c)" by (simp add: INF_def)
haftmann@44024
   442
qed
haftmann@44024
   443
haftmann@44039
   444
lemma Inf_sup:
haftmann@44039
   445
  "\<Sqinter>B \<squnion> a = (\<Sqinter>b\<in>B. b \<squnion> a)"
haftmann@44039
   446
  by (simp add: sup_Inf sup_commute)
haftmann@44039
   447
haftmann@44039
   448
lemma Sup_inf:
haftmann@44039
   449
  "\<Squnion>B \<sqinter> a = (\<Squnion>b\<in>B. b \<sqinter> a)"
haftmann@44039
   450
  by (simp add: inf_Sup inf_commute)
haftmann@44039
   451
haftmann@44039
   452
lemma INF_sup: 
haftmann@44039
   453
  "(\<Sqinter>b\<in>B. f b) \<squnion> a = (\<Sqinter>b\<in>B. f b \<squnion> a)"
haftmann@44039
   454
  by (simp add: sup_INF sup_commute)
haftmann@44039
   455
haftmann@44039
   456
lemma SUP_inf:
haftmann@44039
   457
  "(\<Squnion>b\<in>B. f b) \<sqinter> a = (\<Squnion>b\<in>B. f b \<sqinter> a)"
haftmann@44039
   458
  by (simp add: inf_SUP inf_commute)
haftmann@44039
   459
haftmann@44039
   460
lemma Inf_sup_eq_top_iff:
haftmann@44039
   461
  "(\<Sqinter>B \<squnion> a = \<top>) \<longleftrightarrow> (\<forall>b\<in>B. b \<squnion> a = \<top>)"
haftmann@44039
   462
  by (simp only: Inf_sup INF_top_conv)
haftmann@44039
   463
haftmann@44039
   464
lemma Sup_inf_eq_bot_iff:
haftmann@44039
   465
  "(\<Squnion>B \<sqinter> a = \<bottom>) \<longleftrightarrow> (\<forall>b\<in>B. b \<sqinter> a = \<bottom>)"
haftmann@44039
   466
  by (simp only: Sup_inf SUP_bot_conv)
haftmann@44039
   467
haftmann@44039
   468
lemma INF_sup_distrib2:
haftmann@44039
   469
  "(\<Sqinter>a\<in>A. f a) \<squnion> (\<Sqinter>b\<in>B. g b) = (\<Sqinter>a\<in>A. \<Sqinter>b\<in>B. f a \<squnion> g b)"
haftmann@44039
   470
  by (subst INF_commute) (simp add: sup_INF INF_sup)
haftmann@44039
   471
haftmann@44039
   472
lemma SUP_inf_distrib2:
haftmann@44039
   473
  "(\<Squnion>a\<in>A. f a) \<sqinter> (\<Squnion>b\<in>B. g b) = (\<Squnion>a\<in>A. \<Squnion>b\<in>B. f a \<sqinter> g b)"
haftmann@44039
   474
  by (subst SUP_commute) (simp add: inf_SUP SUP_inf)
haftmann@44039
   475
haftmann@44024
   476
end
haftmann@44024
   477
haftmann@44032
   478
class complete_boolean_algebra = boolean_algebra + complete_distrib_lattice
haftmann@43873
   479
begin
haftmann@43873
   480
haftmann@43943
   481
lemma dual_complete_boolean_algebra:
krauss@44845
   482
  "class.complete_boolean_algebra Sup Inf sup (op \<ge>) (op >) inf \<top> \<bottom> (\<lambda>x y. x \<squnion> - y) uminus"
haftmann@44032
   483
  by (rule class.complete_boolean_algebra.intro, rule dual_complete_distrib_lattice, rule dual_boolean_algebra)
haftmann@43943
   484
haftmann@43873
   485
lemma uminus_Inf:
haftmann@43873
   486
  "- (\<Sqinter>A) = \<Squnion>(uminus ` A)"
haftmann@43873
   487
proof (rule antisym)
haftmann@43873
   488
  show "- \<Sqinter>A \<le> \<Squnion>(uminus ` A)"
haftmann@43873
   489
    by (rule compl_le_swap2, rule Inf_greatest, rule compl_le_swap2, rule Sup_upper) simp
haftmann@43873
   490
  show "\<Squnion>(uminus ` A) \<le> - \<Sqinter>A"
haftmann@43873
   491
    by (rule Sup_least, rule compl_le_swap1, rule Inf_lower) auto
haftmann@43873
   492
qed
haftmann@43873
   493
haftmann@44041
   494
lemma uminus_INF: "- (\<Sqinter>x\<in>A. B x) = (\<Squnion>x\<in>A. - B x)"
haftmann@44041
   495
  by (simp add: INF_def SUP_def uminus_Inf image_image)
haftmann@44041
   496
haftmann@43873
   497
lemma uminus_Sup:
haftmann@43873
   498
  "- (\<Squnion>A) = \<Sqinter>(uminus ` A)"
haftmann@43873
   499
proof -
haftmann@43873
   500
  have "\<Squnion>A = - \<Sqinter>(uminus ` A)" by (simp add: image_image uminus_Inf)
haftmann@43873
   501
  then show ?thesis by simp
haftmann@43873
   502
qed
haftmann@43873
   503
  
haftmann@43873
   504
lemma uminus_SUP: "- (\<Squnion>x\<in>A. B x) = (\<Sqinter>x\<in>A. - B x)"
haftmann@43873
   505
  by (simp add: INF_def SUP_def uminus_Sup image_image)
haftmann@43873
   506
haftmann@43873
   507
end
haftmann@43873
   508
haftmann@43940
   509
class complete_linorder = linorder + complete_lattice
haftmann@43940
   510
begin
haftmann@43940
   511
haftmann@43943
   512
lemma dual_complete_linorder:
krauss@44845
   513
  "class.complete_linorder Sup Inf sup (op \<ge>) (op >) inf \<top> \<bottom>"
haftmann@43943
   514
  by (rule class.complete_linorder.intro, rule dual_complete_lattice, rule dual_linorder)
haftmann@43943
   515
haftmann@51386
   516
lemma complete_linorder_inf_min: "inf = min"
haftmann@51489
   517
  by (rule ext)+ (auto intro: antisym simp add: min_def)
haftmann@51386
   518
haftmann@51386
   519
lemma complete_linorder_sup_max: "sup = max"
haftmann@51489
   520
  by (rule ext)+ (auto intro: antisym simp add: max_def)
haftmann@51386
   521
noschinl@44918
   522
lemma Inf_less_iff:
haftmann@43940
   523
  "\<Sqinter>S \<sqsubset> a \<longleftrightarrow> (\<exists>x\<in>S. x \<sqsubset> a)"
haftmann@43940
   524
  unfolding not_le [symmetric] le_Inf_iff by auto
haftmann@43940
   525
noschinl@44918
   526
lemma INF_less_iff:
haftmann@44041
   527
  "(\<Sqinter>i\<in>A. f i) \<sqsubset> a \<longleftrightarrow> (\<exists>x\<in>A. f x \<sqsubset> a)"
haftmann@44041
   528
  unfolding INF_def Inf_less_iff by auto
haftmann@44041
   529
noschinl@44918
   530
lemma less_Sup_iff:
haftmann@43940
   531
  "a \<sqsubset> \<Squnion>S \<longleftrightarrow> (\<exists>x\<in>S. a \<sqsubset> x)"
haftmann@43940
   532
  unfolding not_le [symmetric] Sup_le_iff by auto
haftmann@43940
   533
noschinl@44918
   534
lemma less_SUP_iff:
haftmann@43940
   535
  "a \<sqsubset> (\<Squnion>i\<in>A. f i) \<longleftrightarrow> (\<exists>x\<in>A. a \<sqsubset> f x)"
haftmann@43940
   536
  unfolding SUP_def less_Sup_iff by auto
haftmann@43940
   537
noschinl@44918
   538
lemma Sup_eq_top_iff [simp]:
haftmann@43943
   539
  "\<Squnion>A = \<top> \<longleftrightarrow> (\<forall>x<\<top>. \<exists>i\<in>A. x < i)"
haftmann@43943
   540
proof
haftmann@43943
   541
  assume *: "\<Squnion>A = \<top>"
haftmann@43943
   542
  show "(\<forall>x<\<top>. \<exists>i\<in>A. x < i)" unfolding * [symmetric]
haftmann@43943
   543
  proof (intro allI impI)
haftmann@43943
   544
    fix x assume "x < \<Squnion>A" then show "\<exists>i\<in>A. x < i"
haftmann@43943
   545
      unfolding less_Sup_iff by auto
haftmann@43943
   546
  qed
haftmann@43943
   547
next
haftmann@43943
   548
  assume *: "\<forall>x<\<top>. \<exists>i\<in>A. x < i"
haftmann@43943
   549
  show "\<Squnion>A = \<top>"
haftmann@43943
   550
  proof (rule ccontr)
haftmann@43943
   551
    assume "\<Squnion>A \<noteq> \<top>"
haftmann@43943
   552
    with top_greatest [of "\<Squnion>A"]
haftmann@43943
   553
    have "\<Squnion>A < \<top>" unfolding le_less by auto
haftmann@43943
   554
    then have "\<Squnion>A < \<Squnion>A"
haftmann@43943
   555
      using * unfolding less_Sup_iff by auto
haftmann@43943
   556
    then show False by auto
haftmann@43943
   557
  qed
haftmann@43943
   558
qed
haftmann@43943
   559
noschinl@44918
   560
lemma SUP_eq_top_iff [simp]:
haftmann@44041
   561
  "(\<Squnion>i\<in>A. f i) = \<top> \<longleftrightarrow> (\<forall>x<\<top>. \<exists>i\<in>A. x < f i)"
noschinl@44919
   562
  unfolding SUP_def by auto
haftmann@44041
   563
noschinl@44918
   564
lemma Inf_eq_bot_iff [simp]:
haftmann@43943
   565
  "\<Sqinter>A = \<bottom> \<longleftrightarrow> (\<forall>x>\<bottom>. \<exists>i\<in>A. i < x)"
huffman@44920
   566
  using dual_complete_linorder
huffman@44920
   567
  by (rule complete_linorder.Sup_eq_top_iff)
haftmann@43943
   568
noschinl@44918
   569
lemma INF_eq_bot_iff [simp]:
haftmann@43967
   570
  "(\<Sqinter>i\<in>A. f i) = \<bottom> \<longleftrightarrow> (\<forall>x>\<bottom>. \<exists>i\<in>A. f i < x)"
noschinl@44919
   571
  unfolding INF_def by auto
haftmann@43967
   572
hoelzl@51328
   573
lemma le_Sup_iff: "x \<le> \<Squnion>A \<longleftrightarrow> (\<forall>y<x. \<exists>a\<in>A. y < a)"
hoelzl@51328
   574
proof safe
hoelzl@51328
   575
  fix y assume "x \<le> \<Squnion>A" "y < x"
hoelzl@51328
   576
  then have "y < \<Squnion>A" by auto
hoelzl@51328
   577
  then show "\<exists>a\<in>A. y < a"
hoelzl@51328
   578
    unfolding less_Sup_iff .
hoelzl@51328
   579
qed (auto elim!: allE[of _ "\<Squnion>A"] simp add: not_le[symmetric] Sup_upper)
hoelzl@51328
   580
hoelzl@51328
   581
lemma le_SUP_iff: "x \<le> SUPR A f \<longleftrightarrow> (\<forall>y<x. \<exists>i\<in>A. y < f i)"
hoelzl@51328
   582
  unfolding le_Sup_iff SUP_def by simp
hoelzl@51328
   583
hoelzl@51328
   584
lemma Inf_le_iff: "\<Sqinter>A \<le> x \<longleftrightarrow> (\<forall>y>x. \<exists>a\<in>A. y > a)"
hoelzl@51328
   585
proof safe
hoelzl@51328
   586
  fix y assume "x \<ge> \<Sqinter>A" "y > x"
hoelzl@51328
   587
  then have "y > \<Sqinter>A" by auto
hoelzl@51328
   588
  then show "\<exists>a\<in>A. y > a"
hoelzl@51328
   589
    unfolding Inf_less_iff .
hoelzl@51328
   590
qed (auto elim!: allE[of _ "\<Sqinter>A"] simp add: not_le[symmetric] Inf_lower)
hoelzl@51328
   591
hoelzl@51328
   592
lemma INF_le_iff:
hoelzl@51328
   593
  "INFI A f \<le> x \<longleftrightarrow> (\<forall>y>x. \<exists>i\<in>A. y > f i)"
hoelzl@51328
   594
  unfolding Inf_le_iff INF_def by simp
hoelzl@51328
   595
haftmann@51386
   596
subclass complete_distrib_lattice
haftmann@51386
   597
proof
haftmann@51386
   598
  fix a and B
haftmann@51386
   599
  show "a \<squnion> \<Sqinter>B = (\<Sqinter>b\<in>B. a \<squnion> b)" and "a \<sqinter> \<Squnion>B = (\<Squnion>b\<in>B. a \<sqinter> b)"
haftmann@51386
   600
    by (safe intro!: INF_eqI [symmetric] sup_mono Inf_lower SUP_eqI [symmetric] inf_mono Sup_upper)
haftmann@51386
   601
      (auto simp: not_less [symmetric] Inf_less_iff less_Sup_iff
haftmann@51386
   602
        le_max_iff_disj complete_linorder_sup_max min_le_iff_disj complete_linorder_inf_min)
haftmann@51386
   603
qed
haftmann@51386
   604
haftmann@43940
   605
end
haftmann@43940
   606
hoelzl@51341
   607
haftmann@46631
   608
subsection {* Complete lattice on @{typ bool} *}
haftmann@32077
   609
haftmann@44024
   610
instantiation bool :: complete_lattice
haftmann@32077
   611
begin
haftmann@32077
   612
haftmann@32077
   613
definition
haftmann@46154
   614
  [simp, code]: "\<Sqinter>A \<longleftrightarrow> False \<notin> A"
haftmann@32077
   615
haftmann@32077
   616
definition
haftmann@46154
   617
  [simp, code]: "\<Squnion>A \<longleftrightarrow> True \<in> A"
haftmann@32077
   618
haftmann@32077
   619
instance proof
haftmann@44322
   620
qed (auto intro: bool_induct)
haftmann@32077
   621
haftmann@32077
   622
end
haftmann@32077
   623
haftmann@49905
   624
lemma not_False_in_image_Ball [simp]:
haftmann@49905
   625
  "False \<notin> P ` A \<longleftrightarrow> Ball A P"
haftmann@49905
   626
  by auto
haftmann@49905
   627
haftmann@49905
   628
lemma True_in_image_Bex [simp]:
haftmann@49905
   629
  "True \<in> P ` A \<longleftrightarrow> Bex A P"
haftmann@49905
   630
  by auto
haftmann@49905
   631
haftmann@43873
   632
lemma INF_bool_eq [simp]:
haftmann@32120
   633
  "INFI = Ball"
haftmann@49905
   634
  by (simp add: fun_eq_iff INF_def)
haftmann@32120
   635
haftmann@43873
   636
lemma SUP_bool_eq [simp]:
haftmann@32120
   637
  "SUPR = Bex"
haftmann@49905
   638
  by (simp add: fun_eq_iff SUP_def)
haftmann@32120
   639
haftmann@44032
   640
instance bool :: complete_boolean_algebra proof
haftmann@44322
   641
qed (auto intro: bool_induct)
haftmann@44024
   642
haftmann@46631
   643
haftmann@46631
   644
subsection {* Complete lattice on @{typ "_ \<Rightarrow> _"} *}
haftmann@46631
   645
haftmann@32077
   646
instantiation "fun" :: (type, complete_lattice) complete_lattice
haftmann@32077
   647
begin
haftmann@32077
   648
haftmann@32077
   649
definition
haftmann@44024
   650
  "\<Sqinter>A = (\<lambda>x. \<Sqinter>f\<in>A. f x)"
haftmann@41080
   651
noschinl@46882
   652
lemma Inf_apply [simp, code]:
haftmann@44024
   653
  "(\<Sqinter>A) x = (\<Sqinter>f\<in>A. f x)"
haftmann@41080
   654
  by (simp add: Inf_fun_def)
haftmann@32077
   655
haftmann@32077
   656
definition
haftmann@44024
   657
  "\<Squnion>A = (\<lambda>x. \<Squnion>f\<in>A. f x)"
haftmann@41080
   658
noschinl@46882
   659
lemma Sup_apply [simp, code]:
haftmann@44024
   660
  "(\<Squnion>A) x = (\<Squnion>f\<in>A. f x)"
haftmann@41080
   661
  by (simp add: Sup_fun_def)
haftmann@32077
   662
haftmann@32077
   663
instance proof
noschinl@46884
   664
qed (auto simp add: le_fun_def intro: INF_lower INF_greatest SUP_upper SUP_least)
haftmann@32077
   665
haftmann@32077
   666
end
haftmann@32077
   667
noschinl@46882
   668
lemma INF_apply [simp]:
haftmann@41080
   669
  "(\<Sqinter>y\<in>A. f y) x = (\<Sqinter>y\<in>A. f y x)"
noschinl@46884
   670
  by (auto intro: arg_cong [of _ _ Inf] simp add: INF_def)
hoelzl@38705
   671
noschinl@46882
   672
lemma SUP_apply [simp]:
haftmann@41080
   673
  "(\<Squnion>y\<in>A. f y) x = (\<Squnion>y\<in>A. f y x)"
noschinl@46884
   674
  by (auto intro: arg_cong [of _ _ Sup] simp add: SUP_def)
haftmann@32077
   675
haftmann@44024
   676
instance "fun" :: (type, complete_distrib_lattice) complete_distrib_lattice proof
noschinl@46884
   677
qed (auto simp add: INF_def SUP_def inf_Sup sup_Inf image_image)
haftmann@44024
   678
haftmann@43873
   679
instance "fun" :: (type, complete_boolean_algebra) complete_boolean_algebra ..
haftmann@43873
   680
haftmann@46631
   681
haftmann@46631
   682
subsection {* Complete lattice on unary and binary predicates *}
haftmann@46631
   683
haftmann@46631
   684
lemma INF1_iff: "(\<Sqinter>x\<in>A. B x) b = (\<forall>x\<in>A. B x b)"
noschinl@46884
   685
  by simp
haftmann@46631
   686
haftmann@46631
   687
lemma INF2_iff: "(\<Sqinter>x\<in>A. B x) b c = (\<forall>x\<in>A. B x b c)"
noschinl@46884
   688
  by simp
haftmann@46631
   689
haftmann@46631
   690
lemma INF1_I: "(\<And>x. x \<in> A \<Longrightarrow> B x b) \<Longrightarrow> (\<Sqinter>x\<in>A. B x) b"
noschinl@46884
   691
  by auto
haftmann@46631
   692
haftmann@46631
   693
lemma INF2_I: "(\<And>x. x \<in> A \<Longrightarrow> B x b c) \<Longrightarrow> (\<Sqinter>x\<in>A. B x) b c"
noschinl@46884
   694
  by auto
haftmann@46631
   695
haftmann@46631
   696
lemma INF1_D: "(\<Sqinter>x\<in>A. B x) b \<Longrightarrow> a \<in> A \<Longrightarrow> B a b"
noschinl@46884
   697
  by auto
haftmann@46631
   698
haftmann@46631
   699
lemma INF2_D: "(\<Sqinter>x\<in>A. B x) b c \<Longrightarrow> a \<in> A \<Longrightarrow> B a b c"
noschinl@46884
   700
  by auto
haftmann@46631
   701
haftmann@46631
   702
lemma INF1_E: "(\<Sqinter>x\<in>A. B x) b \<Longrightarrow> (B a b \<Longrightarrow> R) \<Longrightarrow> (a \<notin> A \<Longrightarrow> R) \<Longrightarrow> R"
noschinl@46884
   703
  by auto
haftmann@46631
   704
haftmann@46631
   705
lemma INF2_E: "(\<Sqinter>x\<in>A. B x) b c \<Longrightarrow> (B a b c \<Longrightarrow> R) \<Longrightarrow> (a \<notin> A \<Longrightarrow> R) \<Longrightarrow> R"
noschinl@46884
   706
  by auto
haftmann@46631
   707
haftmann@46631
   708
lemma SUP1_iff: "(\<Squnion>x\<in>A. B x) b = (\<exists>x\<in>A. B x b)"
noschinl@46884
   709
  by simp
haftmann@46631
   710
haftmann@46631
   711
lemma SUP2_iff: "(\<Squnion>x\<in>A. B x) b c = (\<exists>x\<in>A. B x b c)"
noschinl@46884
   712
  by simp
haftmann@46631
   713
haftmann@46631
   714
lemma SUP1_I: "a \<in> A \<Longrightarrow> B a b \<Longrightarrow> (\<Squnion>x\<in>A. B x) b"
noschinl@46884
   715
  by auto
haftmann@46631
   716
haftmann@46631
   717
lemma SUP2_I: "a \<in> A \<Longrightarrow> B a b c \<Longrightarrow> (\<Squnion>x\<in>A. B x) b c"
noschinl@46884
   718
  by auto
haftmann@46631
   719
haftmann@46631
   720
lemma SUP1_E: "(\<Squnion>x\<in>A. B x) b \<Longrightarrow> (\<And>x. x \<in> A \<Longrightarrow> B x b \<Longrightarrow> R) \<Longrightarrow> R"
noschinl@46884
   721
  by auto
haftmann@46631
   722
haftmann@46631
   723
lemma SUP2_E: "(\<Squnion>x\<in>A. B x) b c \<Longrightarrow> (\<And>x. x \<in> A \<Longrightarrow> B x b c \<Longrightarrow> R) \<Longrightarrow> R"
noschinl@46884
   724
  by auto
haftmann@46631
   725
haftmann@46631
   726
haftmann@46631
   727
subsection {* Complete lattice on @{typ "_ set"} *}
haftmann@46631
   728
haftmann@45960
   729
instantiation "set" :: (type) complete_lattice
haftmann@45960
   730
begin
haftmann@45960
   731
haftmann@45960
   732
definition
haftmann@45960
   733
  "\<Sqinter>A = {x. \<Sqinter>((\<lambda>B. x \<in> B) ` A)}"
haftmann@45960
   734
haftmann@45960
   735
definition
haftmann@45960
   736
  "\<Squnion>A = {x. \<Squnion>((\<lambda>B. x \<in> B) ` A)}"
haftmann@45960
   737
haftmann@45960
   738
instance proof
haftmann@51386
   739
qed (auto simp add: less_eq_set_def Inf_set_def Sup_set_def le_fun_def)
haftmann@45960
   740
haftmann@45960
   741
end
haftmann@45960
   742
haftmann@45960
   743
instance "set" :: (type) complete_boolean_algebra
haftmann@45960
   744
proof
haftmann@45960
   745
qed (auto simp add: INF_def SUP_def Inf_set_def Sup_set_def image_def)
haftmann@45960
   746
  
haftmann@32077
   747
haftmann@46631
   748
subsubsection {* Inter *}
haftmann@41082
   749
haftmann@41082
   750
abbreviation Inter :: "'a set set \<Rightarrow> 'a set" where
haftmann@41082
   751
  "Inter S \<equiv> \<Sqinter>S"
haftmann@41082
   752
  
haftmann@41082
   753
notation (xsymbols)
haftmann@41082
   754
  Inter  ("\<Inter>_" [90] 90)
haftmann@41082
   755
haftmann@41082
   756
lemma Inter_eq:
haftmann@41082
   757
  "\<Inter>A = {x. \<forall>B \<in> A. x \<in> B}"
haftmann@41082
   758
proof (rule set_eqI)
haftmann@41082
   759
  fix x
haftmann@41082
   760
  have "(\<forall>Q\<in>{P. \<exists>B\<in>A. P \<longleftrightarrow> x \<in> B}. Q) \<longleftrightarrow> (\<forall>B\<in>A. x \<in> B)"
haftmann@41082
   761
    by auto
haftmann@41082
   762
  then show "x \<in> \<Inter>A \<longleftrightarrow> x \<in> {x. \<forall>B \<in> A. x \<in> B}"
haftmann@45960
   763
    by (simp add: Inf_set_def image_def)
haftmann@41082
   764
qed
haftmann@41082
   765
haftmann@43741
   766
lemma Inter_iff [simp,no_atp]: "A \<in> \<Inter>C \<longleftrightarrow> (\<forall>X\<in>C. A \<in> X)"
haftmann@41082
   767
  by (unfold Inter_eq) blast
haftmann@41082
   768
haftmann@43741
   769
lemma InterI [intro!]: "(\<And>X. X \<in> C \<Longrightarrow> A \<in> X) \<Longrightarrow> A \<in> \<Inter>C"
haftmann@41082
   770
  by (simp add: Inter_eq)
haftmann@41082
   771
haftmann@41082
   772
text {*
haftmann@41082
   773
  \medskip A ``destruct'' rule -- every @{term X} in @{term C}
haftmann@43741
   774
  contains @{term A} as an element, but @{prop "A \<in> X"} can hold when
haftmann@43741
   775
  @{prop "X \<in> C"} does not!  This rule is analogous to @{text spec}.
haftmann@41082
   776
*}
haftmann@41082
   777
haftmann@43741
   778
lemma InterD [elim, Pure.elim]: "A \<in> \<Inter>C \<Longrightarrow> X \<in> C \<Longrightarrow> A \<in> X"
haftmann@41082
   779
  by auto
haftmann@41082
   780
haftmann@43741
   781
lemma InterE [elim]: "A \<in> \<Inter>C \<Longrightarrow> (X \<notin> C \<Longrightarrow> R) \<Longrightarrow> (A \<in> X \<Longrightarrow> R) \<Longrightarrow> R"
haftmann@41082
   782
  -- {* ``Classical'' elimination rule -- does not require proving
haftmann@43741
   783
    @{prop "X \<in> C"}. *}
haftmann@41082
   784
  by (unfold Inter_eq) blast
haftmann@41082
   785
haftmann@43741
   786
lemma Inter_lower: "B \<in> A \<Longrightarrow> \<Inter>A \<subseteq> B"
haftmann@43740
   787
  by (fact Inf_lower)
haftmann@43740
   788
haftmann@41082
   789
lemma Inter_subset:
haftmann@43755
   790
  "(\<And>X. X \<in> A \<Longrightarrow> X \<subseteq> B) \<Longrightarrow> A \<noteq> {} \<Longrightarrow> \<Inter>A \<subseteq> B"
haftmann@43740
   791
  by (fact Inf_less_eq)
haftmann@41082
   792
haftmann@43755
   793
lemma Inter_greatest: "(\<And>X. X \<in> A \<Longrightarrow> C \<subseteq> X) \<Longrightarrow> C \<subseteq> Inter A"
haftmann@43740
   794
  by (fact Inf_greatest)
haftmann@41082
   795
huffman@44067
   796
lemma Inter_empty: "\<Inter>{} = UNIV"
huffman@44067
   797
  by (fact Inf_empty) (* already simp *)
haftmann@41082
   798
huffman@44067
   799
lemma Inter_UNIV: "\<Inter>UNIV = {}"
huffman@44067
   800
  by (fact Inf_UNIV) (* already simp *)
haftmann@41082
   801
huffman@44920
   802
lemma Inter_insert: "\<Inter>(insert a B) = a \<inter> \<Inter>B"
huffman@44920
   803
  by (fact Inf_insert) (* already simp *)
haftmann@41082
   804
haftmann@41082
   805
lemma Inter_Un_subset: "\<Inter>A \<union> \<Inter>B \<subseteq> \<Inter>(A \<inter> B)"
haftmann@43899
   806
  by (fact less_eq_Inf_inter)
haftmann@41082
   807
haftmann@41082
   808
lemma Inter_Un_distrib: "\<Inter>(A \<union> B) = \<Inter>A \<inter> \<Inter>B"
haftmann@43756
   809
  by (fact Inf_union_distrib)
haftmann@43756
   810
haftmann@43868
   811
lemma Inter_UNIV_conv [simp, no_atp]:
haftmann@43741
   812
  "\<Inter>A = UNIV \<longleftrightarrow> (\<forall>x\<in>A. x = UNIV)"
haftmann@43741
   813
  "UNIV = \<Inter>A \<longleftrightarrow> (\<forall>x\<in>A. x = UNIV)"
haftmann@43801
   814
  by (fact Inf_top_conv)+
haftmann@41082
   815
haftmann@43741
   816
lemma Inter_anti_mono: "B \<subseteq> A \<Longrightarrow> \<Inter>A \<subseteq> \<Inter>B"
haftmann@43899
   817
  by (fact Inf_superset_mono)
haftmann@41082
   818
haftmann@41082
   819
haftmann@46631
   820
subsubsection {* Intersections of families *}
haftmann@41082
   821
haftmann@41082
   822
abbreviation INTER :: "'a set \<Rightarrow> ('a \<Rightarrow> 'b set) \<Rightarrow> 'b set" where
haftmann@41082
   823
  "INTER \<equiv> INFI"
haftmann@41082
   824
haftmann@43872
   825
text {*
haftmann@43872
   826
  Note: must use name @{const INTER} here instead of @{text INT}
haftmann@43872
   827
  to allow the following syntax coexist with the plain constant name.
haftmann@43872
   828
*}
haftmann@43872
   829
haftmann@41082
   830
syntax
haftmann@41082
   831
  "_INTER1"     :: "pttrns => 'b set => 'b set"           ("(3INT _./ _)" [0, 10] 10)
haftmann@41082
   832
  "_INTER"      :: "pttrn => 'a set => 'b set => 'b set"  ("(3INT _:_./ _)" [0, 0, 10] 10)
haftmann@41082
   833
haftmann@41082
   834
syntax (xsymbols)
haftmann@41082
   835
  "_INTER1"     :: "pttrns => 'b set => 'b set"           ("(3\<Inter>_./ _)" [0, 10] 10)
haftmann@41082
   836
  "_INTER"      :: "pttrn => 'a set => 'b set => 'b set"  ("(3\<Inter>_\<in>_./ _)" [0, 0, 10] 10)
haftmann@41082
   837
haftmann@41082
   838
syntax (latex output)
haftmann@41082
   839
  "_INTER1"     :: "pttrns => 'b set => 'b set"           ("(3\<Inter>(00\<^bsub>_\<^esub>)/ _)" [0, 10] 10)
haftmann@41082
   840
  "_INTER"      :: "pttrn => 'a set => 'b set => 'b set"  ("(3\<Inter>(00\<^bsub>_\<in>_\<^esub>)/ _)" [0, 0, 10] 10)
haftmann@41082
   841
haftmann@41082
   842
translations
haftmann@41082
   843
  "INT x y. B"  == "INT x. INT y. B"
haftmann@41082
   844
  "INT x. B"    == "CONST INTER CONST UNIV (%x. B)"
haftmann@41082
   845
  "INT x. B"    == "INT x:CONST UNIV. B"
haftmann@41082
   846
  "INT x:A. B"  == "CONST INTER A (%x. B)"
haftmann@41082
   847
haftmann@41082
   848
print_translation {*
wenzelm@42284
   849
  [Syntax_Trans.preserve_binder_abs2_tr' @{const_syntax INTER} @{syntax_const "_INTER"}]
haftmann@41082
   850
*} -- {* to avoid eta-contraction of body *}
haftmann@41082
   851
haftmann@44085
   852
lemma INTER_eq:
haftmann@41082
   853
  "(\<Inter>x\<in>A. B x) = {y. \<forall>x\<in>A. y \<in> B x}"
haftmann@44085
   854
  by (auto simp add: INF_def)
haftmann@41082
   855
haftmann@41082
   856
lemma Inter_image_eq [simp]:
haftmann@41082
   857
  "\<Inter>(B`A) = (\<Inter>x\<in>A. B x)"
haftmann@43872
   858
  by (rule sym) (fact INF_def)
haftmann@41082
   859
haftmann@43817
   860
lemma INT_iff [simp]: "b \<in> (\<Inter>x\<in>A. B x) \<longleftrightarrow> (\<forall>x\<in>A. b \<in> B x)"
haftmann@44085
   861
  by (auto simp add: INF_def image_def)
haftmann@41082
   862
haftmann@43817
   863
lemma INT_I [intro!]: "(\<And>x. x \<in> A \<Longrightarrow> b \<in> B x) \<Longrightarrow> b \<in> (\<Inter>x\<in>A. B x)"
haftmann@44085
   864
  by (auto simp add: INF_def image_def)
haftmann@41082
   865
haftmann@43852
   866
lemma INT_D [elim, Pure.elim]: "b \<in> (\<Inter>x\<in>A. B x) \<Longrightarrow> a \<in> A \<Longrightarrow> b \<in> B a"
haftmann@41082
   867
  by auto
haftmann@41082
   868
haftmann@43852
   869
lemma INT_E [elim]: "b \<in> (\<Inter>x\<in>A. B x) \<Longrightarrow> (b \<in> B a \<Longrightarrow> R) \<Longrightarrow> (a \<notin> A \<Longrightarrow> R) \<Longrightarrow> R"
haftmann@43852
   870
  -- {* "Classical" elimination -- by the Excluded Middle on @{prop "a\<in>A"}. *}
haftmann@44085
   871
  by (auto simp add: INF_def image_def)
haftmann@41082
   872
haftmann@41082
   873
lemma INT_cong [cong]:
haftmann@43854
   874
  "A = B \<Longrightarrow> (\<And>x. x \<in> B \<Longrightarrow> C x = D x) \<Longrightarrow> (\<Inter>x\<in>A. C x) = (\<Inter>x\<in>B. D x)"
haftmann@43865
   875
  by (fact INF_cong)
haftmann@41082
   876
haftmann@41082
   877
lemma Collect_ball_eq: "{x. \<forall>y\<in>A. P x y} = (\<Inter>y\<in>A. {x. P x y})"
haftmann@41082
   878
  by blast
haftmann@41082
   879
haftmann@41082
   880
lemma Collect_all_eq: "{x. \<forall>y. P x y} = (\<Inter>y. {x. P x y})"
haftmann@41082
   881
  by blast
haftmann@41082
   882
haftmann@43817
   883
lemma INT_lower: "a \<in> A \<Longrightarrow> (\<Inter>x\<in>A. B x) \<subseteq> B a"
haftmann@44103
   884
  by (fact INF_lower)
haftmann@41082
   885
haftmann@43817
   886
lemma INT_greatest: "(\<And>x. x \<in> A \<Longrightarrow> C \<subseteq> B x) \<Longrightarrow> C \<subseteq> (\<Inter>x\<in>A. B x)"
haftmann@44103
   887
  by (fact INF_greatest)
haftmann@41082
   888
huffman@44067
   889
lemma INT_empty: "(\<Inter>x\<in>{}. B x) = UNIV"
haftmann@44085
   890
  by (fact INF_empty)
haftmann@43854
   891
haftmann@43817
   892
lemma INT_absorb: "k \<in> I \<Longrightarrow> A k \<inter> (\<Inter>i\<in>I. A i) = (\<Inter>i\<in>I. A i)"
haftmann@43872
   893
  by (fact INF_absorb)
haftmann@41082
   894
haftmann@43854
   895
lemma INT_subset_iff: "B \<subseteq> (\<Inter>i\<in>I. A i) \<longleftrightarrow> (\<forall>i\<in>I. B \<subseteq> A i)"
haftmann@41082
   896
  by (fact le_INF_iff)
haftmann@41082
   897
haftmann@41082
   898
lemma INT_insert [simp]: "(\<Inter>x \<in> insert a A. B x) = B a \<inter> INTER A B"
haftmann@43865
   899
  by (fact INF_insert)
haftmann@43865
   900
haftmann@43865
   901
lemma INT_Un: "(\<Inter>i \<in> A \<union> B. M i) = (\<Inter>i \<in> A. M i) \<inter> (\<Inter>i\<in>B. M i)"
haftmann@43865
   902
  by (fact INF_union)
haftmann@43865
   903
haftmann@43865
   904
lemma INT_insert_distrib:
haftmann@43865
   905
  "u \<in> A \<Longrightarrow> (\<Inter>x\<in>A. insert a (B x)) = insert a (\<Inter>x\<in>A. B x)"
haftmann@43865
   906
  by blast
haftmann@43854
   907
haftmann@41082
   908
lemma INT_constant [simp]: "(\<Inter>y\<in>A. c) = (if A = {} then UNIV else c)"
haftmann@43865
   909
  by (fact INF_constant)
haftmann@43865
   910
huffman@44920
   911
lemma INTER_UNIV_conv:
haftmann@43817
   912
 "(UNIV = (\<Inter>x\<in>A. B x)) = (\<forall>x\<in>A. B x = UNIV)"
haftmann@43817
   913
 "((\<Inter>x\<in>A. B x) = UNIV) = (\<forall>x\<in>A. B x = UNIV)"
huffman@44920
   914
  by (fact INF_top_conv)+ (* already simp *)
haftmann@43865
   915
haftmann@43865
   916
lemma INT_bool_eq: "(\<Inter>b. A b) = A True \<inter> A False"
haftmann@43873
   917
  by (fact INF_UNIV_bool_expand)
haftmann@43865
   918
haftmann@43865
   919
lemma INT_anti_mono:
haftmann@43900
   920
  "A \<subseteq> B \<Longrightarrow> (\<And>x. x \<in> A \<Longrightarrow> f x \<subseteq> g x) \<Longrightarrow> (\<Inter>x\<in>B. f x) \<subseteq> (\<Inter>x\<in>A. g x)"
haftmann@43865
   921
  -- {* The last inclusion is POSITIVE! *}
haftmann@43940
   922
  by (fact INF_superset_mono)
haftmann@41082
   923
haftmann@41082
   924
lemma Pow_INT_eq: "Pow (\<Inter>x\<in>A. B x) = (\<Inter>x\<in>A. Pow (B x))"
haftmann@41082
   925
  by blast
haftmann@41082
   926
haftmann@43817
   927
lemma vimage_INT: "f -` (\<Inter>x\<in>A. B x) = (\<Inter>x\<in>A. f -` B x)"
haftmann@41082
   928
  by blast
haftmann@41082
   929
haftmann@41082
   930
haftmann@46631
   931
subsubsection {* Union *}
haftmann@32115
   932
haftmann@32587
   933
abbreviation Union :: "'a set set \<Rightarrow> 'a set" where
haftmann@32587
   934
  "Union S \<equiv> \<Squnion>S"
haftmann@32115
   935
haftmann@32115
   936
notation (xsymbols)
haftmann@32115
   937
  Union  ("\<Union>_" [90] 90)
haftmann@32115
   938
haftmann@32135
   939
lemma Union_eq:
haftmann@32135
   940
  "\<Union>A = {x. \<exists>B \<in> A. x \<in> B}"
nipkow@39302
   941
proof (rule set_eqI)
haftmann@32115
   942
  fix x
haftmann@32135
   943
  have "(\<exists>Q\<in>{P. \<exists>B\<in>A. P \<longleftrightarrow> x \<in> B}. Q) \<longleftrightarrow> (\<exists>B\<in>A. x \<in> B)"
haftmann@32115
   944
    by auto
haftmann@32135
   945
  then show "x \<in> \<Union>A \<longleftrightarrow> x \<in> {x. \<exists>B\<in>A. x \<in> B}"
haftmann@45960
   946
    by (simp add: Sup_set_def image_def)
haftmann@32115
   947
qed
haftmann@32115
   948
blanchet@35828
   949
lemma Union_iff [simp, no_atp]:
haftmann@32115
   950
  "A \<in> \<Union>C \<longleftrightarrow> (\<exists>X\<in>C. A\<in>X)"
haftmann@32115
   951
  by (unfold Union_eq) blast
haftmann@32115
   952
haftmann@32115
   953
lemma UnionI [intro]:
haftmann@32115
   954
  "X \<in> C \<Longrightarrow> A \<in> X \<Longrightarrow> A \<in> \<Union>C"
haftmann@32115
   955
  -- {* The order of the premises presupposes that @{term C} is rigid;
haftmann@32115
   956
    @{term A} may be flexible. *}
haftmann@32115
   957
  by auto
haftmann@32115
   958
haftmann@32115
   959
lemma UnionE [elim!]:
haftmann@43817
   960
  "A \<in> \<Union>C \<Longrightarrow> (\<And>X. A \<in> X \<Longrightarrow> X \<in> C \<Longrightarrow> R) \<Longrightarrow> R"
haftmann@32115
   961
  by auto
haftmann@32115
   962
haftmann@43817
   963
lemma Union_upper: "B \<in> A \<Longrightarrow> B \<subseteq> \<Union>A"
haftmann@43901
   964
  by (fact Sup_upper)
haftmann@32135
   965
haftmann@43817
   966
lemma Union_least: "(\<And>X. X \<in> A \<Longrightarrow> X \<subseteq> C) \<Longrightarrow> \<Union>A \<subseteq> C"
haftmann@43901
   967
  by (fact Sup_least)
haftmann@32135
   968
huffman@44920
   969
lemma Union_empty: "\<Union>{} = {}"
huffman@44920
   970
  by (fact Sup_empty) (* already simp *)
haftmann@32135
   971
huffman@44920
   972
lemma Union_UNIV: "\<Union>UNIV = UNIV"
huffman@44920
   973
  by (fact Sup_UNIV) (* already simp *)
haftmann@32135
   974
huffman@44920
   975
lemma Union_insert: "\<Union>insert a B = a \<union> \<Union>B"
huffman@44920
   976
  by (fact Sup_insert) (* already simp *)
haftmann@32135
   977
haftmann@43817
   978
lemma Union_Un_distrib [simp]: "\<Union>(A \<union> B) = \<Union>A \<union> \<Union>B"
haftmann@43901
   979
  by (fact Sup_union_distrib)
haftmann@32135
   980
haftmann@32135
   981
lemma Union_Int_subset: "\<Union>(A \<inter> B) \<subseteq> \<Union>A \<inter> \<Union>B"
haftmann@43901
   982
  by (fact Sup_inter_less_eq)
haftmann@32135
   983
huffman@44920
   984
lemma Union_empty_conv [no_atp]: "(\<Union>A = {}) \<longleftrightarrow> (\<forall>x\<in>A. x = {})"
huffman@44920
   985
  by (fact Sup_bot_conv) (* already simp *)
haftmann@32135
   986
huffman@44920
   987
lemma empty_Union_conv [no_atp]: "({} = \<Union>A) \<longleftrightarrow> (\<forall>x\<in>A. x = {})"
huffman@44920
   988
  by (fact Sup_bot_conv) (* already simp *)
haftmann@32135
   989
haftmann@32135
   990
lemma subset_Pow_Union: "A \<subseteq> Pow (\<Union>A)"
haftmann@32135
   991
  by blast
haftmann@32135
   992
haftmann@32135
   993
lemma Union_Pow_eq [simp]: "\<Union>(Pow A) = A"
haftmann@32135
   994
  by blast
haftmann@32135
   995
haftmann@43817
   996
lemma Union_mono: "A \<subseteq> B \<Longrightarrow> \<Union>A \<subseteq> \<Union>B"
haftmann@43901
   997
  by (fact Sup_subset_mono)
haftmann@32135
   998
haftmann@32115
   999
haftmann@46631
  1000
subsubsection {* Unions of families *}
haftmann@32077
  1001
haftmann@32606
  1002
abbreviation UNION :: "'a set \<Rightarrow> ('a \<Rightarrow> 'b set) \<Rightarrow> 'b set" where
haftmann@32606
  1003
  "UNION \<equiv> SUPR"
haftmann@32077
  1004
haftmann@43872
  1005
text {*
haftmann@43872
  1006
  Note: must use name @{const UNION} here instead of @{text UN}
haftmann@43872
  1007
  to allow the following syntax coexist with the plain constant name.
haftmann@43872
  1008
*}
haftmann@43872
  1009
haftmann@32077
  1010
syntax
wenzelm@35115
  1011
  "_UNION1"     :: "pttrns => 'b set => 'b set"           ("(3UN _./ _)" [0, 10] 10)
huffman@36364
  1012
  "_UNION"      :: "pttrn => 'a set => 'b set => 'b set"  ("(3UN _:_./ _)" [0, 0, 10] 10)
haftmann@32077
  1013
haftmann@32077
  1014
syntax (xsymbols)
wenzelm@35115
  1015
  "_UNION1"     :: "pttrns => 'b set => 'b set"           ("(3\<Union>_./ _)" [0, 10] 10)
huffman@36364
  1016
  "_UNION"      :: "pttrn => 'a set => 'b set => 'b set"  ("(3\<Union>_\<in>_./ _)" [0, 0, 10] 10)
haftmann@32077
  1017
haftmann@32077
  1018
syntax (latex output)
wenzelm@35115
  1019
  "_UNION1"     :: "pttrns => 'b set => 'b set"           ("(3\<Union>(00\<^bsub>_\<^esub>)/ _)" [0, 10] 10)
huffman@36364
  1020
  "_UNION"      :: "pttrn => 'a set => 'b set => 'b set"  ("(3\<Union>(00\<^bsub>_\<in>_\<^esub>)/ _)" [0, 0, 10] 10)
haftmann@32077
  1021
haftmann@32077
  1022
translations
haftmann@32077
  1023
  "UN x y. B"   == "UN x. UN y. B"
haftmann@32077
  1024
  "UN x. B"     == "CONST UNION CONST UNIV (%x. B)"
haftmann@32077
  1025
  "UN x. B"     == "UN x:CONST UNIV. B"
haftmann@32077
  1026
  "UN x:A. B"   == "CONST UNION A (%x. B)"
haftmann@32077
  1027
haftmann@32077
  1028
text {*
haftmann@32077
  1029
  Note the difference between ordinary xsymbol syntax of indexed
haftmann@32077
  1030
  unions and intersections (e.g.\ @{text"\<Union>a\<^isub>1\<in>A\<^isub>1. B"})
haftmann@32077
  1031
  and their \LaTeX\ rendition: @{term"\<Union>a\<^isub>1\<in>A\<^isub>1. B"}. The
haftmann@32077
  1032
  former does not make the index expression a subscript of the
haftmann@32077
  1033
  union/intersection symbol because this leads to problems with nested
haftmann@32077
  1034
  subscripts in Proof General.
haftmann@32077
  1035
*}
haftmann@32077
  1036
wenzelm@35115
  1037
print_translation {*
wenzelm@42284
  1038
  [Syntax_Trans.preserve_binder_abs2_tr' @{const_syntax UNION} @{syntax_const "_UNION"}]
wenzelm@35115
  1039
*} -- {* to avoid eta-contraction of body *}
haftmann@32077
  1040
haftmann@44085
  1041
lemma UNION_eq [no_atp]:
haftmann@32135
  1042
  "(\<Union>x\<in>A. B x) = {y. \<exists>x\<in>A. y \<in> B x}"
haftmann@44085
  1043
  by (auto simp add: SUP_def)
huffman@44920
  1044
haftmann@45960
  1045
lemma bind_UNION [code]:
haftmann@45960
  1046
  "Set.bind A f = UNION A f"
haftmann@45960
  1047
  by (simp add: bind_def UNION_eq)
haftmann@45960
  1048
haftmann@46036
  1049
lemma member_bind [simp]:
haftmann@46036
  1050
  "x \<in> Set.bind P f \<longleftrightarrow> x \<in> UNION P f "
haftmann@46036
  1051
  by (simp add: bind_UNION)
haftmann@46036
  1052
haftmann@32115
  1053
lemma Union_image_eq [simp]:
haftmann@43817
  1054
  "\<Union>(B ` A) = (\<Union>x\<in>A. B x)"
huffman@44920
  1055
  by (rule sym) (fact SUP_def)
huffman@44920
  1056
haftmann@46036
  1057
lemma UN_iff [simp]: "b \<in> (\<Union>x\<in>A. B x) \<longleftrightarrow> (\<exists>x\<in>A. b \<in> B x)"
haftmann@44085
  1058
  by (auto simp add: SUP_def image_def)
wenzelm@11979
  1059
haftmann@43852
  1060
lemma UN_I [intro]: "a \<in> A \<Longrightarrow> b \<in> B a \<Longrightarrow> b \<in> (\<Union>x\<in>A. B x)"
wenzelm@11979
  1061
  -- {* The order of the premises presupposes that @{term A} is rigid;
wenzelm@11979
  1062
    @{term b} may be flexible. *}
wenzelm@11979
  1063
  by auto
wenzelm@11979
  1064
haftmann@43852
  1065
lemma UN_E [elim!]: "b \<in> (\<Union>x\<in>A. B x) \<Longrightarrow> (\<And>x. x\<in>A \<Longrightarrow> b \<in> B x \<Longrightarrow> R) \<Longrightarrow> R"
haftmann@44085
  1066
  by (auto simp add: SUP_def image_def)
clasohm@923
  1067
wenzelm@11979
  1068
lemma UN_cong [cong]:
haftmann@43900
  1069
  "A = B \<Longrightarrow> (\<And>x. x \<in> B \<Longrightarrow> C x = D x) \<Longrightarrow> (\<Union>x\<in>A. C x) = (\<Union>x\<in>B. D x)"
haftmann@43900
  1070
  by (fact SUP_cong)
wenzelm@11979
  1071
berghofe@29691
  1072
lemma strong_UN_cong:
haftmann@43900
  1073
  "A = B \<Longrightarrow> (\<And>x. x \<in> B =simp=> C x = D x) \<Longrightarrow> (\<Union>x\<in>A. C x) = (\<Union>x\<in>B. D x)"
haftmann@43900
  1074
  by (unfold simp_implies_def) (fact UN_cong)
berghofe@29691
  1075
haftmann@43817
  1076
lemma image_eq_UN: "f ` A = (\<Union>x\<in>A. {f x})"
haftmann@32077
  1077
  by blast
haftmann@32077
  1078
haftmann@43817
  1079
lemma UN_upper: "a \<in> A \<Longrightarrow> B a \<subseteq> (\<Union>x\<in>A. B x)"
haftmann@44103
  1080
  by (fact SUP_upper)
haftmann@32135
  1081
haftmann@43817
  1082
lemma UN_least: "(\<And>x. x \<in> A \<Longrightarrow> B x \<subseteq> C) \<Longrightarrow> (\<Union>x\<in>A. B x) \<subseteq> C"
haftmann@44103
  1083
  by (fact SUP_least)
haftmann@32135
  1084
blanchet@35828
  1085
lemma Collect_bex_eq [no_atp]: "{x. \<exists>y\<in>A. P x y} = (\<Union>y\<in>A. {x. P x y})"
haftmann@32135
  1086
  by blast
haftmann@32135
  1087
haftmann@43817
  1088
lemma UN_insert_distrib: "u \<in> A \<Longrightarrow> (\<Union>x\<in>A. insert a (B x)) = insert a (\<Union>x\<in>A. B x)"
haftmann@32135
  1089
  by blast
haftmann@32135
  1090
huffman@44067
  1091
lemma UN_empty [no_atp]: "(\<Union>x\<in>{}. B x) = {}"
haftmann@44085
  1092
  by (fact SUP_empty)
haftmann@32135
  1093
huffman@44920
  1094
lemma UN_empty2: "(\<Union>x\<in>A. {}) = {}"
huffman@44920
  1095
  by (fact SUP_bot) (* already simp *)
haftmann@32135
  1096
haftmann@43817
  1097
lemma UN_absorb: "k \<in> I \<Longrightarrow> A k \<union> (\<Union>i\<in>I. A i) = (\<Union>i\<in>I. A i)"
haftmann@43900
  1098
  by (fact SUP_absorb)
haftmann@32135
  1099
haftmann@32135
  1100
lemma UN_insert [simp]: "(\<Union>x\<in>insert a A. B x) = B a \<union> UNION A B"
haftmann@43900
  1101
  by (fact SUP_insert)
haftmann@32135
  1102
haftmann@44085
  1103
lemma UN_Un [simp]: "(\<Union>i \<in> A \<union> B. M i) = (\<Union>i\<in>A. M i) \<union> (\<Union>i\<in>B. M i)"
haftmann@43900
  1104
  by (fact SUP_union)
haftmann@32135
  1105
haftmann@43967
  1106
lemma UN_UN_flatten: "(\<Union>x \<in> (\<Union>y\<in>A. B y). C x) = (\<Union>y\<in>A. \<Union>x\<in>B y. C x)"
haftmann@32135
  1107
  by blast
haftmann@32135
  1108
haftmann@32135
  1109
lemma UN_subset_iff: "((\<Union>i\<in>I. A i) \<subseteq> B) = (\<forall>i\<in>I. A i \<subseteq> B)"
huffman@35629
  1110
  by (fact SUP_le_iff)
haftmann@32135
  1111
haftmann@32135
  1112
lemma UN_constant [simp]: "(\<Union>y\<in>A. c) = (if A = {} then {} else c)"
haftmann@43900
  1113
  by (fact SUP_constant)
haftmann@32135
  1114
haftmann@43944
  1115
lemma image_Union: "f ` \<Union>S = (\<Union>x\<in>S. f ` x)"
haftmann@32135
  1116
  by blast
haftmann@32135
  1117
huffman@44920
  1118
lemma UNION_empty_conv:
haftmann@43817
  1119
  "{} = (\<Union>x\<in>A. B x) \<longleftrightarrow> (\<forall>x\<in>A. B x = {})"
haftmann@43817
  1120
  "(\<Union>x\<in>A. B x) = {} \<longleftrightarrow> (\<forall>x\<in>A. B x = {})"
huffman@44920
  1121
  by (fact SUP_bot_conv)+ (* already simp *)
haftmann@32135
  1122
blanchet@35828
  1123
lemma Collect_ex_eq [no_atp]: "{x. \<exists>y. P x y} = (\<Union>y. {x. P x y})"
haftmann@32135
  1124
  by blast
haftmann@32135
  1125
haftmann@43900
  1126
lemma ball_UN: "(\<forall>z \<in> UNION A B. P z) \<longleftrightarrow> (\<forall>x\<in>A. \<forall>z \<in> B x. P z)"
haftmann@32135
  1127
  by blast
haftmann@32135
  1128
haftmann@43900
  1129
lemma bex_UN: "(\<exists>z \<in> UNION A B. P z) \<longleftrightarrow> (\<exists>x\<in>A. \<exists>z\<in>B x. P z)"
haftmann@32135
  1130
  by blast
haftmann@32135
  1131
haftmann@32135
  1132
lemma Un_eq_UN: "A \<union> B = (\<Union>b. if b then A else B)"
haftmann@32135
  1133
  by (auto simp add: split_if_mem2)
haftmann@32135
  1134
haftmann@43817
  1135
lemma UN_bool_eq: "(\<Union>b. A b) = (A True \<union> A False)"
haftmann@43900
  1136
  by (fact SUP_UNIV_bool_expand)
haftmann@32135
  1137
haftmann@32135
  1138
lemma UN_Pow_subset: "(\<Union>x\<in>A. Pow (B x)) \<subseteq> Pow (\<Union>x\<in>A. B x)"
haftmann@32135
  1139
  by blast
haftmann@32135
  1140
haftmann@32135
  1141
lemma UN_mono:
haftmann@43817
  1142
  "A \<subseteq> B \<Longrightarrow> (\<And>x. x \<in> A \<Longrightarrow> f x \<subseteq> g x) \<Longrightarrow>
haftmann@32135
  1143
    (\<Union>x\<in>A. f x) \<subseteq> (\<Union>x\<in>B. g x)"
haftmann@43940
  1144
  by (fact SUP_subset_mono)
haftmann@32135
  1145
haftmann@43817
  1146
lemma vimage_Union: "f -` (\<Union>A) = (\<Union>X\<in>A. f -` X)"
haftmann@32135
  1147
  by blast
haftmann@32135
  1148
haftmann@43817
  1149
lemma vimage_UN: "f -` (\<Union>x\<in>A. B x) = (\<Union>x\<in>A. f -` B x)"
haftmann@32135
  1150
  by blast
haftmann@32135
  1151
haftmann@43817
  1152
lemma vimage_eq_UN: "f -` B = (\<Union>y\<in>B. f -` {y})"
haftmann@32135
  1153
  -- {* NOT suitable for rewriting *}
haftmann@32135
  1154
  by blast
haftmann@32135
  1155
haftmann@43817
  1156
lemma image_UN: "f ` UNION A B = (\<Union>x\<in>A. f ` B x)"
haftmann@43817
  1157
  by blast
haftmann@32135
  1158
haftmann@45013
  1159
lemma UN_singleton [simp]: "(\<Union>x\<in>A. {x}) = A"
haftmann@45013
  1160
  by blast
haftmann@45013
  1161
wenzelm@11979
  1162
haftmann@46631
  1163
subsubsection {* Distributive laws *}
wenzelm@12897
  1164
wenzelm@12897
  1165
lemma Int_Union: "A \<inter> \<Union>B = (\<Union>C\<in>B. A \<inter> C)"
haftmann@44032
  1166
  by (fact inf_Sup)
wenzelm@12897
  1167
haftmann@44039
  1168
lemma Un_Inter: "A \<union> \<Inter>B = (\<Inter>C\<in>B. A \<union> C)"
haftmann@44039
  1169
  by (fact sup_Inf)
haftmann@44039
  1170
wenzelm@12897
  1171
lemma Int_Union2: "\<Union>B \<inter> A = (\<Union>C\<in>B. C \<inter> A)"
haftmann@44039
  1172
  by (fact Sup_inf)
haftmann@44039
  1173
haftmann@44039
  1174
lemma INT_Int_distrib: "(\<Inter>i\<in>I. A i \<inter> B i) = (\<Inter>i\<in>I. A i) \<inter> (\<Inter>i\<in>I. B i)"
haftmann@44039
  1175
  by (rule sym) (rule INF_inf_distrib)
haftmann@44039
  1176
haftmann@44039
  1177
lemma UN_Un_distrib: "(\<Union>i\<in>I. A i \<union> B i) = (\<Union>i\<in>I. A i) \<union> (\<Union>i\<in>I. B i)"
haftmann@44039
  1178
  by (rule sym) (rule SUP_sup_distrib)
haftmann@44039
  1179
haftmann@44039
  1180
lemma Int_Inter_image: "(\<Inter>x\<in>C. A x \<inter> B x) = \<Inter>(A ` C) \<inter> \<Inter>(B ` C)"
haftmann@44039
  1181
  by (simp only: INT_Int_distrib INF_def)
wenzelm@12897
  1182
haftmann@43817
  1183
lemma Un_Union_image: "(\<Union>x\<in>C. A x \<union> B x) = \<Union>(A ` C) \<union> \<Union>(B ` C)"
wenzelm@12897
  1184
  -- {* Devlin, Fundamentals of Contemporary Set Theory, page 12, exercise 5: *}
wenzelm@12897
  1185
  -- {* Union of a family of unions *}
haftmann@44039
  1186
  by (simp only: UN_Un_distrib SUP_def)
wenzelm@12897
  1187
haftmann@44039
  1188
lemma Un_INT_distrib: "B \<union> (\<Inter>i\<in>I. A i) = (\<Inter>i\<in>I. B \<union> A i)"
haftmann@44039
  1189
  by (fact sup_INF)
wenzelm@12897
  1190
wenzelm@12897
  1191
lemma Int_UN_distrib: "B \<inter> (\<Union>i\<in>I. A i) = (\<Union>i\<in>I. B \<inter> A i)"
wenzelm@12897
  1192
  -- {* Halmos, Naive Set Theory, page 35. *}
haftmann@44039
  1193
  by (fact inf_SUP)
wenzelm@12897
  1194
wenzelm@12897
  1195
lemma Int_UN_distrib2: "(\<Union>i\<in>I. A i) \<inter> (\<Union>j\<in>J. B j) = (\<Union>i\<in>I. \<Union>j\<in>J. A i \<inter> B j)"
haftmann@44039
  1196
  by (fact SUP_inf_distrib2)
wenzelm@12897
  1197
wenzelm@12897
  1198
lemma Un_INT_distrib2: "(\<Inter>i\<in>I. A i) \<union> (\<Inter>j\<in>J. B j) = (\<Inter>i\<in>I. \<Inter>j\<in>J. A i \<union> B j)"
haftmann@44039
  1199
  by (fact INF_sup_distrib2)
haftmann@44039
  1200
haftmann@44039
  1201
lemma Union_disjoint: "(\<Union>C \<inter> A = {}) \<longleftrightarrow> (\<forall>B\<in>C. B \<inter> A = {})"
haftmann@44039
  1202
  by (fact Sup_inf_eq_bot_iff)
wenzelm@12897
  1203
wenzelm@12897
  1204
haftmann@46631
  1205
subsubsection {* Complement *}
haftmann@32135
  1206
haftmann@43873
  1207
lemma Compl_INT [simp]: "- (\<Inter>x\<in>A. B x) = (\<Union>x\<in>A. -B x)"
haftmann@43873
  1208
  by (fact uminus_INF)
wenzelm@12897
  1209
haftmann@43873
  1210
lemma Compl_UN [simp]: "- (\<Union>x\<in>A. B x) = (\<Inter>x\<in>A. -B x)"
haftmann@43873
  1211
  by (fact uminus_SUP)
wenzelm@12897
  1212
wenzelm@12897
  1213
haftmann@46631
  1214
subsubsection {* Miniscoping and maxiscoping *}
wenzelm@12897
  1215
paulson@13860
  1216
text {* \medskip Miniscoping: pushing in quantifiers and big Unions
paulson@13860
  1217
           and Intersections. *}
wenzelm@12897
  1218
wenzelm@12897
  1219
lemma UN_simps [simp]:
haftmann@43817
  1220
  "\<And>a B C. (\<Union>x\<in>C. insert a (B x)) = (if C={} then {} else insert a (\<Union>x\<in>C. B x))"
haftmann@44032
  1221
  "\<And>A B C. (\<Union>x\<in>C. A x \<union> B) = ((if C={} then {} else (\<Union>x\<in>C. A x) \<union> B))"
haftmann@43852
  1222
  "\<And>A B C. (\<Union>x\<in>C. A \<union> B x) = ((if C={} then {} else A \<union> (\<Union>x\<in>C. B x)))"
haftmann@44032
  1223
  "\<And>A B C. (\<Union>x\<in>C. A x \<inter> B) = ((\<Union>x\<in>C. A x) \<inter> B)"
haftmann@43852
  1224
  "\<And>A B C. (\<Union>x\<in>C. A \<inter> B x) = (A \<inter>(\<Union>x\<in>C. B x))"
haftmann@43852
  1225
  "\<And>A B C. (\<Union>x\<in>C. A x - B) = ((\<Union>x\<in>C. A x) - B)"
haftmann@43852
  1226
  "\<And>A B C. (\<Union>x\<in>C. A - B x) = (A - (\<Inter>x\<in>C. B x))"
haftmann@43852
  1227
  "\<And>A B. (\<Union>x\<in>\<Union>A. B x) = (\<Union>y\<in>A. \<Union>x\<in>y. B x)"
haftmann@43852
  1228
  "\<And>A B C. (\<Union>z\<in>UNION A B. C z) = (\<Union>x\<in>A. \<Union>z\<in>B x. C z)"
haftmann@43831
  1229
  "\<And>A B f. (\<Union>x\<in>f`A. B x) = (\<Union>a\<in>A. B (f a))"
wenzelm@12897
  1230
  by auto
wenzelm@12897
  1231
wenzelm@12897
  1232
lemma INT_simps [simp]:
haftmann@44032
  1233
  "\<And>A B C. (\<Inter>x\<in>C. A x \<inter> B) = (if C={} then UNIV else (\<Inter>x\<in>C. A x) \<inter> B)"
haftmann@43831
  1234
  "\<And>A B C. (\<Inter>x\<in>C. A \<inter> B x) = (if C={} then UNIV else A \<inter>(\<Inter>x\<in>C. B x))"
haftmann@43852
  1235
  "\<And>A B C. (\<Inter>x\<in>C. A x - B) = (if C={} then UNIV else (\<Inter>x\<in>C. A x) - B)"
haftmann@43852
  1236
  "\<And>A B C. (\<Inter>x\<in>C. A - B x) = (if C={} then UNIV else A - (\<Union>x\<in>C. B x))"
haftmann@43817
  1237
  "\<And>a B C. (\<Inter>x\<in>C. insert a (B x)) = insert a (\<Inter>x\<in>C. B x)"
haftmann@43852
  1238
  "\<And>A B C. (\<Inter>x\<in>C. A x \<union> B) = ((\<Inter>x\<in>C. A x) \<union> B)"
haftmann@43852
  1239
  "\<And>A B C. (\<Inter>x\<in>C. A \<union> B x) = (A \<union> (\<Inter>x\<in>C. B x))"
haftmann@43852
  1240
  "\<And>A B. (\<Inter>x\<in>\<Union>A. B x) = (\<Inter>y\<in>A. \<Inter>x\<in>y. B x)"
haftmann@43852
  1241
  "\<And>A B C. (\<Inter>z\<in>UNION A B. C z) = (\<Inter>x\<in>A. \<Inter>z\<in>B x. C z)"
haftmann@43852
  1242
  "\<And>A B f. (\<Inter>x\<in>f`A. B x) = (\<Inter>a\<in>A. B (f a))"
wenzelm@12897
  1243
  by auto
wenzelm@12897
  1244
haftmann@43967
  1245
lemma UN_ball_bex_simps [simp, no_atp]:
haftmann@43852
  1246
  "\<And>A P. (\<forall>x\<in>\<Union>A. P x) \<longleftrightarrow> (\<forall>y\<in>A. \<forall>x\<in>y. P x)"
haftmann@43967
  1247
  "\<And>A B P. (\<forall>x\<in>UNION A B. P x) = (\<forall>a\<in>A. \<forall>x\<in> B a. P x)"
haftmann@43852
  1248
  "\<And>A P. (\<exists>x\<in>\<Union>A. P x) \<longleftrightarrow> (\<exists>y\<in>A. \<exists>x\<in>y. P x)"
haftmann@43852
  1249
  "\<And>A B P. (\<exists>x\<in>UNION A B. P x) \<longleftrightarrow> (\<exists>a\<in>A. \<exists>x\<in>B a. P x)"
wenzelm@12897
  1250
  by auto
wenzelm@12897
  1251
haftmann@43943
  1252
paulson@13860
  1253
text {* \medskip Maxiscoping: pulling out big Unions and Intersections. *}
paulson@13860
  1254
paulson@13860
  1255
lemma UN_extend_simps:
haftmann@43817
  1256
  "\<And>a B C. insert a (\<Union>x\<in>C. B x) = (if C={} then {a} else (\<Union>x\<in>C. insert a (B x)))"
haftmann@44032
  1257
  "\<And>A B C. (\<Union>x\<in>C. A x) \<union> B = (if C={} then B else (\<Union>x\<in>C. A x \<union> B))"
haftmann@43852
  1258
  "\<And>A B C. A \<union> (\<Union>x\<in>C. B x) = (if C={} then A else (\<Union>x\<in>C. A \<union> B x))"
haftmann@43852
  1259
  "\<And>A B C. ((\<Union>x\<in>C. A x) \<inter> B) = (\<Union>x\<in>C. A x \<inter> B)"
haftmann@43852
  1260
  "\<And>A B C. (A \<inter> (\<Union>x\<in>C. B x)) = (\<Union>x\<in>C. A \<inter> B x)"
haftmann@43817
  1261
  "\<And>A B C. ((\<Union>x\<in>C. A x) - B) = (\<Union>x\<in>C. A x - B)"
haftmann@43817
  1262
  "\<And>A B C. (A - (\<Inter>x\<in>C. B x)) = (\<Union>x\<in>C. A - B x)"
haftmann@43852
  1263
  "\<And>A B. (\<Union>y\<in>A. \<Union>x\<in>y. B x) = (\<Union>x\<in>\<Union>A. B x)"
haftmann@43852
  1264
  "\<And>A B C. (\<Union>x\<in>A. \<Union>z\<in>B x. C z) = (\<Union>z\<in>UNION A B. C z)"
haftmann@43831
  1265
  "\<And>A B f. (\<Union>a\<in>A. B (f a)) = (\<Union>x\<in>f`A. B x)"
paulson@13860
  1266
  by auto
paulson@13860
  1267
paulson@13860
  1268
lemma INT_extend_simps:
haftmann@43852
  1269
  "\<And>A B C. (\<Inter>x\<in>C. A x) \<inter> B = (if C={} then B else (\<Inter>x\<in>C. A x \<inter> B))"
haftmann@43852
  1270
  "\<And>A B C. A \<inter> (\<Inter>x\<in>C. B x) = (if C={} then A else (\<Inter>x\<in>C. A \<inter> B x))"
haftmann@43852
  1271
  "\<And>A B C. (\<Inter>x\<in>C. A x) - B = (if C={} then UNIV - B else (\<Inter>x\<in>C. A x - B))"
haftmann@43852
  1272
  "\<And>A B C. A - (\<Union>x\<in>C. B x) = (if C={} then A else (\<Inter>x\<in>C. A - B x))"
haftmann@43817
  1273
  "\<And>a B C. insert a (\<Inter>x\<in>C. B x) = (\<Inter>x\<in>C. insert a (B x))"
haftmann@43852
  1274
  "\<And>A B C. ((\<Inter>x\<in>C. A x) \<union> B) = (\<Inter>x\<in>C. A x \<union> B)"
haftmann@43852
  1275
  "\<And>A B C. A \<union> (\<Inter>x\<in>C. B x) = (\<Inter>x\<in>C. A \<union> B x)"
haftmann@43852
  1276
  "\<And>A B. (\<Inter>y\<in>A. \<Inter>x\<in>y. B x) = (\<Inter>x\<in>\<Union>A. B x)"
haftmann@43852
  1277
  "\<And>A B C. (\<Inter>x\<in>A. \<Inter>z\<in>B x. C z) = (\<Inter>z\<in>UNION A B. C z)"
haftmann@43852
  1278
  "\<And>A B f. (\<Inter>a\<in>A. B (f a)) = (\<Inter>x\<in>f`A. B x)"
paulson@13860
  1279
  by auto
paulson@13860
  1280
haftmann@43872
  1281
text {* Finally *}
haftmann@43872
  1282
haftmann@32135
  1283
no_notation
haftmann@46691
  1284
  less_eq (infix "\<sqsubseteq>" 50) and
haftmann@46691
  1285
  less (infix "\<sqsubset>" 50)
haftmann@32135
  1286
haftmann@30596
  1287
lemmas mem_simps =
haftmann@30596
  1288
  insert_iff empty_iff Un_iff Int_iff Compl_iff Diff_iff
haftmann@30596
  1289
  mem_Collect_eq UN_iff Union_iff INT_iff Inter_iff
haftmann@30596
  1290
  -- {* Each of these has ALREADY been added @{text "[simp]"} above. *}
wenzelm@21669
  1291
wenzelm@11979
  1292
end
haftmann@49905
  1293