src/HOL/Groebner_Basis.thy
author chaieb
Mon Jun 11 16:23:17 2007 +0200 (2007-06-11)
changeset 23327 1654013ec97c
parent 23312 6e32a5bfc30f
child 23330 01c09922ce59
permissions -rw-r--r--
Added instantiation of algebra method to fields
wenzelm@23252
     1
(*  Title:      HOL/Groebner_Basis.thy
wenzelm@23252
     2
    ID:         $Id$
wenzelm@23252
     3
    Author:     Amine Chaieb, TU Muenchen
wenzelm@23252
     4
*)
wenzelm@23252
     5
wenzelm@23252
     6
header {* Semiring normalization and Groebner Bases *}
wenzelm@23252
     7
wenzelm@23252
     8
theory Groebner_Basis
wenzelm@23252
     9
imports NatBin
wenzelm@23252
    10
uses
wenzelm@23252
    11
  "Tools/Groebner_Basis/misc.ML"
wenzelm@23252
    12
  "Tools/Groebner_Basis/normalizer_data.ML"
wenzelm@23252
    13
  ("Tools/Groebner_Basis/normalizer.ML")
chaieb@23312
    14
  ("Tools/Groebner_Basis/groebner.ML")
wenzelm@23252
    15
begin
wenzelm@23252
    16
wenzelm@23252
    17
subsection {* Semiring normalization *}
wenzelm@23252
    18
wenzelm@23252
    19
setup NormalizerData.setup
wenzelm@23252
    20
wenzelm@23252
    21
wenzelm@23258
    22
locale gb_semiring =
wenzelm@23252
    23
  fixes add mul pwr r0 r1
wenzelm@23252
    24
  assumes add_a:"(add x (add y z) = add (add x y) z)"
wenzelm@23252
    25
    and add_c: "add x y = add y x" and add_0:"add r0 x = x"
wenzelm@23252
    26
    and mul_a:"mul x (mul y z) = mul (mul x y) z" and mul_c:"mul x y = mul y x"
wenzelm@23252
    27
    and mul_1:"mul r1 x = x" and  mul_0:"mul r0 x = r0"
wenzelm@23252
    28
    and mul_d:"mul x (add y z) = add (mul x y) (mul x z)"
wenzelm@23252
    29
    and pwr_0:"pwr x 0 = r1" and pwr_Suc:"pwr x (Suc n) = mul x (pwr x n)"
wenzelm@23252
    30
begin
wenzelm@23252
    31
wenzelm@23252
    32
lemma mul_pwr:"mul (pwr x p) (pwr x q) = pwr x (p + q)"
wenzelm@23252
    33
proof (induct p)
wenzelm@23252
    34
  case 0
wenzelm@23252
    35
  then show ?case by (auto simp add: pwr_0 mul_1)
wenzelm@23252
    36
next
wenzelm@23252
    37
  case Suc
wenzelm@23252
    38
  from this [symmetric] show ?case
wenzelm@23252
    39
    by (auto simp add: pwr_Suc mul_1 mul_a)
wenzelm@23252
    40
qed
wenzelm@23252
    41
wenzelm@23252
    42
lemma pwr_mul: "pwr (mul x y) q = mul (pwr x q) (pwr y q)"
wenzelm@23252
    43
proof (induct q arbitrary: x y, auto simp add:pwr_0 pwr_Suc mul_1)
wenzelm@23252
    44
  fix q x y
wenzelm@23252
    45
  assume "\<And>x y. pwr (mul x y) q = mul (pwr x q) (pwr y q)"
wenzelm@23252
    46
  have "mul (mul x y) (mul (pwr x q) (pwr y q)) = mul x (mul y (mul (pwr x q) (pwr y q)))"
wenzelm@23252
    47
    by (simp add: mul_a)
wenzelm@23252
    48
  also have "\<dots> = (mul (mul y (mul (pwr y q) (pwr x q))) x)" by (simp add: mul_c)
wenzelm@23252
    49
  also have "\<dots> = (mul (mul y (pwr y q)) (mul (pwr x q) x))" by (simp add: mul_a)
wenzelm@23252
    50
  finally show "mul (mul x y) (mul (pwr x q) (pwr y q)) =
wenzelm@23252
    51
    mul (mul x (pwr x q)) (mul y (pwr y q))" by (simp add: mul_c)
wenzelm@23252
    52
qed
wenzelm@23252
    53
wenzelm@23252
    54
lemma pwr_pwr: "pwr (pwr x p) q = pwr x (p * q)"
wenzelm@23252
    55
proof (induct p arbitrary: q)
wenzelm@23252
    56
  case 0
wenzelm@23252
    57
  show ?case using pwr_Suc mul_1 pwr_0 by (induct q) auto
wenzelm@23252
    58
next
wenzelm@23252
    59
  case Suc
wenzelm@23252
    60
  thus ?case by (auto simp add: mul_pwr [symmetric] pwr_mul pwr_Suc)
wenzelm@23252
    61
qed
wenzelm@23252
    62
wenzelm@23252
    63
wenzelm@23252
    64
subsubsection {* Declaring the abstract theory *}
wenzelm@23252
    65
wenzelm@23252
    66
lemma semiring_ops:
wenzelm@23252
    67
  includes meta_term_syntax
wenzelm@23252
    68
  shows "TERM (add x y)" and "TERM (mul x y)" and "TERM (pwr x n)"
wenzelm@23252
    69
    and "TERM r0" and "TERM r1"
wenzelm@23252
    70
  by rule+
wenzelm@23252
    71
wenzelm@23252
    72
lemma semiring_rules:
wenzelm@23252
    73
  "add (mul a m) (mul b m) = mul (add a b) m"
wenzelm@23252
    74
  "add (mul a m) m = mul (add a r1) m"
wenzelm@23252
    75
  "add m (mul a m) = mul (add a r1) m"
wenzelm@23252
    76
  "add m m = mul (add r1 r1) m"
wenzelm@23252
    77
  "add r0 a = a"
wenzelm@23252
    78
  "add a r0 = a"
wenzelm@23252
    79
  "mul a b = mul b a"
wenzelm@23252
    80
  "mul (add a b) c = add (mul a c) (mul b c)"
wenzelm@23252
    81
  "mul r0 a = r0"
wenzelm@23252
    82
  "mul a r0 = r0"
wenzelm@23252
    83
  "mul r1 a = a"
wenzelm@23252
    84
  "mul a r1 = a"
wenzelm@23252
    85
  "mul (mul lx ly) (mul rx ry) = mul (mul lx rx) (mul ly ry)"
wenzelm@23252
    86
  "mul (mul lx ly) (mul rx ry) = mul lx (mul ly (mul rx ry))"
wenzelm@23252
    87
  "mul (mul lx ly) (mul rx ry) = mul rx (mul (mul lx ly) ry)"
wenzelm@23252
    88
  "mul (mul lx ly) rx = mul (mul lx rx) ly"
wenzelm@23252
    89
  "mul (mul lx ly) rx = mul lx (mul ly rx)"
wenzelm@23252
    90
  "mul lx (mul rx ry) = mul (mul lx rx) ry"
wenzelm@23252
    91
  "mul lx (mul rx ry) = mul rx (mul lx ry)"
wenzelm@23252
    92
  "add (add a b) (add c d) = add (add a c) (add b d)"
wenzelm@23252
    93
  "add (add a b) c = add a (add b c)"
wenzelm@23252
    94
  "add a (add c d) = add c (add a d)"
wenzelm@23252
    95
  "add (add a b) c = add (add a c) b"
wenzelm@23252
    96
  "add a c = add c a"
wenzelm@23252
    97
  "add a (add c d) = add (add a c) d"
wenzelm@23252
    98
  "mul (pwr x p) (pwr x q) = pwr x (p + q)"
wenzelm@23252
    99
  "mul x (pwr x q) = pwr x (Suc q)"
wenzelm@23252
   100
  "mul (pwr x q) x = pwr x (Suc q)"
wenzelm@23252
   101
  "mul x x = pwr x 2"
wenzelm@23252
   102
  "pwr (mul x y) q = mul (pwr x q) (pwr y q)"
wenzelm@23252
   103
  "pwr (pwr x p) q = pwr x (p * q)"
wenzelm@23252
   104
  "pwr x 0 = r1"
wenzelm@23252
   105
  "pwr x 1 = x"
wenzelm@23252
   106
  "mul x (add y z) = add (mul x y) (mul x z)"
wenzelm@23252
   107
  "pwr x (Suc q) = mul x (pwr x q)"
wenzelm@23252
   108
  "pwr x (2*n) = mul (pwr x n) (pwr x n)"
wenzelm@23252
   109
  "pwr x (Suc (2*n)) = mul x (mul (pwr x n) (pwr x n))"
wenzelm@23252
   110
proof -
wenzelm@23252
   111
  show "add (mul a m) (mul b m) = mul (add a b) m" using mul_d mul_c by simp
wenzelm@23252
   112
next show"add (mul a m) m = mul (add a r1) m" using mul_d mul_c mul_1 by simp
wenzelm@23252
   113
next show "add m (mul a m) = mul (add a r1) m" using mul_c mul_d mul_1 add_c by simp
wenzelm@23252
   114
next show "add m m = mul (add r1 r1) m" using mul_c mul_d mul_1 by simp
wenzelm@23252
   115
next show "add r0 a = a" using add_0 by simp
wenzelm@23252
   116
next show "add a r0 = a" using add_0 add_c by simp
wenzelm@23252
   117
next show "mul a b = mul b a" using mul_c by simp
wenzelm@23252
   118
next show "mul (add a b) c = add (mul a c) (mul b c)" using mul_c mul_d by simp
wenzelm@23252
   119
next show "mul r0 a = r0" using mul_0 by simp
wenzelm@23252
   120
next show "mul a r0 = r0" using mul_0 mul_c by simp
wenzelm@23252
   121
next show "mul r1 a = a" using mul_1 by simp
wenzelm@23252
   122
next show "mul a r1 = a" using mul_1 mul_c by simp
wenzelm@23252
   123
next show "mul (mul lx ly) (mul rx ry) = mul (mul lx rx) (mul ly ry)"
wenzelm@23252
   124
    using mul_c mul_a by simp
wenzelm@23252
   125
next show "mul (mul lx ly) (mul rx ry) = mul lx (mul ly (mul rx ry))"
wenzelm@23252
   126
    using mul_a by simp
wenzelm@23252
   127
next
wenzelm@23252
   128
  have "mul (mul lx ly) (mul rx ry) = mul (mul rx ry) (mul lx ly)" by (rule mul_c)
wenzelm@23252
   129
  also have "\<dots> = mul rx (mul ry (mul lx ly))" using mul_a by simp
wenzelm@23252
   130
  finally
wenzelm@23252
   131
  show "mul (mul lx ly) (mul rx ry) = mul rx (mul (mul lx ly) ry)"
wenzelm@23252
   132
    using mul_c by simp
wenzelm@23252
   133
next show "mul (mul lx ly) rx = mul (mul lx rx) ly" using mul_c mul_a by simp
wenzelm@23252
   134
next
wenzelm@23252
   135
  show "mul (mul lx ly) rx = mul lx (mul ly rx)" by (simp add: mul_a)
wenzelm@23252
   136
next show "mul lx (mul rx ry) = mul (mul lx rx) ry" by (simp add: mul_a )
wenzelm@23252
   137
next show "mul lx (mul rx ry) = mul rx (mul lx ry)" by (simp add: mul_a,simp add: mul_c)
wenzelm@23252
   138
next show "add (add a b) (add c d) = add (add a c) (add b d)"
wenzelm@23252
   139
    using add_c add_a by simp
wenzelm@23252
   140
next show "add (add a b) c = add a (add b c)" using add_a by simp
wenzelm@23252
   141
next show "add a (add c d) = add c (add a d)"
wenzelm@23252
   142
    apply (simp add: add_a) by (simp only: add_c)
wenzelm@23252
   143
next show "add (add a b) c = add (add a c) b" using add_a add_c by simp
wenzelm@23252
   144
next show "add a c = add c a" by (rule add_c)
wenzelm@23252
   145
next show "add a (add c d) = add (add a c) d" using add_a by simp
wenzelm@23252
   146
next show "mul (pwr x p) (pwr x q) = pwr x (p + q)" by (rule mul_pwr)
wenzelm@23252
   147
next show "mul x (pwr x q) = pwr x (Suc q)" using pwr_Suc by simp
wenzelm@23252
   148
next show "mul (pwr x q) x = pwr x (Suc q)" using pwr_Suc mul_c by simp
wenzelm@23252
   149
next show "mul x x = pwr x 2" by (simp add: nat_number pwr_Suc pwr_0 mul_1 mul_c)
wenzelm@23252
   150
next show "pwr (mul x y) q = mul (pwr x q) (pwr y q)" by (rule pwr_mul)
wenzelm@23252
   151
next show "pwr (pwr x p) q = pwr x (p * q)" by (rule pwr_pwr)
wenzelm@23252
   152
next show "pwr x 0 = r1" using pwr_0 .
wenzelm@23252
   153
next show "pwr x 1 = x" by (simp add: nat_number pwr_Suc pwr_0 mul_1 mul_c)
wenzelm@23252
   154
next show "mul x (add y z) = add (mul x y) (mul x z)" using mul_d by simp
wenzelm@23252
   155
next show "pwr x (Suc q) = mul x (pwr x q)" using pwr_Suc by simp
wenzelm@23252
   156
next show "pwr x (2 * n) = mul (pwr x n) (pwr x n)" by (simp add: nat_number mul_pwr)
wenzelm@23252
   157
next show "pwr x (Suc (2 * n)) = mul x (mul (pwr x n) (pwr x n))"
wenzelm@23252
   158
    by (simp add: nat_number pwr_Suc mul_pwr)
wenzelm@23252
   159
qed
wenzelm@23252
   160
wenzelm@23252
   161
wenzelm@23252
   162
lemma "axioms" [normalizer
wenzelm@23252
   163
    semiring ops: semiring_ops
wenzelm@23252
   164
    semiring rules: semiring_rules]:
wenzelm@23258
   165
  "gb_semiring add mul pwr r0 r1" .
wenzelm@23252
   166
wenzelm@23252
   167
end
wenzelm@23252
   168
wenzelm@23258
   169
interpretation class_semiring: gb_semiring
wenzelm@23252
   170
    ["op +" "op *" "op ^" "0::'a::{comm_semiring_1, recpower}" "1"]
wenzelm@23252
   171
  by unfold_locales (auto simp add: ring_eq_simps power_Suc)
wenzelm@23252
   172
wenzelm@23252
   173
lemmas nat_arith =
wenzelm@23252
   174
  add_nat_number_of diff_nat_number_of mult_nat_number_of eq_nat_number_of less_nat_number_of
wenzelm@23252
   175
wenzelm@23252
   176
lemma not_iszero_Numeral1: "\<not> iszero (Numeral1::'a::number_ring)"
wenzelm@23252
   177
  by (simp add: numeral_1_eq_1)
wenzelm@23252
   178
lemmas comp_arith = Let_def arith_simps nat_arith rel_simps if_False
wenzelm@23252
   179
  if_True add_0 add_Suc add_number_of_left mult_number_of_left
wenzelm@23252
   180
  numeral_1_eq_1[symmetric] Suc_eq_add_numeral_1
wenzelm@23252
   181
  numeral_0_eq_0[symmetric] numerals[symmetric] not_iszero_1
wenzelm@23252
   182
  iszero_number_of_1 iszero_number_of_0 nonzero_number_of_Min
wenzelm@23252
   183
  iszero_number_of_Pls iszero_0 not_iszero_Numeral1
wenzelm@23252
   184
wenzelm@23252
   185
lemmas semiring_norm = comp_arith
wenzelm@23252
   186
wenzelm@23252
   187
ML {*
wenzelm@23252
   188
  fun numeral_is_const ct =
wenzelm@23252
   189
    can HOLogic.dest_number (Thm.term_of ct);
wenzelm@23252
   190
wenzelm@23252
   191
  val numeral_conv =
wenzelm@23252
   192
    Conv.then_conv (Simplifier.rewrite (HOL_basic_ss addsimps @{thms semiring_norm}),
wenzelm@23252
   193
   Simplifier.rewrite (HOL_basic_ss addsimps
wenzelm@23252
   194
  [@{thm numeral_1_eq_1},@{thm numeral_0_eq_0}] @ @{thms numerals(1-2)}));
wenzelm@23252
   195
*}
wenzelm@23252
   196
wenzelm@23252
   197
ML {*
wenzelm@23252
   198
  fun int_of_rat x =
wenzelm@23252
   199
    (case Rat.quotient_of_rat x of (i, 1) => i
wenzelm@23252
   200
    | _ => error "int_of_rat: bad int")
wenzelm@23252
   201
*}
wenzelm@23252
   202
wenzelm@23252
   203
declaration {*
wenzelm@23252
   204
  NormalizerData.funs @{thm class_semiring.axioms}
wenzelm@23252
   205
   {is_const = fn phi => numeral_is_const,
wenzelm@23252
   206
    dest_const = fn phi => fn ct =>
wenzelm@23252
   207
      Rat.rat_of_int (snd
wenzelm@23252
   208
        (HOLogic.dest_number (Thm.term_of ct)
wenzelm@23252
   209
          handle TERM _ => error "ring_dest_const")),
wenzelm@23252
   210
    mk_const = fn phi => fn cT => fn x =>
wenzelm@23252
   211
      Thm.cterm_of (Thm.theory_of_ctyp cT) (HOLogic.mk_number (typ_of cT) (int_of_rat x)),
wenzelm@23252
   212
    conv = fn phi => numeral_conv}
wenzelm@23252
   213
*}
wenzelm@23252
   214
wenzelm@23252
   215
wenzelm@23258
   216
locale gb_ring = gb_semiring +
wenzelm@23252
   217
  fixes sub :: "'a \<Rightarrow> 'a \<Rightarrow> 'a"
wenzelm@23252
   218
    and neg :: "'a \<Rightarrow> 'a"
wenzelm@23252
   219
  assumes neg_mul: "neg x = mul (neg r1) x"
wenzelm@23252
   220
    and sub_add: "sub x y = add x (neg y)"
wenzelm@23252
   221
begin
wenzelm@23252
   222
wenzelm@23252
   223
lemma ring_ops:
wenzelm@23252
   224
  includes meta_term_syntax
wenzelm@23252
   225
  shows "TERM (sub x y)" and "TERM (neg x)" .
wenzelm@23252
   226
wenzelm@23252
   227
lemmas ring_rules = neg_mul sub_add
wenzelm@23252
   228
wenzelm@23252
   229
lemma "axioms" [normalizer
wenzelm@23252
   230
  semiring ops: semiring_ops
wenzelm@23252
   231
  semiring rules: semiring_rules
wenzelm@23252
   232
  ring ops: ring_ops
wenzelm@23252
   233
  ring rules: ring_rules]:
wenzelm@23258
   234
  "gb_ring add mul pwr r0 r1 sub neg" .
wenzelm@23252
   235
wenzelm@23252
   236
end
wenzelm@23252
   237
wenzelm@23252
   238
wenzelm@23258
   239
interpretation class_ring: gb_ring ["op +" "op *" "op ^"
wenzelm@23252
   240
    "0::'a::{comm_semiring_1,recpower,number_ring}" 1 "op -" "uminus"]
wenzelm@23252
   241
  by unfold_locales simp_all
wenzelm@23252
   242
wenzelm@23252
   243
wenzelm@23252
   244
declaration {*
wenzelm@23252
   245
  NormalizerData.funs @{thm class_ring.axioms}
wenzelm@23252
   246
   {is_const = fn phi => numeral_is_const,
wenzelm@23252
   247
    dest_const = fn phi => fn ct =>
wenzelm@23252
   248
      Rat.rat_of_int (snd
wenzelm@23252
   249
        (HOLogic.dest_number (Thm.term_of ct)
wenzelm@23252
   250
          handle TERM _ => error "ring_dest_const")),
wenzelm@23252
   251
    mk_const = fn phi => fn cT => fn x =>
wenzelm@23252
   252
      Thm.cterm_of (Thm.theory_of_ctyp cT) (HOLogic.mk_number (typ_of cT) (int_of_rat x)),
wenzelm@23252
   253
    conv = fn phi => numeral_conv}
wenzelm@23252
   254
*}
wenzelm@23252
   255
wenzelm@23252
   256
use "Tools/Groebner_Basis/normalizer.ML"
wenzelm@23252
   257
wenzelm@23252
   258
method_setup sring_norm = {*
wenzelm@23252
   259
  Method.ctxt_args (fn ctxt => Method.SIMPLE_METHOD' (Normalizer.semiring_normalize_tac ctxt))
wenzelm@23252
   260
*} "Semiring_normalizer"
wenzelm@23252
   261
wenzelm@23252
   262
chaieb@23327
   263
locale gb_field = gb_ring +
chaieb@23327
   264
  fixes divide :: "'a \<Rightarrow> 'a \<Rightarrow> 'a"
chaieb@23327
   265
    and inverse:: "'a \<Rightarrow> 'a"
chaieb@23327
   266
  assumes divide: "divide x y = mul x (inverse y)"
chaieb@23327
   267
     and inverse: "inverse x = divide r1 x"
chaieb@23327
   268
begin
chaieb@23327
   269
chaieb@23327
   270
lemma "axioms" [normalizer
chaieb@23327
   271
  semiring ops: semiring_ops
chaieb@23327
   272
  semiring rules: semiring_rules
chaieb@23327
   273
  ring ops: ring_ops
chaieb@23327
   274
  ring rules: ring_rules]:
chaieb@23327
   275
  "gb_field add mul pwr r0 r1 sub neg divide inverse" .
chaieb@23327
   276
chaieb@23327
   277
end
chaieb@23327
   278
wenzelm@23266
   279
subsection {* Groebner Bases *}
wenzelm@23252
   280
wenzelm@23258
   281
locale semiringb = gb_semiring +
wenzelm@23252
   282
  assumes add_cancel: "add (x::'a) y = add x z \<longleftrightarrow> y = z"
wenzelm@23252
   283
  and add_mul_solve: "add (mul w y) (mul x z) =
wenzelm@23252
   284
    add (mul w z) (mul x y) \<longleftrightarrow> w = x \<or> y = z"
wenzelm@23252
   285
begin
wenzelm@23252
   286
wenzelm@23252
   287
lemma noteq_reduce: "a \<noteq> b \<and> c \<noteq> d \<longleftrightarrow> add (mul a c) (mul b d) \<noteq> add (mul a d) (mul b c)"
wenzelm@23252
   288
proof-
wenzelm@23252
   289
  have "a \<noteq> b \<and> c \<noteq> d \<longleftrightarrow> \<not> (a = b \<or> c = d)" by simp
wenzelm@23252
   290
  also have "\<dots> \<longleftrightarrow> add (mul a c) (mul b d) \<noteq> add (mul a d) (mul b c)"
wenzelm@23252
   291
    using add_mul_solve by blast
wenzelm@23252
   292
  finally show "a \<noteq> b \<and> c \<noteq> d \<longleftrightarrow> add (mul a c) (mul b d) \<noteq> add (mul a d) (mul b c)"
wenzelm@23252
   293
    by simp
wenzelm@23252
   294
qed
wenzelm@23252
   295
wenzelm@23252
   296
lemma add_scale_eq_noteq: "\<lbrakk>r \<noteq> r0 ; (a = b) \<and> ~(c = d)\<rbrakk>
wenzelm@23252
   297
  \<Longrightarrow> add a (mul r c) \<noteq> add b (mul r d)"
wenzelm@23252
   298
proof(clarify)
wenzelm@23252
   299
  assume nz: "r\<noteq> r0" and cnd: "c\<noteq>d"
wenzelm@23252
   300
    and eq: "add b (mul r c) = add b (mul r d)"
wenzelm@23252
   301
  hence "mul r c = mul r d" using cnd add_cancel by simp
wenzelm@23252
   302
  hence "add (mul r0 d) (mul r c) = add (mul r0 c) (mul r d)"
wenzelm@23252
   303
    using mul_0 add_cancel by simp
wenzelm@23252
   304
  thus "False" using add_mul_solve nz cnd by simp
wenzelm@23252
   305
qed
wenzelm@23252
   306
wenzelm@23252
   307
declare "axioms" [normalizer del]
wenzelm@23252
   308
wenzelm@23252
   309
lemma "axioms" [normalizer
wenzelm@23252
   310
  semiring ops: semiring_ops
wenzelm@23252
   311
  semiring rules: semiring_rules
wenzelm@23252
   312
  idom rules: noteq_reduce add_scale_eq_noteq]:
wenzelm@23252
   313
  "semiringb add mul pwr r0 r1" .
wenzelm@23252
   314
wenzelm@23252
   315
end
wenzelm@23252
   316
wenzelm@23258
   317
locale ringb = semiringb + gb_ring
wenzelm@23252
   318
begin
wenzelm@23252
   319
wenzelm@23252
   320
declare "axioms" [normalizer del]
wenzelm@23252
   321
wenzelm@23252
   322
lemma "axioms" [normalizer
wenzelm@23252
   323
  semiring ops: semiring_ops
wenzelm@23252
   324
  semiring rules: semiring_rules
wenzelm@23252
   325
  ring ops: ring_ops
wenzelm@23252
   326
  ring rules: ring_rules
wenzelm@23252
   327
  idom rules: noteq_reduce add_scale_eq_noteq]:
wenzelm@23252
   328
  "ringb add mul pwr r0 r1 sub neg" .
wenzelm@23252
   329
wenzelm@23252
   330
end
wenzelm@23252
   331
wenzelm@23252
   332
lemma no_zero_divirors_neq0:
wenzelm@23252
   333
  assumes az: "(a::'a::no_zero_divisors) \<noteq> 0"
wenzelm@23252
   334
    and ab: "a*b = 0" shows "b = 0"
wenzelm@23252
   335
proof -
wenzelm@23252
   336
  { assume bz: "b \<noteq> 0"
wenzelm@23252
   337
    from no_zero_divisors [OF az bz] ab have False by blast }
wenzelm@23252
   338
  thus "b = 0" by blast
wenzelm@23252
   339
qed
wenzelm@23252
   340
wenzelm@23252
   341
interpretation class_ringb: ringb
wenzelm@23252
   342
  ["op +" "op *" "op ^" "0::'a::{idom,recpower,number_ring}" "1" "op -" "uminus"]
wenzelm@23252
   343
proof(unfold_locales, simp add: ring_eq_simps power_Suc, auto)
wenzelm@23252
   344
  fix w x y z ::"'a::{idom,recpower,number_ring}"
wenzelm@23252
   345
  assume p: "w * y + x * z = w * z + x * y" and ynz: "y \<noteq> z"
wenzelm@23252
   346
  hence ynz': "y - z \<noteq> 0" by simp
wenzelm@23252
   347
  from p have "w * y + x* z - w*z - x*y = 0" by simp
wenzelm@23252
   348
  hence "w* (y - z) - x * (y - z) = 0" by (simp add: ring_eq_simps)
wenzelm@23252
   349
  hence "(y - z) * (w - x) = 0" by (simp add: ring_eq_simps)
wenzelm@23252
   350
  with  no_zero_divirors_neq0 [OF ynz']
wenzelm@23252
   351
  have "w - x = 0" by blast
wenzelm@23252
   352
  thus "w = x"  by simp
wenzelm@23252
   353
qed
wenzelm@23252
   354
wenzelm@23252
   355
wenzelm@23252
   356
declaration {*
wenzelm@23252
   357
  NormalizerData.funs @{thm class_ringb.axioms}
wenzelm@23252
   358
   {is_const = fn phi => numeral_is_const,
wenzelm@23252
   359
    dest_const = fn phi => fn ct =>
wenzelm@23252
   360
      Rat.rat_of_int (snd
wenzelm@23252
   361
        (HOLogic.dest_number (Thm.term_of ct)
wenzelm@23252
   362
          handle TERM _ => error "ring_dest_const")),
wenzelm@23252
   363
    mk_const = fn phi => fn cT => fn x =>
wenzelm@23252
   364
      Thm.cterm_of (Thm.theory_of_ctyp cT) (HOLogic.mk_number (typ_of cT) (int_of_rat x)),
wenzelm@23252
   365
    conv = fn phi => numeral_conv}
wenzelm@23252
   366
*}
wenzelm@23252
   367
wenzelm@23252
   368
wenzelm@23252
   369
interpretation natgb: semiringb
wenzelm@23252
   370
  ["op +" "op *" "op ^" "0::nat" "1"]
wenzelm@23252
   371
proof (unfold_locales, simp add: ring_eq_simps power_Suc)
wenzelm@23252
   372
  fix w x y z ::"nat"
wenzelm@23252
   373
  { assume p: "w * y + x * z = w * z + x * y" and ynz: "y \<noteq> z"
wenzelm@23252
   374
    hence "y < z \<or> y > z" by arith
wenzelm@23252
   375
    moreover {
wenzelm@23252
   376
      assume lt:"y <z" hence "\<exists>k. z = y + k \<and> k > 0" by (rule_tac x="z - y" in exI, auto)
wenzelm@23252
   377
      then obtain k where kp: "k>0" and yz:"z = y + k" by blast
wenzelm@23252
   378
      from p have "(w * y + x *y) + x*k = (w * y + x*y) + w*k" by (simp add: yz ring_eq_simps)
wenzelm@23252
   379
      hence "x*k = w*k" by simp
wenzelm@23252
   380
      hence "w = x" using kp by (simp add: mult_cancel2) }
wenzelm@23252
   381
    moreover {
wenzelm@23252
   382
      assume lt: "y >z" hence "\<exists>k. y = z + k \<and> k>0" by (rule_tac x="y - z" in exI, auto)
wenzelm@23252
   383
      then obtain k where kp: "k>0" and yz:"y = z + k" by blast
wenzelm@23252
   384
      from p have "(w * z + x *z) + w*k = (w * z + x*z) + x*k" by (simp add: yz ring_eq_simps)
wenzelm@23252
   385
      hence "w*k = x*k" by simp
wenzelm@23252
   386
      hence "w = x" using kp by (simp add: mult_cancel2)}
wenzelm@23252
   387
    ultimately have "w=x" by blast }
wenzelm@23252
   388
  thus "(w * y + x * z = w * z + x * y) = (w = x \<or> y = z)" by auto
wenzelm@23252
   389
qed
wenzelm@23252
   390
wenzelm@23252
   391
declaration {*
wenzelm@23252
   392
  NormalizerData.funs @{thm natgb.axioms}
wenzelm@23252
   393
   {is_const = fn phi => numeral_is_const,
wenzelm@23252
   394
    dest_const = fn phi => fn ct =>
wenzelm@23252
   395
      Rat.rat_of_int (snd
wenzelm@23252
   396
        (HOLogic.dest_number (Thm.term_of ct)
wenzelm@23252
   397
          handle TERM _ => error "ring_dest_const")),
wenzelm@23252
   398
    mk_const = fn phi => fn cT => fn x =>
wenzelm@23252
   399
      Thm.cterm_of (Thm.theory_of_ctyp cT) (HOLogic.mk_number (typ_of cT) (int_of_rat x)),
wenzelm@23252
   400
    conv = fn phi => numeral_conv}
wenzelm@23252
   401
*}
wenzelm@23252
   402
chaieb@23327
   403
locale fieldgb = ringb + gb_field
chaieb@23327
   404
begin
chaieb@23327
   405
chaieb@23327
   406
declare "axioms" [normalizer del]
chaieb@23327
   407
chaieb@23327
   408
lemma "axioms" [normalizer
chaieb@23327
   409
  semiring ops: semiring_ops
chaieb@23327
   410
  semiring rules: semiring_rules
chaieb@23327
   411
  ring ops: ring_ops
chaieb@23327
   412
  ring rules: ring_rules
chaieb@23327
   413
  idom rules: noteq_reduce add_scale_eq_noteq]:
chaieb@23327
   414
  "fieldgb add mul pwr r0 r1 sub neg divide inverse" by unfold_locales
chaieb@23327
   415
end
chaieb@23327
   416
chaieb@23327
   417
wenzelm@23252
   418
wenzelm@23258
   419
lemmas bool_simps = simp_thms(1-34)
wenzelm@23252
   420
lemma dnf:
wenzelm@23252
   421
    "(P & (Q | R)) = ((P&Q) | (P&R))" "((Q | R) & P) = ((Q&P) | (R&P))"
wenzelm@23252
   422
    "(P \<and> Q) = (Q \<and> P)" "(P \<or> Q) = (Q \<or> P)"
wenzelm@23252
   423
  by blast+
wenzelm@23252
   424
wenzelm@23252
   425
lemmas weak_dnf_simps = dnf bool_simps
wenzelm@23252
   426
wenzelm@23252
   427
lemma nnf_simps:
wenzelm@23252
   428
    "(\<not>(P \<and> Q)) = (\<not>P \<or> \<not>Q)" "(\<not>(P \<or> Q)) = (\<not>P \<and> \<not>Q)" "(P \<longrightarrow> Q) = (\<not>P \<or> Q)"
wenzelm@23252
   429
    "(P = Q) = ((P \<and> Q) \<or> (\<not>P \<and> \<not> Q))" "(\<not> \<not>(P)) = P"
wenzelm@23252
   430
  by blast+
wenzelm@23252
   431
wenzelm@23252
   432
lemma PFalse:
wenzelm@23252
   433
    "P \<equiv> False \<Longrightarrow> \<not> P"
wenzelm@23252
   434
    "\<not> P \<Longrightarrow> (P \<equiv> False)"
wenzelm@23252
   435
  by auto
wenzelm@23252
   436
wenzelm@23252
   437
use "Tools/Groebner_Basis/groebner.ML"
wenzelm@23252
   438
wenzelm@23252
   439
ML {*
wenzelm@23252
   440
  fun algebra_tac ctxt i = ObjectLogic.full_atomize_tac i THEN (fn st =>
wenzelm@23252
   441
  rtac (Groebner.ring_conv ctxt (Thm.dest_arg (nth (cprems_of st) (i - 1)))) i st);
wenzelm@23252
   442
*}
wenzelm@23252
   443
wenzelm@23252
   444
method_setup algebra = {*
wenzelm@23252
   445
  Method.ctxt_args (Method.SIMPLE_METHOD' o algebra_tac)
wenzelm@23252
   446
*} ""
wenzelm@23252
   447
chaieb@23327
   448
chaieb@23327
   449
wenzelm@23252
   450
end