haftmann@30925
|
1 |
(* Title: HOL/Nat_Numeral.thy
|
wenzelm@23164
|
2 |
Author: Lawrence C Paulson, Cambridge University Computer Laboratory
|
wenzelm@23164
|
3 |
Copyright 1999 University of Cambridge
|
wenzelm@23164
|
4 |
*)
|
wenzelm@23164
|
5 |
|
haftmann@30925
|
6 |
header {* Binary numerals for the natural numbers *}
|
wenzelm@23164
|
7 |
|
haftmann@30925
|
8 |
theory Nat_Numeral
|
haftmann@33296
|
9 |
imports Int
|
wenzelm@23164
|
10 |
begin
|
wenzelm@23164
|
11 |
|
haftmann@31014
|
12 |
subsection {* Numerals for natural numbers *}
|
haftmann@31014
|
13 |
|
wenzelm@23164
|
14 |
text {*
|
wenzelm@23164
|
15 |
Arithmetic for naturals is reduced to that for the non-negative integers.
|
wenzelm@23164
|
16 |
*}
|
wenzelm@23164
|
17 |
|
huffman@43531
|
18 |
instantiation nat :: number_semiring
|
haftmann@25571
|
19 |
begin
|
haftmann@25571
|
20 |
|
haftmann@25571
|
21 |
definition
|
haftmann@32069
|
22 |
nat_number_of_def [code_unfold, code del]: "number_of v = nat (number_of v)"
|
haftmann@25571
|
23 |
|
huffman@43531
|
24 |
instance proof
|
huffman@43531
|
25 |
fix n show "number_of (int n) = (of_nat n :: nat)"
|
huffman@43531
|
26 |
unfolding nat_number_of_def number_of_eq by simp
|
huffman@43531
|
27 |
qed
|
huffman@43531
|
28 |
|
haftmann@25571
|
29 |
end
|
wenzelm@23164
|
30 |
|
haftmann@31998
|
31 |
lemma [code_post]:
|
haftmann@25965
|
32 |
"nat (number_of v) = number_of v"
|
haftmann@25965
|
33 |
unfolding nat_number_of_def ..
|
haftmann@25965
|
34 |
|
haftmann@31014
|
35 |
|
haftmann@31014
|
36 |
subsection {* Special case: squares and cubes *}
|
haftmann@31014
|
37 |
|
haftmann@31014
|
38 |
lemma numeral_2_eq_2: "2 = Suc (Suc 0)"
|
haftmann@31014
|
39 |
by (simp add: nat_number_of_def)
|
haftmann@31014
|
40 |
|
haftmann@31014
|
41 |
lemma numeral_3_eq_3: "3 = Suc (Suc (Suc 0))"
|
haftmann@31014
|
42 |
by (simp add: nat_number_of_def)
|
haftmann@31014
|
43 |
|
haftmann@31014
|
44 |
context power
|
haftmann@30960
|
45 |
begin
|
haftmann@30960
|
46 |
|
wenzelm@23164
|
47 |
abbreviation (xsymbols)
|
haftmann@30960
|
48 |
power2 :: "'a \<Rightarrow> 'a" ("(_\<twosuperior>)" [1000] 999) where
|
haftmann@30960
|
49 |
"x\<twosuperior> \<equiv> x ^ 2"
|
wenzelm@23164
|
50 |
|
wenzelm@23164
|
51 |
notation (latex output)
|
huffman@29401
|
52 |
power2 ("(_\<twosuperior>)" [1000] 999)
|
wenzelm@23164
|
53 |
|
wenzelm@23164
|
54 |
notation (HTML output)
|
huffman@29401
|
55 |
power2 ("(_\<twosuperior>)" [1000] 999)
|
wenzelm@23164
|
56 |
|
haftmann@30960
|
57 |
end
|
haftmann@30960
|
58 |
|
haftmann@31014
|
59 |
context monoid_mult
|
haftmann@31014
|
60 |
begin
|
haftmann@31014
|
61 |
|
haftmann@31014
|
62 |
lemma power2_eq_square: "a\<twosuperior> = a * a"
|
haftmann@31014
|
63 |
by (simp add: numeral_2_eq_2)
|
haftmann@31014
|
64 |
|
haftmann@31014
|
65 |
lemma power3_eq_cube: "a ^ 3 = a * a * a"
|
haftmann@31014
|
66 |
by (simp add: numeral_3_eq_3 mult_assoc)
|
haftmann@31014
|
67 |
|
haftmann@31014
|
68 |
lemma power_even_eq:
|
haftmann@31014
|
69 |
"a ^ (2*n) = (a ^ n) ^ 2"
|
haftmann@35047
|
70 |
by (subst mult_commute) (simp add: power_mult)
|
haftmann@31014
|
71 |
|
haftmann@31014
|
72 |
lemma power_odd_eq:
|
haftmann@31014
|
73 |
"a ^ Suc (2*n) = a * (a ^ n) ^ 2"
|
haftmann@31014
|
74 |
by (simp add: power_even_eq)
|
haftmann@31014
|
75 |
|
haftmann@31014
|
76 |
end
|
haftmann@31014
|
77 |
|
haftmann@31014
|
78 |
context semiring_1
|
haftmann@31014
|
79 |
begin
|
haftmann@31014
|
80 |
|
haftmann@31014
|
81 |
lemma zero_power2 [simp]: "0\<twosuperior> = 0"
|
haftmann@31014
|
82 |
by (simp add: power2_eq_square)
|
haftmann@31014
|
83 |
|
haftmann@31014
|
84 |
lemma one_power2 [simp]: "1\<twosuperior> = 1"
|
haftmann@31014
|
85 |
by (simp add: power2_eq_square)
|
haftmann@31014
|
86 |
|
haftmann@31014
|
87 |
end
|
haftmann@31014
|
88 |
|
huffman@36823
|
89 |
context ring_1
|
haftmann@31014
|
90 |
begin
|
haftmann@31014
|
91 |
|
haftmann@31014
|
92 |
lemma power2_minus [simp]:
|
haftmann@31014
|
93 |
"(- a)\<twosuperior> = a\<twosuperior>"
|
haftmann@31014
|
94 |
by (simp add: power2_eq_square)
|
haftmann@31014
|
95 |
|
haftmann@31014
|
96 |
text{*
|
haftmann@31014
|
97 |
We cannot prove general results about the numeral @{term "-1"},
|
haftmann@31014
|
98 |
so we have to use @{term "- 1"} instead.
|
haftmann@31014
|
99 |
*}
|
haftmann@31014
|
100 |
|
haftmann@31014
|
101 |
lemma power_minus1_even [simp]:
|
haftmann@31014
|
102 |
"(- 1) ^ (2*n) = 1"
|
haftmann@31014
|
103 |
proof (induct n)
|
haftmann@31014
|
104 |
case 0 show ?case by simp
|
haftmann@31014
|
105 |
next
|
haftmann@31014
|
106 |
case (Suc n) then show ?case by (simp add: power_add)
|
haftmann@31014
|
107 |
qed
|
haftmann@31014
|
108 |
|
haftmann@31014
|
109 |
lemma power_minus1_odd:
|
haftmann@31014
|
110 |
"(- 1) ^ Suc (2*n) = - 1"
|
haftmann@31014
|
111 |
by simp
|
haftmann@31014
|
112 |
|
haftmann@31014
|
113 |
lemma power_minus_even [simp]:
|
haftmann@31014
|
114 |
"(-a) ^ (2*n) = a ^ (2*n)"
|
haftmann@31014
|
115 |
by (simp add: power_minus [of a])
|
haftmann@31014
|
116 |
|
haftmann@31014
|
117 |
end
|
haftmann@31014
|
118 |
|
huffman@36823
|
119 |
context ring_1_no_zero_divisors
|
huffman@36823
|
120 |
begin
|
huffman@36823
|
121 |
|
huffman@36823
|
122 |
lemma zero_eq_power2 [simp]:
|
huffman@36823
|
123 |
"a\<twosuperior> = 0 \<longleftrightarrow> a = 0"
|
huffman@36823
|
124 |
unfolding power2_eq_square by simp
|
huffman@36823
|
125 |
|
huffman@36964
|
126 |
lemma power2_eq_1_iff:
|
huffman@36823
|
127 |
"a\<twosuperior> = 1 \<longleftrightarrow> a = 1 \<or> a = - 1"
|
huffman@36964
|
128 |
unfolding power2_eq_square by (rule square_eq_1_iff)
|
huffman@36823
|
129 |
|
huffman@36823
|
130 |
end
|
huffman@36823
|
131 |
|
huffman@44345
|
132 |
context idom
|
huffman@44345
|
133 |
begin
|
huffman@44345
|
134 |
|
huffman@44345
|
135 |
lemma power2_eq_iff: "x\<twosuperior> = y\<twosuperior> \<longleftrightarrow> x = y \<or> x = - y"
|
huffman@44345
|
136 |
unfolding power2_eq_square by (rule square_eq_iff)
|
huffman@44345
|
137 |
|
huffman@44345
|
138 |
end
|
huffman@44345
|
139 |
|
huffman@35631
|
140 |
context linordered_ring
|
haftmann@31014
|
141 |
begin
|
haftmann@31014
|
142 |
|
haftmann@31014
|
143 |
lemma sum_squares_ge_zero:
|
haftmann@31014
|
144 |
"0 \<le> x * x + y * y"
|
haftmann@31014
|
145 |
by (intro add_nonneg_nonneg zero_le_square)
|
haftmann@31014
|
146 |
|
haftmann@31014
|
147 |
lemma not_sum_squares_lt_zero:
|
haftmann@31014
|
148 |
"\<not> x * x + y * y < 0"
|
haftmann@31014
|
149 |
by (simp add: not_less sum_squares_ge_zero)
|
haftmann@31014
|
150 |
|
huffman@35631
|
151 |
end
|
huffman@35631
|
152 |
|
huffman@35631
|
153 |
context linordered_ring_strict
|
huffman@35631
|
154 |
begin
|
huffman@35631
|
155 |
|
haftmann@31014
|
156 |
lemma sum_squares_eq_zero_iff:
|
haftmann@31014
|
157 |
"x * x + y * y = 0 \<longleftrightarrow> x = 0 \<and> y = 0"
|
haftmann@31034
|
158 |
by (simp add: add_nonneg_eq_0_iff)
|
haftmann@31014
|
159 |
|
haftmann@31014
|
160 |
lemma sum_squares_le_zero_iff:
|
haftmann@31014
|
161 |
"x * x + y * y \<le> 0 \<longleftrightarrow> x = 0 \<and> y = 0"
|
haftmann@31014
|
162 |
by (simp add: le_less not_sum_squares_lt_zero sum_squares_eq_zero_iff)
|
haftmann@31014
|
163 |
|
haftmann@31014
|
164 |
lemma sum_squares_gt_zero_iff:
|
haftmann@31014
|
165 |
"0 < x * x + y * y \<longleftrightarrow> x \<noteq> 0 \<or> y \<noteq> 0"
|
huffman@35631
|
166 |
by (simp add: not_le [symmetric] sum_squares_le_zero_iff)
|
haftmann@31014
|
167 |
|
haftmann@31014
|
168 |
end
|
haftmann@31014
|
169 |
|
haftmann@35028
|
170 |
context linordered_semidom
|
haftmann@31014
|
171 |
begin
|
haftmann@31014
|
172 |
|
haftmann@31014
|
173 |
lemma power2_le_imp_le:
|
haftmann@31014
|
174 |
"x\<twosuperior> \<le> y\<twosuperior> \<Longrightarrow> 0 \<le> y \<Longrightarrow> x \<le> y"
|
haftmann@31014
|
175 |
unfolding numeral_2_eq_2 by (rule power_le_imp_le_base)
|
haftmann@31014
|
176 |
|
haftmann@31014
|
177 |
lemma power2_less_imp_less:
|
haftmann@31014
|
178 |
"x\<twosuperior> < y\<twosuperior> \<Longrightarrow> 0 \<le> y \<Longrightarrow> x < y"
|
haftmann@31014
|
179 |
by (rule power_less_imp_less_base)
|
haftmann@31014
|
180 |
|
haftmann@31014
|
181 |
lemma power2_eq_imp_eq:
|
haftmann@31014
|
182 |
"x\<twosuperior> = y\<twosuperior> \<Longrightarrow> 0 \<le> x \<Longrightarrow> 0 \<le> y \<Longrightarrow> x = y"
|
haftmann@31014
|
183 |
unfolding numeral_2_eq_2 by (erule (2) power_eq_imp_eq_base) simp
|
haftmann@31014
|
184 |
|
haftmann@31014
|
185 |
end
|
haftmann@31014
|
186 |
|
haftmann@35028
|
187 |
context linordered_idom
|
haftmann@31014
|
188 |
begin
|
haftmann@31014
|
189 |
|
haftmann@31014
|
190 |
lemma zero_le_power2 [simp]:
|
haftmann@31014
|
191 |
"0 \<le> a\<twosuperior>"
|
haftmann@31014
|
192 |
by (simp add: power2_eq_square)
|
haftmann@31014
|
193 |
|
haftmann@31014
|
194 |
lemma zero_less_power2 [simp]:
|
haftmann@31014
|
195 |
"0 < a\<twosuperior> \<longleftrightarrow> a \<noteq> 0"
|
haftmann@31014
|
196 |
by (force simp add: power2_eq_square zero_less_mult_iff linorder_neq_iff)
|
haftmann@31014
|
197 |
|
haftmann@31014
|
198 |
lemma power2_less_0 [simp]:
|
haftmann@31014
|
199 |
"\<not> a\<twosuperior> < 0"
|
haftmann@31014
|
200 |
by (force simp add: power2_eq_square mult_less_0_iff)
|
haftmann@31014
|
201 |
|
haftmann@31014
|
202 |
lemma abs_power2 [simp]:
|
haftmann@31014
|
203 |
"abs (a\<twosuperior>) = a\<twosuperior>"
|
haftmann@31014
|
204 |
by (simp add: power2_eq_square abs_mult abs_mult_self)
|
haftmann@31014
|
205 |
|
haftmann@31014
|
206 |
lemma power2_abs [simp]:
|
haftmann@31014
|
207 |
"(abs a)\<twosuperior> = a\<twosuperior>"
|
haftmann@31014
|
208 |
by (simp add: power2_eq_square abs_mult_self)
|
haftmann@31014
|
209 |
|
haftmann@31014
|
210 |
lemma odd_power_less_zero:
|
haftmann@31014
|
211 |
"a < 0 \<Longrightarrow> a ^ Suc (2*n) < 0"
|
haftmann@31014
|
212 |
proof (induct n)
|
haftmann@31014
|
213 |
case 0
|
haftmann@31014
|
214 |
then show ?case by simp
|
haftmann@31014
|
215 |
next
|
haftmann@31014
|
216 |
case (Suc n)
|
haftmann@31014
|
217 |
have "a ^ Suc (2 * Suc n) = (a*a) * a ^ Suc(2*n)"
|
haftmann@31014
|
218 |
by (simp add: mult_ac power_add power2_eq_square)
|
haftmann@31014
|
219 |
thus ?case
|
haftmann@31014
|
220 |
by (simp del: power_Suc add: Suc mult_less_0_iff mult_neg_neg)
|
haftmann@31014
|
221 |
qed
|
haftmann@31014
|
222 |
|
haftmann@31014
|
223 |
lemma odd_0_le_power_imp_0_le:
|
haftmann@31014
|
224 |
"0 \<le> a ^ Suc (2*n) \<Longrightarrow> 0 \<le> a"
|
haftmann@31014
|
225 |
using odd_power_less_zero [of a n]
|
haftmann@31014
|
226 |
by (force simp add: linorder_not_less [symmetric])
|
haftmann@31014
|
227 |
|
haftmann@31014
|
228 |
lemma zero_le_even_power'[simp]:
|
haftmann@31014
|
229 |
"0 \<le> a ^ (2*n)"
|
haftmann@31014
|
230 |
proof (induct n)
|
haftmann@31014
|
231 |
case 0
|
huffman@35216
|
232 |
show ?case by simp
|
haftmann@31014
|
233 |
next
|
haftmann@31014
|
234 |
case (Suc n)
|
haftmann@31014
|
235 |
have "a ^ (2 * Suc n) = (a*a) * a ^ (2*n)"
|
haftmann@31014
|
236 |
by (simp add: mult_ac power_add power2_eq_square)
|
haftmann@31014
|
237 |
thus ?case
|
haftmann@31014
|
238 |
by (simp add: Suc zero_le_mult_iff)
|
haftmann@31014
|
239 |
qed
|
haftmann@31014
|
240 |
|
haftmann@31014
|
241 |
lemma sum_power2_ge_zero:
|
haftmann@31014
|
242 |
"0 \<le> x\<twosuperior> + y\<twosuperior>"
|
haftmann@31014
|
243 |
unfolding power2_eq_square by (rule sum_squares_ge_zero)
|
haftmann@31014
|
244 |
|
haftmann@31014
|
245 |
lemma not_sum_power2_lt_zero:
|
haftmann@31014
|
246 |
"\<not> x\<twosuperior> + y\<twosuperior> < 0"
|
haftmann@31014
|
247 |
unfolding power2_eq_square by (rule not_sum_squares_lt_zero)
|
haftmann@31014
|
248 |
|
haftmann@31014
|
249 |
lemma sum_power2_eq_zero_iff:
|
haftmann@31014
|
250 |
"x\<twosuperior> + y\<twosuperior> = 0 \<longleftrightarrow> x = 0 \<and> y = 0"
|
haftmann@31014
|
251 |
unfolding power2_eq_square by (rule sum_squares_eq_zero_iff)
|
haftmann@31014
|
252 |
|
haftmann@31014
|
253 |
lemma sum_power2_le_zero_iff:
|
haftmann@31014
|
254 |
"x\<twosuperior> + y\<twosuperior> \<le> 0 \<longleftrightarrow> x = 0 \<and> y = 0"
|
haftmann@31014
|
255 |
unfolding power2_eq_square by (rule sum_squares_le_zero_iff)
|
haftmann@31014
|
256 |
|
haftmann@31014
|
257 |
lemma sum_power2_gt_zero_iff:
|
haftmann@31014
|
258 |
"0 < x\<twosuperior> + y\<twosuperior> \<longleftrightarrow> x \<noteq> 0 \<or> y \<noteq> 0"
|
haftmann@31014
|
259 |
unfolding power2_eq_square by (rule sum_squares_gt_zero_iff)
|
haftmann@31014
|
260 |
|
haftmann@31014
|
261 |
end
|
haftmann@31014
|
262 |
|
haftmann@31014
|
263 |
lemma power2_sum:
|
huffman@43531
|
264 |
fixes x y :: "'a::number_semiring"
|
haftmann@31014
|
265 |
shows "(x + y)\<twosuperior> = x\<twosuperior> + y\<twosuperior> + 2 * x * y"
|
huffman@43531
|
266 |
by (simp add: algebra_simps power2_eq_square semiring_mult_2_right)
|
haftmann@31014
|
267 |
|
haftmann@31014
|
268 |
lemma power2_diff:
|
haftmann@31014
|
269 |
fixes x y :: "'a::number_ring"
|
haftmann@31014
|
270 |
shows "(x - y)\<twosuperior> = x\<twosuperior> + y\<twosuperior> - 2 * x * y"
|
haftmann@33296
|
271 |
by (simp add: ring_distribs power2_eq_square mult_2) (rule mult_commute)
|
haftmann@31014
|
272 |
|
wenzelm@23164
|
273 |
|
huffman@29040
|
274 |
subsection {* Predicate for negative binary numbers *}
|
huffman@29040
|
275 |
|
haftmann@30652
|
276 |
definition neg :: "int \<Rightarrow> bool" where
|
huffman@29040
|
277 |
"neg Z \<longleftrightarrow> Z < 0"
|
huffman@29040
|
278 |
|
huffman@29040
|
279 |
lemma not_neg_int [simp]: "~ neg (of_nat n)"
|
huffman@29040
|
280 |
by (simp add: neg_def)
|
huffman@29040
|
281 |
|
huffman@29040
|
282 |
lemma neg_zminus_int [simp]: "neg (- (of_nat (Suc n)))"
|
huffman@35216
|
283 |
by (simp add: neg_def del: of_nat_Suc)
|
huffman@29040
|
284 |
|
huffman@29040
|
285 |
lemmas neg_eq_less_0 = neg_def
|
huffman@29040
|
286 |
|
huffman@29040
|
287 |
lemma not_neg_eq_ge_0: "(~neg x) = (0 \<le> x)"
|
huffman@29040
|
288 |
by (simp add: neg_def linorder_not_less)
|
huffman@29040
|
289 |
|
huffman@29040
|
290 |
text{*To simplify inequalities when Numeral1 can get simplified to 1*}
|
huffman@29040
|
291 |
|
huffman@29040
|
292 |
lemma not_neg_0: "~ neg 0"
|
huffman@29040
|
293 |
by (simp add: One_int_def neg_def)
|
huffman@29040
|
294 |
|
huffman@29040
|
295 |
lemma not_neg_1: "~ neg 1"
|
huffman@35216
|
296 |
by (simp add: neg_def linorder_not_less)
|
huffman@29040
|
297 |
|
huffman@29040
|
298 |
lemma neg_nat: "neg z ==> nat z = 0"
|
huffman@29040
|
299 |
by (simp add: neg_def order_less_imp_le)
|
huffman@29040
|
300 |
|
huffman@29040
|
301 |
lemma not_neg_nat: "~ neg z ==> of_nat (nat z) = z"
|
huffman@29040
|
302 |
by (simp add: linorder_not_less neg_def)
|
huffman@29040
|
303 |
|
huffman@29040
|
304 |
text {*
|
huffman@29040
|
305 |
If @{term Numeral0} is rewritten to 0 then this rule can't be applied:
|
huffman@29040
|
306 |
@{term Numeral0} IS @{term "number_of Pls"}
|
huffman@29040
|
307 |
*}
|
huffman@29040
|
308 |
|
huffman@29040
|
309 |
lemma not_neg_number_of_Pls: "~ neg (number_of Int.Pls)"
|
huffman@29040
|
310 |
by (simp add: neg_def)
|
huffman@29040
|
311 |
|
huffman@29040
|
312 |
lemma neg_number_of_Min: "neg (number_of Int.Min)"
|
huffman@29040
|
313 |
by (simp add: neg_def)
|
huffman@29040
|
314 |
|
huffman@29040
|
315 |
lemma neg_number_of_Bit0:
|
huffman@29040
|
316 |
"neg (number_of (Int.Bit0 w)) = neg (number_of w)"
|
huffman@29040
|
317 |
by (simp add: neg_def)
|
huffman@29040
|
318 |
|
huffman@29040
|
319 |
lemma neg_number_of_Bit1:
|
huffman@29040
|
320 |
"neg (number_of (Int.Bit1 w)) = neg (number_of w)"
|
huffman@29040
|
321 |
by (simp add: neg_def)
|
huffman@29040
|
322 |
|
huffman@29040
|
323 |
lemmas neg_simps [simp] =
|
huffman@29040
|
324 |
not_neg_0 not_neg_1
|
huffman@29040
|
325 |
not_neg_number_of_Pls neg_number_of_Min
|
huffman@29040
|
326 |
neg_number_of_Bit0 neg_number_of_Bit1
|
huffman@29040
|
327 |
|
huffman@29040
|
328 |
|
wenzelm@23164
|
329 |
subsection{*Function @{term nat}: Coercion from Type @{typ int} to @{typ nat}*}
|
wenzelm@23164
|
330 |
|
huffman@35216
|
331 |
declare nat_1 [simp]
|
wenzelm@23164
|
332 |
|
wenzelm@23164
|
333 |
lemma nat_number_of [simp]: "nat (number_of w) = number_of w"
|
wenzelm@23164
|
334 |
by (simp add: nat_number_of_def)
|
wenzelm@23164
|
335 |
|
haftmann@31998
|
336 |
lemma nat_numeral_0_eq_0 [simp, code_post]: "Numeral0 = (0::nat)"
|
huffman@44884
|
337 |
by (rule semiring_numeral_0_eq_0)
|
wenzelm@23164
|
338 |
|
wenzelm@23164
|
339 |
lemma nat_numeral_1_eq_1 [simp]: "Numeral1 = (1::nat)"
|
huffman@44884
|
340 |
by (rule semiring_numeral_1_eq_1)
|
wenzelm@23164
|
341 |
|
haftmann@36719
|
342 |
lemma Numeral1_eq1_nat:
|
haftmann@36719
|
343 |
"(1::nat) = Numeral1"
|
haftmann@36719
|
344 |
by simp
|
haftmann@36719
|
345 |
|
haftmann@31998
|
346 |
lemma numeral_1_eq_Suc_0 [code_post]: "Numeral1 = Suc 0"
|
huffman@35216
|
347 |
by (simp only: nat_numeral_1_eq_1 One_nat_def)
|
wenzelm@23164
|
348 |
|
wenzelm@23164
|
349 |
|
wenzelm@23164
|
350 |
subsection{*Function @{term int}: Coercion from Type @{typ nat} to @{typ int}*}
|
wenzelm@23164
|
351 |
|
wenzelm@23164
|
352 |
lemma int_nat_number_of [simp]:
|
huffman@23365
|
353 |
"int (number_of v) =
|
huffman@23307
|
354 |
(if neg (number_of v :: int) then 0
|
huffman@23307
|
355 |
else (number_of v :: int))"
|
huffman@28984
|
356 |
unfolding nat_number_of_def number_of_is_id neg_def
|
huffman@44884
|
357 |
by simp (* FIXME: redundant with of_nat_number_of_eq *)
|
huffman@23307
|
358 |
|
huffman@43531
|
359 |
lemma nonneg_int_cases:
|
huffman@43531
|
360 |
fixes k :: int assumes "0 \<le> k" obtains n where "k = of_nat n"
|
huffman@43531
|
361 |
using assms by (cases k, simp, simp)
|
wenzelm@23164
|
362 |
|
wenzelm@23164
|
363 |
subsubsection{*Successor *}
|
wenzelm@23164
|
364 |
|
wenzelm@23164
|
365 |
lemma Suc_nat_eq_nat_zadd1: "(0::int) <= z ==> Suc (nat z) = nat (1 + z)"
|
wenzelm@23164
|
366 |
apply (rule sym)
|
huffman@44766
|
367 |
apply (simp add: nat_eq_iff)
|
wenzelm@23164
|
368 |
done
|
wenzelm@23164
|
369 |
|
wenzelm@23164
|
370 |
lemma Suc_nat_number_of_add:
|
wenzelm@23164
|
371 |
"Suc (number_of v + n) =
|
huffman@28984
|
372 |
(if neg (number_of v :: int) then 1+n else number_of (Int.succ v) + n)"
|
huffman@28984
|
373 |
unfolding nat_number_of_def number_of_is_id neg_def numeral_simps
|
huffman@28984
|
374 |
by (simp add: Suc_nat_eq_nat_zadd1 add_ac)
|
wenzelm@23164
|
375 |
|
wenzelm@23164
|
376 |
lemma Suc_nat_number_of [simp]:
|
wenzelm@23164
|
377 |
"Suc (number_of v) =
|
haftmann@25919
|
378 |
(if neg (number_of v :: int) then 1 else number_of (Int.succ v))"
|
wenzelm@23164
|
379 |
apply (cut_tac n = 0 in Suc_nat_number_of_add)
|
wenzelm@23164
|
380 |
apply (simp cong del: if_weak_cong)
|
wenzelm@23164
|
381 |
done
|
wenzelm@23164
|
382 |
|
wenzelm@23164
|
383 |
|
wenzelm@23164
|
384 |
subsubsection{*Addition *}
|
wenzelm@23164
|
385 |
|
wenzelm@23164
|
386 |
lemma add_nat_number_of [simp]:
|
wenzelm@23164
|
387 |
"(number_of v :: nat) + number_of v' =
|
huffman@29012
|
388 |
(if v < Int.Pls then number_of v'
|
huffman@29012
|
389 |
else if v' < Int.Pls then number_of v
|
wenzelm@23164
|
390 |
else number_of (v + v'))"
|
huffman@29012
|
391 |
unfolding nat_number_of_def number_of_is_id numeral_simps
|
huffman@28984
|
392 |
by (simp add: nat_add_distrib)
|
wenzelm@23164
|
393 |
|
huffman@30081
|
394 |
lemma nat_number_of_add_1 [simp]:
|
huffman@30081
|
395 |
"number_of v + (1::nat) =
|
huffman@30081
|
396 |
(if v < Int.Pls then 1 else number_of (Int.succ v))"
|
huffman@30081
|
397 |
unfolding nat_number_of_def number_of_is_id numeral_simps
|
huffman@30081
|
398 |
by (simp add: nat_add_distrib)
|
huffman@30081
|
399 |
|
huffman@30081
|
400 |
lemma nat_1_add_number_of [simp]:
|
huffman@30081
|
401 |
"(1::nat) + number_of v =
|
huffman@30081
|
402 |
(if v < Int.Pls then 1 else number_of (Int.succ v))"
|
huffman@30081
|
403 |
unfolding nat_number_of_def number_of_is_id numeral_simps
|
huffman@30081
|
404 |
by (simp add: nat_add_distrib)
|
huffman@30081
|
405 |
|
huffman@30081
|
406 |
lemma nat_1_add_1 [simp]: "1 + 1 = (2::nat)"
|
huffman@43531
|
407 |
by (rule semiring_one_add_one_is_two)
|
huffman@43531
|
408 |
|
huffman@43531
|
409 |
text {* TODO: replace simp rules above with these generic ones: *}
|
huffman@43531
|
410 |
|
huffman@43531
|
411 |
lemma semiring_add_number_of:
|
huffman@43531
|
412 |
"\<lbrakk>Int.Pls \<le> v; Int.Pls \<le> v'\<rbrakk> \<Longrightarrow>
|
huffman@43531
|
413 |
(number_of v :: 'a::number_semiring) + number_of v' = number_of (v + v')"
|
huffman@43531
|
414 |
unfolding Int.Pls_def
|
huffman@43531
|
415 |
by (elim nonneg_int_cases,
|
huffman@43531
|
416 |
simp only: number_of_int of_nat_add [symmetric])
|
huffman@43531
|
417 |
|
huffman@43531
|
418 |
lemma semiring_number_of_add_1:
|
huffman@43531
|
419 |
"Int.Pls \<le> v \<Longrightarrow>
|
huffman@43531
|
420 |
number_of v + (1::'a::number_semiring) = number_of (Int.succ v)"
|
huffman@43531
|
421 |
unfolding Int.Pls_def Int.succ_def
|
huffman@43531
|
422 |
by (elim nonneg_int_cases,
|
huffman@43531
|
423 |
simp only: number_of_int add_commute [where b=1] of_nat_Suc [symmetric])
|
huffman@43531
|
424 |
|
huffman@43531
|
425 |
lemma semiring_1_add_number_of:
|
huffman@43531
|
426 |
"Int.Pls \<le> v \<Longrightarrow>
|
huffman@43531
|
427 |
(1::'a::number_semiring) + number_of v = number_of (Int.succ v)"
|
huffman@43531
|
428 |
unfolding Int.Pls_def Int.succ_def
|
huffman@43531
|
429 |
by (elim nonneg_int_cases,
|
huffman@43531
|
430 |
simp only: number_of_int add_commute [where b=1] of_nat_Suc [symmetric])
|
huffman@30081
|
431 |
|
wenzelm@23164
|
432 |
|
wenzelm@23164
|
433 |
subsubsection{*Subtraction *}
|
wenzelm@23164
|
434 |
|
wenzelm@23164
|
435 |
lemma diff_nat_eq_if:
|
wenzelm@23164
|
436 |
"nat z - nat z' =
|
wenzelm@23164
|
437 |
(if neg z' then nat z
|
wenzelm@23164
|
438 |
else let d = z-z' in
|
wenzelm@23164
|
439 |
if neg d then 0 else nat d)"
|
haftmann@27651
|
440 |
by (simp add: Let_def nat_diff_distrib [symmetric] neg_eq_less_0 not_neg_eq_ge_0)
|
haftmann@27651
|
441 |
|
wenzelm@23164
|
442 |
|
wenzelm@23164
|
443 |
lemma diff_nat_number_of [simp]:
|
wenzelm@23164
|
444 |
"(number_of v :: nat) - number_of v' =
|
huffman@29012
|
445 |
(if v' < Int.Pls then number_of v
|
wenzelm@23164
|
446 |
else let d = number_of (v + uminus v') in
|
wenzelm@23164
|
447 |
if neg d then 0 else nat d)"
|
huffman@29012
|
448 |
unfolding nat_number_of_def number_of_is_id numeral_simps neg_def
|
huffman@29012
|
449 |
by auto
|
wenzelm@23164
|
450 |
|
huffman@30081
|
451 |
lemma nat_number_of_diff_1 [simp]:
|
huffman@30081
|
452 |
"number_of v - (1::nat) =
|
huffman@30081
|
453 |
(if v \<le> Int.Pls then 0 else number_of (Int.pred v))"
|
huffman@30081
|
454 |
unfolding nat_number_of_def number_of_is_id numeral_simps
|
huffman@30081
|
455 |
by auto
|
huffman@30081
|
456 |
|
wenzelm@23164
|
457 |
|
wenzelm@23164
|
458 |
subsubsection{*Multiplication *}
|
wenzelm@23164
|
459 |
|
wenzelm@23164
|
460 |
lemma mult_nat_number_of [simp]:
|
wenzelm@23164
|
461 |
"(number_of v :: nat) * number_of v' =
|
huffman@29012
|
462 |
(if v < Int.Pls then 0 else number_of (v * v'))"
|
huffman@29012
|
463 |
unfolding nat_number_of_def number_of_is_id numeral_simps
|
huffman@28984
|
464 |
by (simp add: nat_mult_distrib)
|
wenzelm@23164
|
465 |
|
huffman@43531
|
466 |
(* TODO: replace mult_nat_number_of with this next rule *)
|
huffman@43531
|
467 |
lemma semiring_mult_number_of:
|
huffman@43531
|
468 |
"\<lbrakk>Int.Pls \<le> v; Int.Pls \<le> v'\<rbrakk> \<Longrightarrow>
|
huffman@43531
|
469 |
(number_of v :: 'a::number_semiring) * number_of v' = number_of (v * v')"
|
huffman@43531
|
470 |
unfolding Int.Pls_def
|
huffman@43531
|
471 |
by (elim nonneg_int_cases,
|
huffman@43531
|
472 |
simp only: number_of_int of_nat_mult [symmetric])
|
huffman@43531
|
473 |
|
wenzelm@23164
|
474 |
|
wenzelm@23164
|
475 |
subsection{*Comparisons*}
|
wenzelm@23164
|
476 |
|
wenzelm@23164
|
477 |
subsubsection{*Equals (=) *}
|
wenzelm@23164
|
478 |
|
wenzelm@23164
|
479 |
lemma eq_nat_number_of [simp]:
|
wenzelm@23164
|
480 |
"((number_of v :: nat) = number_of v') =
|
huffman@28969
|
481 |
(if neg (number_of v :: int) then (number_of v' :: int) \<le> 0
|
huffman@28969
|
482 |
else if neg (number_of v' :: int) then (number_of v :: int) = 0
|
huffman@28969
|
483 |
else v = v')"
|
huffman@28969
|
484 |
unfolding nat_number_of_def number_of_is_id neg_def
|
huffman@28969
|
485 |
by auto
|
wenzelm@23164
|
486 |
|
wenzelm@23164
|
487 |
|
wenzelm@23164
|
488 |
subsubsection{*Less-than (<) *}
|
wenzelm@23164
|
489 |
|
wenzelm@23164
|
490 |
lemma less_nat_number_of [simp]:
|
huffman@29011
|
491 |
"(number_of v :: nat) < number_of v' \<longleftrightarrow>
|
huffman@29011
|
492 |
(if v < v' then Int.Pls < v' else False)"
|
huffman@29011
|
493 |
unfolding nat_number_of_def number_of_is_id numeral_simps
|
huffman@28961
|
494 |
by auto
|
wenzelm@23164
|
495 |
|
wenzelm@23164
|
496 |
|
huffman@29010
|
497 |
subsubsection{*Less-than-or-equal *}
|
huffman@29010
|
498 |
|
huffman@29010
|
499 |
lemma le_nat_number_of [simp]:
|
huffman@29010
|
500 |
"(number_of v :: nat) \<le> number_of v' \<longleftrightarrow>
|
huffman@29010
|
501 |
(if v \<le> v' then True else v \<le> Int.Pls)"
|
huffman@29010
|
502 |
unfolding nat_number_of_def number_of_is_id numeral_simps
|
huffman@29010
|
503 |
by auto
|
huffman@29010
|
504 |
|
wenzelm@23164
|
505 |
(*Maps #n to n for n = 0, 1, 2*)
|
wenzelm@23164
|
506 |
lemmas numerals = nat_numeral_0_eq_0 nat_numeral_1_eq_1 numeral_2_eq_2
|
wenzelm@23164
|
507 |
|
wenzelm@23164
|
508 |
|
wenzelm@23164
|
509 |
subsection{*Powers with Numeric Exponents*}
|
wenzelm@23164
|
510 |
|
wenzelm@23164
|
511 |
text{*Squares of literal numerals will be evaluated.*}
|
haftmann@31014
|
512 |
lemmas power2_eq_square_number_of [simp] =
|
wenzelm@45607
|
513 |
power2_eq_square [of "number_of w"] for w
|
wenzelm@23164
|
514 |
|
wenzelm@23164
|
515 |
|
wenzelm@23164
|
516 |
text{*Simprules for comparisons where common factors can be cancelled.*}
|
wenzelm@23164
|
517 |
lemmas zero_compare_simps =
|
wenzelm@23164
|
518 |
add_strict_increasing add_strict_increasing2 add_increasing
|
wenzelm@23164
|
519 |
zero_le_mult_iff zero_le_divide_iff
|
wenzelm@23164
|
520 |
zero_less_mult_iff zero_less_divide_iff
|
wenzelm@23164
|
521 |
mult_le_0_iff divide_le_0_iff
|
wenzelm@23164
|
522 |
mult_less_0_iff divide_less_0_iff
|
wenzelm@23164
|
523 |
zero_le_power2 power2_less_0
|
wenzelm@23164
|
524 |
|
wenzelm@23164
|
525 |
subsubsection{*Nat *}
|
wenzelm@23164
|
526 |
|
wenzelm@23164
|
527 |
lemma Suc_pred': "0 < n ==> n = Suc(n - 1)"
|
huffman@35216
|
528 |
by simp
|
wenzelm@23164
|
529 |
|
wenzelm@23164
|
530 |
(*Expresses a natural number constant as the Suc of another one.
|
wenzelm@23164
|
531 |
NOT suitable for rewriting because n recurs in the condition.*)
|
wenzelm@45607
|
532 |
lemmas expand_Suc = Suc_pred' [of "number_of v"] for v
|
wenzelm@23164
|
533 |
|
wenzelm@23164
|
534 |
subsubsection{*Arith *}
|
wenzelm@23164
|
535 |
|
nipkow@31790
|
536 |
lemma Suc_eq_plus1: "Suc n = n + 1"
|
huffman@35216
|
537 |
unfolding One_nat_def by simp
|
wenzelm@23164
|
538 |
|
nipkow@31790
|
539 |
lemma Suc_eq_plus1_left: "Suc n = 1 + n"
|
huffman@35216
|
540 |
unfolding One_nat_def by simp
|
wenzelm@23164
|
541 |
|
wenzelm@23164
|
542 |
(* These two can be useful when m = number_of... *)
|
wenzelm@23164
|
543 |
|
wenzelm@23164
|
544 |
lemma add_eq_if: "(m::nat) + n = (if m=0 then n else Suc ((m - 1) + n))"
|
huffman@30079
|
545 |
unfolding One_nat_def by (cases m) simp_all
|
wenzelm@23164
|
546 |
|
wenzelm@23164
|
547 |
lemma mult_eq_if: "(m::nat) * n = (if m=0 then 0 else n + ((m - 1) * n))"
|
huffman@30079
|
548 |
unfolding One_nat_def by (cases m) simp_all
|
wenzelm@23164
|
549 |
|
wenzelm@23164
|
550 |
lemma power_eq_if: "(p ^ m :: nat) = (if m=0 then 1 else p * (p ^ (m - 1)))"
|
huffman@30079
|
551 |
unfolding One_nat_def by (cases m) simp_all
|
wenzelm@23164
|
552 |
|
wenzelm@23164
|
553 |
|
wenzelm@23164
|
554 |
subsection{*Comparisons involving (0::nat) *}
|
wenzelm@23164
|
555 |
|
wenzelm@23164
|
556 |
text{*Simplification already does @{term "n<0"}, @{term "n\<le>0"} and @{term "0\<le>n"}.*}
|
wenzelm@23164
|
557 |
|
wenzelm@23164
|
558 |
lemma eq_number_of_0 [simp]:
|
huffman@29012
|
559 |
"number_of v = (0::nat) \<longleftrightarrow> v \<le> Int.Pls"
|
huffman@29012
|
560 |
unfolding nat_number_of_def number_of_is_id numeral_simps
|
huffman@29012
|
561 |
by auto
|
wenzelm@23164
|
562 |
|
wenzelm@23164
|
563 |
lemma eq_0_number_of [simp]:
|
huffman@29012
|
564 |
"(0::nat) = number_of v \<longleftrightarrow> v \<le> Int.Pls"
|
wenzelm@23164
|
565 |
by (rule trans [OF eq_sym_conv eq_number_of_0])
|
wenzelm@23164
|
566 |
|
wenzelm@23164
|
567 |
lemma less_0_number_of [simp]:
|
huffman@29012
|
568 |
"(0::nat) < number_of v \<longleftrightarrow> Int.Pls < v"
|
huffman@29012
|
569 |
unfolding nat_number_of_def number_of_is_id numeral_simps
|
huffman@29012
|
570 |
by simp
|
wenzelm@23164
|
571 |
|
wenzelm@23164
|
572 |
lemma neg_imp_number_of_eq_0: "neg (number_of v :: int) ==> number_of v = (0::nat)"
|
huffman@28969
|
573 |
by (simp del: nat_numeral_0_eq_0 add: nat_numeral_0_eq_0 [symmetric])
|
wenzelm@23164
|
574 |
|
wenzelm@23164
|
575 |
|
wenzelm@23164
|
576 |
|
wenzelm@23164
|
577 |
subsection{*Comparisons involving @{term Suc} *}
|
wenzelm@23164
|
578 |
|
wenzelm@23164
|
579 |
lemma eq_number_of_Suc [simp]:
|
wenzelm@23164
|
580 |
"(number_of v = Suc n) =
|
haftmann@25919
|
581 |
(let pv = number_of (Int.pred v) in
|
wenzelm@23164
|
582 |
if neg pv then False else nat pv = n)"
|
wenzelm@23164
|
583 |
apply (simp only: simp_thms Let_def neg_eq_less_0 linorder_not_less
|
wenzelm@23164
|
584 |
number_of_pred nat_number_of_def
|
wenzelm@23164
|
585 |
split add: split_if)
|
wenzelm@23164
|
586 |
apply (rule_tac x = "number_of v" in spec)
|
wenzelm@23164
|
587 |
apply (auto simp add: nat_eq_iff)
|
wenzelm@23164
|
588 |
done
|
wenzelm@23164
|
589 |
|
wenzelm@23164
|
590 |
lemma Suc_eq_number_of [simp]:
|
wenzelm@23164
|
591 |
"(Suc n = number_of v) =
|
haftmann@25919
|
592 |
(let pv = number_of (Int.pred v) in
|
wenzelm@23164
|
593 |
if neg pv then False else nat pv = n)"
|
wenzelm@23164
|
594 |
by (rule trans [OF eq_sym_conv eq_number_of_Suc])
|
wenzelm@23164
|
595 |
|
wenzelm@23164
|
596 |
lemma less_number_of_Suc [simp]:
|
wenzelm@23164
|
597 |
"(number_of v < Suc n) =
|
haftmann@25919
|
598 |
(let pv = number_of (Int.pred v) in
|
wenzelm@23164
|
599 |
if neg pv then True else nat pv < n)"
|
wenzelm@23164
|
600 |
apply (simp only: simp_thms Let_def neg_eq_less_0 linorder_not_less
|
wenzelm@23164
|
601 |
number_of_pred nat_number_of_def
|
wenzelm@23164
|
602 |
split add: split_if)
|
wenzelm@23164
|
603 |
apply (rule_tac x = "number_of v" in spec)
|
wenzelm@23164
|
604 |
apply (auto simp add: nat_less_iff)
|
wenzelm@23164
|
605 |
done
|
wenzelm@23164
|
606 |
|
wenzelm@23164
|
607 |
lemma less_Suc_number_of [simp]:
|
wenzelm@23164
|
608 |
"(Suc n < number_of v) =
|
haftmann@25919
|
609 |
(let pv = number_of (Int.pred v) in
|
wenzelm@23164
|
610 |
if neg pv then False else n < nat pv)"
|
wenzelm@23164
|
611 |
apply (simp only: simp_thms Let_def neg_eq_less_0 linorder_not_less
|
wenzelm@23164
|
612 |
number_of_pred nat_number_of_def
|
wenzelm@23164
|
613 |
split add: split_if)
|
wenzelm@23164
|
614 |
apply (rule_tac x = "number_of v" in spec)
|
wenzelm@23164
|
615 |
apply (auto simp add: zless_nat_eq_int_zless)
|
wenzelm@23164
|
616 |
done
|
wenzelm@23164
|
617 |
|
wenzelm@23164
|
618 |
lemma le_number_of_Suc [simp]:
|
wenzelm@23164
|
619 |
"(number_of v <= Suc n) =
|
haftmann@25919
|
620 |
(let pv = number_of (Int.pred v) in
|
wenzelm@23164
|
621 |
if neg pv then True else nat pv <= n)"
|
huffman@35216
|
622 |
by (simp add: Let_def linorder_not_less [symmetric])
|
wenzelm@23164
|
623 |
|
wenzelm@23164
|
624 |
lemma le_Suc_number_of [simp]:
|
wenzelm@23164
|
625 |
"(Suc n <= number_of v) =
|
haftmann@25919
|
626 |
(let pv = number_of (Int.pred v) in
|
wenzelm@23164
|
627 |
if neg pv then False else n <= nat pv)"
|
huffman@35216
|
628 |
by (simp add: Let_def linorder_not_less [symmetric])
|
wenzelm@23164
|
629 |
|
wenzelm@23164
|
630 |
|
haftmann@25919
|
631 |
lemma eq_number_of_Pls_Min: "(Numeral0 ::int) ~= number_of Int.Min"
|
wenzelm@23164
|
632 |
by auto
|
wenzelm@23164
|
633 |
|
wenzelm@23164
|
634 |
|
wenzelm@23164
|
635 |
|
wenzelm@23164
|
636 |
subsection{*Max and Min Combined with @{term Suc} *}
|
wenzelm@23164
|
637 |
|
wenzelm@23164
|
638 |
lemma max_number_of_Suc [simp]:
|
wenzelm@23164
|
639 |
"max (Suc n) (number_of v) =
|
haftmann@25919
|
640 |
(let pv = number_of (Int.pred v) in
|
wenzelm@23164
|
641 |
if neg pv then Suc n else Suc(max n (nat pv)))"
|
wenzelm@23164
|
642 |
apply (simp only: Let_def neg_eq_less_0 number_of_pred nat_number_of_def
|
wenzelm@23164
|
643 |
split add: split_if nat.split)
|
wenzelm@23164
|
644 |
apply (rule_tac x = "number_of v" in spec)
|
wenzelm@23164
|
645 |
apply auto
|
wenzelm@23164
|
646 |
done
|
wenzelm@23164
|
647 |
|
wenzelm@23164
|
648 |
lemma max_Suc_number_of [simp]:
|
wenzelm@23164
|
649 |
"max (number_of v) (Suc n) =
|
haftmann@25919
|
650 |
(let pv = number_of (Int.pred v) in
|
wenzelm@23164
|
651 |
if neg pv then Suc n else Suc(max (nat pv) n))"
|
wenzelm@23164
|
652 |
apply (simp only: Let_def neg_eq_less_0 number_of_pred nat_number_of_def
|
wenzelm@23164
|
653 |
split add: split_if nat.split)
|
wenzelm@23164
|
654 |
apply (rule_tac x = "number_of v" in spec)
|
wenzelm@23164
|
655 |
apply auto
|
wenzelm@23164
|
656 |
done
|
wenzelm@23164
|
657 |
|
wenzelm@23164
|
658 |
lemma min_number_of_Suc [simp]:
|
wenzelm@23164
|
659 |
"min (Suc n) (number_of v) =
|
haftmann@25919
|
660 |
(let pv = number_of (Int.pred v) in
|
wenzelm@23164
|
661 |
if neg pv then 0 else Suc(min n (nat pv)))"
|
wenzelm@23164
|
662 |
apply (simp only: Let_def neg_eq_less_0 number_of_pred nat_number_of_def
|
wenzelm@23164
|
663 |
split add: split_if nat.split)
|
wenzelm@23164
|
664 |
apply (rule_tac x = "number_of v" in spec)
|
wenzelm@23164
|
665 |
apply auto
|
wenzelm@23164
|
666 |
done
|
wenzelm@23164
|
667 |
|
wenzelm@23164
|
668 |
lemma min_Suc_number_of [simp]:
|
wenzelm@23164
|
669 |
"min (number_of v) (Suc n) =
|
haftmann@25919
|
670 |
(let pv = number_of (Int.pred v) in
|
wenzelm@23164
|
671 |
if neg pv then 0 else Suc(min (nat pv) n))"
|
wenzelm@23164
|
672 |
apply (simp only: Let_def neg_eq_less_0 number_of_pred nat_number_of_def
|
wenzelm@23164
|
673 |
split add: split_if nat.split)
|
wenzelm@23164
|
674 |
apply (rule_tac x = "number_of v" in spec)
|
wenzelm@23164
|
675 |
apply auto
|
wenzelm@23164
|
676 |
done
|
wenzelm@23164
|
677 |
|
wenzelm@23164
|
678 |
subsection{*Literal arithmetic involving powers*}
|
wenzelm@23164
|
679 |
|
wenzelm@23164
|
680 |
lemma power_nat_number_of:
|
wenzelm@23164
|
681 |
"(number_of v :: nat) ^ n =
|
wenzelm@23164
|
682 |
(if neg (number_of v :: int) then 0^n else nat ((number_of v :: int) ^ n))"
|
wenzelm@23164
|
683 |
by (simp only: simp_thms neg_nat not_neg_eq_ge_0 nat_number_of_def nat_power_eq
|
wenzelm@23164
|
684 |
split add: split_if cong: imp_cong)
|
wenzelm@23164
|
685 |
|
wenzelm@23164
|
686 |
|
wenzelm@45607
|
687 |
lemmas power_nat_number_of_number_of = power_nat_number_of [of _ "number_of w"] for w
|
wenzelm@23164
|
688 |
declare power_nat_number_of_number_of [simp]
|
wenzelm@23164
|
689 |
|
wenzelm@23164
|
690 |
|
wenzelm@23164
|
691 |
|
huffman@23294
|
692 |
text{*For arbitrary rings*}
|
wenzelm@23164
|
693 |
|
huffman@23294
|
694 |
lemma power_number_of_even:
|
huffman@43526
|
695 |
fixes z :: "'a::monoid_mult"
|
huffman@26086
|
696 |
shows "z ^ number_of (Int.Bit0 w) = (let w = z ^ (number_of w) in w * w)"
|
haftmann@33296
|
697 |
by (cases "w \<ge> 0") (auto simp add: Let_def Bit0_def nat_number_of_def number_of_is_id
|
haftmann@33296
|
698 |
nat_add_distrib power_add simp del: nat_number_of)
|
wenzelm@23164
|
699 |
|
huffman@23294
|
700 |
lemma power_number_of_odd:
|
huffman@43526
|
701 |
fixes z :: "'a::monoid_mult"
|
huffman@26086
|
702 |
shows "z ^ number_of (Int.Bit1 w) = (if (0::int) <= number_of w
|
wenzelm@23164
|
703 |
then (let w = z ^ (number_of w) in z * w * w) else 1)"
|
boehmes@35815
|
704 |
unfolding Let_def Bit1_def nat_number_of_def number_of_is_id
|
boehmes@35815
|
705 |
apply (cases "0 <= w")
|
boehmes@35815
|
706 |
apply (simp only: mult_assoc nat_add_distrib power_add, simp)
|
haftmann@33296
|
707 |
apply (simp add: not_le mult_2 [symmetric] add_assoc)
|
wenzelm@23164
|
708 |
done
|
wenzelm@23164
|
709 |
|
huffman@23294
|
710 |
lemmas zpower_number_of_even = power_number_of_even [where 'a=int]
|
huffman@23294
|
711 |
lemmas zpower_number_of_odd = power_number_of_odd [where 'a=int]
|
wenzelm@23164
|
712 |
|
huffman@23294
|
713 |
lemmas power_number_of_even_number_of [simp] =
|
wenzelm@45607
|
714 |
power_number_of_even [of "number_of v"] for v
|
wenzelm@23164
|
715 |
|
huffman@23294
|
716 |
lemmas power_number_of_odd_number_of [simp] =
|
wenzelm@45607
|
717 |
power_number_of_odd [of "number_of v"] for v
|
wenzelm@23164
|
718 |
|
wenzelm@23164
|
719 |
lemma nat_number_of_Pls: "Numeral0 = (0::nat)"
|
huffman@35216
|
720 |
by (simp add: nat_number_of_def)
|
wenzelm@23164
|
721 |
|
blanchet@40690
|
722 |
lemma nat_number_of_Min [no_atp]: "number_of Int.Min = (0::nat)"
|
wenzelm@23164
|
723 |
apply (simp only: number_of_Min nat_number_of_def nat_zminus_int)
|
wenzelm@23164
|
724 |
done
|
wenzelm@23164
|
725 |
|
huffman@26086
|
726 |
lemma nat_number_of_Bit0:
|
huffman@26086
|
727 |
"number_of (Int.Bit0 w) = (let n::nat = number_of w in n + n)"
|
haftmann@33296
|
728 |
by (cases "w \<ge> 0") (auto simp add: Let_def Bit0_def nat_number_of_def number_of_is_id
|
haftmann@33296
|
729 |
nat_add_distrib simp del: nat_number_of)
|
huffman@26086
|
730 |
|
huffman@26086
|
731 |
lemma nat_number_of_Bit1:
|
huffman@26086
|
732 |
"number_of (Int.Bit1 w) =
|
wenzelm@23164
|
733 |
(if neg (number_of w :: int) then 0
|
wenzelm@23164
|
734 |
else let n = number_of w in Suc (n + n))"
|
boehmes@35815
|
735 |
unfolding Let_def Bit1_def nat_number_of_def number_of_is_id neg_def
|
boehmes@35815
|
736 |
apply (cases "w < 0")
|
haftmann@33296
|
737 |
apply (simp add: mult_2 [symmetric] add_assoc)
|
boehmes@35815
|
738 |
apply (simp only: nat_add_distrib, simp)
|
haftmann@33296
|
739 |
done
|
wenzelm@23164
|
740 |
|
nipkow@40077
|
741 |
lemmas eval_nat_numeral =
|
huffman@35216
|
742 |
nat_number_of_Bit0 nat_number_of_Bit1
|
huffman@35216
|
743 |
|
haftmann@36699
|
744 |
lemmas nat_arith =
|
haftmann@36699
|
745 |
add_nat_number_of
|
haftmann@36699
|
746 |
diff_nat_number_of
|
haftmann@36699
|
747 |
mult_nat_number_of
|
haftmann@36699
|
748 |
eq_nat_number_of
|
haftmann@36699
|
749 |
less_nat_number_of
|
haftmann@36699
|
750 |
|
haftmann@36716
|
751 |
lemmas semiring_norm =
|
haftmann@36716
|
752 |
Let_def arith_simps nat_arith rel_simps neg_simps if_False
|
haftmann@36716
|
753 |
if_True add_0 add_Suc add_number_of_left mult_number_of_left
|
haftmann@36716
|
754 |
numeral_1_eq_1 [symmetric] Suc_eq_plus1
|
haftmann@36716
|
755 |
numeral_0_eq_0 [symmetric] numerals [symmetric]
|
huffman@36841
|
756 |
not_iszero_Numeral1
|
haftmann@36716
|
757 |
|
wenzelm@23164
|
758 |
lemma Let_Suc [simp]: "Let (Suc n) f == f (Suc n)"
|
haftmann@33296
|
759 |
by (fact Let_def)
|
wenzelm@23164
|
760 |
|
haftmann@31014
|
761 |
lemma power_m1_even: "(-1) ^ (2*n) = (1::'a::{number_ring})"
|
haftmann@31014
|
762 |
by (simp only: number_of_Min power_minus1_even)
|
wenzelm@23164
|
763 |
|
haftmann@31014
|
764 |
lemma power_m1_odd: "(-1) ^ Suc(2*n) = (-1::'a::{number_ring})"
|
haftmann@31014
|
765 |
by (simp only: number_of_Min power_minus1_odd)
|
wenzelm@23164
|
766 |
|
haftmann@33296
|
767 |
lemma nat_number_of_add_left:
|
haftmann@33296
|
768 |
"number_of v + (number_of v' + (k::nat)) =
|
haftmann@33296
|
769 |
(if neg (number_of v :: int) then number_of v' + k
|
haftmann@33296
|
770 |
else if neg (number_of v' :: int) then number_of v + k
|
haftmann@33296
|
771 |
else number_of (v + v') + k)"
|
haftmann@33296
|
772 |
by (auto simp add: neg_def)
|
haftmann@33296
|
773 |
|
haftmann@33296
|
774 |
lemma nat_number_of_mult_left:
|
haftmann@33296
|
775 |
"number_of v * (number_of v' * (k::nat)) =
|
haftmann@33296
|
776 |
(if v < Int.Pls then 0
|
haftmann@33296
|
777 |
else number_of (v * v') * k)"
|
haftmann@33296
|
778 |
by (auto simp add: not_less Pls_def nat_number_of_def number_of_is_id
|
haftmann@33296
|
779 |
nat_mult_distrib simp del: nat_number_of)
|
haftmann@33296
|
780 |
|
wenzelm@23164
|
781 |
|
wenzelm@23164
|
782 |
subsection{*Literal arithmetic and @{term of_nat}*}
|
wenzelm@23164
|
783 |
|
wenzelm@23164
|
784 |
lemma of_nat_double:
|
wenzelm@23164
|
785 |
"0 \<le> x ==> of_nat (nat (2 * x)) = of_nat (nat x) + of_nat (nat x)"
|
wenzelm@23164
|
786 |
by (simp only: mult_2 nat_add_distrib of_nat_add)
|
wenzelm@23164
|
787 |
|
wenzelm@23164
|
788 |
lemma nat_numeral_m1_eq_0: "-1 = (0::nat)"
|
wenzelm@23164
|
789 |
by (simp only: nat_number_of_def)
|
wenzelm@23164
|
790 |
|
wenzelm@23164
|
791 |
lemma of_nat_number_of_lemma:
|
wenzelm@23164
|
792 |
"of_nat (number_of v :: nat) =
|
wenzelm@23164
|
793 |
(if 0 \<le> (number_of v :: int)
|
huffman@44857
|
794 |
then (number_of v :: 'a :: number_semiring)
|
wenzelm@23164
|
795 |
else 0)"
|
huffman@44857
|
796 |
by (auto simp add: int_number_of_def nat_number_of_def number_of_int
|
huffman@44857
|
797 |
elim!: nonneg_int_cases)
|
wenzelm@23164
|
798 |
|
wenzelm@23164
|
799 |
lemma of_nat_number_of_eq [simp]:
|
wenzelm@23164
|
800 |
"of_nat (number_of v :: nat) =
|
wenzelm@23164
|
801 |
(if neg (number_of v :: int) then 0
|
huffman@44857
|
802 |
else (number_of v :: 'a :: number_semiring))"
|
huffman@44857
|
803 |
by (simp only: of_nat_number_of_lemma neg_def, simp)
|
wenzelm@23164
|
804 |
|
wenzelm@23164
|
805 |
|
haftmann@30652
|
806 |
subsubsection{*For simplifying @{term "Suc m - K"} and @{term "K - Suc m"}*}
|
haftmann@30652
|
807 |
|
haftmann@30652
|
808 |
text{*Where K above is a literal*}
|
haftmann@30652
|
809 |
|
haftmann@30652
|
810 |
lemma Suc_diff_eq_diff_pred: "Numeral0 < n ==> Suc m - n = m - (n - Numeral1)"
|
huffman@35216
|
811 |
by (simp split: nat_diff_split)
|
haftmann@30652
|
812 |
|
haftmann@30652
|
813 |
text {*Now just instantiating @{text n} to @{text "number_of v"} does
|
haftmann@30652
|
814 |
the right simplification, but with some redundant inequality
|
haftmann@30652
|
815 |
tests.*}
|
haftmann@30652
|
816 |
lemma neg_number_of_pred_iff_0:
|
haftmann@30652
|
817 |
"neg (number_of (Int.pred v)::int) = (number_of v = (0::nat))"
|
haftmann@30652
|
818 |
apply (subgoal_tac "neg (number_of (Int.pred v)) = (number_of v < Suc 0) ")
|
haftmann@30652
|
819 |
apply (simp only: less_Suc_eq_le le_0_eq)
|
haftmann@30652
|
820 |
apply (subst less_number_of_Suc, simp)
|
haftmann@30652
|
821 |
done
|
haftmann@30652
|
822 |
|
haftmann@30652
|
823 |
text{*No longer required as a simprule because of the @{text inverse_fold}
|
haftmann@30652
|
824 |
simproc*}
|
haftmann@30652
|
825 |
lemma Suc_diff_number_of:
|
haftmann@30652
|
826 |
"Int.Pls < v ==>
|
haftmann@30652
|
827 |
Suc m - (number_of v) = m - (number_of (Int.pred v))"
|
haftmann@30652
|
828 |
apply (subst Suc_diff_eq_diff_pred)
|
haftmann@30652
|
829 |
apply simp
|
haftmann@30652
|
830 |
apply (simp del: nat_numeral_1_eq_1)
|
haftmann@30652
|
831 |
apply (auto simp only: diff_nat_number_of less_0_number_of [symmetric]
|
haftmann@30652
|
832 |
neg_number_of_pred_iff_0)
|
haftmann@30652
|
833 |
done
|
haftmann@30652
|
834 |
|
haftmann@30652
|
835 |
lemma diff_Suc_eq_diff_pred: "m - Suc n = (m - 1) - n"
|
huffman@35216
|
836 |
by (simp split: nat_diff_split)
|
haftmann@30652
|
837 |
|
haftmann@30652
|
838 |
|
haftmann@30652
|
839 |
subsubsection{*For @{term nat_case} and @{term nat_rec}*}
|
haftmann@30652
|
840 |
|
haftmann@30652
|
841 |
lemma nat_case_number_of [simp]:
|
haftmann@30652
|
842 |
"nat_case a f (number_of v) =
|
haftmann@30652
|
843 |
(let pv = number_of (Int.pred v) in
|
haftmann@30652
|
844 |
if neg pv then a else f (nat pv))"
|
haftmann@30652
|
845 |
by (simp split add: nat.split add: Let_def neg_number_of_pred_iff_0)
|
haftmann@30652
|
846 |
|
haftmann@30652
|
847 |
lemma nat_case_add_eq_if [simp]:
|
haftmann@30652
|
848 |
"nat_case a f ((number_of v) + n) =
|
haftmann@30652
|
849 |
(let pv = number_of (Int.pred v) in
|
haftmann@30652
|
850 |
if neg pv then nat_case a f n else f (nat pv + n))"
|
haftmann@30652
|
851 |
apply (subst add_eq_if)
|
haftmann@30652
|
852 |
apply (simp split add: nat.split
|
haftmann@30652
|
853 |
del: nat_numeral_1_eq_1
|
haftmann@30652
|
854 |
add: nat_numeral_1_eq_1 [symmetric]
|
haftmann@30652
|
855 |
numeral_1_eq_Suc_0 [symmetric]
|
haftmann@30652
|
856 |
neg_number_of_pred_iff_0)
|
haftmann@30652
|
857 |
done
|
haftmann@30652
|
858 |
|
haftmann@30652
|
859 |
lemma nat_rec_number_of [simp]:
|
haftmann@30652
|
860 |
"nat_rec a f (number_of v) =
|
haftmann@30652
|
861 |
(let pv = number_of (Int.pred v) in
|
haftmann@30652
|
862 |
if neg pv then a else f (nat pv) (nat_rec a f (nat pv)))"
|
haftmann@30652
|
863 |
apply (case_tac " (number_of v) ::nat")
|
haftmann@30652
|
864 |
apply (simp_all (no_asm_simp) add: Let_def neg_number_of_pred_iff_0)
|
haftmann@30652
|
865 |
apply (simp split add: split_if_asm)
|
haftmann@30652
|
866 |
done
|
haftmann@30652
|
867 |
|
haftmann@30652
|
868 |
lemma nat_rec_add_eq_if [simp]:
|
haftmann@30652
|
869 |
"nat_rec a f (number_of v + n) =
|
haftmann@30652
|
870 |
(let pv = number_of (Int.pred v) in
|
haftmann@30652
|
871 |
if neg pv then nat_rec a f n
|
haftmann@30652
|
872 |
else f (nat pv + n) (nat_rec a f (nat pv + n)))"
|
haftmann@30652
|
873 |
apply (subst add_eq_if)
|
haftmann@30652
|
874 |
apply (simp split add: nat.split
|
haftmann@30652
|
875 |
del: nat_numeral_1_eq_1
|
haftmann@30652
|
876 |
add: nat_numeral_1_eq_1 [symmetric]
|
haftmann@30652
|
877 |
numeral_1_eq_Suc_0 [symmetric]
|
haftmann@30652
|
878 |
neg_number_of_pred_iff_0)
|
haftmann@30652
|
879 |
done
|
haftmann@30652
|
880 |
|
haftmann@30652
|
881 |
|
haftmann@30652
|
882 |
subsubsection{*Various Other Lemmas*}
|
haftmann@30652
|
883 |
|
nipkow@31080
|
884 |
lemma card_UNIV_bool[simp]: "card (UNIV :: bool set) = 2"
|
nipkow@31080
|
885 |
by(simp add: UNIV_bool)
|
nipkow@31080
|
886 |
|
haftmann@30652
|
887 |
text {*Evens and Odds, for Mutilated Chess Board*}
|
haftmann@30652
|
888 |
|
haftmann@30652
|
889 |
text{*Lemmas for specialist use, NOT as default simprules*}
|
haftmann@30652
|
890 |
lemma nat_mult_2: "2 * z = (z+z::nat)"
|
huffman@43531
|
891 |
by (rule semiring_mult_2)
|
haftmann@30652
|
892 |
|
haftmann@30652
|
893 |
lemma nat_mult_2_right: "z * 2 = (z+z::nat)"
|
huffman@43531
|
894 |
by (rule semiring_mult_2_right)
|
haftmann@30652
|
895 |
|
haftmann@30652
|
896 |
text{*Case analysis on @{term "n<2"}*}
|
haftmann@30652
|
897 |
lemma less_2_cases: "(n::nat) < 2 ==> n = 0 | n = Suc 0"
|
haftmann@33296
|
898 |
by (auto simp add: nat_1_add_1 [symmetric])
|
haftmann@30652
|
899 |
|
haftmann@30652
|
900 |
text{*Removal of Small Numerals: 0, 1 and (in additive positions) 2*}
|
haftmann@30652
|
901 |
|
haftmann@30652
|
902 |
lemma add_2_eq_Suc [simp]: "2 + n = Suc (Suc n)"
|
haftmann@30652
|
903 |
by simp
|
haftmann@30652
|
904 |
|
haftmann@30652
|
905 |
lemma add_2_eq_Suc' [simp]: "n + 2 = Suc (Suc n)"
|
haftmann@30652
|
906 |
by simp
|
haftmann@30652
|
907 |
|
haftmann@30652
|
908 |
text{*Can be used to eliminate long strings of Sucs, but not by default*}
|
haftmann@30652
|
909 |
lemma Suc3_eq_add_3: "Suc (Suc (Suc n)) = 3 + n"
|
haftmann@30652
|
910 |
by simp
|
haftmann@30652
|
911 |
|
huffman@31096
|
912 |
end
|