src/HOL/Isar_examples/Cantor.thy
author wenzelm
Fri Oct 15 16:44:37 1999 +0200 (1999-10-15)
changeset 7874 180364256231
parent 7869 c007f801cd59
child 7955 f30e08579481
permissions -rw-r--r--
improved presentation;
wenzelm@6444
     1
(*  Title:      HOL/Isar_examples/Cantor.thy
wenzelm@6444
     2
    ID:         $Id$
wenzelm@6444
     3
    Author:     Markus Wenzel, TU Muenchen
wenzelm@6444
     4
*)
wenzelm@6444
     5
wenzelm@7800
     6
header {* Cantor's Theorem *};
wenzelm@6444
     7
wenzelm@7869
     8
theory Cantor = Main:;text_raw {* \footnote{This is an Isar version of
wenzelm@7833
     9
 the final example of the Isabelle/HOL manual \cite{isabelle-HOL}.}
wenzelm@7819
    10
*};
wenzelm@7819
    11
wenzelm@7819
    12
text {*
wenzelm@7819
    13
 Cantor's Theorem states that every set has more subsets than it has
wenzelm@7819
    14
 elements.  It has become a favorite basic example in pure
wenzelm@7819
    15
 higher-order logic since it is so easily expressed: \[\all{f::\alpha
wenzelm@7819
    16
 \To \alpha \To \idt{bool}} \ex{S::\alpha \To \idt{bool}}
wenzelm@7874
    17
 \all{x::\alpha} f \ap x \not= S\]
wenzelm@7748
    18
  
wenzelm@7819
    19
 Viewing types as sets, $\alpha \To \idt{bool}$ represents the
wenzelm@7819
    20
 powerset of $\alpha$.  This version of the theorem states that for
wenzelm@7819
    21
 every function from $\alpha$ to its powerset, some subset is outside
wenzelm@7860
    22
 its range.  The Isabelle/Isar proofs below uses HOL's set theory,
wenzelm@7874
    23
 with the type $\alpha \ap \idt{set}$ and the operator
wenzelm@7874
    24
 $\idt{range}::(\alpha \To \beta) \To \beta \ap \idt{set}$.
wenzelm@7748
    25
  
wenzelm@7860
    26
 \bigskip We first consider a slightly awkward version of the proof,
wenzelm@7874
    27
 with the innermost reasoning expressed quite naively.
wenzelm@6744
    28
*};
wenzelm@6505
    29
wenzelm@6494
    30
theorem "EX S. S ~: range(f :: 'a => 'a set)";
wenzelm@6494
    31
proof;
wenzelm@7480
    32
  let ?S = "{x. x ~: f x}";
wenzelm@7480
    33
  show "?S ~: range f";
wenzelm@6494
    34
  proof;
wenzelm@7480
    35
    assume "?S : range f";
wenzelm@7860
    36
    thus False;
wenzelm@6494
    37
    proof;
wenzelm@6494
    38
      fix y; 
wenzelm@7480
    39
      assume "?S = f y";
wenzelm@7860
    40
      thus ?thesis;
wenzelm@6494
    41
      proof (rule equalityCE);
wenzelm@7860
    42
        assume in_S: "y : ?S";
wenzelm@7860
    43
        assume in_fy: "y : f y";
wenzelm@7860
    44
        from in_S; have notin_fy: "y ~: f y"; ..;
wenzelm@7860
    45
        from notin_fy in_fy; show ?thesis; by contradiction;
wenzelm@6494
    46
      next;
wenzelm@7860
    47
        assume notin_S: "y ~: ?S";
wenzelm@7860
    48
        assume notin_fy: "y ~: f y";
wenzelm@7860
    49
        from notin_S; have in_fy: "y : f y"; ..;
wenzelm@7860
    50
        from notin_fy in_fy; show ?thesis; by contradiction;
wenzelm@6494
    51
      qed;
wenzelm@6494
    52
    qed;
wenzelm@6494
    53
  qed;
wenzelm@6494
    54
qed;
wenzelm@6494
    55
wenzelm@6744
    56
text {*
wenzelm@7819
    57
 The following version of the proof essentially does the same
wenzelm@7860
    58
 reasoning, only that it is expressed more neatly.  In particular, we
wenzelm@7860
    59
 change the order of assumptions introduced in the two cases of rule
wenzelm@7860
    60
 \name{equalityCE}, streamlining the flow of intermediate facts and
wenzelm@7860
    61
 avoiding explicit naming.\footnote{In general, neither the order of
wenzelm@7874
    62
 assumptions as introduced by \isacommand{assume}, nor the order of
wenzelm@7874
    63
 goals as solved by \isacommand{show} is of any significance.  The
wenzelm@7874
    64
 basic logical structure has to be left intact, though.  In
wenzelm@7874
    65
 particular, assumptions ``belonging'' to some goal have to be
wenzelm@7874
    66
 introduced \emph{before} its corresponding \isacommand{show}.}
wenzelm@6744
    67
*};
wenzelm@6494
    68
wenzelm@6494
    69
theorem "EX S. S ~: range(f :: 'a => 'a set)";
wenzelm@6494
    70
proof;
wenzelm@7480
    71
  let ?S = "{x. x ~: f x}";
wenzelm@7480
    72
  show "?S ~: range f";
wenzelm@6494
    73
  proof;
wenzelm@7480
    74
    assume "?S : range f";
wenzelm@6505
    75
    thus False;
wenzelm@6494
    76
    proof;
wenzelm@6494
    77
      fix y; 
wenzelm@7480
    78
      assume "?S = f y";
wenzelm@7480
    79
      thus ?thesis;
wenzelm@6494
    80
      proof (rule equalityCE);
wenzelm@6494
    81
        assume "y : f y";
wenzelm@7480
    82
        assume "y : ?S"; hence "y ~: f y"; ..;
wenzelm@7480
    83
        thus ?thesis; by contradiction;
wenzelm@6494
    84
      next;
wenzelm@6494
    85
        assume "y ~: f y";
wenzelm@7480
    86
        assume "y ~: ?S"; hence "y : f y"; ..;
wenzelm@7480
    87
        thus ?thesis; by contradiction;
wenzelm@6494
    88
      qed;
wenzelm@6494
    89
    qed;
wenzelm@6494
    90
  qed;
wenzelm@6494
    91
qed;
wenzelm@6494
    92
wenzelm@6744
    93
text {*
wenzelm@7819
    94
 How much creativity is required?  As it happens, Isabelle can prove
wenzelm@7874
    95
 this theorem automatically.  The default context of the Isabelle's
wenzelm@7874
    96
 classical prover contains rules for most of the constructs of HOL's
wenzelm@7874
    97
 set theory.  We must augment it with \name{equalityCE} to break up
wenzelm@7874
    98
 set equalities, and then apply best-first search.  Depth-first search
wenzelm@7860
    99
 would diverge, but best-first search successfully navigates through
wenzelm@7860
   100
 the large search space.
wenzelm@6744
   101
*};
wenzelm@6505
   102
wenzelm@6494
   103
theorem "EX S. S ~: range(f :: 'a => 'a set)";
wenzelm@6494
   104
  by (best elim: equalityCE);
wenzelm@6494
   105
wenzelm@6744
   106
text {*
wenzelm@7819
   107
 While this establishes the same theorem internally, we do not get any
wenzelm@7819
   108
 idea of how the proof actually works.  There is currently no way to
wenzelm@7819
   109
 transform internal system-level representations of Isabelle proofs
wenzelm@7874
   110
 back into Isar documents.  Writing intelligible proof documents
wenzelm@7874
   111
 really is a creative process, after all.
wenzelm@6744
   112
*};
wenzelm@6444
   113
wenzelm@6444
   114
end;