src/HOL/Library/positivstellensatz.ML
author haftmann
Wed Jul 18 20:51:21 2018 +0200 (11 months ago)
changeset 68658 16cc1161ad7f
parent 67564 d615e9ca77dc
child 69064 5840724b1d71
permissions -rw-r--r--
tuned equation
wenzelm@33443
     1
(*  Title:      HOL/Library/positivstellensatz.ML
wenzelm@33443
     2
    Author:     Amine Chaieb, University of Cambridge
wenzelm@33443
     3
wenzelm@33443
     4
A generic arithmetic prover based on Positivstellensatz certificates
wenzelm@58628
     5
--- also implements Fourier-Motzkin elimination as a special case
wenzelm@58628
     6
Fourier-Motzkin elimination.
chaieb@31120
     7
*)
chaieb@31120
     8
chaieb@31120
     9
(* A functor for finite mappings based on Tables *)
Philipp@32645
    10
huffman@46594
    11
signature FUNC =
chaieb@31120
    12
sig
huffman@46594
    13
  include TABLE
huffman@46594
    14
  val apply : 'a table -> key -> 'a
huffman@46594
    15
  val applyd :'a table -> (key -> 'a) -> key -> 'a
huffman@46594
    16
  val combine : ('a -> 'a -> 'a) -> ('a -> bool) -> 'a table -> 'a table -> 'a table
huffman@46594
    17
  val dom : 'a table -> key list
huffman@46594
    18
  val tryapplyd : 'a table -> key -> 'a -> 'a
huffman@46594
    19
  val updatep : (key * 'a -> bool) -> key * 'a -> 'a table -> 'a table
huffman@46594
    20
  val choose : 'a table -> key * 'a
huffman@46594
    21
  val onefunc : key * 'a -> 'a table
chaieb@31120
    22
end;
chaieb@31120
    23
huffman@46594
    24
functor FuncFun(Key: KEY) : FUNC =
chaieb@31120
    25
struct
chaieb@31120
    26
wenzelm@31971
    27
structure Tab = Table(Key);
chaieb@31120
    28
Philipp@32829
    29
open Tab;
Philipp@32829
    30
chaieb@31120
    31
fun dom a = sort Key.ord (Tab.keys a);
huffman@46594
    32
fun applyd f d x = case Tab.lookup f x of
chaieb@31120
    33
   SOME y => y
chaieb@31120
    34
 | NONE => d x;
chaieb@31120
    35
chaieb@31120
    36
fun apply f x = applyd f (fn _ => raise Tab.UNDEF x) x;
chaieb@31120
    37
fun tryapplyd f a d = applyd f (K d) a;
chaieb@31120
    38
fun updatep p (k,v) t = if p (k, v) then t else update (k,v) t
huffman@46594
    39
fun combine f z a b =
huffman@46594
    40
  let
huffman@46594
    41
    fun h (k,v) t = case Tab.lookup t k of
huffman@46594
    42
        NONE => Tab.update (k,v) t
huffman@46594
    43
      | SOME v' => let val w = f v v'
huffman@46594
    44
        in if z w then Tab.delete k t else Tab.update (k,w) t end;
chaieb@31120
    45
  in Tab.fold h a b end;
chaieb@31120
    46
wenzelm@52049
    47
fun choose f =
wenzelm@52049
    48
  (case Tab.min f of
wenzelm@52049
    49
    SOME entry => entry
wenzelm@52049
    50
  | NONE => error "FuncFun.choose : Completely empty function")
chaieb@31120
    51
Philipp@32829
    52
fun onefunc kv = update kv empty
Philipp@32829
    53
chaieb@31120
    54
end;
chaieb@31120
    55
Philipp@32645
    56
(* Some standard functors and utility functions for them *)
Philipp@32645
    57
Philipp@32645
    58
structure FuncUtil =
Philipp@32645
    59
struct
Philipp@32645
    60
chaieb@31120
    61
structure Intfunc = FuncFun(type key = int val ord = int_ord);
Philipp@32645
    62
structure Ratfunc = FuncFun(type key = Rat.rat val ord = Rat.ord);
Philipp@32645
    63
structure Intpairfunc = FuncFun(type key = int*int val ord = prod_ord int_ord int_ord);
chaieb@31120
    64
structure Symfunc = FuncFun(type key = string val ord = fast_string_ord);
wenzelm@35408
    65
structure Termfunc = FuncFun(type key = term val ord = Term_Ord.fast_term_ord);
wenzelm@67559
    66
structure Ctermfunc = FuncFun(type key = cterm val ord = Thm.fast_term_ord);
Philipp@32645
    67
Philipp@32829
    68
type monomial = int Ctermfunc.table;
wenzelm@67559
    69
val monomial_ord = list_ord (prod_ord Thm.fast_term_ord int_ord) o apply2 Ctermfunc.dest
Philipp@32645
    70
structure Monomialfunc = FuncFun(type key = monomial val ord = monomial_ord)
chaieb@31120
    71
Philipp@32829
    72
type poly = Rat.rat Monomialfunc.table;
Philipp@32645
    73
Philipp@32645
    74
(* The ordering so we can create canonical HOL polynomials.                  *)
chaieb@31120
    75
wenzelm@67559
    76
fun dest_monomial mon = sort (Thm.fast_term_ord o apply2 fst) (Ctermfunc.dest mon);
chaieb@31120
    77
Philipp@32645
    78
fun monomial_order (m1,m2) =
huffman@46594
    79
  if Ctermfunc.is_empty m2 then LESS
huffman@46594
    80
  else if Ctermfunc.is_empty m1 then GREATER
huffman@46594
    81
  else
huffman@46594
    82
    let
huffman@46594
    83
      val mon1 = dest_monomial m1
Philipp@32645
    84
      val mon2 = dest_monomial m2
wenzelm@33002
    85
      val deg1 = fold (Integer.add o snd) mon1 0
huffman@46594
    86
      val deg2 = fold (Integer.add o snd) mon2 0
huffman@46594
    87
    in if deg1 < deg2 then GREATER
huffman@46594
    88
       else if deg1 > deg2 then LESS
wenzelm@67559
    89
       else list_ord (prod_ord Thm.fast_term_ord int_ord) (mon1,mon2)
huffman@46594
    90
    end;
chaieb@31120
    91
Philipp@32645
    92
end
chaieb@31120
    93
Philipp@32645
    94
(* positivstellensatz datatype and prover generation *)
chaieb@31120
    95
huffman@46594
    96
signature REAL_ARITH =
chaieb@31120
    97
sig
huffman@46594
    98
chaieb@31120
    99
  datatype positivstellensatz =
huffman@46594
   100
    Axiom_eq of int
huffman@46594
   101
  | Axiom_le of int
huffman@46594
   102
  | Axiom_lt of int
huffman@46594
   103
  | Rational_eq of Rat.rat
huffman@46594
   104
  | Rational_le of Rat.rat
huffman@46594
   105
  | Rational_lt of Rat.rat
huffman@46594
   106
  | Square of FuncUtil.poly
huffman@46594
   107
  | Eqmul of FuncUtil.poly * positivstellensatz
huffman@46594
   108
  | Sum of positivstellensatz * positivstellensatz
huffman@46594
   109
  | Product of positivstellensatz * positivstellensatz;
chaieb@31120
   110
huffman@46594
   111
  datatype pss_tree = Trivial | Cert of positivstellensatz | Branch of pss_tree * pss_tree
Philipp@32645
   112
huffman@46594
   113
  datatype tree_choice = Left | Right
Philipp@32645
   114
huffman@46594
   115
  type prover = tree_choice list ->
huffman@46594
   116
    (thm list * thm list * thm list -> positivstellensatz -> thm) ->
huffman@46594
   117
      thm list * thm list * thm list -> thm * pss_tree
huffman@46594
   118
  type cert_conv = cterm -> thm * pss_tree
Philipp@32645
   119
huffman@46594
   120
  val gen_gen_real_arith :
huffman@46594
   121
    Proof.context -> (Rat.rat -> cterm) * conv * conv * conv *
huffman@46594
   122
     conv * conv * conv * conv * conv * conv * prover -> cert_conv
huffman@46594
   123
  val real_linear_prover : (thm list * thm list * thm list -> positivstellensatz -> thm) ->
huffman@46594
   124
    thm list * thm list * thm list -> thm * pss_tree
chaieb@31120
   125
huffman@46594
   126
  val gen_real_arith : Proof.context ->
huffman@46594
   127
    (Rat.rat -> cterm) * conv * conv * conv * conv * conv * conv * conv * prover -> cert_conv
Philipp@32645
   128
huffman@46594
   129
  val gen_prover_real_arith : Proof.context -> prover -> cert_conv
Philipp@32645
   130
huffman@46594
   131
  val is_ratconst : cterm -> bool
huffman@46594
   132
  val dest_ratconst : cterm -> Rat.rat
huffman@46594
   133
  val cterm_of_rat : Rat.rat -> cterm
Philipp@32645
   134
chaieb@31120
   135
end
chaieb@31120
   136
Philipp@32645
   137
structure RealArith : REAL_ARITH =
chaieb@31120
   138
struct
chaieb@31120
   139
huffman@46594
   140
open Conv
chaieb@31120
   141
(* ------------------------------------------------------------------------- *)
chaieb@31120
   142
(* Data structure for Positivstellensatz refutations.                        *)
chaieb@31120
   143
(* ------------------------------------------------------------------------- *)
chaieb@31120
   144
chaieb@31120
   145
datatype positivstellensatz =
huffman@46594
   146
    Axiom_eq of int
huffman@46594
   147
  | Axiom_le of int
huffman@46594
   148
  | Axiom_lt of int
huffman@46594
   149
  | Rational_eq of Rat.rat
huffman@46594
   150
  | Rational_le of Rat.rat
huffman@46594
   151
  | Rational_lt of Rat.rat
huffman@46594
   152
  | Square of FuncUtil.poly
huffman@46594
   153
  | Eqmul of FuncUtil.poly * positivstellensatz
huffman@46594
   154
  | Sum of positivstellensatz * positivstellensatz
huffman@46594
   155
  | Product of positivstellensatz * positivstellensatz;
chaieb@31120
   156
         (* Theorems used in the procedure *)
chaieb@31120
   157
Philipp@32645
   158
datatype pss_tree = Trivial | Cert of positivstellensatz | Branch of pss_tree * pss_tree
Philipp@32645
   159
datatype tree_choice = Left | Right
huffman@46594
   160
type prover = tree_choice list ->
Philipp@32645
   161
  (thm list * thm list * thm list -> positivstellensatz -> thm) ->
huffman@46594
   162
    thm list * thm list * thm list -> thm * pss_tree
Philipp@32645
   163
type cert_conv = cterm -> thm * pss_tree
chaieb@31120
   164
Philipp@32645
   165
Philipp@32645
   166
    (* Some useful derived rules *)
huffman@46594
   167
fun deduct_antisym_rule tha thb =
wenzelm@59582
   168
    Thm.equal_intr (Thm.implies_intr (Thm.cprop_of thb) tha)
wenzelm@59582
   169
     (Thm.implies_intr (Thm.cprop_of tha) thb);
Philipp@32645
   170
wenzelm@44058
   171
fun prove_hyp tha thb =
wenzelm@59582
   172
  if exists (curry op aconv (Thm.concl_of tha)) (Thm.hyps_of thb)  (* FIXME !? *)
wenzelm@36945
   173
  then Thm.equal_elim (Thm.symmetric (deduct_antisym_rule tha thb)) tha else thb;
Philipp@32645
   174
wenzelm@67091
   175
val pth = @{lemma "(((x::real) < y) \<equiv> (y - x > 0))" and "((x \<le> y) \<equiv> (y - x \<ge> 0))" and
wenzelm@67091
   176
     "((x = y) \<equiv> (x - y = 0))" and "((\<not>(x < y)) \<equiv> (x - y \<ge> 0))" and
wenzelm@67091
   177
     "((\<not>(x \<le> y)) \<equiv> (x - y > 0))" and "((\<not>(x = y)) \<equiv> (x - y > 0 \<or> -(x - y) > 0))"
wenzelm@33443
   178
  by (atomize (full), auto simp add: less_diff_eq le_diff_eq not_less)};
chaieb@31120
   179
wenzelm@67091
   180
val pth_final = @{lemma "(\<not>p \<Longrightarrow> False) \<Longrightarrow> p" by blast}
huffman@46594
   181
val pth_add =
wenzelm@67267
   182
  @{lemma "(x = (0::real) \<Longrightarrow> y = 0 \<Longrightarrow> x + y = 0 )" and "( x = 0 \<Longrightarrow> y \<ge> 0 \<Longrightarrow> x + y \<ge> 0)" and
wenzelm@67267
   183
    "(x = 0 \<Longrightarrow> y > 0 \<Longrightarrow> x + y > 0)" and "(x \<ge> 0 \<Longrightarrow> y = 0 \<Longrightarrow> x + y \<ge> 0)" and
wenzelm@67267
   184
    "(x \<ge> 0 \<Longrightarrow> y \<ge> 0 \<Longrightarrow> x + y \<ge> 0)" and "(x \<ge> 0 \<Longrightarrow> y > 0 \<Longrightarrow> x + y > 0)" and
wenzelm@67267
   185
    "(x > 0 \<Longrightarrow> y = 0 \<Longrightarrow> x + y > 0)" and "(x > 0 \<Longrightarrow> y \<ge> 0 \<Longrightarrow> x + y > 0)" and
wenzelm@67267
   186
    "(x > 0 \<Longrightarrow> y > 0 \<Longrightarrow> x + y > 0)" by simp_all};
chaieb@31120
   187
huffman@46594
   188
val pth_mul =
wenzelm@67267
   189
  @{lemma "(x = (0::real) \<Longrightarrow> y = 0 \<Longrightarrow> x * y = 0)" and "(x = 0 \<Longrightarrow> y \<ge> 0 \<Longrightarrow> x * y = 0)" and
wenzelm@67267
   190
    "(x = 0 \<Longrightarrow> y > 0 \<Longrightarrow> x * y = 0)" and "(x \<ge> 0 \<Longrightarrow> y = 0 \<Longrightarrow> x * y = 0)" and
wenzelm@67267
   191
    "(x \<ge> 0 \<Longrightarrow> y \<ge> 0 \<Longrightarrow> x * y \<ge> 0)" and "(x \<ge> 0 \<Longrightarrow> y > 0 \<Longrightarrow> x * y \<ge> 0)" and
wenzelm@67267
   192
    "(x > 0 \<Longrightarrow>  y = 0 \<Longrightarrow> x * y = 0)" and "(x > 0 \<Longrightarrow> y \<ge> 0 \<Longrightarrow> x * y \<ge> 0)" and
wenzelm@67267
   193
    "(x > 0 \<Longrightarrow>  y > 0 \<Longrightarrow> x * y > 0)"
chaieb@31120
   194
  by (auto intro: mult_mono[where a="0::real" and b="x" and d="y" and c="0", simplified]
wenzelm@33443
   195
    mult_strict_mono[where b="x" and d="y" and a="0" and c="0", simplified])};
chaieb@31120
   196
wenzelm@67267
   197
val pth_emul = @{lemma "y = (0::real) \<Longrightarrow> x * y = 0"  by simp};
wenzelm@67267
   198
val pth_square = @{lemma "x * x \<ge> (0::real)"  by simp};
chaieb@31120
   199
wenzelm@33443
   200
val weak_dnf_simps =
wenzelm@45654
   201
  List.take (@{thms simp_thms}, 34) @
wenzelm@67091
   202
    @{lemma "((P \<and> (Q \<or> R)) = ((P\<and>Q) \<or> (P\<and>R)))" and "((Q \<or> R) \<and> P) = ((Q\<and>P) \<or> (R\<and>P))" and
wenzelm@67091
   203
      "(P \<and> Q) = (Q \<and> P)" and "((P \<or> Q) = (Q \<or> P))" by blast+};
chaieb@31120
   204
huffman@44454
   205
(*
wenzelm@33443
   206
val nnfD_simps =
wenzelm@33443
   207
  @{lemma "((~(P & Q)) = (~P | ~Q))" and "((~(P | Q)) = (~P & ~Q) )" and
wenzelm@33443
   208
    "((P --> Q) = (~P | Q) )" and "((P = Q) = ((P & Q) | (~P & ~ Q)))" and
wenzelm@33443
   209
    "((~(P = Q)) = ((P & ~ Q) | (~P & Q)) )" and "((~ ~(P)) = P)" by blast+};
huffman@44454
   210
*)
chaieb@31120
   211
wenzelm@67091
   212
val choice_iff = @{lemma "(\<forall>x. \<exists>y. P x y) = (\<exists>f. \<forall>x. P x (f x))" by metis};
wenzelm@33443
   213
val prenex_simps =
wenzelm@33443
   214
  map (fn th => th RS sym)
wenzelm@33443
   215
    ([@{thm "all_conj_distrib"}, @{thm "ex_disj_distrib"}] @
haftmann@37598
   216
      @{thms "HOL.all_simps"(1-4)} @ @{thms "ex_simps"(1-4)});
chaieb@31120
   217
wenzelm@33443
   218
val real_abs_thms1 = @{lemma
wenzelm@67091
   219
  "((-1 * \<bar>x::real\<bar> \<ge> r) = (-1 * x \<ge> r \<and> 1 * x \<ge> r))" and
wenzelm@67091
   220
  "((-1 * \<bar>x\<bar> + a \<ge> r) = (a + -1 * x \<ge> r \<and> a + 1 * x \<ge> r))" and
wenzelm@67091
   221
  "((a + -1 * \<bar>x\<bar> \<ge> r) = (a + -1 * x \<ge> r \<and> a + 1 * x \<ge> r))" and
wenzelm@67091
   222
  "((a + -1 * \<bar>x\<bar> + b \<ge> r) = (a + -1 * x + b \<ge> r \<and> a + 1 * x + b \<ge> r))" and
wenzelm@67091
   223
  "((a + b + -1 * \<bar>x\<bar> \<ge> r) = (a + b + -1 * x \<ge> r \<and> a + b + 1 * x \<ge> r))" and
wenzelm@67091
   224
  "((a + b + -1 * \<bar>x\<bar> + c \<ge> r) = (a + b + -1 * x + c \<ge> r \<and> a + b + 1 * x + c \<ge> r))" and
wenzelm@67091
   225
  "((-1 * max x y \<ge> r) = (-1 * x \<ge> r \<and> -1 * y \<ge> r))" and
wenzelm@67091
   226
  "((-1 * max x y + a \<ge> r) = (a + -1 * x \<ge> r \<and> a + -1 * y \<ge> r))" and
wenzelm@67091
   227
  "((a + -1 * max x y \<ge> r) = (a + -1 * x \<ge> r \<and> a + -1 * y \<ge> r))" and
wenzelm@67091
   228
  "((a + -1 * max x y + b \<ge> r) = (a + -1 * x + b \<ge> r \<and> a + -1 * y  + b \<ge> r))" and
wenzelm@67091
   229
  "((a + b + -1 * max x y \<ge> r) = (a + b + -1 * x \<ge> r \<and> a + b + -1 * y \<ge> r))" and
wenzelm@67091
   230
  "((a + b + -1 * max x y + c \<ge> r) = (a + b + -1 * x + c \<ge> r \<and> a + b + -1 * y  + c \<ge> r))" and
wenzelm@67091
   231
  "((1 * min x y \<ge> r) = (1 * x \<ge> r \<and> 1 * y \<ge> r))" and
wenzelm@67091
   232
  "((1 * min x y + a \<ge> r) = (a + 1 * x \<ge> r \<and> a + 1 * y \<ge> r))" and
wenzelm@67091
   233
  "((a + 1 * min x y \<ge> r) = (a + 1 * x \<ge> r \<and> a + 1 * y \<ge> r))" and
wenzelm@67091
   234
  "((a + 1 * min x y + b \<ge> r) = (a + 1 * x + b \<ge> r \<and> a + 1 * y  + b \<ge> r))" and
wenzelm@67091
   235
  "((a + b + 1 * min x y \<ge> r) = (a + b + 1 * x \<ge> r \<and> a + b + 1 * y \<ge> r))" and
wenzelm@67091
   236
  "((a + b + 1 * min x y + c \<ge> r) = (a + b + 1 * x + c \<ge> r \<and> a + b + 1 * y  + c \<ge> r))" and
wenzelm@67091
   237
  "((min x y \<ge> r) = (x \<ge> r \<and> y \<ge> r))" and
wenzelm@67091
   238
  "((min x y + a \<ge> r) = (a + x \<ge> r \<and> a + y \<ge> r))" and
wenzelm@67091
   239
  "((a + min x y \<ge> r) = (a + x \<ge> r \<and> a + y \<ge> r))" and
wenzelm@67091
   240
  "((a + min x y + b \<ge> r) = (a + x + b \<ge> r \<and> a + y  + b \<ge> r))" and
wenzelm@67091
   241
  "((a + b + min x y \<ge> r) = (a + b + x \<ge> r \<and> a + b + y \<ge> r))" and
wenzelm@67091
   242
  "((a + b + min x y + c \<ge> r) = (a + b + x + c \<ge> r \<and> a + b + y + c \<ge> r))" and
wenzelm@67091
   243
  "((-1 * \<bar>x\<bar> > r) = (-1 * x > r \<and> 1 * x > r))" and
wenzelm@67091
   244
  "((-1 * \<bar>x\<bar> + a > r) = (a + -1 * x > r \<and> a + 1 * x > r))" and
wenzelm@67091
   245
  "((a + -1 * \<bar>x\<bar> > r) = (a + -1 * x > r \<and> a + 1 * x > r))" and
wenzelm@67091
   246
  "((a + -1 * \<bar>x\<bar> + b > r) = (a + -1 * x + b > r \<and> a + 1 * x + b > r))" and
wenzelm@67091
   247
  "((a + b + -1 * \<bar>x\<bar> > r) = (a + b + -1 * x > r \<and> a + b + 1 * x > r))" and
wenzelm@67091
   248
  "((a + b + -1 * \<bar>x\<bar> + c > r) = (a + b + -1 * x + c > r \<and> a + b + 1 * x + c > r))" and
wenzelm@67091
   249
  "((-1 * max x y > r) = ((-1 * x > r) \<and> -1 * y > r))" and
wenzelm@67091
   250
  "((-1 * max x y + a > r) = (a + -1 * x > r \<and> a + -1 * y > r))" and
wenzelm@67091
   251
  "((a + -1 * max x y > r) = (a + -1 * x > r \<and> a + -1 * y > r))" and
wenzelm@67091
   252
  "((a + -1 * max x y + b > r) = (a + -1 * x + b > r \<and> a + -1 * y  + b > r))" and
wenzelm@67091
   253
  "((a + b + -1 * max x y > r) = (a + b + -1 * x > r \<and> a + b + -1 * y > r))" and
wenzelm@67091
   254
  "((a + b + -1 * max x y + c > r) = (a + b + -1 * x + c > r \<and> a + b + -1 * y  + c > r))" and
wenzelm@67091
   255
  "((min x y > r) = (x > r \<and> y > r))" and
wenzelm@67091
   256
  "((min x y + a > r) = (a + x > r \<and> a + y > r))" and
wenzelm@67091
   257
  "((a + min x y > r) = (a + x > r \<and> a + y > r))" and
wenzelm@67091
   258
  "((a + min x y + b > r) = (a + x + b > r \<and> a + y  + b > r))" and
wenzelm@67091
   259
  "((a + b + min x y > r) = (a + b + x > r \<and> a + b + y > r))" and
wenzelm@67091
   260
  "((a + b + min x y + c > r) = (a + b + x + c > r \<and> a + b + y + c > r))"
chaieb@31120
   261
  by auto};
chaieb@31120
   262
wenzelm@67091
   263
val abs_split' = @{lemma "P \<bar>x::'a::linordered_idom\<bar> == (x \<ge> 0 \<and> P x \<or> x < 0 \<and> P (-x))"
nipkow@63648
   264
  by (atomize (full)) (auto split: abs_split)};
chaieb@31120
   265
wenzelm@67091
   266
val max_split = @{lemma "P (max x y) \<equiv> ((x::'a::linorder) \<le> y \<and> P y \<or> x > y \<and> P x)"
wenzelm@67091
   267
  by (atomize (full)) (cases "x \<le> y", auto simp add: max_def)};
chaieb@31120
   268
wenzelm@67091
   269
val min_split = @{lemma "P (min x y) \<equiv> ((x::'a::linorder) \<le> y \<and> P x \<or> x > y \<and> P y)"
wenzelm@67091
   270
  by (atomize (full)) (cases "x \<le> y", auto simp add: min_def)};
chaieb@31120
   271
chaieb@31120
   272
krauss@39920
   273
         (* Miscellaneous *)
huffman@46594
   274
fun literals_conv bops uops cv =
huffman@46594
   275
  let
huffman@46594
   276
    fun h t =
wenzelm@59582
   277
      (case Thm.term_of t of
huffman@46594
   278
        b$_$_ => if member (op aconv) bops b then binop_conv h t else cv t
huffman@46594
   279
      | u$_ => if member (op aconv) uops u then arg_conv h t else cv t
wenzelm@59582
   280
      | _ => cv t)
huffman@46594
   281
  in h end;
chaieb@31120
   282
huffman@46594
   283
fun cterm_of_rat x =
huffman@46594
   284
  let
wenzelm@63201
   285
    val (a, b) = Rat.dest x
huffman@46594
   286
  in
wenzelm@67267
   287
    if b = 1 then Numeral.mk_cnumber \<^ctyp>\<open>real\<close> a
nipkow@67399
   288
    else Thm.apply (Thm.apply \<^cterm>\<open>(/) :: real \<Rightarrow> _\<close>
wenzelm@67267
   289
      (Numeral.mk_cnumber \<^ctyp>\<open>real\<close> a))
wenzelm@67267
   290
      (Numeral.mk_cnumber \<^ctyp>\<open>real\<close> b)
huffman@46594
   291
  end;
chaieb@31120
   292
huffman@46594
   293
fun dest_ratconst t =
wenzelm@59582
   294
  case Thm.term_of t of
wenzelm@67267
   295
    Const(\<^const_name>\<open>divide\<close>, _)$a$b => Rat.make(HOLogic.dest_number a |> snd, HOLogic.dest_number b |> snd)
wenzelm@63201
   296
  | _ => Rat.of_int (HOLogic.dest_number (Thm.term_of t) |> snd)
huffman@46594
   297
fun is_ratconst t = can dest_ratconst t
chaieb@31120
   298
huffman@44454
   299
(*
huffman@46594
   300
fun find_term p t = if p t then t else
chaieb@31120
   301
 case t of
chaieb@31120
   302
  a$b => (find_term p a handle TERM _ => find_term p b)
chaieb@31120
   303
 | Abs (_,_,t') => find_term p t'
chaieb@31120
   304
 | _ => raise TERM ("find_term",[t]);
huffman@44454
   305
*)
chaieb@31120
   306
huffman@46594
   307
fun find_cterm p t =
huffman@46594
   308
  if p t then t else
wenzelm@59582
   309
  case Thm.term_of t of
huffman@46594
   310
    _$_ => (find_cterm p (Thm.dest_fun t) handle CTERM _ => find_cterm p (Thm.dest_arg t))
huffman@46594
   311
  | Abs (_,_,_) => find_cterm p (Thm.dest_abs NONE t |> snd)
huffman@46594
   312
  | _ => raise CTERM ("find_cterm",[t]);
chaieb@31120
   313
wenzelm@59582
   314
fun is_comb t = (case Thm.term_of t of _ $ _ => true | _ => false);
chaieb@31120
   315
chaieb@31120
   316
fun is_binop ct ct' = ct aconvc (Thm.dest_fun (Thm.dest_fun ct'))
chaieb@31120
   317
  handle CTERM _ => false;
chaieb@31120
   318
Philipp@32645
   319
Philipp@32645
   320
(* Map back polynomials to HOL.                         *)
Philipp@32645
   321
nipkow@67399
   322
fun cterm_of_varpow x k = if k = 1 then x else Thm.apply (Thm.apply \<^cterm>\<open>(^) :: real \<Rightarrow> _\<close> x)
wenzelm@67267
   323
  (Numeral.mk_cnumber \<^ctyp>\<open>nat\<close> k)
Philipp@32645
   324
huffman@46594
   325
fun cterm_of_monomial m =
wenzelm@67267
   326
  if FuncUtil.Ctermfunc.is_empty m then \<^cterm>\<open>1::real\<close>
huffman@46594
   327
  else
huffman@46594
   328
    let
huffman@46594
   329
      val m' = FuncUtil.dest_monomial m
huffman@46594
   330
      val vps = fold_rev (fn (x,k) => cons (cterm_of_varpow x k)) m' []
nipkow@67399
   331
    in foldr1 (fn (s, t) => Thm.apply (Thm.apply \<^cterm>\<open>( * ) :: real \<Rightarrow> _\<close> s) t) vps
huffman@46594
   332
    end
Philipp@32645
   333
huffman@46594
   334
fun cterm_of_cmonomial (m,c) =
huffman@46594
   335
  if FuncUtil.Ctermfunc.is_empty m then cterm_of_rat c
wenzelm@63205
   336
  else if c = @1 then cterm_of_monomial m
nipkow@67399
   337
  else Thm.apply (Thm.apply \<^cterm>\<open>( * )::real \<Rightarrow> _\<close> (cterm_of_rat c)) (cterm_of_monomial m);
Philipp@32645
   338
huffman@46594
   339
fun cterm_of_poly p =
wenzelm@67267
   340
  if FuncUtil.Monomialfunc.is_empty p then \<^cterm>\<open>0::real\<close>
huffman@46594
   341
  else
huffman@46594
   342
    let
huffman@46594
   343
      val cms = map cterm_of_cmonomial
huffman@46594
   344
        (sort (prod_ord FuncUtil.monomial_order (K EQUAL)) (FuncUtil.Monomialfunc.dest p))
nipkow@67399
   345
    in foldr1 (fn (t1, t2) => Thm.apply(Thm.apply \<^cterm>\<open>(+) :: real \<Rightarrow> _\<close> t1) t2) cms
huffman@46594
   346
    end;
Philipp@32645
   347
huffman@46594
   348
(* A general real arithmetic prover *)
chaieb@31120
   349
chaieb@31120
   350
fun gen_gen_real_arith ctxt (mk_numeric,
chaieb@31120
   351
       numeric_eq_conv,numeric_ge_conv,numeric_gt_conv,
chaieb@31120
   352
       poly_conv,poly_neg_conv,poly_add_conv,poly_mul_conv,
huffman@46594
   353
       absconv1,absconv2,prover) =
huffman@46594
   354
  let
wenzelm@51717
   355
    val pre_ss = put_simpset HOL_basic_ss ctxt addsimps
wenzelm@58628
   356
      @{thms simp_thms ex_simps all_simps not_all not_ex ex_disj_distrib
wenzelm@58628
   357
          all_conj_distrib if_bool_eq_disj}
wenzelm@51717
   358
    val prenex_ss = put_simpset HOL_basic_ss ctxt addsimps prenex_simps
wenzelm@51717
   359
    val skolemize_ss = put_simpset HOL_basic_ss ctxt addsimps [choice_iff]
wenzelm@51717
   360
    val presimp_conv = Simplifier.rewrite pre_ss
wenzelm@51717
   361
    val prenex_conv = Simplifier.rewrite prenex_ss
wenzelm@51717
   362
    val skolemize_conv = Simplifier.rewrite skolemize_ss
wenzelm@51717
   363
    val weak_dnf_ss = put_simpset HOL_basic_ss ctxt addsimps weak_dnf_simps
wenzelm@51717
   364
    val weak_dnf_conv = Simplifier.rewrite weak_dnf_ss
huffman@46594
   365
    fun eqT_elim th = Thm.equal_elim (Thm.symmetric th) @{thm TrueI}
huffman@46594
   366
    fun oprconv cv ct =
huffman@46594
   367
      let val g = Thm.dest_fun2 ct
wenzelm@67564
   368
      in if g aconvc \<^cterm>\<open>(\<le>) :: real \<Rightarrow> _\<close>
wenzelm@67564
   369
            orelse g aconvc \<^cterm>\<open>(<) :: real \<Rightarrow> _\<close>
huffman@46594
   370
         then arg_conv cv ct else arg1_conv cv ct
huffman@46594
   371
      end
chaieb@31120
   372
huffman@46594
   373
    fun real_ineq_conv th ct =
huffman@46594
   374
      let
huffman@46594
   375
        val th' = (Thm.instantiate (Thm.match (Thm.lhs_of th, ct)) th
huffman@46594
   376
          handle Pattern.MATCH => raise CTERM ("real_ineq_conv", [ct]))
huffman@46594
   377
      in Thm.transitive th' (oprconv poly_conv (Thm.rhs_of th'))
huffman@46594
   378
      end
huffman@46594
   379
    val [real_lt_conv, real_le_conv, real_eq_conv,
huffman@46594
   380
         real_not_lt_conv, real_not_le_conv, _] =
huffman@46594
   381
         map real_ineq_conv pth
huffman@46594
   382
    fun match_mp_rule ths ths' =
huffman@46594
   383
      let
huffman@46594
   384
        fun f ths ths' = case ths of [] => raise THM("match_mp_rule",0,ths)
huffman@46594
   385
          | th::ths => (ths' MRS th handle THM _ => f ths ths')
huffman@46594
   386
      in f ths ths' end
huffman@46594
   387
    fun mul_rule th th' = fconv_rule (arg_conv (oprconv poly_mul_conv))
chaieb@31120
   388
         (match_mp_rule pth_mul [th, th'])
huffman@46594
   389
    fun add_rule th th' = fconv_rule (arg_conv (oprconv poly_add_conv))
chaieb@31120
   390
         (match_mp_rule pth_add [th, th'])
huffman@46594
   391
    fun emul_rule ct th = fconv_rule (arg_conv (oprconv poly_mul_conv))
wenzelm@60801
   392
       (Thm.instantiate' [] [SOME ct] (th RS pth_emul))
huffman@46594
   393
    fun square_rule t = fconv_rule (arg_conv (oprconv poly_conv))
wenzelm@60801
   394
       (Thm.instantiate' [] [SOME t] pth_square)
chaieb@31120
   395
huffman@46594
   396
    fun hol_of_positivstellensatz(eqs,les,lts) proof =
huffman@46594
   397
      let
huffman@46594
   398
        fun translate prf =
huffman@46594
   399
          case prf of
huffman@46594
   400
            Axiom_eq n => nth eqs n
huffman@46594
   401
          | Axiom_le n => nth les n
huffman@46594
   402
          | Axiom_lt n => nth lts n
wenzelm@67267
   403
          | Rational_eq x => eqT_elim(numeric_eq_conv(Thm.apply \<^cterm>\<open>Trueprop\<close>
wenzelm@67564
   404
                          (Thm.apply (Thm.apply \<^cterm>\<open>(=)::real \<Rightarrow> _\<close> (mk_numeric x))
wenzelm@67267
   405
                               \<^cterm>\<open>0::real\<close>)))
wenzelm@67267
   406
          | Rational_le x => eqT_elim(numeric_ge_conv(Thm.apply \<^cterm>\<open>Trueprop\<close>
wenzelm@67564
   407
                          (Thm.apply (Thm.apply \<^cterm>\<open>(\<le>)::real \<Rightarrow> _\<close>
wenzelm@67267
   408
                                     \<^cterm>\<open>0::real\<close>) (mk_numeric x))))
wenzelm@67267
   409
          | Rational_lt x => eqT_elim(numeric_gt_conv(Thm.apply \<^cterm>\<open>Trueprop\<close>
wenzelm@67564
   410
                      (Thm.apply (Thm.apply \<^cterm>\<open>(<)::real \<Rightarrow> _\<close> \<^cterm>\<open>0::real\<close>)
chaieb@31120
   411
                        (mk_numeric x))))
huffman@46594
   412
          | Square pt => square_rule (cterm_of_poly pt)
huffman@46594
   413
          | Eqmul(pt,p) => emul_rule (cterm_of_poly pt) (translate p)
huffman@46594
   414
          | Sum(p1,p2) => add_rule (translate p1) (translate p2)
huffman@46594
   415
          | Product(p1,p2) => mul_rule (translate p1) (translate p2)
huffman@46594
   416
      in fconv_rule (first_conv [numeric_ge_conv, numeric_gt_conv, numeric_eq_conv, all_conv])
chaieb@31120
   417
          (translate proof)
huffman@46594
   418
      end
huffman@46594
   419
huffman@46594
   420
    val init_conv = presimp_conv then_conv
wenzelm@51717
   421
        nnf_conv ctxt then_conv skolemize_conv then_conv prenex_conv then_conv
huffman@46594
   422
        weak_dnf_conv
chaieb@31120
   423
wenzelm@59582
   424
    val concl = Thm.dest_arg o Thm.cprop_of
huffman@46594
   425
    fun is_binop opr ct = (Thm.dest_fun2 ct aconvc opr handle CTERM _ => false)
wenzelm@67564
   426
    val is_req = is_binop \<^cterm>\<open>(=):: real \<Rightarrow> _\<close>
wenzelm@67564
   427
    val is_ge = is_binop \<^cterm>\<open>(\<le>):: real \<Rightarrow> _\<close>
wenzelm@67564
   428
    val is_gt = is_binop \<^cterm>\<open>(<):: real \<Rightarrow> _\<close>
wenzelm@67267
   429
    val is_conj = is_binop \<^cterm>\<open>HOL.conj\<close>
wenzelm@67267
   430
    val is_disj = is_binop \<^cterm>\<open>HOL.disj\<close>
huffman@46594
   431
    fun conj_pair th = (th RS @{thm conjunct1}, th RS @{thm conjunct2})
huffman@46594
   432
    fun disj_cases th th1 th2 =
huffman@46594
   433
      let
huffman@46594
   434
        val (p,q) = Thm.dest_binop (concl th)
huffman@46594
   435
        val c = concl th1
wenzelm@58628
   436
        val _ =
wenzelm@58628
   437
          if c aconvc (concl th2) then ()
wenzelm@58628
   438
          else error "disj_cases : conclusions not alpha convertible"
huffman@46594
   439
      in Thm.implies_elim (Thm.implies_elim
wenzelm@60801
   440
          (Thm.implies_elim (Thm.instantiate' [] (map SOME [p,q,c]) @{thm disjE}) th)
wenzelm@67267
   441
          (Thm.implies_intr (Thm.apply \<^cterm>\<open>Trueprop\<close> p) th1))
wenzelm@67267
   442
        (Thm.implies_intr (Thm.apply \<^cterm>\<open>Trueprop\<close> q) th2)
huffman@46594
   443
      end
huffman@46594
   444
    fun overall cert_choice dun ths =
huffman@46594
   445
      case ths of
huffman@46594
   446
        [] =>
huffman@46594
   447
        let
huffman@46594
   448
          val (eq,ne) = List.partition (is_req o concl) dun
huffman@46594
   449
          val (le,nl) = List.partition (is_ge o concl) ne
huffman@46594
   450
          val lt = filter (is_gt o concl) nl
huffman@46594
   451
        in prover (rev cert_choice) hol_of_positivstellensatz (eq,le,lt) end
huffman@46594
   452
      | th::oths =>
huffman@46594
   453
        let
huffman@46594
   454
          val ct = concl th
huffman@46594
   455
        in
huffman@46594
   456
          if is_conj ct then
huffman@46594
   457
            let
huffman@46594
   458
              val (th1,th2) = conj_pair th
huffman@46594
   459
            in overall cert_choice dun (th1::th2::oths) end
huffman@46594
   460
          else if is_disj ct then
huffman@46594
   461
            let
wenzelm@58628
   462
              val (th1, cert1) =
wenzelm@58628
   463
                overall (Left::cert_choice) dun
wenzelm@67267
   464
                  (Thm.assume (Thm.apply \<^cterm>\<open>Trueprop\<close> (Thm.dest_arg1 ct))::oths)
wenzelm@58628
   465
              val (th2, cert2) =
wenzelm@58628
   466
                overall (Right::cert_choice) dun
wenzelm@67267
   467
                  (Thm.assume (Thm.apply \<^cterm>\<open>Trueprop\<close> (Thm.dest_arg ct))::oths)
huffman@46594
   468
            in (disj_cases th th1 th2, Branch (cert1, cert2)) end
huffman@46594
   469
          else overall cert_choice (th::dun) oths
huffman@46594
   470
        end
huffman@46594
   471
    fun dest_binary b ct =
huffman@46594
   472
        if is_binop b ct then Thm.dest_binop ct
huffman@46594
   473
        else raise CTERM ("dest_binary",[b,ct])
wenzelm@67564
   474
    val dest_eq = dest_binary \<^cterm>\<open>(=) :: real \<Rightarrow> _\<close>
huffman@46594
   475
    val neq_th = nth pth 5
huffman@46594
   476
    fun real_not_eq_conv ct =
huffman@46594
   477
      let
huffman@46594
   478
        val (l,r) = dest_eq (Thm.dest_arg ct)
wenzelm@67267
   479
        val th = Thm.instantiate ([],[((("x", 0), \<^typ>\<open>real\<close>),l),((("y", 0), \<^typ>\<open>real\<close>),r)]) neq_th
huffman@46594
   480
        val th_p = poly_conv(Thm.dest_arg(Thm.dest_arg1(Thm.rhs_of th)))
wenzelm@67267
   481
        val th_x = Drule.arg_cong_rule \<^cterm>\<open>uminus :: real \<Rightarrow> _\<close> th_p
huffman@46594
   482
        val th_n = fconv_rule (arg_conv poly_neg_conv) th_x
wenzelm@67267
   483
        val th' = Drule.binop_cong_rule \<^cterm>\<open>HOL.disj\<close>
wenzelm@67564
   484
          (Drule.arg_cong_rule (Thm.apply \<^cterm>\<open>(<)::real \<Rightarrow> _\<close> \<^cterm>\<open>0::real\<close>) th_p)
wenzelm@67564
   485
          (Drule.arg_cong_rule (Thm.apply \<^cterm>\<open>(<)::real \<Rightarrow> _\<close> \<^cterm>\<open>0::real\<close>) th_n)
huffman@46594
   486
      in Thm.transitive th th'
huffman@46594
   487
      end
huffman@46594
   488
    fun equal_implies_1_rule PQ =
huffman@46594
   489
      let
huffman@46594
   490
        val P = Thm.lhs_of PQ
huffman@46594
   491
      in Thm.implies_intr P (Thm.equal_elim PQ (Thm.assume P))
huffman@46594
   492
      end
wenzelm@63667
   493
    (*FIXME!!! Copied from groebner.ml*)
huffman@46594
   494
    val strip_exists =
huffman@46594
   495
      let
huffman@46594
   496
        fun h (acc, t) =
wenzelm@59582
   497
          case Thm.term_of t of
wenzelm@67267
   498
            Const(\<^const_name>\<open>Ex\<close>,_)$Abs(_,_,_) =>
wenzelm@58628
   499
              h (Thm.dest_abs NONE (Thm.dest_arg t) |>> (fn v => v::acc))
huffman@46594
   500
          | _ => (acc,t)
huffman@46594
   501
      in fn t => h ([],t)
huffman@46594
   502
      end
huffman@46594
   503
    fun name_of x =
wenzelm@59582
   504
      case Thm.term_of x of
huffman@46594
   505
        Free(s,_) => s
huffman@46594
   506
      | Var ((s,_),_) => s
huffman@46594
   507
      | _ => "x"
chaieb@31120
   508
wenzelm@58628
   509
    fun mk_forall x th =
wenzelm@61075
   510
      let
wenzelm@61075
   511
        val T = Thm.typ_of_cterm x
wenzelm@67267
   512
        val all = Thm.cterm_of ctxt (Const (\<^const_name>\<open>All\<close>, (T --> \<^typ>\<open>bool\<close>) --> \<^typ>\<open>bool\<close>))
wenzelm@61075
   513
      in Drule.arg_cong_rule all (Thm.abstract_rule (name_of x) x th) end
chaieb@31120
   514
wenzelm@60801
   515
    val specl = fold_rev (fn x => fn th => Thm.instantiate' [] [SOME x] (th RS spec));
chaieb@31120
   516
wenzelm@67267
   517
    fun ext T = Thm.cterm_of ctxt (Const (\<^const_name>\<open>Ex\<close>, (T --> \<^typ>\<open>bool\<close>) --> \<^typ>\<open>bool\<close>))
wenzelm@61075
   518
    fun mk_ex v t = Thm.apply (ext (Thm.typ_of_cterm v)) (Thm.lambda v t)
chaieb@31120
   519
huffman@46594
   520
    fun choose v th th' =
wenzelm@59582
   521
      case Thm.concl_of th of
wenzelm@67267
   522
        \<^term>\<open>Trueprop\<close> $ (Const(\<^const_name>\<open>Ex\<close>,_)$_) =>
huffman@46594
   523
        let
wenzelm@59582
   524
          val p = (funpow 2 Thm.dest_arg o Thm.cprop_of) th
wenzelm@59586
   525
          val T = (hd o Thm.dest_ctyp o Thm.ctyp_of_cterm) p
huffman@46594
   526
          val th0 = fconv_rule (Thm.beta_conversion true)
wenzelm@60801
   527
            (Thm.instantiate' [SOME T] [SOME p, (SOME o Thm.dest_arg o Thm.cprop_of) th'] exE)
huffman@46594
   528
          val pv = (Thm.rhs_of o Thm.beta_conversion true)
wenzelm@67267
   529
            (Thm.apply \<^cterm>\<open>Trueprop\<close> (Thm.apply p v))
huffman@46594
   530
          val th1 = Thm.forall_intr v (Thm.implies_intr pv th')
huffman@46594
   531
        in Thm.implies_elim (Thm.implies_elim th0 th) th1  end
huffman@46594
   532
      | _ => raise THM ("choose",0,[th, th'])
chaieb@31120
   533
huffman@46594
   534
    fun simple_choose v th =
wenzelm@58628
   535
      choose v
wenzelm@58628
   536
        (Thm.assume
wenzelm@67267
   537
          ((Thm.apply \<^cterm>\<open>Trueprop\<close> o mk_ex v) (Thm.dest_arg (hd (Thm.chyps_of th))))) th
chaieb@31120
   538
huffman@46594
   539
    val strip_forall =
huffman@46594
   540
      let
huffman@46594
   541
        fun h (acc, t) =
wenzelm@59582
   542
          case Thm.term_of t of
wenzelm@67267
   543
            Const(\<^const_name>\<open>All\<close>,_)$Abs(_,_,_) =>
wenzelm@58628
   544
              h (Thm.dest_abs NONE (Thm.dest_arg t) |>> (fn v => v::acc))
huffman@46594
   545
          | _ => (acc,t)
huffman@46594
   546
      in fn t => h ([],t)
huffman@46594
   547
      end
chaieb@31120
   548
huffman@46594
   549
    fun f ct =
huffman@46594
   550
      let
huffman@46594
   551
        val nnf_norm_conv' =
wenzelm@51717
   552
          nnf_conv ctxt then_conv
wenzelm@67267
   553
          literals_conv [\<^term>\<open>HOL.conj\<close>, \<^term>\<open>HOL.disj\<close>] []
huffman@46594
   554
          (Conv.cache_conv
huffman@46594
   555
            (first_conv [real_lt_conv, real_le_conv,
huffman@46594
   556
                         real_eq_conv, real_not_lt_conv,
huffman@46594
   557
                         real_not_le_conv, real_not_eq_conv, all_conv]))
wenzelm@67267
   558
        fun absremover ct = (literals_conv [\<^term>\<open>HOL.conj\<close>, \<^term>\<open>HOL.disj\<close>] []
huffman@46594
   559
                  (try_conv (absconv1 then_conv binop_conv (arg_conv poly_conv))) then_conv
huffman@46594
   560
                  try_conv (absconv2 then_conv nnf_norm_conv' then_conv binop_conv absremover)) ct
wenzelm@67267
   561
        val nct = Thm.apply \<^cterm>\<open>Trueprop\<close> (Thm.apply \<^cterm>\<open>Not\<close> ct)
huffman@46594
   562
        val th0 = (init_conv then_conv arg_conv nnf_norm_conv') nct
huffman@46594
   563
        val tm0 = Thm.dest_arg (Thm.rhs_of th0)
huffman@46594
   564
        val (th, certificates) =
wenzelm@67267
   565
          if tm0 aconvc \<^cterm>\<open>False\<close> then (equal_implies_1_rule th0, Trivial) else
huffman@46594
   566
          let
huffman@46594
   567
            val (evs,bod) = strip_exists tm0
huffman@46594
   568
            val (avs,ibod) = strip_forall bod
wenzelm@67267
   569
            val th1 = Drule.arg_cong_rule \<^cterm>\<open>Trueprop\<close> (fold mk_forall avs (absremover ibod))
huffman@46594
   570
            val (th2, certs) = overall [] [] [specl avs (Thm.assume (Thm.rhs_of th1))]
wenzelm@58628
   571
            val th3 =
wenzelm@58628
   572
              fold simple_choose evs
wenzelm@67267
   573
                (prove_hyp (Thm.equal_elim th1 (Thm.assume (Thm.apply \<^cterm>\<open>Trueprop\<close> bod))) th2)
huffman@46594
   574
          in (Drule.implies_intr_hyps (prove_hyp (Thm.equal_elim th0 (Thm.assume nct)) th3), certs)
huffman@46594
   575
          end
wenzelm@60801
   576
      in (Thm.implies_elim (Thm.instantiate' [] [SOME ct] pth_final) th, certificates)
huffman@46594
   577
      end
huffman@46594
   578
  in f
huffman@46594
   579
  end;
chaieb@31120
   580
chaieb@31120
   581
(* A linear arithmetic prover *)
chaieb@31120
   582
local
wenzelm@63205
   583
  val linear_add = FuncUtil.Ctermfunc.combine (curry op +) (fn z => z = @0)
wenzelm@63198
   584
  fun linear_cmul c = FuncUtil.Ctermfunc.map (fn _ => fn x => c * x)
wenzelm@67267
   585
  val one_tm = \<^cterm>\<open>1::real\<close>
wenzelm@63205
   586
  fun contradictory p (e,_) = ((FuncUtil.Ctermfunc.is_empty e) andalso not(p @0)) orelse
haftmann@33038
   587
     ((eq_set (op aconvc) (FuncUtil.Ctermfunc.dom e, [one_tm])) andalso
Philipp@32829
   588
       not(p(FuncUtil.Ctermfunc.apply e one_tm)))
chaieb@31120
   589
huffman@46594
   590
  fun linear_ineqs vars (les,lts) =
wenzelm@63205
   591
    case find_first (contradictory (fn x => x > @0)) lts of
huffman@46594
   592
      SOME r => r
huffman@46594
   593
    | NONE =>
wenzelm@63205
   594
      (case find_first (contradictory (fn x => x > @0)) les of
huffman@46594
   595
         SOME r => r
huffman@46594
   596
       | NONE =>
huffman@46594
   597
         if null vars then error "linear_ineqs: no contradiction" else
huffman@46594
   598
         let
huffman@46594
   599
           val ineqs = les @ lts
huffman@46594
   600
           fun blowup v =
wenzelm@63205
   601
             length(filter (fn (e,_) => FuncUtil.Ctermfunc.tryapplyd e v @0 = @0) ineqs) +
wenzelm@63205
   602
             length(filter (fn (e,_) => FuncUtil.Ctermfunc.tryapplyd e v @0 > @0) ineqs) *
wenzelm@63205
   603
             length(filter (fn (e,_) => FuncUtil.Ctermfunc.tryapplyd e v @0 < @0) ineqs)
huffman@46594
   604
           val v = fst(hd(sort (fn ((_,i),(_,j)) => int_ord (i,j))
huffman@46594
   605
             (map (fn v => (v,blowup v)) vars)))
huffman@46594
   606
           fun addup (e1,p1) (e2,p2) acc =
huffman@46594
   607
             let
wenzelm@63205
   608
               val c1 = FuncUtil.Ctermfunc.tryapplyd e1 v @0
wenzelm@63205
   609
               val c2 = FuncUtil.Ctermfunc.tryapplyd e2 v @0
huffman@46594
   610
             in
wenzelm@63205
   611
               if c1 * c2 >= @0 then acc else
huffman@46594
   612
               let
wenzelm@63211
   613
                 val e1' = linear_cmul (abs c2) e1
wenzelm@63211
   614
                 val e2' = linear_cmul (abs c1) e2
wenzelm@63211
   615
                 val p1' = Product(Rational_lt (abs c2), p1)
wenzelm@63211
   616
                 val p2' = Product(Rational_lt (abs c1), p2)
huffman@46594
   617
               in (linear_add e1' e2',Sum(p1',p2'))::acc
huffman@46594
   618
               end
huffman@46594
   619
             end
huffman@46594
   620
           val (les0,les1) =
wenzelm@63205
   621
             List.partition (fn (e,_) => FuncUtil.Ctermfunc.tryapplyd e v @0 = @0) les
huffman@46594
   622
           val (lts0,lts1) =
wenzelm@63205
   623
             List.partition (fn (e,_) => FuncUtil.Ctermfunc.tryapplyd e v @0 = @0) lts
huffman@46594
   624
           val (lesp,lesn) =
wenzelm@63205
   625
             List.partition (fn (e,_) => FuncUtil.Ctermfunc.tryapplyd e v @0 > @0) les1
huffman@46594
   626
           val (ltsp,ltsn) =
wenzelm@63205
   627
             List.partition (fn (e,_) => FuncUtil.Ctermfunc.tryapplyd e v @0 > @0) lts1
huffman@46594
   628
           val les' = fold_rev (fn ep1 => fold_rev (addup ep1) lesp) lesn les0
huffman@46594
   629
           val lts' = fold_rev (fn ep1 => fold_rev (addup ep1) (lesp@ltsp)) ltsn
chaieb@31120
   630
                      (fold_rev (fn ep1 => fold_rev (addup ep1) (lesn@ltsn)) ltsp lts0)
huffman@46594
   631
         in linear_ineqs (remove (op aconvc) v vars) (les',lts')
huffman@46594
   632
         end)
chaieb@31120
   633
huffman@46594
   634
  fun linear_eqs(eqs,les,lts) =
wenzelm@63205
   635
    case find_first (contradictory (fn x => x = @0)) eqs of
huffman@46594
   636
      SOME r => r
huffman@46594
   637
    | NONE =>
huffman@46594
   638
      (case eqs of
huffman@46594
   639
         [] =>
huffman@46594
   640
         let val vars = remove (op aconvc) one_tm
huffman@46594
   641
             (fold_rev (union (op aconvc) o FuncUtil.Ctermfunc.dom o fst) (les@lts) [])
huffman@46594
   642
         in linear_ineqs vars (les,lts) end
huffman@46594
   643
       | (e,p)::es =>
huffman@46594
   644
         if FuncUtil.Ctermfunc.is_empty e then linear_eqs (es,les,lts) else
huffman@46594
   645
         let
huffman@46594
   646
           val (x,c) = FuncUtil.Ctermfunc.choose (FuncUtil.Ctermfunc.delete_safe one_tm e)
huffman@46594
   647
           fun xform (inp as (t,q)) =
wenzelm@63205
   648
             let val d = FuncUtil.Ctermfunc.tryapplyd t x @0 in
wenzelm@63205
   649
               if d = @0 then inp else
huffman@46594
   650
               let
wenzelm@63211
   651
                 val k = ~ d * abs c / c
huffman@46594
   652
                 val e' = linear_cmul k e
wenzelm@63211
   653
                 val t' = linear_cmul (abs c) t
huffman@46594
   654
                 val p' = Eqmul(FuncUtil.Monomialfunc.onefunc (FuncUtil.Ctermfunc.empty, k),p)
wenzelm@63211
   655
                 val q' = Product(Rational_lt (abs c), q)
huffman@46594
   656
               in (linear_add e' t',Sum(p',q'))
huffman@46594
   657
               end
huffman@46594
   658
             end
huffman@46594
   659
         in linear_eqs(map xform es,map xform les,map xform lts)
huffman@46594
   660
         end)
chaieb@31120
   661
huffman@46594
   662
  fun linear_prover (eq,le,lt) =
huffman@46594
   663
    let
huffman@46594
   664
      val eqs = map_index (fn (n, p) => (p,Axiom_eq n)) eq
huffman@46594
   665
      val les = map_index (fn (n, p) => (p,Axiom_le n)) le
huffman@46594
   666
      val lts = map_index (fn (n, p) => (p,Axiom_lt n)) lt
huffman@46594
   667
    in linear_eqs(eqs,les,lts)
chaieb@31120
   668
    end
chaieb@31120
   669
huffman@46594
   670
  fun lin_of_hol ct =
wenzelm@67267
   671
    if ct aconvc \<^cterm>\<open>0::real\<close> then FuncUtil.Ctermfunc.empty
wenzelm@63205
   672
    else if not (is_comb ct) then FuncUtil.Ctermfunc.onefunc (ct, @1)
huffman@46594
   673
    else if is_ratconst ct then FuncUtil.Ctermfunc.onefunc (one_tm, dest_ratconst ct)
huffman@46594
   674
    else
huffman@46594
   675
      let val (lop,r) = Thm.dest_comb ct
huffman@46594
   676
      in
wenzelm@63205
   677
        if not (is_comb lop) then FuncUtil.Ctermfunc.onefunc (ct, @1)
huffman@46594
   678
        else
huffman@46594
   679
          let val (opr,l) = Thm.dest_comb lop
huffman@46594
   680
          in
nipkow@67399
   681
            if opr aconvc \<^cterm>\<open>(+) :: real \<Rightarrow> _\<close>
huffman@46594
   682
            then linear_add (lin_of_hol l) (lin_of_hol r)
nipkow@67399
   683
            else if opr aconvc \<^cterm>\<open>( * ) :: real \<Rightarrow> _\<close>
huffman@46594
   684
                    andalso is_ratconst l then FuncUtil.Ctermfunc.onefunc (r, dest_ratconst l)
wenzelm@63205
   685
            else FuncUtil.Ctermfunc.onefunc (ct, @1)
huffman@46594
   686
          end
huffman@46594
   687
      end
huffman@46594
   688
huffman@46594
   689
  fun is_alien ct =
wenzelm@59582
   690
    case Thm.term_of ct of
wenzelm@67267
   691
      Const(\<^const_name>\<open>of_nat\<close>, _)$ n => not (can HOLogic.dest_number n)
wenzelm@67267
   692
    | Const(\<^const_name>\<open>of_int\<close>, _)$ n => not (can HOLogic.dest_number n)
wenzelm@59582
   693
    | _ => false
huffman@46594
   694
in
huffman@46594
   695
fun real_linear_prover translator (eq,le,lt) =
huffman@46594
   696
  let
wenzelm@59582
   697
    val lhs = lin_of_hol o Thm.dest_arg1 o Thm.dest_arg o Thm.cprop_of
wenzelm@59582
   698
    val rhs = lin_of_hol o Thm.dest_arg o Thm.dest_arg o Thm.cprop_of
huffman@46594
   699
    val eq_pols = map lhs eq
huffman@46594
   700
    val le_pols = map rhs le
huffman@46594
   701
    val lt_pols = map rhs lt
huffman@46594
   702
    val aliens = filter is_alien
huffman@46594
   703
      (fold_rev (union (op aconvc) o FuncUtil.Ctermfunc.dom)
huffman@46594
   704
                (eq_pols @ le_pols @ lt_pols) [])
wenzelm@63205
   705
    val le_pols' = le_pols @ map (fn v => FuncUtil.Ctermfunc.onefunc (v,@1)) aliens
huffman@46594
   706
    val (_,proof) = linear_prover (eq_pols,le_pols',lt_pols)
lp15@61609
   707
    val le' = le @ map (fn a => Thm.instantiate' [] [SOME (Thm.dest_arg a)] @{thm of_nat_0_le_iff}) aliens
huffman@46594
   708
  in ((translator (eq,le',lt) proof), Trivial)
huffman@46594
   709
  end
chaieb@31120
   710
end;
chaieb@31120
   711
chaieb@31120
   712
(* A less general generic arithmetic prover dealing with abs,max and min*)
chaieb@31120
   713
chaieb@31120
   714
local
wenzelm@51717
   715
  val absmaxmin_elim_ss1 =
wenzelm@51717
   716
    simpset_of (put_simpset HOL_basic_ss @{context} addsimps real_abs_thms1)
huffman@46594
   717
  fun absmaxmin_elim_conv1 ctxt =
wenzelm@51717
   718
    Simplifier.rewrite (put_simpset absmaxmin_elim_ss1 ctxt)
chaieb@31120
   719
huffman@46594
   720
  val absmaxmin_elim_conv2 =
huffman@46594
   721
    let
wenzelm@67267
   722
      val pth_abs = Thm.instantiate' [SOME \<^ctyp>\<open>real\<close>] [] abs_split'
wenzelm@67267
   723
      val pth_max = Thm.instantiate' [SOME \<^ctyp>\<open>real\<close>] [] max_split
wenzelm@67267
   724
      val pth_min = Thm.instantiate' [SOME \<^ctyp>\<open>real\<close>] [] min_split
wenzelm@67267
   725
      val abs_tm = \<^cterm>\<open>abs :: real \<Rightarrow> _\<close>
wenzelm@67267
   726
      val p_v = (("P", 0), \<^typ>\<open>real \<Rightarrow> bool\<close>)
wenzelm@67267
   727
      val x_v = (("x", 0), \<^typ>\<open>real\<close>)
wenzelm@67267
   728
      val y_v = (("y", 0), \<^typ>\<open>real\<close>)
wenzelm@67267
   729
      val is_max = is_binop \<^cterm>\<open>max :: real \<Rightarrow> _\<close>
wenzelm@67267
   730
      val is_min = is_binop \<^cterm>\<open>min :: real \<Rightarrow> _\<close>
huffman@46594
   731
      fun is_abs t = is_comb t andalso Thm.dest_fun t aconvc abs_tm
huffman@46594
   732
      fun eliminate_construct p c tm =
huffman@46594
   733
        let
huffman@46594
   734
          val t = find_cterm p tm
huffman@46594
   735
          val th0 = (Thm.symmetric o Thm.beta_conversion false) (Thm.apply (Thm.lambda t tm) t)
huffman@46594
   736
          val (p,ax) = (Thm.dest_comb o Thm.rhs_of) th0
huffman@46594
   737
        in fconv_rule(arg_conv(binop_conv (arg_conv (Thm.beta_conversion false))))
huffman@46594
   738
                     (Thm.transitive th0 (c p ax))
huffman@46594
   739
        end
chaieb@31120
   740
huffman@46594
   741
      val elim_abs = eliminate_construct is_abs
huffman@46594
   742
        (fn p => fn ax =>
wenzelm@60642
   743
          Thm.instantiate ([], [(p_v,p), (x_v, Thm.dest_arg ax)]) pth_abs)
huffman@46594
   744
      val elim_max = eliminate_construct is_max
huffman@46594
   745
        (fn p => fn ax =>
huffman@46594
   746
          let val (ax,y) = Thm.dest_comb ax
wenzelm@60642
   747
          in Thm.instantiate ([], [(p_v,p), (x_v, Thm.dest_arg ax), (y_v,y)])
huffman@46594
   748
                             pth_max end)
huffman@46594
   749
      val elim_min = eliminate_construct is_min
huffman@46594
   750
        (fn p => fn ax =>
huffman@46594
   751
          let val (ax,y) = Thm.dest_comb ax
wenzelm@60642
   752
          in Thm.instantiate ([], [(p_v,p), (x_v, Thm.dest_arg ax), (y_v,y)])
huffman@46594
   753
                             pth_min end)
huffman@46594
   754
    in first_conv [elim_abs, elim_max, elim_min, all_conv]
huffman@46594
   755
    end;
huffman@46594
   756
in
huffman@46594
   757
fun gen_real_arith ctxt (mkconst,eq,ge,gt,norm,neg,add,mul,prover) =
huffman@46594
   758
  gen_gen_real_arith ctxt
huffman@46594
   759
    (mkconst,eq,ge,gt,norm,neg,add,mul,
huffman@46594
   760
     absmaxmin_elim_conv1 ctxt,absmaxmin_elim_conv2,prover)
chaieb@31120
   761
end;
chaieb@31120
   762
huffman@46594
   763
(* An instance for reals*)
chaieb@31120
   764
huffman@46594
   765
fun gen_prover_real_arith ctxt prover =
huffman@46594
   766
  let
huffman@46594
   767
    val {add, mul, neg, pow = _, sub = _, main} =
huffman@46594
   768
        Semiring_Normalizer.semiring_normalizers_ord_wrapper ctxt
wenzelm@67267
   769
        (the (Semiring_Normalizer.match ctxt \<^cterm>\<open>(0::real) + 1\<close>))
wenzelm@67562
   770
        Thm.term_ord
huffman@46594
   771
  in gen_real_arith ctxt
wenzelm@51717
   772
     (cterm_of_rat,
wenzelm@51717
   773
      Numeral_Simprocs.field_comp_conv ctxt,
wenzelm@51717
   774
      Numeral_Simprocs.field_comp_conv ctxt,
wenzelm@51717
   775
      Numeral_Simprocs.field_comp_conv ctxt,
wenzelm@51717
   776
      main ctxt, neg ctxt, add ctxt, mul ctxt, prover)
huffman@46594
   777
  end;
chaieb@31120
   778
chaieb@31120
   779
end