src/HOL/Library/Zorn.thy
author paulson
Thu Oct 17 10:56:00 2002 +0200 (2002-10-17)
changeset 13652 172600c40793
parent 13551 b7f64ee8da84
child 14706 71590b7733b7
permissions -rw-r--r--
fixed comments and types
paulson@13652
     1
(*  Title       : Zorn.thy
paulson@13652
     2
    ID          : $Id$
paulson@13652
     3
    Author      : Jacques D. Fleuriot
paulson@13652
     4
    Description : Zorn's Lemma -- See Larry Paulson's Zorn.thy in ZF
paulson@13551
     5
*) 
paulson@13551
     6
paulson@13551
     7
header {*Zorn's Lemma*}
paulson@13551
     8
paulson@13551
     9
theory Zorn = Main:
paulson@13551
    10
paulson@13551
    11
text{*The lemma and section numbers refer to an unpublished article ``Towards
paulson@13551
    12
the Mechanization of the Proofs of Some Classical Theorems of Set Theory,'' by
paulson@13551
    13
Abrial and Laffitte.  *}
paulson@13551
    14
paulson@13551
    15
constdefs
paulson@13652
    16
  chain     ::  "'a set set => 'a set set set"
paulson@13551
    17
    "chain S  == {F. F \<subseteq> S & (\<forall>x \<in> F. \<forall>y \<in> F. x \<subseteq> y | y \<subseteq> x)}" 
paulson@13551
    18
paulson@13652
    19
  super     ::  "['a set set,'a set set] => 'a set set set"
paulson@13551
    20
    "super S c == {d. d \<in> chain(S) & c < d}"
paulson@13551
    21
paulson@13652
    22
  maxchain  ::  "'a set set => 'a set set set"
paulson@13551
    23
    "maxchain S == {c. c \<in> chain S & super S c = {}}"
paulson@13551
    24
paulson@13652
    25
  succ      ::  "['a set set,'a set set] => 'a set set"
paulson@13551
    26
    "succ S c == if (c \<notin> chain S| c \<in> maxchain S) 
paulson@13551
    27
                 then c else (@c'. c': (super S c))" 
paulson@13551
    28
paulson@13551
    29
consts 
paulson@13652
    30
  "TFin" ::  "'a set set => 'a set set set"
paulson@13551
    31
paulson@13551
    32
inductive "TFin(S)"
paulson@13551
    33
  intros
paulson@13551
    34
    succI:        "x \<in> TFin S ==> succ S x \<in> TFin S"
paulson@13551
    35
    Pow_UnionI:   "Y \<in> Pow(TFin S) ==> Union(Y) \<in> TFin S"
paulson@13551
    36
           
paulson@13551
    37
  monos          Pow_mono
paulson@13551
    38
paulson@13551
    39
paulson@13551
    40
subsection{*Mathematical Preamble*}
paulson@13551
    41
paulson@13551
    42
lemma Union_lemma0: "(\<forall>x \<in> C. x \<subseteq> A | B \<subseteq> x) ==> Union(C)<=A | B \<subseteq> Union(C)"
paulson@13551
    43
by blast
paulson@13551
    44
paulson@13551
    45
paulson@13551
    46
text{*This is theorem @{text increasingD2} of ZF/Zorn.thy*}
paulson@13551
    47
lemma Abrial_axiom1: "x \<subseteq> succ S x"
paulson@13551
    48
apply (unfold succ_def)
paulson@13551
    49
apply (rule split_if [THEN iffD2])
paulson@13551
    50
apply (auto simp add: super_def maxchain_def psubset_def)
paulson@13551
    51
apply (rule swap, assumption)
paulson@13551
    52
apply (rule someI2, blast+)
paulson@13551
    53
done
paulson@13551
    54
paulson@13551
    55
lemmas TFin_UnionI = TFin.Pow_UnionI [OF PowI]
paulson@13551
    56
paulson@13551
    57
lemma TFin_induct: 
paulson@13551
    58
          "[| n \<in> TFin S;  
paulson@13551
    59
             !!x. [| x \<in> TFin S; P(x) |] ==> P(succ S x);  
paulson@13551
    60
             !!Y. [| Y \<subseteq> TFin S; Ball Y P |] ==> P(Union Y) |]  
paulson@13551
    61
          ==> P(n)"
paulson@13551
    62
apply (erule TFin.induct, blast+)
paulson@13551
    63
done
paulson@13551
    64
paulson@13551
    65
lemma succ_trans: "x \<subseteq> y ==> x \<subseteq> succ S y"
paulson@13551
    66
apply (erule subset_trans) 
paulson@13551
    67
apply (rule Abrial_axiom1) 
paulson@13551
    68
done
paulson@13551
    69
paulson@13551
    70
text{*Lemma 1 of section 3.1*}
paulson@13551
    71
lemma TFin_linear_lemma1:
paulson@13551
    72
     "[| n \<in> TFin S;  m \<in> TFin S;   
paulson@13551
    73
         \<forall>x \<in> TFin S. x \<subseteq> m --> x = m | succ S x \<subseteq> m  
paulson@13551
    74
      |] ==> n \<subseteq> m | succ S m \<subseteq> n"
paulson@13551
    75
apply (erule TFin_induct)
paulson@13551
    76
apply (erule_tac [2] Union_lemma0) txt{*or just Blast_tac*}
paulson@13551
    77
apply (blast del: subsetI intro: succ_trans)
paulson@13551
    78
done
paulson@13551
    79
paulson@13551
    80
text{* Lemma 2 of section 3.2 *}
paulson@13551
    81
lemma TFin_linear_lemma2:
paulson@13551
    82
     "m \<in> TFin S ==> \<forall>n \<in> TFin S. n \<subseteq> m --> n=m | succ S n \<subseteq> m"
paulson@13551
    83
apply (erule TFin_induct)
paulson@13551
    84
apply (rule impI [THEN ballI])
paulson@13551
    85
txt{*case split using TFin_linear_lemma1*}
paulson@13551
    86
apply (rule_tac n1 = n and m1 = x in TFin_linear_lemma1 [THEN disjE], 
paulson@13551
    87
       assumption+)
paulson@13551
    88
apply (drule_tac x = n in bspec, assumption)
paulson@13551
    89
apply (blast del: subsetI intro: succ_trans, blast) 
paulson@13551
    90
txt{*second induction step*}
paulson@13551
    91
apply (rule impI [THEN ballI])
paulson@13551
    92
apply (rule Union_lemma0 [THEN disjE])
paulson@13551
    93
apply (rule_tac [3] disjI2)
paulson@13551
    94
 prefer 2 apply blast 
paulson@13551
    95
apply (rule ballI)
paulson@13551
    96
apply (rule_tac n1 = n and m1 = x in TFin_linear_lemma1 [THEN disjE], 
paulson@13551
    97
       assumption+, auto) 
paulson@13551
    98
apply (blast intro!: Abrial_axiom1 [THEN subsetD])  
paulson@13551
    99
done
paulson@13551
   100
paulson@13551
   101
text{*Re-ordering the premises of Lemma 2*}
paulson@13551
   102
lemma TFin_subsetD:
paulson@13551
   103
     "[| n \<subseteq> m;  m \<in> TFin S;  n \<in> TFin S |] ==> n=m | succ S n \<subseteq> m"
paulson@13551
   104
apply (rule TFin_linear_lemma2 [rule_format])
paulson@13551
   105
apply (assumption+)
paulson@13551
   106
done
paulson@13551
   107
paulson@13551
   108
text{*Consequences from section 3.3 -- Property 3.2, the ordering is total*}
paulson@13551
   109
lemma TFin_subset_linear: "[| m \<in> TFin S;  n \<in> TFin S|] ==> n \<subseteq> m | m \<subseteq> n"
paulson@13551
   110
apply (rule disjE) 
paulson@13551
   111
apply (rule TFin_linear_lemma1 [OF _ _TFin_linear_lemma2])
paulson@13551
   112
apply (assumption+, erule disjI2)
paulson@13551
   113
apply (blast del: subsetI 
paulson@13551
   114
             intro: subsetI Abrial_axiom1 [THEN subset_trans])
paulson@13551
   115
done
paulson@13551
   116
paulson@13551
   117
text{*Lemma 3 of section 3.3*}
paulson@13551
   118
lemma eq_succ_upper: "[| n \<in> TFin S;  m \<in> TFin S;  m = succ S m |] ==> n \<subseteq> m"
paulson@13551
   119
apply (erule TFin_induct)
paulson@13551
   120
apply (drule TFin_subsetD)
paulson@13551
   121
apply (assumption+, force, blast)
paulson@13551
   122
done
paulson@13551
   123
paulson@13551
   124
text{*Property 3.3 of section 3.3*}
paulson@13551
   125
lemma equal_succ_Union: "m \<in> TFin S ==> (m = succ S m) = (m = Union(TFin S))"
paulson@13551
   126
apply (rule iffI)
paulson@13551
   127
apply (rule Union_upper [THEN equalityI])
paulson@13551
   128
apply (rule_tac [2] eq_succ_upper [THEN Union_least])
paulson@13551
   129
apply (assumption+)
paulson@13551
   130
apply (erule ssubst)
paulson@13551
   131
apply (rule Abrial_axiom1 [THEN equalityI])
paulson@13551
   132
apply (blast del: subsetI
paulson@13551
   133
	     intro: subsetI TFin_UnionI TFin.succI)
paulson@13551
   134
done
paulson@13551
   135
paulson@13551
   136
subsection{*Hausdorff's Theorem: Every Set Contains a Maximal Chain.*}
paulson@13551
   137
paulson@13551
   138
text{*NB: We assume the partial ordering is @{text "\<subseteq>"}, 
paulson@13551
   139
 the subset relation!*}
paulson@13551
   140
paulson@13551
   141
lemma empty_set_mem_chain: "({} :: 'a set set) \<in> chain S"
paulson@13551
   142
by (unfold chain_def, auto)
paulson@13551
   143
paulson@13551
   144
lemma super_subset_chain: "super S c \<subseteq> chain S"
paulson@13551
   145
by (unfold super_def, fast)
paulson@13551
   146
paulson@13551
   147
lemma maxchain_subset_chain: "maxchain S \<subseteq> chain S"
paulson@13551
   148
by (unfold maxchain_def, fast)
paulson@13551
   149
paulson@13551
   150
lemma mem_super_Ex: "c \<in> chain S - maxchain S ==> ? d. d \<in> super S c"
paulson@13551
   151
by (unfold super_def maxchain_def, auto)
paulson@13551
   152
paulson@13551
   153
lemma select_super: "c \<in> chain S - maxchain S ==>  
paulson@13551
   154
                          (@c'. c': super S c): super S c"
paulson@13551
   155
apply (erule mem_super_Ex [THEN exE])
paulson@13551
   156
apply (rule someI2, auto)
paulson@13551
   157
done
paulson@13551
   158
paulson@13551
   159
lemma select_not_equals: "c \<in> chain S - maxchain S ==>  
paulson@13551
   160
                          (@c'. c': super S c) \<noteq> c"
paulson@13551
   161
apply (rule notI)
paulson@13551
   162
apply (drule select_super)
paulson@13551
   163
apply (simp add: super_def psubset_def)
paulson@13551
   164
done
paulson@13551
   165
paulson@13551
   166
lemma succI3: "c \<in> chain S - maxchain S ==> succ S c = (@c'. c': super S c)"
paulson@13551
   167
apply (unfold succ_def)
paulson@13551
   168
apply (fast intro!: if_not_P)
paulson@13551
   169
done
paulson@13551
   170
paulson@13551
   171
lemma succ_not_equals: "c \<in> chain S - maxchain S ==> succ S c \<noteq> c"
paulson@13551
   172
apply (frule succI3)
paulson@13551
   173
apply (simp (no_asm_simp))
paulson@13551
   174
apply (rule select_not_equals, assumption)
paulson@13551
   175
done
paulson@13551
   176
paulson@13551
   177
lemma TFin_chain_lemma4: "c \<in> TFin S ==> (c :: 'a set set): chain S"
paulson@13551
   178
apply (erule TFin_induct)
paulson@13551
   179
apply (simp add: succ_def select_super [THEN super_subset_chain[THEN subsetD]])
paulson@13551
   180
apply (unfold chain_def)
paulson@13551
   181
apply (rule CollectI, safe)
paulson@13551
   182
apply (drule bspec, assumption)
paulson@13551
   183
apply (rule_tac [2] m1 = Xa and n1 = X in TFin_subset_linear [THEN disjE], 
paulson@13551
   184
       blast+)
paulson@13551
   185
done
paulson@13551
   186
 
paulson@13551
   187
theorem Hausdorff: "\<exists>c. (c :: 'a set set): maxchain S"
paulson@13551
   188
apply (rule_tac x = "Union (TFin S) " in exI)
paulson@13551
   189
apply (rule classical)
paulson@13551
   190
apply (subgoal_tac "succ S (Union (TFin S)) = Union (TFin S) ")
paulson@13551
   191
 prefer 2
paulson@13551
   192
 apply (blast intro!: TFin_UnionI equal_succ_Union [THEN iffD2, symmetric]) 
paulson@13551
   193
apply (cut_tac subset_refl [THEN TFin_UnionI, THEN TFin_chain_lemma4])
paulson@13551
   194
apply (drule DiffI [THEN succ_not_equals], blast+)
paulson@13551
   195
done
paulson@13551
   196
paulson@13551
   197
paulson@13551
   198
subsection{*Zorn's Lemma: If All Chains Have Upper Bounds Then 
paulson@13551
   199
                               There Is  a Maximal Element*}
paulson@13551
   200
paulson@13551
   201
lemma chain_extend: 
paulson@13551
   202
    "[| c \<in> chain S; z \<in> S;  
paulson@13551
   203
        \<forall>x \<in> c. x<=(z:: 'a set) |] ==> {z} Un c \<in> chain S"
paulson@13551
   204
by (unfold chain_def, blast)
paulson@13551
   205
paulson@13551
   206
lemma chain_Union_upper: "[| c \<in> chain S; x \<in> c |] ==> x \<subseteq> Union(c)"
paulson@13551
   207
by (unfold chain_def, auto)
paulson@13551
   208
paulson@13551
   209
lemma chain_ball_Union_upper: "c \<in> chain S ==> \<forall>x \<in> c. x \<subseteq> Union(c)"
paulson@13551
   210
by (unfold chain_def, auto)
paulson@13551
   211
paulson@13551
   212
lemma maxchain_Zorn:
paulson@13551
   213
     "[| c \<in> maxchain S; u \<in> S; Union(c) \<subseteq> u |] ==> Union(c) = u"
paulson@13551
   214
apply (rule ccontr)
paulson@13551
   215
apply (simp add: maxchain_def)
paulson@13551
   216
apply (erule conjE)
paulson@13551
   217
apply (subgoal_tac " ({u} Un c) \<in> super S c")
paulson@13551
   218
apply simp
paulson@13551
   219
apply (unfold super_def psubset_def)
paulson@13551
   220
apply (blast intro: chain_extend dest: chain_Union_upper)
paulson@13551
   221
done
paulson@13551
   222
paulson@13551
   223
theorem Zorn_Lemma:
paulson@13551
   224
     "\<forall>c \<in> chain S. Union(c): S ==> \<exists>y \<in> S. \<forall>z \<in> S. y \<subseteq> z --> y = z"
paulson@13551
   225
apply (cut_tac Hausdorff maxchain_subset_chain)
paulson@13551
   226
apply (erule exE)
paulson@13551
   227
apply (drule subsetD, assumption)
paulson@13551
   228
apply (drule bspec, assumption)
paulson@13551
   229
apply (rule_tac x = "Union (c) " in bexI)
paulson@13551
   230
apply (rule ballI, rule impI)
paulson@13551
   231
apply (blast dest!: maxchain_Zorn, assumption)
paulson@13551
   232
done
paulson@13551
   233
paulson@13551
   234
subsection{*Alternative version of Zorn's Lemma*}
paulson@13551
   235
paulson@13551
   236
lemma Zorn_Lemma2:
paulson@13551
   237
     "\<forall>c \<in> chain S. \<exists>y \<in> S. \<forall>x \<in> c. x \<subseteq> y
paulson@13551
   238
      ==> \<exists>y \<in> S. \<forall>x \<in> S. (y :: 'a set) \<subseteq> x --> y = x"
paulson@13551
   239
apply (cut_tac Hausdorff maxchain_subset_chain)
paulson@13551
   240
apply (erule exE) 
paulson@13551
   241
apply (drule subsetD, assumption) 
paulson@13551
   242
apply (drule bspec, assumption, erule bexE) 
paulson@13551
   243
apply (rule_tac x = y in bexI)
paulson@13551
   244
 prefer 2 apply assumption
paulson@13551
   245
apply clarify 
paulson@13551
   246
apply (rule ccontr) 
paulson@13551
   247
apply (frule_tac z = x in chain_extend)
paulson@13551
   248
apply (assumption, blast)
paulson@13551
   249
apply (unfold maxchain_def super_def psubset_def) 
paulson@13551
   250
apply (blast elim!: equalityCE)
paulson@13551
   251
done
paulson@13551
   252
paulson@13551
   253
text{*Various other lemmas*}
paulson@13551
   254
paulson@13551
   255
lemma chainD: "[| c \<in> chain S; x \<in> c; y \<in> c |] ==> x \<subseteq> y | y \<subseteq> x"
paulson@13551
   256
by (unfold chain_def, blast)
paulson@13551
   257
paulson@13551
   258
lemma chainD2: "!!(c :: 'a set set). c \<in> chain S ==> c \<subseteq> S"
paulson@13551
   259
by (unfold chain_def, blast)
paulson@13551
   260
paulson@13551
   261
end
paulson@13551
   262