src/HOL/Lifting.thy
author blanchet
Wed Sep 03 22:49:05 2014 +0200 (2014-09-03)
changeset 58177 166131276380
parent 57961 10b2f60b70f0
child 58186 a6c3962ea907
permissions -rw-r--r--
introduced local interpretation mechanism for BNFs, to solve issues with datatypes in locales
kuncar@47308
     1
(*  Title:      HOL/Lifting.thy
kuncar@47308
     2
    Author:     Brian Huffman and Ondrej Kuncar
kuncar@47308
     3
    Author:     Cezary Kaliszyk and Christian Urban
kuncar@47308
     4
*)
kuncar@47308
     5
kuncar@47308
     6
header {* Lifting package *}
kuncar@47308
     7
kuncar@47308
     8
theory Lifting
haftmann@51112
     9
imports Equiv_Relations Transfer
kuncar@47308
    10
keywords
kuncar@51374
    11
  "parametric" and
kuncar@53219
    12
  "print_quot_maps" "print_quotients" :: diag and
kuncar@47308
    13
  "lift_definition" :: thy_goal and
kuncar@53651
    14
  "setup_lifting" "lifting_forget" "lifting_update" :: thy_decl
kuncar@47308
    15
begin
kuncar@47308
    16
huffman@47325
    17
subsection {* Function map *}
kuncar@47308
    18
kuncar@53011
    19
context
kuncar@53011
    20
begin
kuncar@53011
    21
interpretation lifting_syntax .
kuncar@47308
    22
kuncar@47308
    23
lemma map_fun_id:
kuncar@47308
    24
  "(id ---> id) = id"
kuncar@47308
    25
  by (simp add: fun_eq_iff)
kuncar@47308
    26
kuncar@47308
    27
subsection {* Quotient Predicate *}
kuncar@47308
    28
kuncar@47308
    29
definition
kuncar@47308
    30
  "Quotient R Abs Rep T \<longleftrightarrow>
kuncar@47308
    31
     (\<forall>a. Abs (Rep a) = a) \<and> 
kuncar@47308
    32
     (\<forall>a. R (Rep a) (Rep a)) \<and>
kuncar@47308
    33
     (\<forall>r s. R r s \<longleftrightarrow> R r r \<and> R s s \<and> Abs r = Abs s) \<and>
kuncar@47308
    34
     T = (\<lambda>x y. R x x \<and> Abs x = y)"
kuncar@47308
    35
kuncar@47308
    36
lemma QuotientI:
kuncar@47308
    37
  assumes "\<And>a. Abs (Rep a) = a"
kuncar@47308
    38
    and "\<And>a. R (Rep a) (Rep a)"
kuncar@47308
    39
    and "\<And>r s. R r s \<longleftrightarrow> R r r \<and> R s s \<and> Abs r = Abs s"
kuncar@47308
    40
    and "T = (\<lambda>x y. R x x \<and> Abs x = y)"
kuncar@47308
    41
  shows "Quotient R Abs Rep T"
kuncar@47308
    42
  using assms unfolding Quotient_def by blast
kuncar@47308
    43
huffman@47536
    44
context
huffman@47536
    45
  fixes R Abs Rep T
kuncar@47308
    46
  assumes a: "Quotient R Abs Rep T"
huffman@47536
    47
begin
huffman@47536
    48
huffman@47536
    49
lemma Quotient_abs_rep: "Abs (Rep a) = a"
huffman@47536
    50
  using a unfolding Quotient_def
kuncar@47308
    51
  by simp
kuncar@47308
    52
huffman@47536
    53
lemma Quotient_rep_reflp: "R (Rep a) (Rep a)"
huffman@47536
    54
  using a unfolding Quotient_def
kuncar@47308
    55
  by blast
kuncar@47308
    56
kuncar@47308
    57
lemma Quotient_rel:
huffman@47536
    58
  "R r r \<and> R s s \<and> Abs r = Abs s \<longleftrightarrow> R r s" -- {* orientation does not loop on rewriting *}
huffman@47536
    59
  using a unfolding Quotient_def
kuncar@47308
    60
  by blast
kuncar@47308
    61
huffman@47536
    62
lemma Quotient_cr_rel: "T = (\<lambda>x y. R x x \<and> Abs x = y)"
kuncar@47308
    63
  using a unfolding Quotient_def
kuncar@47308
    64
  by blast
kuncar@47308
    65
huffman@47536
    66
lemma Quotient_refl1: "R r s \<Longrightarrow> R r r"
huffman@47536
    67
  using a unfolding Quotient_def
huffman@47536
    68
  by fast
huffman@47536
    69
huffman@47536
    70
lemma Quotient_refl2: "R r s \<Longrightarrow> R s s"
huffman@47536
    71
  using a unfolding Quotient_def
huffman@47536
    72
  by fast
huffman@47536
    73
huffman@47536
    74
lemma Quotient_rel_rep: "R (Rep a) (Rep b) \<longleftrightarrow> a = b"
huffman@47536
    75
  using a unfolding Quotient_def
huffman@47536
    76
  by metis
huffman@47536
    77
huffman@47536
    78
lemma Quotient_rep_abs: "R r r \<Longrightarrow> R (Rep (Abs r)) r"
kuncar@47308
    79
  using a unfolding Quotient_def
kuncar@47308
    80
  by blast
kuncar@47308
    81
kuncar@55610
    82
lemma Quotient_rep_abs_eq: "R t t \<Longrightarrow> R \<le> op= \<Longrightarrow> Rep (Abs t) = t"
kuncar@55610
    83
  using a unfolding Quotient_def
kuncar@55610
    84
  by blast
kuncar@55610
    85
kuncar@47937
    86
lemma Quotient_rep_abs_fold_unmap: 
kuncar@47937
    87
  assumes "x' \<equiv> Abs x" and "R x x" and "Rep x' \<equiv> Rep' x'" 
kuncar@47937
    88
  shows "R (Rep' x') x"
kuncar@47937
    89
proof -
kuncar@47937
    90
  have "R (Rep x') x" using assms(1-2) Quotient_rep_abs by auto
kuncar@47937
    91
  then show ?thesis using assms(3) by simp
kuncar@47937
    92
qed
kuncar@47937
    93
kuncar@47937
    94
lemma Quotient_Rep_eq:
kuncar@47937
    95
  assumes "x' \<equiv> Abs x" 
kuncar@47937
    96
  shows "Rep x' \<equiv> Rep x'"
kuncar@47937
    97
by simp
kuncar@47937
    98
huffman@47536
    99
lemma Quotient_rel_abs: "R r s \<Longrightarrow> Abs r = Abs s"
huffman@47536
   100
  using a unfolding Quotient_def
huffman@47536
   101
  by blast
huffman@47536
   102
kuncar@47937
   103
lemma Quotient_rel_abs2:
kuncar@47937
   104
  assumes "R (Rep x) y"
kuncar@47937
   105
  shows "x = Abs y"
kuncar@47937
   106
proof -
kuncar@47937
   107
  from assms have "Abs (Rep x) = Abs y" by (auto intro: Quotient_rel_abs)
kuncar@47937
   108
  then show ?thesis using assms(1) by (simp add: Quotient_abs_rep)
kuncar@47937
   109
qed
kuncar@47937
   110
huffman@47536
   111
lemma Quotient_symp: "symp R"
kuncar@47308
   112
  using a unfolding Quotient_def using sympI by (metis (full_types))
kuncar@47308
   113
huffman@47536
   114
lemma Quotient_transp: "transp R"
kuncar@47308
   115
  using a unfolding Quotient_def using transpI by (metis (full_types))
kuncar@47308
   116
huffman@47536
   117
lemma Quotient_part_equivp: "part_equivp R"
huffman@47536
   118
by (metis Quotient_rep_reflp Quotient_symp Quotient_transp part_equivpI)
huffman@47536
   119
huffman@47536
   120
end
kuncar@47308
   121
kuncar@47308
   122
lemma identity_quotient: "Quotient (op =) id id (op =)"
kuncar@47308
   123
unfolding Quotient_def by simp 
kuncar@47308
   124
huffman@47652
   125
text {* TODO: Use one of these alternatives as the real definition. *}
huffman@47652
   126
kuncar@47308
   127
lemma Quotient_alt_def:
kuncar@47308
   128
  "Quotient R Abs Rep T \<longleftrightarrow>
kuncar@47308
   129
    (\<forall>a b. T a b \<longrightarrow> Abs a = b) \<and>
kuncar@47308
   130
    (\<forall>b. T (Rep b) b) \<and>
kuncar@47308
   131
    (\<forall>x y. R x y \<longleftrightarrow> T x (Abs x) \<and> T y (Abs y) \<and> Abs x = Abs y)"
kuncar@47308
   132
apply safe
kuncar@47308
   133
apply (simp (no_asm_use) only: Quotient_def, fast)
kuncar@47308
   134
apply (simp (no_asm_use) only: Quotient_def, fast)
kuncar@47308
   135
apply (simp (no_asm_use) only: Quotient_def, fast)
kuncar@47308
   136
apply (simp (no_asm_use) only: Quotient_def, fast)
kuncar@47308
   137
apply (simp (no_asm_use) only: Quotient_def, fast)
kuncar@47308
   138
apply (simp (no_asm_use) only: Quotient_def, fast)
kuncar@47308
   139
apply (rule QuotientI)
kuncar@47308
   140
apply simp
kuncar@47308
   141
apply metis
kuncar@47308
   142
apply simp
kuncar@47308
   143
apply (rule ext, rule ext, metis)
kuncar@47308
   144
done
kuncar@47308
   145
kuncar@47308
   146
lemma Quotient_alt_def2:
kuncar@47308
   147
  "Quotient R Abs Rep T \<longleftrightarrow>
kuncar@47308
   148
    (\<forall>a b. T a b \<longrightarrow> Abs a = b) \<and>
kuncar@47308
   149
    (\<forall>b. T (Rep b) b) \<and>
kuncar@47308
   150
    (\<forall>x y. R x y \<longleftrightarrow> T x (Abs y) \<and> T y (Abs x))"
kuncar@47308
   151
  unfolding Quotient_alt_def by (safe, metis+)
kuncar@47308
   152
huffman@47652
   153
lemma Quotient_alt_def3:
huffman@47652
   154
  "Quotient R Abs Rep T \<longleftrightarrow>
huffman@47652
   155
    (\<forall>a b. T a b \<longrightarrow> Abs a = b) \<and> (\<forall>b. T (Rep b) b) \<and>
huffman@47652
   156
    (\<forall>x y. R x y \<longleftrightarrow> (\<exists>z. T x z \<and> T y z))"
huffman@47652
   157
  unfolding Quotient_alt_def2 by (safe, metis+)
huffman@47652
   158
huffman@47652
   159
lemma Quotient_alt_def4:
huffman@47652
   160
  "Quotient R Abs Rep T \<longleftrightarrow>
huffman@47652
   161
    (\<forall>a b. T a b \<longrightarrow> Abs a = b) \<and> (\<forall>b. T (Rep b) b) \<and> R = T OO conversep T"
huffman@47652
   162
  unfolding Quotient_alt_def3 fun_eq_iff by auto
huffman@47652
   163
kuncar@56524
   164
lemma Quotient_alt_def5:
kuncar@56524
   165
  "Quotient R Abs Rep T \<longleftrightarrow>
blanchet@57398
   166
    T \<le> BNF_Def.Grp UNIV Abs \<and> BNF_Def.Grp UNIV Rep \<le> T\<inverse>\<inverse> \<and> R = T OO T\<inverse>\<inverse>"
kuncar@56524
   167
  unfolding Quotient_alt_def4 Grp_def by blast
kuncar@56524
   168
kuncar@47308
   169
lemma fun_quotient:
kuncar@47308
   170
  assumes 1: "Quotient R1 abs1 rep1 T1"
kuncar@47308
   171
  assumes 2: "Quotient R2 abs2 rep2 T2"
kuncar@47308
   172
  shows "Quotient (R1 ===> R2) (rep1 ---> abs2) (abs1 ---> rep2) (T1 ===> T2)"
kuncar@47308
   173
  using assms unfolding Quotient_alt_def2
blanchet@55945
   174
  unfolding rel_fun_def fun_eq_iff map_fun_apply
kuncar@47308
   175
  by (safe, metis+)
kuncar@47308
   176
kuncar@47308
   177
lemma apply_rsp:
kuncar@47308
   178
  fixes f g::"'a \<Rightarrow> 'c"
kuncar@47308
   179
  assumes q: "Quotient R1 Abs1 Rep1 T1"
kuncar@47308
   180
  and     a: "(R1 ===> R2) f g" "R1 x y"
kuncar@47308
   181
  shows "R2 (f x) (g y)"
blanchet@55945
   182
  using a by (auto elim: rel_funE)
kuncar@47308
   183
kuncar@47308
   184
lemma apply_rsp':
kuncar@47308
   185
  assumes a: "(R1 ===> R2) f g" "R1 x y"
kuncar@47308
   186
  shows "R2 (f x) (g y)"
blanchet@55945
   187
  using a by (auto elim: rel_funE)
kuncar@47308
   188
kuncar@47308
   189
lemma apply_rsp'':
kuncar@47308
   190
  assumes "Quotient R Abs Rep T"
kuncar@47308
   191
  and "(R ===> S) f f"
kuncar@47308
   192
  shows "S (f (Rep x)) (f (Rep x))"
kuncar@47308
   193
proof -
kuncar@47308
   194
  from assms(1) have "R (Rep x) (Rep x)" by (rule Quotient_rep_reflp)
kuncar@47308
   195
  then show ?thesis using assms(2) by (auto intro: apply_rsp')
kuncar@47308
   196
qed
kuncar@47308
   197
kuncar@47308
   198
subsection {* Quotient composition *}
kuncar@47308
   199
kuncar@47308
   200
lemma Quotient_compose:
kuncar@47308
   201
  assumes 1: "Quotient R1 Abs1 Rep1 T1"
kuncar@47308
   202
  assumes 2: "Quotient R2 Abs2 Rep2 T2"
kuncar@47308
   203
  shows "Quotient (T1 OO R2 OO conversep T1) (Abs2 \<circ> Abs1) (Rep1 \<circ> Rep2) (T1 OO T2)"
kuncar@51994
   204
  using assms unfolding Quotient_alt_def4 by fastforce
kuncar@47308
   205
kuncar@47521
   206
lemma equivp_reflp2:
kuncar@47521
   207
  "equivp R \<Longrightarrow> reflp R"
kuncar@47521
   208
  by (erule equivpE)
kuncar@47521
   209
huffman@47544
   210
subsection {* Respects predicate *}
huffman@47544
   211
huffman@47544
   212
definition Respects :: "('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> 'a set"
huffman@47544
   213
  where "Respects R = {x. R x x}"
huffman@47544
   214
huffman@47544
   215
lemma in_respects: "x \<in> Respects R \<longleftrightarrow> R x x"
huffman@47544
   216
  unfolding Respects_def by simp
huffman@47544
   217
kuncar@47361
   218
lemma UNIV_typedef_to_Quotient:
kuncar@47308
   219
  assumes "type_definition Rep Abs UNIV"
kuncar@47361
   220
  and T_def: "T \<equiv> (\<lambda>x y. x = Rep y)"
kuncar@47308
   221
  shows "Quotient (op =) Abs Rep T"
kuncar@47308
   222
proof -
kuncar@47308
   223
  interpret type_definition Rep Abs UNIV by fact
kuncar@47361
   224
  from Abs_inject Rep_inverse Abs_inverse T_def show ?thesis 
kuncar@47361
   225
    by (fastforce intro!: QuotientI fun_eq_iff)
kuncar@47308
   226
qed
kuncar@47308
   227
kuncar@47361
   228
lemma UNIV_typedef_to_equivp:
kuncar@47308
   229
  fixes Abs :: "'a \<Rightarrow> 'b"
kuncar@47308
   230
  and Rep :: "'b \<Rightarrow> 'a"
kuncar@47308
   231
  assumes "type_definition Rep Abs (UNIV::'a set)"
kuncar@47308
   232
  shows "equivp (op=::'a\<Rightarrow>'a\<Rightarrow>bool)"
kuncar@47308
   233
by (rule identity_equivp)
kuncar@47308
   234
huffman@47354
   235
lemma typedef_to_Quotient:
kuncar@47361
   236
  assumes "type_definition Rep Abs S"
kuncar@47361
   237
  and T_def: "T \<equiv> (\<lambda>x y. x = Rep y)"
kuncar@56519
   238
  shows "Quotient (eq_onp (\<lambda>x. x \<in> S)) Abs Rep T"
kuncar@47361
   239
proof -
kuncar@47361
   240
  interpret type_definition Rep Abs S by fact
kuncar@47361
   241
  from Rep Abs_inject Rep_inverse Abs_inverse T_def show ?thesis
kuncar@56519
   242
    by (auto intro!: QuotientI simp: eq_onp_def fun_eq_iff)
kuncar@47361
   243
qed
kuncar@47361
   244
kuncar@47361
   245
lemma typedef_to_part_equivp:
kuncar@47361
   246
  assumes "type_definition Rep Abs S"
kuncar@56519
   247
  shows "part_equivp (eq_onp (\<lambda>x. x \<in> S))"
kuncar@47361
   248
proof (intro part_equivpI)
kuncar@47361
   249
  interpret type_definition Rep Abs S by fact
kuncar@56519
   250
  show "\<exists>x. eq_onp (\<lambda>x. x \<in> S) x x" using Rep by (auto simp: eq_onp_def)
kuncar@47361
   251
next
kuncar@56519
   252
  show "symp (eq_onp (\<lambda>x. x \<in> S))" by (auto intro: sympI simp: eq_onp_def)
kuncar@47361
   253
next
kuncar@56519
   254
  show "transp (eq_onp (\<lambda>x. x \<in> S))" by (auto intro: transpI simp: eq_onp_def)
kuncar@47361
   255
qed
kuncar@47361
   256
kuncar@47361
   257
lemma open_typedef_to_Quotient:
kuncar@47308
   258
  assumes "type_definition Rep Abs {x. P x}"
huffman@47354
   259
  and T_def: "T \<equiv> (\<lambda>x y. x = Rep y)"
kuncar@56519
   260
  shows "Quotient (eq_onp P) Abs Rep T"
huffman@47651
   261
  using typedef_to_Quotient [OF assms] by simp
kuncar@47308
   262
kuncar@47361
   263
lemma open_typedef_to_part_equivp:
kuncar@47308
   264
  assumes "type_definition Rep Abs {x. P x}"
kuncar@56519
   265
  shows "part_equivp (eq_onp P)"
huffman@47651
   266
  using typedef_to_part_equivp [OF assms] by simp
kuncar@47308
   267
huffman@47376
   268
text {* Generating transfer rules for quotients. *}
huffman@47376
   269
huffman@47537
   270
context
huffman@47537
   271
  fixes R Abs Rep T
huffman@47537
   272
  assumes 1: "Quotient R Abs Rep T"
huffman@47537
   273
begin
huffman@47376
   274
huffman@47537
   275
lemma Quotient_right_unique: "right_unique T"
huffman@47537
   276
  using 1 unfolding Quotient_alt_def right_unique_def by metis
huffman@47537
   277
huffman@47537
   278
lemma Quotient_right_total: "right_total T"
huffman@47537
   279
  using 1 unfolding Quotient_alt_def right_total_def by metis
huffman@47537
   280
huffman@47537
   281
lemma Quotient_rel_eq_transfer: "(T ===> T ===> op =) R (op =)"
blanchet@55945
   282
  using 1 unfolding Quotient_alt_def rel_fun_def by simp
huffman@47376
   283
huffman@47538
   284
lemma Quotient_abs_induct:
huffman@47538
   285
  assumes "\<And>y. R y y \<Longrightarrow> P (Abs y)" shows "P x"
huffman@47538
   286
  using 1 assms unfolding Quotient_def by metis
huffman@47538
   287
huffman@47537
   288
end
huffman@47537
   289
huffman@47537
   290
text {* Generating transfer rules for total quotients. *}
huffman@47376
   291
huffman@47537
   292
context
huffman@47537
   293
  fixes R Abs Rep T
huffman@47537
   294
  assumes 1: "Quotient R Abs Rep T" and 2: "reflp R"
huffman@47537
   295
begin
huffman@47376
   296
kuncar@56518
   297
lemma Quotient_left_total: "left_total T"
kuncar@56518
   298
  using 1 2 unfolding Quotient_alt_def left_total_def reflp_def by auto
kuncar@56518
   299
huffman@47537
   300
lemma Quotient_bi_total: "bi_total T"
huffman@47537
   301
  using 1 2 unfolding Quotient_alt_def bi_total_def reflp_def by auto
huffman@47537
   302
huffman@47537
   303
lemma Quotient_id_abs_transfer: "(op = ===> T) (\<lambda>x. x) Abs"
blanchet@55945
   304
  using 1 2 unfolding Quotient_alt_def reflp_def rel_fun_def by simp
huffman@47537
   305
huffman@47575
   306
lemma Quotient_total_abs_induct: "(\<And>y. P (Abs y)) \<Longrightarrow> P x"
huffman@47575
   307
  using 1 2 assms unfolding Quotient_alt_def reflp_def by metis
huffman@47575
   308
huffman@47889
   309
lemma Quotient_total_abs_eq_iff: "Abs x = Abs y \<longleftrightarrow> R x y"
huffman@47889
   310
  using Quotient_rel [OF 1] 2 unfolding reflp_def by simp
huffman@47889
   311
huffman@47537
   312
end
huffman@47376
   313
huffman@47368
   314
text {* Generating transfer rules for a type defined with @{text "typedef"}. *}
huffman@47368
   315
huffman@47534
   316
context
huffman@47534
   317
  fixes Rep Abs A T
huffman@47368
   318
  assumes type: "type_definition Rep Abs A"
huffman@47534
   319
  assumes T_def: "T \<equiv> (\<lambda>(x::'a) (y::'b). x = Rep y)"
huffman@47534
   320
begin
huffman@47534
   321
kuncar@51994
   322
lemma typedef_left_unique: "left_unique T"
kuncar@51994
   323
  unfolding left_unique_def T_def
kuncar@51994
   324
  by (simp add: type_definition.Rep_inject [OF type])
kuncar@51994
   325
huffman@47534
   326
lemma typedef_bi_unique: "bi_unique T"
huffman@47368
   327
  unfolding bi_unique_def T_def
huffman@47368
   328
  by (simp add: type_definition.Rep_inject [OF type])
huffman@47368
   329
kuncar@51374
   330
(* the following two theorems are here only for convinience *)
kuncar@51374
   331
kuncar@51374
   332
lemma typedef_right_unique: "right_unique T"
kuncar@51374
   333
  using T_def type Quotient_right_unique typedef_to_Quotient 
kuncar@51374
   334
  by blast
kuncar@51374
   335
kuncar@51374
   336
lemma typedef_right_total: "right_total T"
kuncar@51374
   337
  using T_def type Quotient_right_total typedef_to_Quotient 
kuncar@51374
   338
  by blast
kuncar@51374
   339
huffman@47535
   340
lemma typedef_rep_transfer: "(T ===> op =) (\<lambda>x. x) Rep"
blanchet@55945
   341
  unfolding rel_fun_def T_def by simp
huffman@47535
   342
huffman@47534
   343
end
huffman@47534
   344
huffman@47368
   345
text {* Generating the correspondence rule for a constant defined with
huffman@47368
   346
  @{text "lift_definition"}. *}
huffman@47368
   347
huffman@47351
   348
lemma Quotient_to_transfer:
huffman@47351
   349
  assumes "Quotient R Abs Rep T" and "R c c" and "c' \<equiv> Abs c"
huffman@47351
   350
  shows "T c c'"
huffman@47351
   351
  using assms by (auto dest: Quotient_cr_rel)
huffman@47351
   352
kuncar@47982
   353
text {* Proving reflexivity *}
kuncar@47982
   354
kuncar@47982
   355
lemma Quotient_to_left_total:
kuncar@47982
   356
  assumes q: "Quotient R Abs Rep T"
kuncar@47982
   357
  and r_R: "reflp R"
kuncar@47982
   358
  shows "left_total T"
kuncar@47982
   359
using r_R Quotient_cr_rel[OF q] unfolding left_total_def by (auto elim: reflpE)
kuncar@47982
   360
kuncar@55563
   361
lemma Quotient_composition_ge_eq:
kuncar@55563
   362
  assumes "left_total T"
kuncar@55563
   363
  assumes "R \<ge> op="
kuncar@55563
   364
  shows "(T OO R OO T\<inverse>\<inverse>) \<ge> op="
kuncar@55563
   365
using assms unfolding left_total_def by fast
kuncar@51994
   366
kuncar@55563
   367
lemma Quotient_composition_le_eq:
kuncar@55563
   368
  assumes "left_unique T"
kuncar@55563
   369
  assumes "R \<le> op="
kuncar@55563
   370
  shows "(T OO R OO T\<inverse>\<inverse>) \<le> op="
noschinl@55604
   371
using assms unfolding left_unique_def by blast
kuncar@47982
   372
kuncar@56519
   373
lemma eq_onp_le_eq:
kuncar@56519
   374
  "eq_onp P \<le> op=" unfolding eq_onp_def by blast
kuncar@55563
   375
kuncar@55563
   376
lemma reflp_ge_eq:
kuncar@55563
   377
  "reflp R \<Longrightarrow> R \<ge> op=" unfolding reflp_def by blast
kuncar@55563
   378
kuncar@55563
   379
lemma ge_eq_refl:
kuncar@55563
   380
  "R \<ge> op= \<Longrightarrow> R x x" by blast
kuncar@47982
   381
kuncar@51374
   382
text {* Proving a parametrized correspondence relation *}
kuncar@51374
   383
kuncar@51374
   384
definition POS :: "('a \<Rightarrow> 'b \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> 'b \<Rightarrow> bool) \<Rightarrow> bool" where
kuncar@51374
   385
"POS A B \<equiv> A \<le> B"
kuncar@51374
   386
kuncar@51374
   387
definition  NEG :: "('a \<Rightarrow> 'b \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> 'b \<Rightarrow> bool) \<Rightarrow> bool" where
kuncar@51374
   388
"NEG A B \<equiv> B \<le> A"
kuncar@51374
   389
kuncar@51374
   390
lemma pos_OO_eq:
kuncar@51374
   391
  shows "POS (A OO op=) A"
kuncar@51374
   392
unfolding POS_def OO_def by blast
kuncar@51374
   393
kuncar@51374
   394
lemma pos_eq_OO:
kuncar@51374
   395
  shows "POS (op= OO A) A"
kuncar@51374
   396
unfolding POS_def OO_def by blast
kuncar@51374
   397
kuncar@51374
   398
lemma neg_OO_eq:
kuncar@51374
   399
  shows "NEG (A OO op=) A"
kuncar@51374
   400
unfolding NEG_def OO_def by auto
kuncar@51374
   401
kuncar@51374
   402
lemma neg_eq_OO:
kuncar@51374
   403
  shows "NEG (op= OO A) A"
kuncar@51374
   404
unfolding NEG_def OO_def by blast
kuncar@51374
   405
kuncar@51374
   406
lemma POS_trans:
kuncar@51374
   407
  assumes "POS A B"
kuncar@51374
   408
  assumes "POS B C"
kuncar@51374
   409
  shows "POS A C"
kuncar@51374
   410
using assms unfolding POS_def by auto
kuncar@51374
   411
kuncar@51374
   412
lemma NEG_trans:
kuncar@51374
   413
  assumes "NEG A B"
kuncar@51374
   414
  assumes "NEG B C"
kuncar@51374
   415
  shows "NEG A C"
kuncar@51374
   416
using assms unfolding NEG_def by auto
kuncar@51374
   417
kuncar@51374
   418
lemma POS_NEG:
kuncar@51374
   419
  "POS A B \<equiv> NEG B A"
kuncar@51374
   420
  unfolding POS_def NEG_def by auto
kuncar@51374
   421
kuncar@51374
   422
lemma NEG_POS:
kuncar@51374
   423
  "NEG A B \<equiv> POS B A"
kuncar@51374
   424
  unfolding POS_def NEG_def by auto
kuncar@51374
   425
kuncar@51374
   426
lemma POS_pcr_rule:
kuncar@51374
   427
  assumes "POS (A OO B) C"
kuncar@51374
   428
  shows "POS (A OO B OO X) (C OO X)"
kuncar@51374
   429
using assms unfolding POS_def OO_def by blast
kuncar@51374
   430
kuncar@51374
   431
lemma NEG_pcr_rule:
kuncar@51374
   432
  assumes "NEG (A OO B) C"
kuncar@51374
   433
  shows "NEG (A OO B OO X) (C OO X)"
kuncar@51374
   434
using assms unfolding NEG_def OO_def by blast
kuncar@51374
   435
kuncar@51374
   436
lemma POS_apply:
kuncar@51374
   437
  assumes "POS R R'"
kuncar@51374
   438
  assumes "R f g"
kuncar@51374
   439
  shows "R' f g"
kuncar@51374
   440
using assms unfolding POS_def by auto
kuncar@51374
   441
kuncar@51374
   442
text {* Proving a parametrized correspondence relation *}
kuncar@51374
   443
kuncar@51374
   444
lemma fun_mono:
kuncar@51374
   445
  assumes "A \<ge> C"
kuncar@51374
   446
  assumes "B \<le> D"
kuncar@51374
   447
  shows   "(A ===> B) \<le> (C ===> D)"
blanchet@55945
   448
using assms unfolding rel_fun_def by blast
kuncar@51374
   449
kuncar@51374
   450
lemma pos_fun_distr: "((R ===> S) OO (R' ===> S')) \<le> ((R OO R') ===> (S OO S'))"
blanchet@55945
   451
unfolding OO_def rel_fun_def by blast
kuncar@51374
   452
kuncar@51374
   453
lemma functional_relation: "right_unique R \<Longrightarrow> left_total R \<Longrightarrow> \<forall>x. \<exists>!y. R x y"
kuncar@51374
   454
unfolding right_unique_def left_total_def by blast
kuncar@51374
   455
kuncar@51374
   456
lemma functional_converse_relation: "left_unique R \<Longrightarrow> right_total R \<Longrightarrow> \<forall>y. \<exists>!x. R x y"
kuncar@51374
   457
unfolding left_unique_def right_total_def by blast
kuncar@51374
   458
kuncar@51374
   459
lemma neg_fun_distr1:
kuncar@51374
   460
assumes 1: "left_unique R" "right_total R"
kuncar@51374
   461
assumes 2: "right_unique R'" "left_total R'"
kuncar@51374
   462
shows "(R OO R' ===> S OO S') \<le> ((R ===> S) OO (R' ===> S')) "
kuncar@51374
   463
  using functional_relation[OF 2] functional_converse_relation[OF 1]
blanchet@55945
   464
  unfolding rel_fun_def OO_def
kuncar@51374
   465
  apply clarify
kuncar@51374
   466
  apply (subst all_comm)
kuncar@51374
   467
  apply (subst all_conj_distrib[symmetric])
kuncar@51374
   468
  apply (intro choice)
kuncar@51374
   469
  by metis
kuncar@51374
   470
kuncar@51374
   471
lemma neg_fun_distr2:
kuncar@51374
   472
assumes 1: "right_unique R'" "left_total R'"
kuncar@51374
   473
assumes 2: "left_unique S'" "right_total S'"
kuncar@51374
   474
shows "(R OO R' ===> S OO S') \<le> ((R ===> S) OO (R' ===> S'))"
kuncar@51374
   475
  using functional_converse_relation[OF 2] functional_relation[OF 1]
blanchet@55945
   476
  unfolding rel_fun_def OO_def
kuncar@51374
   477
  apply clarify
kuncar@51374
   478
  apply (subst all_comm)
kuncar@51374
   479
  apply (subst all_conj_distrib[symmetric])
kuncar@51374
   480
  apply (intro choice)
kuncar@51374
   481
  by metis
kuncar@51374
   482
kuncar@51956
   483
subsection {* Domains *}
kuncar@51956
   484
kuncar@56519
   485
lemma composed_equiv_rel_eq_onp:
kuncar@55731
   486
  assumes "left_unique R"
kuncar@55731
   487
  assumes "(R ===> op=) P P'"
kuncar@55731
   488
  assumes "Domainp R = P''"
kuncar@56519
   489
  shows "(R OO eq_onp P' OO R\<inverse>\<inverse>) = eq_onp (inf P'' P)"
kuncar@56519
   490
using assms unfolding OO_def conversep_iff Domainp_iff[abs_def] left_unique_def rel_fun_def eq_onp_def
kuncar@55731
   491
fun_eq_iff by blast
kuncar@55731
   492
kuncar@56519
   493
lemma composed_equiv_rel_eq_eq_onp:
kuncar@55731
   494
  assumes "left_unique R"
kuncar@55731
   495
  assumes "Domainp R = P"
kuncar@56519
   496
  shows "(R OO op= OO R\<inverse>\<inverse>) = eq_onp P"
kuncar@56519
   497
using assms unfolding OO_def conversep_iff Domainp_iff[abs_def] left_unique_def eq_onp_def
kuncar@55731
   498
fun_eq_iff is_equality_def by metis
kuncar@55731
   499
kuncar@51956
   500
lemma pcr_Domainp_par_left_total:
kuncar@51956
   501
  assumes "Domainp B = P"
kuncar@51956
   502
  assumes "left_total A"
kuncar@51956
   503
  assumes "(A ===> op=) P' P"
kuncar@51956
   504
  shows "Domainp (A OO B) = P'"
kuncar@51956
   505
using assms
blanchet@55945
   506
unfolding Domainp_iff[abs_def] OO_def bi_unique_def left_total_def rel_fun_def 
kuncar@51956
   507
by (fast intro: fun_eq_iff)
kuncar@51956
   508
kuncar@51956
   509
lemma pcr_Domainp_par:
kuncar@51956
   510
assumes "Domainp B = P2"
kuncar@51956
   511
assumes "Domainp A = P1"
kuncar@51956
   512
assumes "(A ===> op=) P2' P2"
kuncar@51956
   513
shows "Domainp (A OO B) = (inf P1 P2')"
blanchet@55945
   514
using assms unfolding rel_fun_def Domainp_iff[abs_def] OO_def
kuncar@51956
   515
by (fast intro: fun_eq_iff)
kuncar@51956
   516
kuncar@53151
   517
definition rel_pred_comp :: "('a => 'b => bool) => ('b => bool) => 'a => bool"
kuncar@51956
   518
where "rel_pred_comp R P \<equiv> \<lambda>x. \<exists>y. R x y \<and> P y"
kuncar@51956
   519
kuncar@51956
   520
lemma pcr_Domainp:
kuncar@51956
   521
assumes "Domainp B = P"
kuncar@53151
   522
shows "Domainp (A OO B) = (\<lambda>x. \<exists>y. A x y \<and> P y)"
kuncar@53151
   523
using assms by blast
kuncar@51956
   524
kuncar@51956
   525
lemma pcr_Domainp_total:
kuncar@56518
   526
  assumes "left_total B"
kuncar@51956
   527
  assumes "Domainp A = P"
kuncar@51956
   528
  shows "Domainp (A OO B) = P"
kuncar@56518
   529
using assms unfolding left_total_def 
kuncar@51956
   530
by fast
kuncar@51956
   531
kuncar@51956
   532
lemma Quotient_to_Domainp:
kuncar@51956
   533
  assumes "Quotient R Abs Rep T"
kuncar@51956
   534
  shows "Domainp T = (\<lambda>x. R x x)"  
kuncar@51956
   535
by (simp add: Domainp_iff[abs_def] Quotient_cr_rel[OF assms])
kuncar@51956
   536
kuncar@56519
   537
lemma eq_onp_to_Domainp:
kuncar@56519
   538
  assumes "Quotient (eq_onp P) Abs Rep T"
kuncar@51956
   539
  shows "Domainp T = P"
kuncar@56519
   540
by (simp add: eq_onp_def Domainp_iff[abs_def] Quotient_cr_rel[OF assms])
kuncar@51956
   541
kuncar@53011
   542
end
kuncar@53011
   543
kuncar@47308
   544
subsection {* ML setup *}
kuncar@47308
   545
wenzelm@48891
   546
ML_file "Tools/Lifting/lifting_util.ML"
kuncar@47308
   547
wenzelm@57961
   548
named_theorems relator_eq_onp
wenzelm@57961
   549
  "theorems that a relator of an eq_onp is an eq_onp of the corresponding predicate"
wenzelm@48891
   550
ML_file "Tools/Lifting/lifting_info.ML"
kuncar@47308
   551
setup Lifting_Info.setup
kuncar@47308
   552
kuncar@51374
   553
(* setup for the function type *)
kuncar@47777
   554
declare fun_quotient[quot_map]
kuncar@51374
   555
declare fun_mono[relator_mono]
kuncar@51374
   556
lemmas [relator_distr] = pos_fun_distr neg_fun_distr1 neg_fun_distr2
kuncar@47308
   557
kuncar@56524
   558
ML_file "Tools/Lifting/lifting_bnf.ML"
wenzelm@48891
   559
ML_file "Tools/Lifting/lifting_term.ML"
wenzelm@48891
   560
ML_file "Tools/Lifting/lifting_def.ML"
wenzelm@48891
   561
ML_file "Tools/Lifting/lifting_setup.ML"
kuncar@56518
   562
                           
kuncar@56519
   563
hide_const (open) POS NEG
kuncar@47308
   564
kuncar@47308
   565
end