src/FOL/simpdata.ML
author wenzelm
Fri Apr 22 15:24:00 2011 +0200 (2011-04-22)
changeset 42460 1805c67dc7aa
parent 42458 5dfae6d348fd
child 42478 8a526c010c3b
permissions -rw-r--r--
simplified Data signature;
wenzelm@9889
     1
(*  Title:      FOL/simpdata.ML
clasohm@1459
     2
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
lcp@282
     3
    Copyright   1994  University of Cambridge
clasohm@0
     4
wenzelm@9889
     5
Simplification data for FOL.
clasohm@0
     6
*)
clasohm@0
     7
lcp@282
     8
(*Make meta-equalities.  The operator below is Trueprop*)
oheimb@5555
     9
lcp@282
    10
fun mk_meta_eq th = case concl_of th of
wenzelm@41310
    11
    _ $ (Const(@{const_name eq},_)$_$_)   => th RS @{thm eq_reflection}
wenzelm@41310
    12
  | _ $ (Const(@{const_name iff},_)$_$_) => th RS @{thm iff_reflection}
wenzelm@10431
    13
  | _                           =>
oheimb@5555
    14
  error("conclusion must be a =-equality or <->");;
oheimb@5555
    15
oheimb@5555
    16
fun mk_eq th = case concl_of th of
nipkow@394
    17
    Const("==",_)$_$_           => th
wenzelm@41310
    18
  | _ $ (Const(@{const_name eq},_)$_$_)   => mk_meta_eq th
wenzelm@41310
    19
  | _ $ (Const(@{const_name iff},_)$_$_) => mk_meta_eq th
haftmann@38500
    20
  | _ $ (Const(@{const_name Not},_)$_)      => th RS @{thm iff_reflection_F}
wenzelm@26288
    21
  | _                           => th RS @{thm iff_reflection_T};
clasohm@0
    22
paulson@6114
    23
(*Replace premises x=y, X<->Y by X==Y*)
wenzelm@36546
    24
fun mk_meta_prems ctxt =
wenzelm@36546
    25
    rule_by_tactic ctxt
wenzelm@26288
    26
      (REPEAT_FIRST (resolve_tac [@{thm meta_eq_to_obj_eq}, @{thm def_imp_iff}]));
paulson@6114
    27
wenzelm@9713
    28
(*Congruence rules for = or <-> (instead of ==)*)
wenzelm@36546
    29
fun mk_meta_cong ss rl =
wenzelm@36546
    30
  Drule.export_without_context (mk_meta_eq (mk_meta_prems (Simplifier.the_context ss) rl))
wenzelm@35021
    31
    handle THM _ =>
wenzelm@35021
    32
      error("Premises and conclusion of congruence rules must use =-equality or <->");
oheimb@5555
    33
oheimb@5304
    34
val mksimps_pairs =
wenzelm@41310
    35
  [(@{const_name imp}, [@{thm mp}]), (@{const_name conj}, [@{thm conjunct1}, @{thm conjunct2}]),
haftmann@38500
    36
   (@{const_name All}, [@{thm spec}]), (@{const_name True}, []), (@{const_name False}, [])];
oheimb@5304
    37
oheimb@5304
    38
fun mk_atomize pairs =
oheimb@5304
    39
  let fun atoms th =
oheimb@5304
    40
        (case concl_of th of
haftmann@38500
    41
           Const(@{const_name Trueprop},_) $ p =>
oheimb@5304
    42
             (case head_of p of
oheimb@5304
    43
                Const(a,_) =>
haftmann@17325
    44
                  (case AList.lookup (op =) pairs a of
wenzelm@32952
    45
                     SOME(rls) => maps atoms ([th] RL rls)
skalberg@15531
    46
                   | NONE => [th])
oheimb@5304
    47
              | _ => [th])
oheimb@5304
    48
         | _ => [th])
oheimb@5304
    49
  in atoms end;
oheimb@5304
    50
wenzelm@36543
    51
fun mksimps pairs (_: simpset) = map mk_eq o mk_atomize pairs o gen_all;
lcp@981
    52
paulson@1914
    53
paulson@4349
    54
(** make simplification procedures for quantifier elimination **)
wenzelm@42458
    55
structure Quantifier1 = Quantifier1
wenzelm@42458
    56
(
paulson@4349
    57
  (*abstract syntax*)
wenzelm@42460
    58
  fun dest_eq (Const (@{const_name eq}, _) $ s $ t) = SOME (s, t)
wenzelm@42460
    59
    | dest_eq _ = NONE
wenzelm@42460
    60
  fun dest_conj (Const (@{const_name conj}, _) $ s $ t) = SOME (s, t)
wenzelm@42460
    61
    | dest_conj _ = NONE
wenzelm@42460
    62
  fun dest_imp (Const (@{const_name imp}, _) $ s $ t) = SOME (s, t)
wenzelm@42460
    63
    | dest_imp _ = NONE
paulson@4349
    64
  val conj = FOLogic.conj
paulson@4349
    65
  val imp  = FOLogic.imp
paulson@4349
    66
  (*rules*)
wenzelm@26288
    67
  val iff_reflection = @{thm iff_reflection}
wenzelm@26288
    68
  val iffI = @{thm iffI}
wenzelm@26288
    69
  val iff_trans = @{thm iff_trans}
wenzelm@26288
    70
  val conjI= @{thm conjI}
wenzelm@26288
    71
  val conjE= @{thm conjE}
wenzelm@26288
    72
  val impI = @{thm impI}
wenzelm@26288
    73
  val mp   = @{thm mp}
wenzelm@26288
    74
  val uncurry = @{thm uncurry}
wenzelm@26288
    75
  val exI  = @{thm exI}
wenzelm@26288
    76
  val exE  = @{thm exE}
wenzelm@26288
    77
  val iff_allI = @{thm iff_allI}
wenzelm@26288
    78
  val iff_exI = @{thm iff_exI}
wenzelm@26288
    79
  val all_comm = @{thm all_comm}
wenzelm@26288
    80
  val ex_comm = @{thm ex_comm}
wenzelm@42458
    81
);
paulson@4349
    82
paulson@4349
    83
paulson@4349
    84
(*** Case splitting ***)
clasohm@0
    85
wenzelm@32177
    86
structure Splitter = Splitter
wenzelm@32177
    87
(
wenzelm@32177
    88
  val thy = @{theory}
wenzelm@32177
    89
  val mk_eq = mk_eq
wenzelm@26288
    90
  val meta_eq_to_iff = @{thm meta_eq_to_iff}
wenzelm@32177
    91
  val iffD = @{thm iffD2}
wenzelm@32177
    92
  val disjE = @{thm disjE}
wenzelm@32177
    93
  val conjE = @{thm conjE}
wenzelm@32177
    94
  val exE = @{thm exE}
wenzelm@32177
    95
  val contrapos = @{thm contrapos}
wenzelm@32177
    96
  val contrapos2 = @{thm contrapos2}
wenzelm@32177
    97
  val notnotD = @{thm notnotD}
wenzelm@32177
    98
);
berghofe@1722
    99
wenzelm@32177
   100
val split_tac = Splitter.split_tac;
oheimb@5304
   101
val split_inside_tac = Splitter.split_inside_tac;
wenzelm@32177
   102
val split_asm_tac = Splitter.split_asm_tac;
wenzelm@32177
   103
val op addsplits = Splitter.addsplits;
wenzelm@32177
   104
val op delsplits = Splitter.delsplits;
paulson@4325
   105
paulson@4325
   106
paulson@2074
   107
(*** Standard simpsets ***)
paulson@2074
   108
wenzelm@26288
   109
val triv_rls = [@{thm TrueI}, @{thm refl}, reflexive_thm, @{thm iff_refl}, @{thm notFalseI}];
paulson@2074
   110
wenzelm@26288
   111
fun unsafe_solver prems = FIRST'[resolve_tac (triv_rls @ prems),
wenzelm@26288
   112
                                 atac, etac @{thm FalseE}];
oheimb@2633
   113
(*No premature instantiation of variables during simplification*)
wenzelm@26288
   114
fun   safe_solver prems = FIRST'[match_tac (triv_rls @ prems),
wenzelm@26288
   115
                                 eq_assume_tac, ematch_tac [@{thm FalseE}]];
oheimb@2633
   116
paulson@3910
   117
(*No simprules, but basic infastructure for simplification*)
wenzelm@17892
   118
val FOL_basic_ss =
wenzelm@35232
   119
  Simplifier.global_context @{theory} empty_ss
wenzelm@10431
   120
  setsubgoaler asm_simp_tac
wenzelm@10431
   121
  setSSolver (mk_solver "FOL safe" safe_solver)
wenzelm@10431
   122
  setSolver (mk_solver "FOL unsafe" unsafe_solver)
wenzelm@10431
   123
  setmksimps (mksimps mksimps_pairs)
wenzelm@10431
   124
  setmkcong mk_meta_cong;
oheimb@5304
   125
wenzelm@18324
   126
fun unfold_tac ths =
wenzelm@18324
   127
  let val ss0 = Simplifier.clear_ss FOL_basic_ss addsimps ths
wenzelm@18324
   128
  in fn ss => ALLGOALS (full_simp_tac (Simplifier.inherit_context ss ss0)) end;
wenzelm@17002
   129
oheimb@2633
   130
wenzelm@5219
   131
(*** integration of simplifier with classical reasoner ***)
oheimb@2633
   132
wenzelm@5219
   133
structure Clasimp = ClasimpFun
wenzelm@8472
   134
 (structure Simplifier = Simplifier and Splitter = Splitter
wenzelm@9851
   135
  and Classical  = Cla and Blast = Blast
wenzelm@26288
   136
  val iffD1 = @{thm iffD1} val iffD2 = @{thm iffD2} val notE = @{thm notE});
oheimb@4652
   137
open Clasimp;
oheimb@2633
   138
wenzelm@27338
   139
ML_Antiquote.value "clasimpset"
wenzelm@32149
   140
  (Scan.succeed "Clasimp.clasimpset_of (ML_Context.the_local_context ())");
wenzelm@22128
   141