hoelzl@42861
|
1 |
(* Title: HOL/Probability/Independent_Family.thy
|
hoelzl@42861
|
2 |
Author: Johannes Hölzl, TU München
|
hoelzl@57235
|
3 |
Author: Sudeep Kanav, TU München
|
hoelzl@42861
|
4 |
*)
|
hoelzl@42861
|
5 |
|
wenzelm@58876
|
6 |
section {* Independent families of events, event sets, and random variables *}
|
hoelzl@42861
|
7 |
|
hoelzl@42861
|
8 |
theory Independent_Family
|
hoelzl@47694
|
9 |
imports Probability_Measure Infinite_Product_Measure
|
hoelzl@42861
|
10 |
begin
|
hoelzl@42861
|
11 |
|
hoelzl@42861
|
12 |
definition (in prob_space)
|
hoelzl@42983
|
13 |
"indep_sets F I \<longleftrightarrow> (\<forall>i\<in>I. F i \<subseteq> events) \<and>
|
hoelzl@42981
|
14 |
(\<forall>J\<subseteq>I. J \<noteq> {} \<longrightarrow> finite J \<longrightarrow> (\<forall>A\<in>Pi J F. prob (\<Inter>j\<in>J. A j) = (\<Prod>j\<in>J. prob (A j))))"
|
hoelzl@42981
|
15 |
|
hoelzl@42981
|
16 |
definition (in prob_space)
|
blanchet@55414
|
17 |
"indep_set A B \<longleftrightarrow> indep_sets (case_bool A B) UNIV"
|
hoelzl@42861
|
18 |
|
hoelzl@42861
|
19 |
definition (in prob_space)
|
hoelzl@49784
|
20 |
indep_events_def_alt: "indep_events A I \<longleftrightarrow> indep_sets (\<lambda>i. {A i}) I"
|
hoelzl@49784
|
21 |
|
hoelzl@49784
|
22 |
lemma (in prob_space) indep_events_def:
|
hoelzl@49784
|
23 |
"indep_events A I \<longleftrightarrow> (A`I \<subseteq> events) \<and>
|
hoelzl@49784
|
24 |
(\<forall>J\<subseteq>I. J \<noteq> {} \<longrightarrow> finite J \<longrightarrow> prob (\<Inter>j\<in>J. A j) = (\<Prod>j\<in>J. prob (A j)))"
|
hoelzl@49784
|
25 |
unfolding indep_events_def_alt indep_sets_def
|
hoelzl@49784
|
26 |
apply (simp add: Ball_def Pi_iff image_subset_iff_funcset)
|
hoelzl@49784
|
27 |
apply (intro conj_cong refl arg_cong[where f=All] ext imp_cong)
|
hoelzl@49784
|
28 |
apply auto
|
hoelzl@49784
|
29 |
done
|
hoelzl@49784
|
30 |
|
hoelzl@49784
|
31 |
definition (in prob_space)
|
blanchet@55414
|
32 |
"indep_event A B \<longleftrightarrow> indep_events (case_bool A B) UNIV"
|
hoelzl@49784
|
33 |
|
hoelzl@47694
|
34 |
lemma (in prob_space) indep_sets_cong:
|
hoelzl@42981
|
35 |
"I = J \<Longrightarrow> (\<And>i. i \<in> I \<Longrightarrow> F i = G i) \<Longrightarrow> indep_sets F I \<longleftrightarrow> indep_sets G J"
|
hoelzl@42981
|
36 |
by (simp add: indep_sets_def, intro conj_cong all_cong imp_cong ball_cong) blast+
|
hoelzl@42981
|
37 |
|
hoelzl@42981
|
38 |
lemma (in prob_space) indep_events_finite_index_events:
|
hoelzl@42981
|
39 |
"indep_events F I \<longleftrightarrow> (\<forall>J\<subseteq>I. J \<noteq> {} \<longrightarrow> finite J \<longrightarrow> indep_events F J)"
|
hoelzl@42981
|
40 |
by (auto simp: indep_events_def)
|
hoelzl@42981
|
41 |
|
hoelzl@42861
|
42 |
lemma (in prob_space) indep_sets_finite_index_sets:
|
hoelzl@42861
|
43 |
"indep_sets F I \<longleftrightarrow> (\<forall>J\<subseteq>I. J \<noteq> {} \<longrightarrow> finite J \<longrightarrow> indep_sets F J)"
|
hoelzl@42861
|
44 |
proof (intro iffI allI impI)
|
hoelzl@42861
|
45 |
assume *: "\<forall>J\<subseteq>I. J \<noteq> {} \<longrightarrow> finite J \<longrightarrow> indep_sets F J"
|
hoelzl@42861
|
46 |
show "indep_sets F I" unfolding indep_sets_def
|
hoelzl@42861
|
47 |
proof (intro conjI ballI allI impI)
|
hoelzl@42861
|
48 |
fix i assume "i \<in> I"
|
hoelzl@42861
|
49 |
with *[THEN spec, of "{i}"] show "F i \<subseteq> events"
|
hoelzl@42861
|
50 |
by (auto simp: indep_sets_def)
|
hoelzl@42861
|
51 |
qed (insert *, auto simp: indep_sets_def)
|
hoelzl@42861
|
52 |
qed (auto simp: indep_sets_def)
|
hoelzl@42861
|
53 |
|
hoelzl@42861
|
54 |
lemma (in prob_space) indep_sets_mono_index:
|
hoelzl@42861
|
55 |
"J \<subseteq> I \<Longrightarrow> indep_sets F I \<Longrightarrow> indep_sets F J"
|
hoelzl@42861
|
56 |
unfolding indep_sets_def by auto
|
hoelzl@42861
|
57 |
|
hoelzl@42861
|
58 |
lemma (in prob_space) indep_sets_mono_sets:
|
hoelzl@42861
|
59 |
assumes indep: "indep_sets F I"
|
hoelzl@42861
|
60 |
assumes mono: "\<And>i. i\<in>I \<Longrightarrow> G i \<subseteq> F i"
|
hoelzl@42861
|
61 |
shows "indep_sets G I"
|
hoelzl@42861
|
62 |
proof -
|
hoelzl@42861
|
63 |
have "(\<forall>i\<in>I. F i \<subseteq> events) \<Longrightarrow> (\<forall>i\<in>I. G i \<subseteq> events)"
|
hoelzl@42861
|
64 |
using mono by auto
|
hoelzl@42861
|
65 |
moreover have "\<And>A J. J \<subseteq> I \<Longrightarrow> A \<in> (\<Pi> j\<in>J. G j) \<Longrightarrow> A \<in> (\<Pi> j\<in>J. F j)"
|
hoelzl@42861
|
66 |
using mono by (auto simp: Pi_iff)
|
hoelzl@42861
|
67 |
ultimately show ?thesis
|
hoelzl@42861
|
68 |
using indep by (auto simp: indep_sets_def)
|
hoelzl@42861
|
69 |
qed
|
hoelzl@42861
|
70 |
|
hoelzl@49772
|
71 |
lemma (in prob_space) indep_sets_mono:
|
hoelzl@49772
|
72 |
assumes indep: "indep_sets F I"
|
hoelzl@49772
|
73 |
assumes mono: "J \<subseteq> I" "\<And>i. i\<in>J \<Longrightarrow> G i \<subseteq> F i"
|
hoelzl@49772
|
74 |
shows "indep_sets G J"
|
hoelzl@49772
|
75 |
apply (rule indep_sets_mono_sets)
|
hoelzl@49772
|
76 |
apply (rule indep_sets_mono_index)
|
hoelzl@49772
|
77 |
apply (fact +)
|
hoelzl@49772
|
78 |
done
|
hoelzl@49772
|
79 |
|
hoelzl@42861
|
80 |
lemma (in prob_space) indep_setsI:
|
hoelzl@42861
|
81 |
assumes "\<And>i. i \<in> I \<Longrightarrow> F i \<subseteq> events"
|
hoelzl@42861
|
82 |
and "\<And>A J. J \<noteq> {} \<Longrightarrow> J \<subseteq> I \<Longrightarrow> finite J \<Longrightarrow> (\<forall>j\<in>J. A j \<in> F j) \<Longrightarrow> prob (\<Inter>j\<in>J. A j) = (\<Prod>j\<in>J. prob (A j))"
|
hoelzl@42861
|
83 |
shows "indep_sets F I"
|
hoelzl@42861
|
84 |
using assms unfolding indep_sets_def by (auto simp: Pi_iff)
|
hoelzl@42861
|
85 |
|
hoelzl@42861
|
86 |
lemma (in prob_space) indep_setsD:
|
hoelzl@42861
|
87 |
assumes "indep_sets F I" and "J \<subseteq> I" "J \<noteq> {}" "finite J" "\<forall>j\<in>J. A j \<in> F j"
|
hoelzl@42861
|
88 |
shows "prob (\<Inter>j\<in>J. A j) = (\<Prod>j\<in>J. prob (A j))"
|
hoelzl@42861
|
89 |
using assms unfolding indep_sets_def by auto
|
hoelzl@42861
|
90 |
|
hoelzl@42982
|
91 |
lemma (in prob_space) indep_setI:
|
hoelzl@42982
|
92 |
assumes ev: "A \<subseteq> events" "B \<subseteq> events"
|
hoelzl@42982
|
93 |
and indep: "\<And>a b. a \<in> A \<Longrightarrow> b \<in> B \<Longrightarrow> prob (a \<inter> b) = prob a * prob b"
|
hoelzl@42982
|
94 |
shows "indep_set A B"
|
hoelzl@42982
|
95 |
unfolding indep_set_def
|
hoelzl@42982
|
96 |
proof (rule indep_setsI)
|
hoelzl@42982
|
97 |
fix F J assume "J \<noteq> {}" "J \<subseteq> UNIV"
|
hoelzl@42982
|
98 |
and F: "\<forall>j\<in>J. F j \<in> (case j of True \<Rightarrow> A | False \<Rightarrow> B)"
|
hoelzl@42982
|
99 |
have "J \<in> Pow UNIV" by auto
|
hoelzl@42982
|
100 |
with F `J \<noteq> {}` indep[of "F True" "F False"]
|
hoelzl@42982
|
101 |
show "prob (\<Inter>j\<in>J. F j) = (\<Prod>j\<in>J. prob (F j))"
|
hoelzl@42982
|
102 |
unfolding UNIV_bool Pow_insert by (auto simp: ac_simps)
|
hoelzl@42982
|
103 |
qed (auto split: bool.split simp: ev)
|
hoelzl@42982
|
104 |
|
hoelzl@42982
|
105 |
lemma (in prob_space) indep_setD:
|
hoelzl@42982
|
106 |
assumes indep: "indep_set A B" and ev: "a \<in> A" "b \<in> B"
|
hoelzl@42982
|
107 |
shows "prob (a \<inter> b) = prob a * prob b"
|
blanchet@55414
|
108 |
using indep[unfolded indep_set_def, THEN indep_setsD, of UNIV "case_bool a b"] ev
|
hoelzl@42982
|
109 |
by (simp add: ac_simps UNIV_bool)
|
hoelzl@42982
|
110 |
|
hoelzl@42982
|
111 |
lemma (in prob_space)
|
hoelzl@42982
|
112 |
assumes indep: "indep_set A B"
|
hoelzl@42983
|
113 |
shows indep_setD_ev1: "A \<subseteq> events"
|
hoelzl@42983
|
114 |
and indep_setD_ev2: "B \<subseteq> events"
|
hoelzl@42982
|
115 |
using indep unfolding indep_set_def indep_sets_def UNIV_bool by auto
|
hoelzl@42982
|
116 |
|
hoelzl@42861
|
117 |
lemma (in prob_space) indep_sets_dynkin:
|
hoelzl@42861
|
118 |
assumes indep: "indep_sets F I"
|
hoelzl@47694
|
119 |
shows "indep_sets (\<lambda>i. dynkin (space M) (F i)) I"
|
hoelzl@42861
|
120 |
(is "indep_sets ?F I")
|
hoelzl@42861
|
121 |
proof (subst indep_sets_finite_index_sets, intro allI impI ballI)
|
hoelzl@42861
|
122 |
fix J assume "finite J" "J \<subseteq> I" "J \<noteq> {}"
|
hoelzl@42861
|
123 |
with indep have "indep_sets F J"
|
hoelzl@42861
|
124 |
by (subst (asm) indep_sets_finite_index_sets) auto
|
hoelzl@42861
|
125 |
{ fix J K assume "indep_sets F K"
|
wenzelm@46731
|
126 |
let ?G = "\<lambda>S i. if i \<in> S then ?F i else F i"
|
hoelzl@42861
|
127 |
assume "finite J" "J \<subseteq> K"
|
hoelzl@42861
|
128 |
then have "indep_sets (?G J) K"
|
hoelzl@42861
|
129 |
proof induct
|
hoelzl@42861
|
130 |
case (insert j J)
|
hoelzl@42861
|
131 |
moreover def G \<equiv> "?G J"
|
hoelzl@42861
|
132 |
ultimately have G: "indep_sets G K" "\<And>i. i \<in> K \<Longrightarrow> G i \<subseteq> events" and "j \<in> K"
|
hoelzl@42861
|
133 |
by (auto simp: indep_sets_def)
|
hoelzl@42861
|
134 |
let ?D = "{E\<in>events. indep_sets (G(j := {E})) K }"
|
hoelzl@42861
|
135 |
{ fix X assume X: "X \<in> events"
|
hoelzl@42861
|
136 |
assume indep: "\<And>J A. J \<noteq> {} \<Longrightarrow> J \<subseteq> K \<Longrightarrow> finite J \<Longrightarrow> j \<notin> J \<Longrightarrow> (\<forall>i\<in>J. A i \<in> G i)
|
hoelzl@42861
|
137 |
\<Longrightarrow> prob ((\<Inter>i\<in>J. A i) \<inter> X) = prob X * (\<Prod>i\<in>J. prob (A i))"
|
hoelzl@42861
|
138 |
have "indep_sets (G(j := {X})) K"
|
hoelzl@42861
|
139 |
proof (rule indep_setsI)
|
hoelzl@42861
|
140 |
fix i assume "i \<in> K" then show "(G(j:={X})) i \<subseteq> events"
|
hoelzl@42861
|
141 |
using G X by auto
|
hoelzl@42861
|
142 |
next
|
hoelzl@42861
|
143 |
fix A J assume J: "J \<noteq> {}" "J \<subseteq> K" "finite J" "\<forall>i\<in>J. A i \<in> (G(j := {X})) i"
|
hoelzl@42861
|
144 |
show "prob (\<Inter>j\<in>J. A j) = (\<Prod>j\<in>J. prob (A j))"
|
hoelzl@42861
|
145 |
proof cases
|
hoelzl@42861
|
146 |
assume "j \<in> J"
|
hoelzl@42861
|
147 |
with J have "A j = X" by auto
|
hoelzl@42861
|
148 |
show ?thesis
|
hoelzl@42861
|
149 |
proof cases
|
hoelzl@42861
|
150 |
assume "J = {j}" then show ?thesis by simp
|
hoelzl@42861
|
151 |
next
|
hoelzl@42861
|
152 |
assume "J \<noteq> {j}"
|
hoelzl@42861
|
153 |
have "prob (\<Inter>i\<in>J. A i) = prob ((\<Inter>i\<in>J-{j}. A i) \<inter> X)"
|
hoelzl@42861
|
154 |
using `j \<in> J` `A j = X` by (auto intro!: arg_cong[where f=prob] split: split_if_asm)
|
hoelzl@42861
|
155 |
also have "\<dots> = prob X * (\<Prod>i\<in>J-{j}. prob (A i))"
|
hoelzl@42861
|
156 |
proof (rule indep)
|
hoelzl@42861
|
157 |
show "J - {j} \<noteq> {}" "J - {j} \<subseteq> K" "finite (J - {j})" "j \<notin> J - {j}"
|
hoelzl@42861
|
158 |
using J `J \<noteq> {j}` `j \<in> J` by auto
|
hoelzl@42861
|
159 |
show "\<forall>i\<in>J - {j}. A i \<in> G i"
|
hoelzl@42861
|
160 |
using J by auto
|
hoelzl@42861
|
161 |
qed
|
hoelzl@42861
|
162 |
also have "\<dots> = prob (A j) * (\<Prod>i\<in>J-{j}. prob (A i))"
|
hoelzl@42861
|
163 |
using `A j = X` by simp
|
hoelzl@42861
|
164 |
also have "\<dots> = (\<Prod>i\<in>J. prob (A i))"
|
hoelzl@42861
|
165 |
unfolding setprod.insert_remove[OF `finite J`, symmetric, of "\<lambda>i. prob (A i)"]
|
hoelzl@42861
|
166 |
using `j \<in> J` by (simp add: insert_absorb)
|
hoelzl@42861
|
167 |
finally show ?thesis .
|
hoelzl@42861
|
168 |
qed
|
hoelzl@42861
|
169 |
next
|
hoelzl@42861
|
170 |
assume "j \<notin> J"
|
hoelzl@42861
|
171 |
with J have "\<forall>i\<in>J. A i \<in> G i" by (auto split: split_if_asm)
|
hoelzl@42861
|
172 |
with J show ?thesis
|
hoelzl@42861
|
173 |
by (intro indep_setsD[OF G(1)]) auto
|
hoelzl@42861
|
174 |
qed
|
hoelzl@42861
|
175 |
qed }
|
hoelzl@42861
|
176 |
note indep_sets_insert = this
|
hoelzl@47694
|
177 |
have "dynkin_system (space M) ?D"
|
hoelzl@42987
|
178 |
proof (rule dynkin_systemI', simp_all cong del: indep_sets_cong, safe)
|
hoelzl@42861
|
179 |
show "indep_sets (G(j := {{}})) K"
|
hoelzl@42861
|
180 |
by (rule indep_sets_insert) auto
|
hoelzl@42861
|
181 |
next
|
hoelzl@42861
|
182 |
fix X assume X: "X \<in> events" and G': "indep_sets (G(j := {X})) K"
|
hoelzl@42861
|
183 |
show "indep_sets (G(j := {space M - X})) K"
|
hoelzl@42861
|
184 |
proof (rule indep_sets_insert)
|
hoelzl@42861
|
185 |
fix J A assume J: "J \<noteq> {}" "J \<subseteq> K" "finite J" "j \<notin> J" and A: "\<forall>i\<in>J. A i \<in> G i"
|
hoelzl@42861
|
186 |
then have A_sets: "\<And>i. i\<in>J \<Longrightarrow> A i \<in> events"
|
hoelzl@42861
|
187 |
using G by auto
|
hoelzl@42861
|
188 |
have "prob ((\<Inter>j\<in>J. A j) \<inter> (space M - X)) =
|
hoelzl@42861
|
189 |
prob ((\<Inter>j\<in>J. A j) - (\<Inter>i\<in>insert j J. (A(j := X)) i))"
|
immler@50244
|
190 |
using A_sets sets.sets_into_space[of _ M] X `J \<noteq> {}`
|
hoelzl@42861
|
191 |
by (auto intro!: arg_cong[where f=prob] split: split_if_asm)
|
hoelzl@42861
|
192 |
also have "\<dots> = prob (\<Inter>j\<in>J. A j) - prob (\<Inter>i\<in>insert j J. (A(j := X)) i)"
|
immler@50244
|
193 |
using J `J \<noteq> {}` `j \<notin> J` A_sets X sets.sets_into_space
|
immler@50244
|
194 |
by (auto intro!: finite_measure_Diff sets.finite_INT split: split_if_asm)
|
hoelzl@42861
|
195 |
finally have "prob ((\<Inter>j\<in>J. A j) \<inter> (space M - X)) =
|
hoelzl@42861
|
196 |
prob (\<Inter>j\<in>J. A j) - prob (\<Inter>i\<in>insert j J. (A(j := X)) i)" .
|
hoelzl@42861
|
197 |
moreover {
|
hoelzl@42861
|
198 |
have "prob (\<Inter>j\<in>J. A j) = (\<Prod>j\<in>J. prob (A j))"
|
hoelzl@42861
|
199 |
using J A `finite J` by (intro indep_setsD[OF G(1)]) auto
|
hoelzl@42861
|
200 |
then have "prob (\<Inter>j\<in>J. A j) = prob (space M) * (\<Prod>i\<in>J. prob (A i))"
|
hoelzl@42861
|
201 |
using prob_space by simp }
|
hoelzl@42861
|
202 |
moreover {
|
hoelzl@42861
|
203 |
have "prob (\<Inter>i\<in>insert j J. (A(j := X)) i) = (\<Prod>i\<in>insert j J. prob ((A(j := X)) i))"
|
hoelzl@42861
|
204 |
using J A `j \<in> K` by (intro indep_setsD[OF G']) auto
|
hoelzl@42861
|
205 |
then have "prob (\<Inter>i\<in>insert j J. (A(j := X)) i) = prob X * (\<Prod>i\<in>J. prob (A i))"
|
haftmann@57418
|
206 |
using `finite J` `j \<notin> J` by (auto intro!: setprod.cong) }
|
hoelzl@42861
|
207 |
ultimately have "prob ((\<Inter>j\<in>J. A j) \<inter> (space M - X)) = (prob (space M) - prob X) * (\<Prod>i\<in>J. prob (A i))"
|
hoelzl@42861
|
208 |
by (simp add: field_simps)
|
hoelzl@42861
|
209 |
also have "\<dots> = prob (space M - X) * (\<Prod>i\<in>J. prob (A i))"
|
hoelzl@42861
|
210 |
using X A by (simp add: finite_measure_compl)
|
hoelzl@42861
|
211 |
finally show "prob ((\<Inter>j\<in>J. A j) \<inter> (space M - X)) = prob (space M - X) * (\<Prod>i\<in>J. prob (A i))" .
|
hoelzl@42861
|
212 |
qed (insert X, auto)
|
hoelzl@42861
|
213 |
next
|
hoelzl@42861
|
214 |
fix F :: "nat \<Rightarrow> 'a set" assume disj: "disjoint_family F" and "range F \<subseteq> ?D"
|
hoelzl@42861
|
215 |
then have F: "\<And>i. F i \<in> events" "\<And>i. indep_sets (G(j:={F i})) K" by auto
|
hoelzl@42861
|
216 |
show "indep_sets (G(j := {\<Union>k. F k})) K"
|
hoelzl@42861
|
217 |
proof (rule indep_sets_insert)
|
hoelzl@42861
|
218 |
fix J A assume J: "j \<notin> J" "J \<noteq> {}" "J \<subseteq> K" "finite J" and A: "\<forall>i\<in>J. A i \<in> G i"
|
hoelzl@42861
|
219 |
then have A_sets: "\<And>i. i\<in>J \<Longrightarrow> A i \<in> events"
|
hoelzl@42861
|
220 |
using G by auto
|
hoelzl@42861
|
221 |
have "prob ((\<Inter>j\<in>J. A j) \<inter> (\<Union>k. F k)) = prob (\<Union>k. (\<Inter>i\<in>insert j J. (A(j := F k)) i))"
|
hoelzl@42861
|
222 |
using `J \<noteq> {}` `j \<notin> J` `j \<in> K` by (auto intro!: arg_cong[where f=prob] split: split_if_asm)
|
hoelzl@42861
|
223 |
moreover have "(\<lambda>k. prob (\<Inter>i\<in>insert j J. (A(j := F k)) i)) sums prob (\<Union>k. (\<Inter>i\<in>insert j J. (A(j := F k)) i))"
|
hoelzl@42861
|
224 |
proof (rule finite_measure_UNION)
|
hoelzl@42861
|
225 |
show "disjoint_family (\<lambda>k. \<Inter>i\<in>insert j J. (A(j := F k)) i)"
|
hoelzl@42861
|
226 |
using disj by (rule disjoint_family_on_bisimulation) auto
|
hoelzl@42861
|
227 |
show "range (\<lambda>k. \<Inter>i\<in>insert j J. (A(j := F k)) i) \<subseteq> events"
|
immler@50244
|
228 |
using A_sets F `finite J` `J \<noteq> {}` `j \<notin> J` by (auto intro!: sets.Int)
|
hoelzl@42861
|
229 |
qed
|
hoelzl@42861
|
230 |
moreover { fix k
|
hoelzl@42861
|
231 |
from J A `j \<in> K` have "prob (\<Inter>i\<in>insert j J. (A(j := F k)) i) = prob (F k) * (\<Prod>i\<in>J. prob (A i))"
|
haftmann@57418
|
232 |
by (subst indep_setsD[OF F(2)]) (auto intro!: setprod.cong split: split_if_asm)
|
hoelzl@42861
|
233 |
also have "\<dots> = prob (F k) * prob (\<Inter>i\<in>J. A i)"
|
hoelzl@42861
|
234 |
using J A `j \<in> K` by (subst indep_setsD[OF G(1)]) auto
|
hoelzl@42861
|
235 |
finally have "prob (\<Inter>i\<in>insert j J. (A(j := F k)) i) = prob (F k) * prob (\<Inter>i\<in>J. A i)" . }
|
hoelzl@42861
|
236 |
ultimately have "(\<lambda>k. prob (F k) * prob (\<Inter>i\<in>J. A i)) sums (prob ((\<Inter>j\<in>J. A j) \<inter> (\<Union>k. F k)))"
|
hoelzl@42861
|
237 |
by simp
|
hoelzl@42861
|
238 |
moreover
|
hoelzl@42861
|
239 |
have "(\<lambda>k. prob (F k) * prob (\<Inter>i\<in>J. A i)) sums (prob (\<Union>k. F k) * prob (\<Inter>i\<in>J. A i))"
|
hoelzl@42861
|
240 |
using disj F(1) by (intro finite_measure_UNION sums_mult2) auto
|
hoelzl@42861
|
241 |
then have "(\<lambda>k. prob (F k) * prob (\<Inter>i\<in>J. A i)) sums (prob (\<Union>k. F k) * (\<Prod>i\<in>J. prob (A i)))"
|
hoelzl@42861
|
242 |
using J A `j \<in> K` by (subst indep_setsD[OF G(1), symmetric]) auto
|
hoelzl@42861
|
243 |
ultimately
|
hoelzl@42861
|
244 |
show "prob ((\<Inter>j\<in>J. A j) \<inter> (\<Union>k. F k)) = prob (\<Union>k. F k) * (\<Prod>j\<in>J. prob (A j))"
|
hoelzl@42861
|
245 |
by (auto dest!: sums_unique)
|
hoelzl@42861
|
246 |
qed (insert F, auto)
|
immler@50244
|
247 |
qed (insert sets.sets_into_space, auto)
|
hoelzl@47694
|
248 |
then have mono: "dynkin (space M) (G j) \<subseteq> {E \<in> events. indep_sets (G(j := {E})) K}"
|
hoelzl@47694
|
249 |
proof (rule dynkin_system.dynkin_subset, safe)
|
hoelzl@42861
|
250 |
fix X assume "X \<in> G j"
|
hoelzl@42861
|
251 |
then show "X \<in> events" using G `j \<in> K` by auto
|
hoelzl@42861
|
252 |
from `indep_sets G K`
|
hoelzl@42861
|
253 |
show "indep_sets (G(j := {X})) K"
|
hoelzl@42861
|
254 |
by (rule indep_sets_mono_sets) (insert `X \<in> G j`, auto)
|
hoelzl@42861
|
255 |
qed
|
hoelzl@42861
|
256 |
have "indep_sets (G(j:=?D)) K"
|
hoelzl@42861
|
257 |
proof (rule indep_setsI)
|
hoelzl@42861
|
258 |
fix i assume "i \<in> K" then show "(G(j := ?D)) i \<subseteq> events"
|
hoelzl@42861
|
259 |
using G(2) by auto
|
hoelzl@42861
|
260 |
next
|
hoelzl@42861
|
261 |
fix A J assume J: "J\<noteq>{}" "J \<subseteq> K" "finite J" and A: "\<forall>i\<in>J. A i \<in> (G(j := ?D)) i"
|
hoelzl@42861
|
262 |
show "prob (\<Inter>j\<in>J. A j) = (\<Prod>j\<in>J. prob (A j))"
|
hoelzl@42861
|
263 |
proof cases
|
hoelzl@42861
|
264 |
assume "j \<in> J"
|
hoelzl@42861
|
265 |
with A have indep: "indep_sets (G(j := {A j})) K" by auto
|
hoelzl@42861
|
266 |
from J A show ?thesis
|
hoelzl@42861
|
267 |
by (intro indep_setsD[OF indep]) auto
|
hoelzl@42861
|
268 |
next
|
hoelzl@42861
|
269 |
assume "j \<notin> J"
|
hoelzl@42861
|
270 |
with J A have "\<forall>i\<in>J. A i \<in> G i" by (auto split: split_if_asm)
|
hoelzl@42861
|
271 |
with J show ?thesis
|
hoelzl@42861
|
272 |
by (intro indep_setsD[OF G(1)]) auto
|
hoelzl@42861
|
273 |
qed
|
hoelzl@42861
|
274 |
qed
|
hoelzl@47694
|
275 |
then have "indep_sets (G(j := dynkin (space M) (G j))) K"
|
hoelzl@42861
|
276 |
by (rule indep_sets_mono_sets) (insert mono, auto)
|
hoelzl@42861
|
277 |
then show ?case
|
hoelzl@42861
|
278 |
by (rule indep_sets_mono_sets) (insert `j \<in> K` `j \<notin> J`, auto simp: G_def)
|
hoelzl@42861
|
279 |
qed (insert `indep_sets F K`, simp) }
|
hoelzl@42861
|
280 |
from this[OF `indep_sets F J` `finite J` subset_refl]
|
hoelzl@47694
|
281 |
show "indep_sets ?F J"
|
hoelzl@42861
|
282 |
by (rule indep_sets_mono_sets) auto
|
hoelzl@42861
|
283 |
qed
|
hoelzl@42861
|
284 |
|
hoelzl@42861
|
285 |
lemma (in prob_space) indep_sets_sigma:
|
hoelzl@42861
|
286 |
assumes indep: "indep_sets F I"
|
hoelzl@47694
|
287 |
assumes stable: "\<And>i. i \<in> I \<Longrightarrow> Int_stable (F i)"
|
hoelzl@47694
|
288 |
shows "indep_sets (\<lambda>i. sigma_sets (space M) (F i)) I"
|
hoelzl@42861
|
289 |
proof -
|
hoelzl@42861
|
290 |
from indep_sets_dynkin[OF indep]
|
hoelzl@42861
|
291 |
show ?thesis
|
hoelzl@42861
|
292 |
proof (rule indep_sets_mono_sets, subst sigma_eq_dynkin, simp_all add: stable)
|
hoelzl@42861
|
293 |
fix i assume "i \<in> I"
|
hoelzl@42861
|
294 |
with indep have "F i \<subseteq> events" by (auto simp: indep_sets_def)
|
immler@50244
|
295 |
with sets.sets_into_space show "F i \<subseteq> Pow (space M)" by auto
|
hoelzl@42861
|
296 |
qed
|
hoelzl@42861
|
297 |
qed
|
hoelzl@42861
|
298 |
|
hoelzl@42987
|
299 |
lemma (in prob_space) indep_sets_sigma_sets_iff:
|
hoelzl@47694
|
300 |
assumes "\<And>i. i \<in> I \<Longrightarrow> Int_stable (F i)"
|
hoelzl@42987
|
301 |
shows "indep_sets (\<lambda>i. sigma_sets (space M) (F i)) I \<longleftrightarrow> indep_sets F I"
|
hoelzl@42987
|
302 |
proof
|
hoelzl@42987
|
303 |
assume "indep_sets F I" then show "indep_sets (\<lambda>i. sigma_sets (space M) (F i)) I"
|
hoelzl@47694
|
304 |
by (rule indep_sets_sigma) fact
|
hoelzl@42987
|
305 |
next
|
hoelzl@42987
|
306 |
assume "indep_sets (\<lambda>i. sigma_sets (space M) (F i)) I" then show "indep_sets F I"
|
hoelzl@42987
|
307 |
by (rule indep_sets_mono_sets) (intro subsetI sigma_sets.Basic)
|
hoelzl@42987
|
308 |
qed
|
hoelzl@42987
|
309 |
|
hoelzl@49794
|
310 |
definition (in prob_space)
|
hoelzl@49794
|
311 |
indep_vars_def2: "indep_vars M' X I \<longleftrightarrow>
|
hoelzl@49781
|
312 |
(\<forall>i\<in>I. random_variable (M' i) (X i)) \<and>
|
hoelzl@49781
|
313 |
indep_sets (\<lambda>i. { X i -` A \<inter> space M | A. A \<in> sets (M' i)}) I"
|
hoelzl@49794
|
314 |
|
hoelzl@49794
|
315 |
definition (in prob_space)
|
blanchet@55414
|
316 |
"indep_var Ma A Mb B \<longleftrightarrow> indep_vars (case_bool Ma Mb) (case_bool A B) UNIV"
|
hoelzl@49794
|
317 |
|
hoelzl@49794
|
318 |
lemma (in prob_space) indep_vars_def:
|
hoelzl@49794
|
319 |
"indep_vars M' X I \<longleftrightarrow>
|
hoelzl@49794
|
320 |
(\<forall>i\<in>I. random_variable (M' i) (X i)) \<and>
|
hoelzl@49794
|
321 |
indep_sets (\<lambda>i. sigma_sets (space M) { X i -` A \<inter> space M | A. A \<in> sets (M' i)}) I"
|
hoelzl@49794
|
322 |
unfolding indep_vars_def2
|
hoelzl@49781
|
323 |
apply (rule conj_cong[OF refl])
|
hoelzl@49794
|
324 |
apply (rule indep_sets_sigma_sets_iff[symmetric])
|
hoelzl@49781
|
325 |
apply (auto simp: Int_stable_def)
|
hoelzl@49781
|
326 |
apply (rule_tac x="A \<inter> Aa" in exI)
|
hoelzl@49781
|
327 |
apply auto
|
hoelzl@49781
|
328 |
done
|
hoelzl@49781
|
329 |
|
hoelzl@49794
|
330 |
lemma (in prob_space) indep_var_eq:
|
hoelzl@49794
|
331 |
"indep_var S X T Y \<longleftrightarrow>
|
hoelzl@49794
|
332 |
(random_variable S X \<and> random_variable T Y) \<and>
|
hoelzl@49794
|
333 |
indep_set
|
hoelzl@49794
|
334 |
(sigma_sets (space M) { X -` A \<inter> space M | A. A \<in> sets S})
|
hoelzl@49794
|
335 |
(sigma_sets (space M) { Y -` A \<inter> space M | A. A \<in> sets T})"
|
hoelzl@49794
|
336 |
unfolding indep_var_def indep_vars_def indep_set_def UNIV_bool
|
hoelzl@49794
|
337 |
by (intro arg_cong2[where f="op \<and>"] arg_cong2[where f=indep_sets] ext)
|
hoelzl@49794
|
338 |
(auto split: bool.split)
|
hoelzl@49794
|
339 |
|
hoelzl@42861
|
340 |
lemma (in prob_space) indep_sets2_eq:
|
hoelzl@42981
|
341 |
"indep_set A B \<longleftrightarrow> A \<subseteq> events \<and> B \<subseteq> events \<and> (\<forall>a\<in>A. \<forall>b\<in>B. prob (a \<inter> b) = prob a * prob b)"
|
hoelzl@42981
|
342 |
unfolding indep_set_def
|
hoelzl@42861
|
343 |
proof (intro iffI ballI conjI)
|
blanchet@55414
|
344 |
assume indep: "indep_sets (case_bool A B) UNIV"
|
hoelzl@42861
|
345 |
{ fix a b assume "a \<in> A" "b \<in> B"
|
blanchet@55414
|
346 |
with indep_setsD[OF indep, of UNIV "case_bool a b"]
|
hoelzl@42861
|
347 |
show "prob (a \<inter> b) = prob a * prob b"
|
hoelzl@42861
|
348 |
unfolding UNIV_bool by (simp add: ac_simps) }
|
hoelzl@42861
|
349 |
from indep show "A \<subseteq> events" "B \<subseteq> events"
|
hoelzl@42861
|
350 |
unfolding indep_sets_def UNIV_bool by auto
|
hoelzl@42861
|
351 |
next
|
hoelzl@42861
|
352 |
assume *: "A \<subseteq> events \<and> B \<subseteq> events \<and> (\<forall>a\<in>A. \<forall>b\<in>B. prob (a \<inter> b) = prob a * prob b)"
|
blanchet@55414
|
353 |
show "indep_sets (case_bool A B) UNIV"
|
hoelzl@42861
|
354 |
proof (rule indep_setsI)
|
hoelzl@42861
|
355 |
fix i show "(case i of True \<Rightarrow> A | False \<Rightarrow> B) \<subseteq> events"
|
hoelzl@42861
|
356 |
using * by (auto split: bool.split)
|
hoelzl@42861
|
357 |
next
|
hoelzl@42861
|
358 |
fix J X assume "J \<noteq> {}" "J \<subseteq> UNIV" and X: "\<forall>j\<in>J. X j \<in> (case j of True \<Rightarrow> A | False \<Rightarrow> B)"
|
hoelzl@42861
|
359 |
then have "J = {True} \<or> J = {False} \<or> J = {True,False}"
|
hoelzl@42861
|
360 |
by (auto simp: UNIV_bool)
|
hoelzl@42861
|
361 |
then show "prob (\<Inter>j\<in>J. X j) = (\<Prod>j\<in>J. prob (X j))"
|
hoelzl@42861
|
362 |
using X * by auto
|
hoelzl@42861
|
363 |
qed
|
hoelzl@42861
|
364 |
qed
|
hoelzl@42861
|
365 |
|
hoelzl@42981
|
366 |
lemma (in prob_space) indep_set_sigma_sets:
|
hoelzl@42981
|
367 |
assumes "indep_set A B"
|
hoelzl@47694
|
368 |
assumes A: "Int_stable A" and B: "Int_stable B"
|
hoelzl@42981
|
369 |
shows "indep_set (sigma_sets (space M) A) (sigma_sets (space M) B)"
|
hoelzl@42861
|
370 |
proof -
|
hoelzl@42861
|
371 |
have "indep_sets (\<lambda>i. sigma_sets (space M) (case i of True \<Rightarrow> A | False \<Rightarrow> B)) UNIV"
|
hoelzl@47694
|
372 |
proof (rule indep_sets_sigma)
|
blanchet@55414
|
373 |
show "indep_sets (case_bool A B) UNIV"
|
hoelzl@42981
|
374 |
by (rule `indep_set A B`[unfolded indep_set_def])
|
hoelzl@47694
|
375 |
fix i show "Int_stable (case i of True \<Rightarrow> A | False \<Rightarrow> B)"
|
hoelzl@42861
|
376 |
using A B by (cases i) auto
|
hoelzl@42861
|
377 |
qed
|
hoelzl@42861
|
378 |
then show ?thesis
|
hoelzl@42981
|
379 |
unfolding indep_set_def
|
hoelzl@42861
|
380 |
by (rule indep_sets_mono_sets) (auto split: bool.split)
|
hoelzl@42861
|
381 |
qed
|
hoelzl@42861
|
382 |
|
hoelzl@42981
|
383 |
lemma (in prob_space) indep_sets_collect_sigma:
|
hoelzl@42981
|
384 |
fixes I :: "'j \<Rightarrow> 'i set" and J :: "'j set" and E :: "'i \<Rightarrow> 'a set set"
|
hoelzl@42981
|
385 |
assumes indep: "indep_sets E (\<Union>j\<in>J. I j)"
|
hoelzl@47694
|
386 |
assumes Int_stable: "\<And>i j. j \<in> J \<Longrightarrow> i \<in> I j \<Longrightarrow> Int_stable (E i)"
|
hoelzl@42981
|
387 |
assumes disjoint: "disjoint_family_on I J"
|
hoelzl@42981
|
388 |
shows "indep_sets (\<lambda>j. sigma_sets (space M) (\<Union>i\<in>I j. E i)) J"
|
hoelzl@42981
|
389 |
proof -
|
wenzelm@46731
|
390 |
let ?E = "\<lambda>j. {\<Inter>k\<in>K. E' k| E' K. finite K \<and> K \<noteq> {} \<and> K \<subseteq> I j \<and> (\<forall>k\<in>K. E' k \<in> E k) }"
|
hoelzl@42981
|
391 |
|
hoelzl@42983
|
392 |
from indep have E: "\<And>j i. j \<in> J \<Longrightarrow> i \<in> I j \<Longrightarrow> E i \<subseteq> events"
|
hoelzl@42981
|
393 |
unfolding indep_sets_def by auto
|
hoelzl@42981
|
394 |
{ fix j
|
hoelzl@47694
|
395 |
let ?S = "sigma_sets (space M) (\<Union>i\<in>I j. E i)"
|
hoelzl@42981
|
396 |
assume "j \<in> J"
|
hoelzl@47694
|
397 |
from E[OF this] interpret S: sigma_algebra "space M" ?S
|
immler@50244
|
398 |
using sets.sets_into_space[of _ M] by (intro sigma_algebra_sigma_sets) auto
|
hoelzl@42981
|
399 |
|
hoelzl@42981
|
400 |
have "sigma_sets (space M) (\<Union>i\<in>I j. E i) = sigma_sets (space M) (?E j)"
|
hoelzl@42981
|
401 |
proof (rule sigma_sets_eqI)
|
hoelzl@42981
|
402 |
fix A assume "A \<in> (\<Union>i\<in>I j. E i)"
|
hoelzl@42981
|
403 |
then guess i ..
|
hoelzl@42981
|
404 |
then show "A \<in> sigma_sets (space M) (?E j)"
|
hoelzl@47694
|
405 |
by (auto intro!: sigma_sets.intros(2-) exI[of _ "{i}"] exI[of _ "\<lambda>i. A"])
|
hoelzl@42981
|
406 |
next
|
hoelzl@42981
|
407 |
fix A assume "A \<in> ?E j"
|
hoelzl@42981
|
408 |
then obtain E' K where "finite K" "K \<noteq> {}" "K \<subseteq> I j" "\<And>k. k \<in> K \<Longrightarrow> E' k \<in> E k"
|
hoelzl@42981
|
409 |
and A: "A = (\<Inter>k\<in>K. E' k)"
|
hoelzl@42981
|
410 |
by auto
|
hoelzl@47694
|
411 |
then have "A \<in> ?S" unfolding A
|
hoelzl@47694
|
412 |
by (safe intro!: S.finite_INT) auto
|
hoelzl@42981
|
413 |
then show "A \<in> sigma_sets (space M) (\<Union>i\<in>I j. E i)"
|
hoelzl@47694
|
414 |
by simp
|
hoelzl@42981
|
415 |
qed }
|
hoelzl@42981
|
416 |
moreover have "indep_sets (\<lambda>j. sigma_sets (space M) (?E j)) J"
|
hoelzl@47694
|
417 |
proof (rule indep_sets_sigma)
|
hoelzl@42981
|
418 |
show "indep_sets ?E J"
|
hoelzl@42981
|
419 |
proof (intro indep_setsI)
|
immler@50244
|
420 |
fix j assume "j \<in> J" with E show "?E j \<subseteq> events" by (force intro!: sets.finite_INT)
|
hoelzl@42981
|
421 |
next
|
hoelzl@42981
|
422 |
fix K A assume K: "K \<noteq> {}" "K \<subseteq> J" "finite K"
|
hoelzl@42981
|
423 |
and "\<forall>j\<in>K. A j \<in> ?E j"
|
hoelzl@42981
|
424 |
then have "\<forall>j\<in>K. \<exists>E' L. A j = (\<Inter>l\<in>L. E' l) \<and> finite L \<and> L \<noteq> {} \<and> L \<subseteq> I j \<and> (\<forall>l\<in>L. E' l \<in> E l)"
|
hoelzl@42981
|
425 |
by simp
|
hoelzl@42981
|
426 |
from bchoice[OF this] guess E' ..
|
hoelzl@42981
|
427 |
from bchoice[OF this] obtain L
|
hoelzl@42981
|
428 |
where A: "\<And>j. j\<in>K \<Longrightarrow> A j = (\<Inter>l\<in>L j. E' j l)"
|
hoelzl@42981
|
429 |
and L: "\<And>j. j\<in>K \<Longrightarrow> finite (L j)" "\<And>j. j\<in>K \<Longrightarrow> L j \<noteq> {}" "\<And>j. j\<in>K \<Longrightarrow> L j \<subseteq> I j"
|
hoelzl@42981
|
430 |
and E': "\<And>j l. j\<in>K \<Longrightarrow> l \<in> L j \<Longrightarrow> E' j l \<in> E l"
|
hoelzl@42981
|
431 |
by auto
|
hoelzl@42981
|
432 |
|
hoelzl@42981
|
433 |
{ fix k l j assume "k \<in> K" "j \<in> K" "l \<in> L j" "l \<in> L k"
|
hoelzl@42981
|
434 |
have "k = j"
|
hoelzl@42981
|
435 |
proof (rule ccontr)
|
hoelzl@42981
|
436 |
assume "k \<noteq> j"
|
hoelzl@42981
|
437 |
with disjoint `K \<subseteq> J` `k \<in> K` `j \<in> K` have "I k \<inter> I j = {}"
|
hoelzl@42981
|
438 |
unfolding disjoint_family_on_def by auto
|
hoelzl@42981
|
439 |
with L(2,3)[OF `j \<in> K`] L(2,3)[OF `k \<in> K`]
|
hoelzl@42981
|
440 |
show False using `l \<in> L k` `l \<in> L j` by auto
|
hoelzl@42981
|
441 |
qed }
|
hoelzl@42981
|
442 |
note L_inj = this
|
hoelzl@42981
|
443 |
|
hoelzl@42981
|
444 |
def k \<equiv> "\<lambda>l. (SOME k. k \<in> K \<and> l \<in> L k)"
|
hoelzl@42981
|
445 |
{ fix x j l assume *: "j \<in> K" "l \<in> L j"
|
hoelzl@42981
|
446 |
have "k l = j" unfolding k_def
|
hoelzl@42981
|
447 |
proof (rule some_equality)
|
hoelzl@42981
|
448 |
fix k assume "k \<in> K \<and> l \<in> L k"
|
hoelzl@42981
|
449 |
with * L_inj show "k = j" by auto
|
hoelzl@42981
|
450 |
qed (insert *, simp) }
|
hoelzl@42981
|
451 |
note k_simp[simp] = this
|
wenzelm@46731
|
452 |
let ?E' = "\<lambda>l. E' (k l) l"
|
hoelzl@42981
|
453 |
have "prob (\<Inter>j\<in>K. A j) = prob (\<Inter>l\<in>(\<Union>k\<in>K. L k). ?E' l)"
|
hoelzl@42981
|
454 |
by (auto simp: A intro!: arg_cong[where f=prob])
|
hoelzl@42981
|
455 |
also have "\<dots> = (\<Prod>l\<in>(\<Union>k\<in>K. L k). prob (?E' l))"
|
hoelzl@42981
|
456 |
using L K E' by (intro indep_setsD[OF indep]) (simp_all add: UN_mono)
|
hoelzl@42981
|
457 |
also have "\<dots> = (\<Prod>j\<in>K. \<Prod>l\<in>L j. prob (E' j l))"
|
haftmann@57418
|
458 |
using K L L_inj by (subst setprod.UNION_disjoint) auto
|
hoelzl@42981
|
459 |
also have "\<dots> = (\<Prod>j\<in>K. prob (A j))"
|
haftmann@57418
|
460 |
using K L E' by (auto simp add: A intro!: setprod.cong indep_setsD[OF indep, symmetric]) blast
|
hoelzl@42981
|
461 |
finally show "prob (\<Inter>j\<in>K. A j) = (\<Prod>j\<in>K. prob (A j))" .
|
hoelzl@42981
|
462 |
qed
|
hoelzl@42981
|
463 |
next
|
hoelzl@42981
|
464 |
fix j assume "j \<in> J"
|
hoelzl@47694
|
465 |
show "Int_stable (?E j)"
|
hoelzl@42981
|
466 |
proof (rule Int_stableI)
|
hoelzl@42981
|
467 |
fix a assume "a \<in> ?E j" then obtain Ka Ea
|
hoelzl@42981
|
468 |
where a: "a = (\<Inter>k\<in>Ka. Ea k)" "finite Ka" "Ka \<noteq> {}" "Ka \<subseteq> I j" "\<And>k. k\<in>Ka \<Longrightarrow> Ea k \<in> E k" by auto
|
hoelzl@42981
|
469 |
fix b assume "b \<in> ?E j" then obtain Kb Eb
|
hoelzl@42981
|
470 |
where b: "b = (\<Inter>k\<in>Kb. Eb k)" "finite Kb" "Kb \<noteq> {}" "Kb \<subseteq> I j" "\<And>k. k\<in>Kb \<Longrightarrow> Eb k \<in> E k" by auto
|
hoelzl@42981
|
471 |
let ?A = "\<lambda>k. (if k \<in> Ka \<inter> Kb then Ea k \<inter> Eb k else if k \<in> Kb then Eb k else if k \<in> Ka then Ea k else {})"
|
hoelzl@42981
|
472 |
have "a \<inter> b = INTER (Ka \<union> Kb) ?A"
|
hoelzl@42981
|
473 |
by (simp add: a b set_eq_iff) auto
|
hoelzl@42981
|
474 |
with a b `j \<in> J` Int_stableD[OF Int_stable] show "a \<inter> b \<in> ?E j"
|
hoelzl@42981
|
475 |
by (intro CollectI exI[of _ "Ka \<union> Kb"] exI[of _ ?A]) auto
|
hoelzl@42981
|
476 |
qed
|
hoelzl@42981
|
477 |
qed
|
hoelzl@42981
|
478 |
ultimately show ?thesis
|
hoelzl@42981
|
479 |
by (simp cong: indep_sets_cong)
|
hoelzl@42981
|
480 |
qed
|
hoelzl@42981
|
481 |
|
hoelzl@57235
|
482 |
lemma (in prob_space) indep_vars_restrict:
|
hoelzl@57235
|
483 |
assumes ind: "indep_vars M' X I" and K: "\<And>j. j \<in> L \<Longrightarrow> K j \<subseteq> I" and J: "disjoint_family_on K L"
|
hoelzl@57235
|
484 |
shows "indep_vars (\<lambda>j. PiM (K j) M') (\<lambda>j \<omega>. restrict (\<lambda>i. X i \<omega>) (K j)) L"
|
hoelzl@57235
|
485 |
unfolding indep_vars_def
|
hoelzl@57235
|
486 |
proof safe
|
hoelzl@57235
|
487 |
fix j assume "j \<in> L" then show "random_variable (Pi\<^sub>M (K j) M') (\<lambda>\<omega>. \<lambda>i\<in>K j. X i \<omega>)"
|
hoelzl@57235
|
488 |
using K ind by (auto simp: indep_vars_def intro!: measurable_restrict)
|
hoelzl@57235
|
489 |
next
|
hoelzl@57235
|
490 |
have X: "\<And>i. i \<in> I \<Longrightarrow> X i \<in> measurable M (M' i)"
|
hoelzl@57235
|
491 |
using ind by (auto simp: indep_vars_def)
|
hoelzl@57235
|
492 |
let ?proj = "\<lambda>j S. {(\<lambda>\<omega>. \<lambda>i\<in>K j. X i \<omega>) -` A \<inter> space M |A. A \<in> S}"
|
hoelzl@57235
|
493 |
let ?UN = "\<lambda>j. sigma_sets (space M) (\<Union>i\<in>K j. { X i -` A \<inter> space M| A. A \<in> sets (M' i) })"
|
hoelzl@57235
|
494 |
show "indep_sets (\<lambda>i. sigma_sets (space M) (?proj i (sets (Pi\<^sub>M (K i) M')))) L"
|
hoelzl@57235
|
495 |
proof (rule indep_sets_mono_sets)
|
hoelzl@57235
|
496 |
fix j assume j: "j \<in> L"
|
hoelzl@57235
|
497 |
have "sigma_sets (space M) (?proj j (sets (Pi\<^sub>M (K j) M'))) =
|
hoelzl@57235
|
498 |
sigma_sets (space M) (sigma_sets (space M) (?proj j (prod_algebra (K j) M')))"
|
hoelzl@57235
|
499 |
using j K X[THEN measurable_space] unfolding sets_PiM
|
hoelzl@57235
|
500 |
by (subst sigma_sets_vimage_commute) (auto simp add: Pi_iff)
|
hoelzl@57235
|
501 |
also have "\<dots> = sigma_sets (space M) (?proj j (prod_algebra (K j) M'))"
|
hoelzl@57235
|
502 |
by (rule sigma_sets_sigma_sets_eq) auto
|
hoelzl@57235
|
503 |
also have "\<dots> \<subseteq> ?UN j"
|
hoelzl@57235
|
504 |
proof (rule sigma_sets_mono, safe del: disjE elim!: prod_algebraE)
|
hoelzl@57235
|
505 |
fix J E assume J: "finite J" "J \<noteq> {} \<or> K j = {}" "J \<subseteq> K j" and E: "\<forall>i. i \<in> J \<longrightarrow> E i \<in> sets (M' i)"
|
hoelzl@57235
|
506 |
show "(\<lambda>\<omega>. \<lambda>i\<in>K j. X i \<omega>) -` prod_emb (K j) M' J (Pi\<^sub>E J E) \<inter> space M \<in> ?UN j"
|
hoelzl@57235
|
507 |
proof cases
|
hoelzl@57235
|
508 |
assume "K j = {}" with J show ?thesis
|
hoelzl@57235
|
509 |
by (auto simp add: sigma_sets_empty_eq prod_emb_def)
|
hoelzl@57235
|
510 |
next
|
hoelzl@57235
|
511 |
assume "K j \<noteq> {}" with J have "J \<noteq> {}"
|
hoelzl@57235
|
512 |
by auto
|
hoelzl@57235
|
513 |
{ interpret sigma_algebra "space M" "?UN j"
|
hoelzl@57235
|
514 |
by (rule sigma_algebra_sigma_sets) auto
|
hoelzl@57235
|
515 |
have "\<And>A. (\<And>i. i \<in> J \<Longrightarrow> A i \<in> ?UN j) \<Longrightarrow> INTER J A \<in> ?UN j"
|
hoelzl@57235
|
516 |
using `finite J` `J \<noteq> {}` by (rule finite_INT) blast }
|
hoelzl@57235
|
517 |
note INT = this
|
hoelzl@57235
|
518 |
|
hoelzl@57235
|
519 |
from `J \<noteq> {}` J K E[rule_format, THEN sets.sets_into_space] j
|
hoelzl@57235
|
520 |
have "(\<lambda>\<omega>. \<lambda>i\<in>K j. X i \<omega>) -` prod_emb (K j) M' J (Pi\<^sub>E J E) \<inter> space M
|
hoelzl@57235
|
521 |
= (\<Inter>i\<in>J. X i -` E i \<inter> space M)"
|
hoelzl@57235
|
522 |
apply (subst prod_emb_PiE[OF _ ])
|
hoelzl@57235
|
523 |
apply auto []
|
hoelzl@57235
|
524 |
apply auto []
|
hoelzl@57235
|
525 |
apply (auto simp add: Pi_iff intro!: X[THEN measurable_space])
|
hoelzl@57235
|
526 |
apply (erule_tac x=i in ballE)
|
hoelzl@57235
|
527 |
apply auto
|
hoelzl@57235
|
528 |
done
|
hoelzl@57235
|
529 |
also have "\<dots> \<in> ?UN j"
|
hoelzl@57235
|
530 |
apply (rule INT)
|
hoelzl@57235
|
531 |
apply (rule sigma_sets.Basic)
|
hoelzl@57235
|
532 |
using `J \<subseteq> K j` E
|
hoelzl@57235
|
533 |
apply auto
|
hoelzl@57235
|
534 |
done
|
hoelzl@57235
|
535 |
finally show ?thesis .
|
hoelzl@57235
|
536 |
qed
|
hoelzl@57235
|
537 |
qed
|
hoelzl@57235
|
538 |
finally show "sigma_sets (space M) (?proj j (sets (Pi\<^sub>M (K j) M'))) \<subseteq> ?UN j" .
|
hoelzl@57235
|
539 |
next
|
hoelzl@57235
|
540 |
show "indep_sets ?UN L"
|
hoelzl@57235
|
541 |
proof (rule indep_sets_collect_sigma)
|
hoelzl@57235
|
542 |
show "indep_sets (\<lambda>i. {X i -` A \<inter> space M |A. A \<in> sets (M' i)}) (\<Union>j\<in>L. K j)"
|
hoelzl@57235
|
543 |
proof (rule indep_sets_mono_index)
|
hoelzl@57235
|
544 |
show "indep_sets (\<lambda>i. {X i -` A \<inter> space M |A. A \<in> sets (M' i)}) I"
|
hoelzl@57235
|
545 |
using ind unfolding indep_vars_def2 by auto
|
hoelzl@57235
|
546 |
show "(\<Union>l\<in>L. K l) \<subseteq> I"
|
hoelzl@57235
|
547 |
using K by auto
|
hoelzl@57235
|
548 |
qed
|
hoelzl@57235
|
549 |
next
|
hoelzl@57235
|
550 |
fix l i assume "l \<in> L" "i \<in> K l"
|
hoelzl@57235
|
551 |
show "Int_stable {X i -` A \<inter> space M |A. A \<in> sets (M' i)}"
|
hoelzl@57235
|
552 |
apply (auto simp: Int_stable_def)
|
hoelzl@57235
|
553 |
apply (rule_tac x="A \<inter> Aa" in exI)
|
hoelzl@57235
|
554 |
apply auto
|
hoelzl@57235
|
555 |
done
|
hoelzl@57235
|
556 |
qed fact
|
hoelzl@57235
|
557 |
qed
|
hoelzl@57235
|
558 |
qed
|
hoelzl@57235
|
559 |
|
hoelzl@57235
|
560 |
lemma (in prob_space) indep_var_restrict:
|
hoelzl@57235
|
561 |
assumes ind: "indep_vars M' X I" and AB: "A \<inter> B = {}" "A \<subseteq> I" "B \<subseteq> I"
|
hoelzl@57235
|
562 |
shows "indep_var (PiM A M') (\<lambda>\<omega>. restrict (\<lambda>i. X i \<omega>) A) (PiM B M') (\<lambda>\<omega>. restrict (\<lambda>i. X i \<omega>) B)"
|
hoelzl@57235
|
563 |
proof -
|
hoelzl@57235
|
564 |
have *:
|
hoelzl@57235
|
565 |
"case_bool (Pi\<^sub>M A M') (Pi\<^sub>M B M') = (\<lambda>b. PiM (case_bool A B b) M')"
|
hoelzl@57235
|
566 |
"case_bool (\<lambda>\<omega>. \<lambda>i\<in>A. X i \<omega>) (\<lambda>\<omega>. \<lambda>i\<in>B. X i \<omega>) = (\<lambda>b \<omega>. \<lambda>i\<in>case_bool A B b. X i \<omega>)"
|
hoelzl@57235
|
567 |
by (simp_all add: fun_eq_iff split: bool.split)
|
hoelzl@57235
|
568 |
show ?thesis
|
hoelzl@57235
|
569 |
unfolding indep_var_def * using AB
|
hoelzl@57235
|
570 |
by (intro indep_vars_restrict[OF ind]) (auto simp: disjoint_family_on_def split: bool.split)
|
hoelzl@57235
|
571 |
qed
|
hoelzl@57235
|
572 |
|
hoelzl@57235
|
573 |
lemma (in prob_space) indep_vars_subset:
|
hoelzl@57235
|
574 |
assumes "indep_vars M' X I" "J \<subseteq> I"
|
hoelzl@57235
|
575 |
shows "indep_vars M' X J"
|
hoelzl@57235
|
576 |
using assms unfolding indep_vars_def indep_sets_def
|
hoelzl@57235
|
577 |
by auto
|
hoelzl@57235
|
578 |
|
hoelzl@57235
|
579 |
lemma (in prob_space) indep_vars_cong:
|
hoelzl@57235
|
580 |
"I = J \<Longrightarrow> (\<And>i. i \<in> I \<Longrightarrow> X i = Y i) \<Longrightarrow> (\<And>i. i \<in> I \<Longrightarrow> M' i = N' i) \<Longrightarrow> indep_vars M' X I \<longleftrightarrow> indep_vars N' Y J"
|
hoelzl@57235
|
581 |
unfolding indep_vars_def2 by (intro conj_cong indep_sets_cong) auto
|
hoelzl@57235
|
582 |
|
hoelzl@49772
|
583 |
definition (in prob_space) tail_events where
|
hoelzl@49772
|
584 |
"tail_events A = (\<Inter>n. sigma_sets (space M) (UNION {n..} A))"
|
hoelzl@42982
|
585 |
|
hoelzl@49772
|
586 |
lemma (in prob_space) tail_events_sets:
|
hoelzl@49772
|
587 |
assumes A: "\<And>i::nat. A i \<subseteq> events"
|
hoelzl@49772
|
588 |
shows "tail_events A \<subseteq> events"
|
hoelzl@49772
|
589 |
proof
|
hoelzl@49772
|
590 |
fix X assume X: "X \<in> tail_events A"
|
hoelzl@42982
|
591 |
let ?A = "(\<Inter>n. sigma_sets (space M) (UNION {n..} A))"
|
hoelzl@49772
|
592 |
from X have "\<And>n::nat. X \<in> sigma_sets (space M) (UNION {n..} A)" by (auto simp: tail_events_def)
|
hoelzl@42982
|
593 |
from this[of 0] have "X \<in> sigma_sets (space M) (UNION UNIV A)" by simp
|
hoelzl@42983
|
594 |
then show "X \<in> events"
|
hoelzl@42982
|
595 |
by induct (insert A, auto)
|
hoelzl@42982
|
596 |
qed
|
hoelzl@42982
|
597 |
|
hoelzl@49772
|
598 |
lemma (in prob_space) sigma_algebra_tail_events:
|
hoelzl@47694
|
599 |
assumes "\<And>i::nat. sigma_algebra (space M) (A i)"
|
hoelzl@49772
|
600 |
shows "sigma_algebra (space M) (tail_events A)"
|
hoelzl@49772
|
601 |
unfolding tail_events_def
|
hoelzl@42982
|
602 |
proof (simp add: sigma_algebra_iff2, safe)
|
hoelzl@42982
|
603 |
let ?A = "(\<Inter>n. sigma_sets (space M) (UNION {n..} A))"
|
hoelzl@47694
|
604 |
interpret A: sigma_algebra "space M" "A i" for i by fact
|
hoelzl@43340
|
605 |
{ fix X x assume "X \<in> ?A" "x \<in> X"
|
hoelzl@42982
|
606 |
then have "\<And>n. X \<in> sigma_sets (space M) (UNION {n..} A)" by auto
|
hoelzl@42982
|
607 |
from this[of 0] have "X \<in> sigma_sets (space M) (UNION UNIV A)" by simp
|
hoelzl@42982
|
608 |
then have "X \<subseteq> space M"
|
hoelzl@42982
|
609 |
by induct (insert A.sets_into_space, auto)
|
hoelzl@42982
|
610 |
with `x \<in> X` show "x \<in> space M" by auto }
|
hoelzl@42982
|
611 |
{ fix F :: "nat \<Rightarrow> 'a set" and n assume "range F \<subseteq> ?A"
|
hoelzl@42982
|
612 |
then show "(UNION UNIV F) \<in> sigma_sets (space M) (UNION {n..} A)"
|
hoelzl@42982
|
613 |
by (intro sigma_sets.Union) auto }
|
hoelzl@42982
|
614 |
qed (auto intro!: sigma_sets.Compl sigma_sets.Empty)
|
hoelzl@42982
|
615 |
|
hoelzl@42982
|
616 |
lemma (in prob_space) kolmogorov_0_1_law:
|
hoelzl@42982
|
617 |
fixes A :: "nat \<Rightarrow> 'a set set"
|
hoelzl@47694
|
618 |
assumes "\<And>i::nat. sigma_algebra (space M) (A i)"
|
hoelzl@42982
|
619 |
assumes indep: "indep_sets A UNIV"
|
hoelzl@49772
|
620 |
and X: "X \<in> tail_events A"
|
hoelzl@42982
|
621 |
shows "prob X = 0 \<or> prob X = 1"
|
hoelzl@42982
|
622 |
proof -
|
hoelzl@49781
|
623 |
have A: "\<And>i. A i \<subseteq> events"
|
hoelzl@49781
|
624 |
using indep unfolding indep_sets_def by simp
|
hoelzl@49781
|
625 |
|
hoelzl@47694
|
626 |
let ?D = "{D \<in> events. prob (X \<inter> D) = prob X * prob D}"
|
hoelzl@47694
|
627 |
interpret A: sigma_algebra "space M" "A i" for i by fact
|
hoelzl@49772
|
628 |
interpret T: sigma_algebra "space M" "tail_events A"
|
hoelzl@49772
|
629 |
by (rule sigma_algebra_tail_events) fact
|
hoelzl@42982
|
630 |
have "X \<subseteq> space M" using T.space_closed X by auto
|
hoelzl@42982
|
631 |
|
hoelzl@42983
|
632 |
have X_in: "X \<in> events"
|
hoelzl@49772
|
633 |
using tail_events_sets A X by auto
|
hoelzl@42982
|
634 |
|
hoelzl@47694
|
635 |
interpret D: dynkin_system "space M" ?D
|
hoelzl@42982
|
636 |
proof (rule dynkin_systemI)
|
hoelzl@47694
|
637 |
fix D assume "D \<in> ?D" then show "D \<subseteq> space M"
|
immler@50244
|
638 |
using sets.sets_into_space by auto
|
hoelzl@42982
|
639 |
next
|
hoelzl@47694
|
640 |
show "space M \<in> ?D"
|
hoelzl@42982
|
641 |
using prob_space `X \<subseteq> space M` by (simp add: Int_absorb2)
|
hoelzl@42982
|
642 |
next
|
hoelzl@47694
|
643 |
fix A assume A: "A \<in> ?D"
|
hoelzl@42982
|
644 |
have "prob (X \<inter> (space M - A)) = prob (X - (X \<inter> A))"
|
hoelzl@42982
|
645 |
using `X \<subseteq> space M` by (auto intro!: arg_cong[where f=prob])
|
hoelzl@42982
|
646 |
also have "\<dots> = prob X - prob (X \<inter> A)"
|
hoelzl@42982
|
647 |
using X_in A by (intro finite_measure_Diff) auto
|
hoelzl@42982
|
648 |
also have "\<dots> = prob X * prob (space M) - prob X * prob A"
|
hoelzl@42982
|
649 |
using A prob_space by auto
|
hoelzl@42982
|
650 |
also have "\<dots> = prob X * prob (space M - A)"
|
immler@50244
|
651 |
using X_in A sets.sets_into_space
|
hoelzl@42982
|
652 |
by (subst finite_measure_Diff) (auto simp: field_simps)
|
hoelzl@47694
|
653 |
finally show "space M - A \<in> ?D"
|
hoelzl@42982
|
654 |
using A `X \<subseteq> space M` by auto
|
hoelzl@42982
|
655 |
next
|
hoelzl@47694
|
656 |
fix F :: "nat \<Rightarrow> 'a set" assume dis: "disjoint_family F" and "range F \<subseteq> ?D"
|
hoelzl@42982
|
657 |
then have F: "range F \<subseteq> events" "\<And>i. prob (X \<inter> F i) = prob X * prob (F i)"
|
hoelzl@42982
|
658 |
by auto
|
hoelzl@42982
|
659 |
have "(\<lambda>i. prob (X \<inter> F i)) sums prob (\<Union>i. X \<inter> F i)"
|
hoelzl@42982
|
660 |
proof (rule finite_measure_UNION)
|
hoelzl@42982
|
661 |
show "range (\<lambda>i. X \<inter> F i) \<subseteq> events"
|
hoelzl@42982
|
662 |
using F X_in by auto
|
hoelzl@42982
|
663 |
show "disjoint_family (\<lambda>i. X \<inter> F i)"
|
hoelzl@42982
|
664 |
using dis by (rule disjoint_family_on_bisimulation) auto
|
hoelzl@42982
|
665 |
qed
|
hoelzl@42982
|
666 |
with F have "(\<lambda>i. prob X * prob (F i)) sums prob (X \<inter> (\<Union>i. F i))"
|
hoelzl@42982
|
667 |
by simp
|
hoelzl@42982
|
668 |
moreover have "(\<lambda>i. prob X * prob (F i)) sums (prob X * prob (\<Union>i. F i))"
|
huffman@44282
|
669 |
by (intro sums_mult finite_measure_UNION F dis)
|
hoelzl@42982
|
670 |
ultimately have "prob (X \<inter> (\<Union>i. F i)) = prob X * prob (\<Union>i. F i)"
|
hoelzl@42982
|
671 |
by (auto dest!: sums_unique)
|
hoelzl@47694
|
672 |
with F show "(\<Union>i. F i) \<in> ?D"
|
hoelzl@42982
|
673 |
by auto
|
hoelzl@42982
|
674 |
qed
|
hoelzl@42982
|
675 |
|
hoelzl@42982
|
676 |
{ fix n
|
blanchet@55414
|
677 |
have "indep_sets (\<lambda>b. sigma_sets (space M) (\<Union>m\<in>case_bool {..n} {Suc n..} b. A m)) UNIV"
|
hoelzl@42982
|
678 |
proof (rule indep_sets_collect_sigma)
|
hoelzl@42982
|
679 |
have *: "(\<Union>b. case b of True \<Rightarrow> {..n} | False \<Rightarrow> {Suc n..}) = UNIV" (is "?U = _")
|
hoelzl@42982
|
680 |
by (simp split: bool.split add: set_eq_iff) (metis not_less_eq_eq)
|
hoelzl@42982
|
681 |
with indep show "indep_sets A ?U" by simp
|
blanchet@55414
|
682 |
show "disjoint_family (case_bool {..n} {Suc n..})"
|
hoelzl@42982
|
683 |
unfolding disjoint_family_on_def by (auto split: bool.split)
|
hoelzl@42982
|
684 |
fix m
|
hoelzl@47694
|
685 |
show "Int_stable (A m)"
|
hoelzl@42982
|
686 |
unfolding Int_stable_def using A.Int by auto
|
hoelzl@42982
|
687 |
qed
|
blanchet@55414
|
688 |
also have "(\<lambda>b. sigma_sets (space M) (\<Union>m\<in>case_bool {..n} {Suc n..} b. A m)) =
|
blanchet@55414
|
689 |
case_bool (sigma_sets (space M) (\<Union>m\<in>{..n}. A m)) (sigma_sets (space M) (\<Union>m\<in>{Suc n..}. A m))"
|
hoelzl@42982
|
690 |
by (auto intro!: ext split: bool.split)
|
hoelzl@42982
|
691 |
finally have indep: "indep_set (sigma_sets (space M) (\<Union>m\<in>{..n}. A m)) (sigma_sets (space M) (\<Union>m\<in>{Suc n..}. A m))"
|
hoelzl@42982
|
692 |
unfolding indep_set_def by simp
|
hoelzl@42982
|
693 |
|
hoelzl@47694
|
694 |
have "sigma_sets (space M) (\<Union>m\<in>{..n}. A m) \<subseteq> ?D"
|
hoelzl@42982
|
695 |
proof (simp add: subset_eq, rule)
|
hoelzl@42982
|
696 |
fix D assume D: "D \<in> sigma_sets (space M) (\<Union>m\<in>{..n}. A m)"
|
hoelzl@42982
|
697 |
have "X \<in> sigma_sets (space M) (\<Union>m\<in>{Suc n..}. A m)"
|
hoelzl@49772
|
698 |
using X unfolding tail_events_def by simp
|
hoelzl@42982
|
699 |
from indep_setD[OF indep D this] indep_setD_ev1[OF indep] D
|
hoelzl@42982
|
700 |
show "D \<in> events \<and> prob (X \<inter> D) = prob X * prob D"
|
hoelzl@42982
|
701 |
by (auto simp add: ac_simps)
|
hoelzl@42982
|
702 |
qed }
|
hoelzl@47694
|
703 |
then have "(\<Union>n. sigma_sets (space M) (\<Union>m\<in>{..n}. A m)) \<subseteq> ?D" (is "?A \<subseteq> _")
|
hoelzl@42982
|
704 |
by auto
|
hoelzl@42982
|
705 |
|
hoelzl@49772
|
706 |
note `X \<in> tail_events A`
|
hoelzl@47694
|
707 |
also {
|
hoelzl@47694
|
708 |
have "\<And>n. sigma_sets (space M) (\<Union>i\<in>{n..}. A i) \<subseteq> sigma_sets (space M) ?A"
|
hoelzl@47694
|
709 |
by (intro sigma_sets_subseteq UN_mono) auto
|
hoelzl@49772
|
710 |
then have "tail_events A \<subseteq> sigma_sets (space M) ?A"
|
hoelzl@49772
|
711 |
unfolding tail_events_def by auto }
|
hoelzl@47694
|
712 |
also have "sigma_sets (space M) ?A = dynkin (space M) ?A"
|
hoelzl@42982
|
713 |
proof (rule sigma_eq_dynkin)
|
hoelzl@42982
|
714 |
{ fix B n assume "B \<in> sigma_sets (space M) (\<Union>m\<in>{..n}. A m)"
|
hoelzl@42982
|
715 |
then have "B \<subseteq> space M"
|
immler@50244
|
716 |
by induct (insert A sets.sets_into_space[of _ M], auto) }
|
hoelzl@47694
|
717 |
then show "?A \<subseteq> Pow (space M)" by auto
|
hoelzl@47694
|
718 |
show "Int_stable ?A"
|
hoelzl@42982
|
719 |
proof (rule Int_stableI)
|
hoelzl@42982
|
720 |
fix a assume "a \<in> ?A" then guess n .. note a = this
|
hoelzl@42982
|
721 |
fix b assume "b \<in> ?A" then guess m .. note b = this
|
hoelzl@47694
|
722 |
interpret Amn: sigma_algebra "space M" "sigma_sets (space M) (\<Union>i\<in>{..max m n}. A i)"
|
immler@50244
|
723 |
using A sets.sets_into_space[of _ M] by (intro sigma_algebra_sigma_sets) auto
|
hoelzl@42982
|
724 |
have "sigma_sets (space M) (\<Union>i\<in>{..n}. A i) \<subseteq> sigma_sets (space M) (\<Union>i\<in>{..max m n}. A i)"
|
hoelzl@42982
|
725 |
by (intro sigma_sets_subseteq UN_mono) auto
|
hoelzl@42982
|
726 |
with a have "a \<in> sigma_sets (space M) (\<Union>i\<in>{..max m n}. A i)" by auto
|
hoelzl@42982
|
727 |
moreover
|
hoelzl@42982
|
728 |
have "sigma_sets (space M) (\<Union>i\<in>{..m}. A i) \<subseteq> sigma_sets (space M) (\<Union>i\<in>{..max m n}. A i)"
|
hoelzl@42982
|
729 |
by (intro sigma_sets_subseteq UN_mono) auto
|
hoelzl@42982
|
730 |
with b have "b \<in> sigma_sets (space M) (\<Union>i\<in>{..max m n}. A i)" by auto
|
hoelzl@42982
|
731 |
ultimately have "a \<inter> b \<in> sigma_sets (space M) (\<Union>i\<in>{..max m n}. A i)"
|
hoelzl@47694
|
732 |
using Amn.Int[of a b] by simp
|
hoelzl@42982
|
733 |
then show "a \<inter> b \<in> (\<Union>n. sigma_sets (space M) (\<Union>i\<in>{..n}. A i))" by auto
|
hoelzl@42982
|
734 |
qed
|
hoelzl@42982
|
735 |
qed
|
hoelzl@47694
|
736 |
also have "dynkin (space M) ?A \<subseteq> ?D"
|
hoelzl@47694
|
737 |
using `?A \<subseteq> ?D` by (auto intro!: D.dynkin_subset)
|
hoelzl@47694
|
738 |
finally show ?thesis by auto
|
hoelzl@42982
|
739 |
qed
|
hoelzl@42982
|
740 |
|
hoelzl@42985
|
741 |
lemma (in prob_space) borel_0_1_law:
|
hoelzl@42985
|
742 |
fixes F :: "nat \<Rightarrow> 'a set"
|
hoelzl@49781
|
743 |
assumes F2: "indep_events F UNIV"
|
hoelzl@42985
|
744 |
shows "prob (\<Inter>n. \<Union>m\<in>{n..}. F m) = 0 \<or> prob (\<Inter>n. \<Union>m\<in>{n..}. F m) = 1"
|
hoelzl@42985
|
745 |
proof (rule kolmogorov_0_1_law[of "\<lambda>i. sigma_sets (space M) { F i }"])
|
hoelzl@49781
|
746 |
have F1: "range F \<subseteq> events"
|
hoelzl@49781
|
747 |
using F2 by (simp add: indep_events_def subset_eq)
|
hoelzl@47694
|
748 |
{ fix i show "sigma_algebra (space M) (sigma_sets (space M) {F i})"
|
immler@50244
|
749 |
using sigma_algebra_sigma_sets[of "{F i}" "space M"] F1 sets.sets_into_space
|
hoelzl@47694
|
750 |
by auto }
|
hoelzl@42985
|
751 |
show "indep_sets (\<lambda>i. sigma_sets (space M) {F i}) UNIV"
|
hoelzl@47694
|
752 |
proof (rule indep_sets_sigma)
|
hoelzl@42985
|
753 |
show "indep_sets (\<lambda>i. {F i}) UNIV"
|
hoelzl@49784
|
754 |
unfolding indep_events_def_alt[symmetric] by fact
|
hoelzl@47694
|
755 |
fix i show "Int_stable {F i}"
|
hoelzl@42985
|
756 |
unfolding Int_stable_def by simp
|
hoelzl@42985
|
757 |
qed
|
wenzelm@46731
|
758 |
let ?Q = "\<lambda>n. \<Union>i\<in>{n..}. F i"
|
hoelzl@49772
|
759 |
show "(\<Inter>n. \<Union>m\<in>{n..}. F m) \<in> tail_events (\<lambda>i. sigma_sets (space M) {F i})"
|
hoelzl@49772
|
760 |
unfolding tail_events_def
|
hoelzl@42985
|
761 |
proof
|
hoelzl@42985
|
762 |
fix j
|
hoelzl@47694
|
763 |
interpret S: sigma_algebra "space M" "sigma_sets (space M) (\<Union>i\<in>{j..}. sigma_sets (space M) {F i})"
|
immler@50244
|
764 |
using order_trans[OF F1 sets.space_closed]
|
hoelzl@47694
|
765 |
by (intro sigma_algebra_sigma_sets) (simp add: sigma_sets_singleton subset_eq)
|
hoelzl@42985
|
766 |
have "(\<Inter>n. ?Q n) = (\<Inter>n\<in>{j..}. ?Q n)"
|
hoelzl@42985
|
767 |
by (intro decseq_SucI INT_decseq_offset UN_mono) auto
|
hoelzl@47694
|
768 |
also have "\<dots> \<in> sigma_sets (space M) (\<Union>i\<in>{j..}. sigma_sets (space M) {F i})"
|
immler@50244
|
769 |
using order_trans[OF F1 sets.space_closed]
|
hoelzl@42985
|
770 |
by (safe intro!: S.countable_INT S.countable_UN)
|
hoelzl@47694
|
771 |
(auto simp: sigma_sets_singleton intro!: sigma_sets.Basic bexI)
|
hoelzl@42985
|
772 |
finally show "(\<Inter>n. ?Q n) \<in> sigma_sets (space M) (\<Union>i\<in>{j..}. sigma_sets (space M) {F i})"
|
hoelzl@47694
|
773 |
by simp
|
hoelzl@42985
|
774 |
qed
|
hoelzl@42985
|
775 |
qed
|
hoelzl@42985
|
776 |
|
hoelzl@42987
|
777 |
lemma (in prob_space) indep_sets_finite:
|
hoelzl@42987
|
778 |
assumes I: "I \<noteq> {}" "finite I"
|
hoelzl@42987
|
779 |
and F: "\<And>i. i \<in> I \<Longrightarrow> F i \<subseteq> events" "\<And>i. i \<in> I \<Longrightarrow> space M \<in> F i"
|
hoelzl@42987
|
780 |
shows "indep_sets F I \<longleftrightarrow> (\<forall>A\<in>Pi I F. prob (\<Inter>j\<in>I. A j) = (\<Prod>j\<in>I. prob (A j)))"
|
hoelzl@42987
|
781 |
proof
|
hoelzl@42987
|
782 |
assume *: "indep_sets F I"
|
hoelzl@42987
|
783 |
from I show "\<forall>A\<in>Pi I F. prob (\<Inter>j\<in>I. A j) = (\<Prod>j\<in>I. prob (A j))"
|
hoelzl@42987
|
784 |
by (intro indep_setsD[OF *] ballI) auto
|
hoelzl@42987
|
785 |
next
|
hoelzl@42987
|
786 |
assume indep: "\<forall>A\<in>Pi I F. prob (\<Inter>j\<in>I. A j) = (\<Prod>j\<in>I. prob (A j))"
|
hoelzl@42987
|
787 |
show "indep_sets F I"
|
hoelzl@42987
|
788 |
proof (rule indep_setsI[OF F(1)])
|
hoelzl@42987
|
789 |
fix A J assume J: "J \<noteq> {}" "J \<subseteq> I" "finite J"
|
hoelzl@42987
|
790 |
assume A: "\<forall>j\<in>J. A j \<in> F j"
|
wenzelm@46731
|
791 |
let ?A = "\<lambda>j. if j \<in> J then A j else space M"
|
hoelzl@42987
|
792 |
have "prob (\<Inter>j\<in>I. ?A j) = prob (\<Inter>j\<in>J. A j)"
|
immler@50244
|
793 |
using subset_trans[OF F(1) sets.space_closed] J A
|
hoelzl@42987
|
794 |
by (auto intro!: arg_cong[where f=prob] split: split_if_asm) blast
|
hoelzl@42987
|
795 |
also
|
hoelzl@42987
|
796 |
from A F have "(\<lambda>j. if j \<in> J then A j else space M) \<in> Pi I F" (is "?A \<in> _")
|
hoelzl@42987
|
797 |
by (auto split: split_if_asm)
|
hoelzl@42987
|
798 |
with indep have "prob (\<Inter>j\<in>I. ?A j) = (\<Prod>j\<in>I. prob (?A j))"
|
hoelzl@42987
|
799 |
by auto
|
hoelzl@42987
|
800 |
also have "\<dots> = (\<Prod>j\<in>J. prob (A j))"
|
hoelzl@42987
|
801 |
unfolding if_distrib setprod.If_cases[OF `finite I`]
|
haftmann@57418
|
802 |
using prob_space `J \<subseteq> I` by (simp add: Int_absorb1 setprod.neutral_const)
|
hoelzl@42987
|
803 |
finally show "prob (\<Inter>j\<in>J. A j) = (\<Prod>j\<in>J. prob (A j))" ..
|
hoelzl@42987
|
804 |
qed
|
hoelzl@42987
|
805 |
qed
|
hoelzl@42987
|
806 |
|
hoelzl@42989
|
807 |
lemma (in prob_space) indep_vars_finite:
|
hoelzl@42987
|
808 |
fixes I :: "'i set"
|
hoelzl@42987
|
809 |
assumes I: "I \<noteq> {}" "finite I"
|
hoelzl@47694
|
810 |
and M': "\<And>i. i \<in> I \<Longrightarrow> sets (M' i) = sigma_sets (space (M' i)) (E i)"
|
hoelzl@47694
|
811 |
and rv: "\<And>i. i \<in> I \<Longrightarrow> random_variable (M' i) (X i)"
|
hoelzl@47694
|
812 |
and Int_stable: "\<And>i. i \<in> I \<Longrightarrow> Int_stable (E i)"
|
hoelzl@47694
|
813 |
and space: "\<And>i. i \<in> I \<Longrightarrow> space (M' i) \<in> E i" and closed: "\<And>i. i \<in> I \<Longrightarrow> E i \<subseteq> Pow (space (M' i))"
|
hoelzl@47694
|
814 |
shows "indep_vars M' X I \<longleftrightarrow>
|
hoelzl@47694
|
815 |
(\<forall>A\<in>(\<Pi> i\<in>I. E i). prob (\<Inter>j\<in>I. X j -` A j \<inter> space M) = (\<Prod>j\<in>I. prob (X j -` A j \<inter> space M)))"
|
hoelzl@42987
|
816 |
proof -
|
hoelzl@42987
|
817 |
from rv have X: "\<And>i. i \<in> I \<Longrightarrow> X i \<in> space M \<rightarrow> space (M' i)"
|
hoelzl@42987
|
818 |
unfolding measurable_def by simp
|
hoelzl@42987
|
819 |
|
hoelzl@42987
|
820 |
{ fix i assume "i\<in>I"
|
hoelzl@47694
|
821 |
from closed[OF `i \<in> I`]
|
hoelzl@47694
|
822 |
have "sigma_sets (space M) {X i -` A \<inter> space M |A. A \<in> sets (M' i)}
|
hoelzl@47694
|
823 |
= sigma_sets (space M) {X i -` A \<inter> space M |A. A \<in> E i}"
|
hoelzl@47694
|
824 |
unfolding sigma_sets_vimage_commute[OF X, OF `i \<in> I`, symmetric] M'[OF `i \<in> I`]
|
hoelzl@42987
|
825 |
by (subst sigma_sets_sigma_sets_eq) auto }
|
hoelzl@47694
|
826 |
note sigma_sets_X = this
|
hoelzl@42987
|
827 |
|
hoelzl@42987
|
828 |
{ fix i assume "i\<in>I"
|
hoelzl@47694
|
829 |
have "Int_stable {X i -` A \<inter> space M |A. A \<in> E i}"
|
hoelzl@42987
|
830 |
proof (rule Int_stableI)
|
hoelzl@47694
|
831 |
fix a assume "a \<in> {X i -` A \<inter> space M |A. A \<in> E i}"
|
hoelzl@47694
|
832 |
then obtain A where "a = X i -` A \<inter> space M" "A \<in> E i" by auto
|
hoelzl@42987
|
833 |
moreover
|
hoelzl@47694
|
834 |
fix b assume "b \<in> {X i -` A \<inter> space M |A. A \<in> E i}"
|
hoelzl@47694
|
835 |
then obtain B where "b = X i -` B \<inter> space M" "B \<in> E i" by auto
|
hoelzl@42987
|
836 |
moreover
|
hoelzl@42987
|
837 |
have "(X i -` A \<inter> space M) \<inter> (X i -` B \<inter> space M) = X i -` (A \<inter> B) \<inter> space M" by auto
|
hoelzl@42987
|
838 |
moreover note Int_stable[OF `i \<in> I`]
|
hoelzl@42987
|
839 |
ultimately
|
hoelzl@47694
|
840 |
show "a \<inter> b \<in> {X i -` A \<inter> space M |A. A \<in> E i}"
|
hoelzl@42987
|
841 |
by (auto simp del: vimage_Int intro!: exI[of _ "A \<inter> B"] dest: Int_stableD)
|
hoelzl@42987
|
842 |
qed }
|
hoelzl@47694
|
843 |
note indep_sets_X = indep_sets_sigma_sets_iff[OF this]
|
hoelzl@43340
|
844 |
|
hoelzl@42987
|
845 |
{ fix i assume "i \<in> I"
|
hoelzl@47694
|
846 |
{ fix A assume "A \<in> E i"
|
hoelzl@47694
|
847 |
with M'[OF `i \<in> I`] have "A \<in> sets (M' i)" by auto
|
hoelzl@42987
|
848 |
moreover
|
hoelzl@47694
|
849 |
from rv[OF `i\<in>I`] have "X i \<in> measurable M (M' i)" by auto
|
hoelzl@42987
|
850 |
ultimately
|
hoelzl@42987
|
851 |
have "X i -` A \<inter> space M \<in> sets M" by (auto intro: measurable_sets) }
|
hoelzl@42987
|
852 |
with X[OF `i\<in>I`] space[OF `i\<in>I`]
|
hoelzl@47694
|
853 |
have "{X i -` A \<inter> space M |A. A \<in> E i} \<subseteq> events"
|
hoelzl@47694
|
854 |
"space M \<in> {X i -` A \<inter> space M |A. A \<in> E i}"
|
hoelzl@42987
|
855 |
by (auto intro!: exI[of _ "space (M' i)"]) }
|
hoelzl@47694
|
856 |
note indep_sets_finite_X = indep_sets_finite[OF I this]
|
hoelzl@43340
|
857 |
|
hoelzl@47694
|
858 |
have "(\<forall>A\<in>\<Pi> i\<in>I. {X i -` A \<inter> space M |A. A \<in> E i}. prob (INTER I A) = (\<Prod>j\<in>I. prob (A j))) =
|
hoelzl@47694
|
859 |
(\<forall>A\<in>\<Pi> i\<in>I. E i. prob ((\<Inter>j\<in>I. X j -` A j) \<inter> space M) = (\<Prod>x\<in>I. prob (X x -` A x \<inter> space M)))"
|
hoelzl@42987
|
860 |
(is "?L = ?R")
|
hoelzl@42987
|
861 |
proof safe
|
hoelzl@47694
|
862 |
fix A assume ?L and A: "A \<in> (\<Pi> i\<in>I. E i)"
|
hoelzl@42987
|
863 |
from `?L`[THEN bspec, of "\<lambda>i. X i -` A i \<inter> space M"] A `I \<noteq> {}`
|
hoelzl@42987
|
864 |
show "prob ((\<Inter>j\<in>I. X j -` A j) \<inter> space M) = (\<Prod>x\<in>I. prob (X x -` A x \<inter> space M))"
|
hoelzl@42987
|
865 |
by (auto simp add: Pi_iff)
|
hoelzl@42987
|
866 |
next
|
hoelzl@47694
|
867 |
fix A assume ?R and A: "A \<in> (\<Pi> i\<in>I. {X i -` A \<inter> space M |A. A \<in> E i})"
|
hoelzl@47694
|
868 |
from A have "\<forall>i\<in>I. \<exists>B. A i = X i -` B \<inter> space M \<and> B \<in> E i" by auto
|
hoelzl@42987
|
869 |
from bchoice[OF this] obtain B where B: "\<forall>i\<in>I. A i = X i -` B i \<inter> space M"
|
hoelzl@47694
|
870 |
"B \<in> (\<Pi> i\<in>I. E i)" by auto
|
hoelzl@42987
|
871 |
from `?R`[THEN bspec, OF B(2)] B(1) `I \<noteq> {}`
|
hoelzl@42987
|
872 |
show "prob (INTER I A) = (\<Prod>j\<in>I. prob (A j))"
|
hoelzl@42987
|
873 |
by simp
|
hoelzl@42987
|
874 |
qed
|
hoelzl@42987
|
875 |
then show ?thesis using `I \<noteq> {}`
|
hoelzl@47694
|
876 |
by (simp add: rv indep_vars_def indep_sets_X sigma_sets_X indep_sets_finite_X cong: indep_sets_cong)
|
hoelzl@42988
|
877 |
qed
|
hoelzl@42988
|
878 |
|
hoelzl@42989
|
879 |
lemma (in prob_space) indep_vars_compose:
|
hoelzl@42989
|
880 |
assumes "indep_vars M' X I"
|
hoelzl@47694
|
881 |
assumes rv: "\<And>i. i \<in> I \<Longrightarrow> Y i \<in> measurable (M' i) (N i)"
|
hoelzl@42989
|
882 |
shows "indep_vars N (\<lambda>i. Y i \<circ> X i) I"
|
hoelzl@42989
|
883 |
unfolding indep_vars_def
|
hoelzl@42988
|
884 |
proof
|
hoelzl@42989
|
885 |
from rv `indep_vars M' X I`
|
hoelzl@42988
|
886 |
show "\<forall>i\<in>I. random_variable (N i) (Y i \<circ> X i)"
|
hoelzl@47694
|
887 |
by (auto simp: indep_vars_def)
|
hoelzl@42988
|
888 |
|
hoelzl@42988
|
889 |
have "indep_sets (\<lambda>i. sigma_sets (space M) {X i -` A \<inter> space M |A. A \<in> sets (M' i)}) I"
|
hoelzl@42989
|
890 |
using `indep_vars M' X I` by (simp add: indep_vars_def)
|
hoelzl@42988
|
891 |
then show "indep_sets (\<lambda>i. sigma_sets (space M) {(Y i \<circ> X i) -` A \<inter> space M |A. A \<in> sets (N i)}) I"
|
hoelzl@42988
|
892 |
proof (rule indep_sets_mono_sets)
|
hoelzl@42988
|
893 |
fix i assume "i \<in> I"
|
hoelzl@42989
|
894 |
with `indep_vars M' X I` have X: "X i \<in> space M \<rightarrow> space (M' i)"
|
hoelzl@42989
|
895 |
unfolding indep_vars_def measurable_def by auto
|
hoelzl@42988
|
896 |
{ fix A assume "A \<in> sets (N i)"
|
hoelzl@42988
|
897 |
then have "\<exists>B. (Y i \<circ> X i) -` A \<inter> space M = X i -` B \<inter> space M \<and> B \<in> sets (M' i)"
|
hoelzl@42988
|
898 |
by (intro exI[of _ "Y i -` A \<inter> space (M' i)"])
|
haftmann@56154
|
899 |
(auto simp: vimage_comp intro!: measurable_sets rv `i \<in> I` funcset_mem[OF X]) }
|
hoelzl@42988
|
900 |
then show "sigma_sets (space M) {(Y i \<circ> X i) -` A \<inter> space M |A. A \<in> sets (N i)} \<subseteq>
|
hoelzl@42988
|
901 |
sigma_sets (space M) {X i -` A \<inter> space M |A. A \<in> sets (M' i)}"
|
haftmann@56154
|
902 |
by (intro sigma_sets_subseteq) (auto simp: vimage_comp)
|
hoelzl@42988
|
903 |
qed
|
hoelzl@42988
|
904 |
qed
|
hoelzl@42988
|
905 |
|
hoelzl@57447
|
906 |
lemma (in prob_space) indep_vars_compose2:
|
hoelzl@57447
|
907 |
assumes "indep_vars M' X I"
|
hoelzl@57447
|
908 |
assumes rv: "\<And>i. i \<in> I \<Longrightarrow> Y i \<in> measurable (M' i) (N i)"
|
hoelzl@57447
|
909 |
shows "indep_vars N (\<lambda>i x. Y i (X i x)) I"
|
hoelzl@57447
|
910 |
using indep_vars_compose [OF assms] by (simp add: comp_def)
|
hoelzl@57447
|
911 |
|
hoelzl@57235
|
912 |
lemma (in prob_space) indep_var_compose:
|
hoelzl@57235
|
913 |
assumes "indep_var M1 X1 M2 X2" "Y1 \<in> measurable M1 N1" "Y2 \<in> measurable M2 N2"
|
hoelzl@57235
|
914 |
shows "indep_var N1 (Y1 \<circ> X1) N2 (Y2 \<circ> X2)"
|
hoelzl@57235
|
915 |
proof -
|
hoelzl@57235
|
916 |
have "indep_vars (case_bool N1 N2) (\<lambda>b. case_bool Y1 Y2 b \<circ> case_bool X1 X2 b) UNIV"
|
hoelzl@57235
|
917 |
using assms
|
hoelzl@57235
|
918 |
by (intro indep_vars_compose[where M'="case_bool M1 M2"])
|
hoelzl@57235
|
919 |
(auto simp: indep_var_def split: bool.split)
|
hoelzl@57235
|
920 |
also have "(\<lambda>b. case_bool Y1 Y2 b \<circ> case_bool X1 X2 b) = case_bool (Y1 \<circ> X1) (Y2 \<circ> X2)"
|
hoelzl@57235
|
921 |
by (simp add: fun_eq_iff split: bool.split)
|
hoelzl@57235
|
922 |
finally show ?thesis
|
hoelzl@57235
|
923 |
unfolding indep_var_def .
|
hoelzl@57235
|
924 |
qed
|
hoelzl@57235
|
925 |
|
hoelzl@57235
|
926 |
lemma (in prob_space) indep_vars_Min:
|
hoelzl@57235
|
927 |
fixes X :: "'i \<Rightarrow> 'a \<Rightarrow> real"
|
hoelzl@57235
|
928 |
assumes I: "finite I" "i \<notin> I" and indep: "indep_vars (\<lambda>_. borel) X (insert i I)"
|
hoelzl@57235
|
929 |
shows "indep_var borel (X i) borel (\<lambda>\<omega>. Min ((\<lambda>i. X i \<omega>)`I))"
|
hoelzl@57235
|
930 |
proof -
|
hoelzl@57235
|
931 |
have "indep_var
|
hoelzl@57235
|
932 |
borel ((\<lambda>f. f i) \<circ> (\<lambda>\<omega>. restrict (\<lambda>i. X i \<omega>) {i}))
|
hoelzl@57235
|
933 |
borel ((\<lambda>f. Min (f`I)) \<circ> (\<lambda>\<omega>. restrict (\<lambda>i. X i \<omega>) I))"
|
hoelzl@57235
|
934 |
using I by (intro indep_var_compose[OF indep_var_restrict[OF indep]] borel_measurable_Min) auto
|
hoelzl@57235
|
935 |
also have "((\<lambda>f. f i) \<circ> (\<lambda>\<omega>. restrict (\<lambda>i. X i \<omega>) {i})) = X i"
|
hoelzl@57235
|
936 |
by auto
|
hoelzl@57235
|
937 |
also have "((\<lambda>f. Min (f`I)) \<circ> (\<lambda>\<omega>. restrict (\<lambda>i. X i \<omega>) I)) = (\<lambda>\<omega>. Min ((\<lambda>i. X i \<omega>)`I))"
|
hoelzl@57235
|
938 |
by (auto cong: rev_conj_cong)
|
hoelzl@57235
|
939 |
finally show ?thesis
|
hoelzl@57235
|
940 |
unfolding indep_var_def .
|
hoelzl@57235
|
941 |
qed
|
hoelzl@57235
|
942 |
|
hoelzl@57235
|
943 |
lemma (in prob_space) indep_vars_setsum:
|
hoelzl@57235
|
944 |
fixes X :: "'i \<Rightarrow> 'a \<Rightarrow> real"
|
hoelzl@57235
|
945 |
assumes I: "finite I" "i \<notin> I" and indep: "indep_vars (\<lambda>_. borel) X (insert i I)"
|
hoelzl@57235
|
946 |
shows "indep_var borel (X i) borel (\<lambda>\<omega>. \<Sum>i\<in>I. X i \<omega>)"
|
hoelzl@57235
|
947 |
proof -
|
hoelzl@57235
|
948 |
have "indep_var
|
hoelzl@57235
|
949 |
borel ((\<lambda>f. f i) \<circ> (\<lambda>\<omega>. restrict (\<lambda>i. X i \<omega>) {i}))
|
hoelzl@57235
|
950 |
borel ((\<lambda>f. \<Sum>i\<in>I. f i) \<circ> (\<lambda>\<omega>. restrict (\<lambda>i. X i \<omega>) I))"
|
hoelzl@57235
|
951 |
using I by (intro indep_var_compose[OF indep_var_restrict[OF indep]] ) auto
|
hoelzl@57235
|
952 |
also have "((\<lambda>f. f i) \<circ> (\<lambda>\<omega>. restrict (\<lambda>i. X i \<omega>) {i})) = X i"
|
hoelzl@57235
|
953 |
by auto
|
hoelzl@57235
|
954 |
also have "((\<lambda>f. \<Sum>i\<in>I. f i) \<circ> (\<lambda>\<omega>. restrict (\<lambda>i. X i \<omega>) I)) = (\<lambda>\<omega>. \<Sum>i\<in>I. X i \<omega>)"
|
hoelzl@57235
|
955 |
by (auto cong: rev_conj_cong)
|
hoelzl@57235
|
956 |
finally show ?thesis .
|
hoelzl@57235
|
957 |
qed
|
hoelzl@57235
|
958 |
|
hoelzl@57235
|
959 |
lemma (in prob_space) indep_vars_setprod:
|
hoelzl@57235
|
960 |
fixes X :: "'i \<Rightarrow> 'a \<Rightarrow> real"
|
hoelzl@57235
|
961 |
assumes I: "finite I" "i \<notin> I" and indep: "indep_vars (\<lambda>_. borel) X (insert i I)"
|
hoelzl@57235
|
962 |
shows "indep_var borel (X i) borel (\<lambda>\<omega>. \<Prod>i\<in>I. X i \<omega>)"
|
hoelzl@57235
|
963 |
proof -
|
hoelzl@57235
|
964 |
have "indep_var
|
hoelzl@57235
|
965 |
borel ((\<lambda>f. f i) \<circ> (\<lambda>\<omega>. restrict (\<lambda>i. X i \<omega>) {i}))
|
hoelzl@57235
|
966 |
borel ((\<lambda>f. \<Prod>i\<in>I. f i) \<circ> (\<lambda>\<omega>. restrict (\<lambda>i. X i \<omega>) I))"
|
hoelzl@57235
|
967 |
using I by (intro indep_var_compose[OF indep_var_restrict[OF indep]] ) auto
|
hoelzl@57235
|
968 |
also have "((\<lambda>f. f i) \<circ> (\<lambda>\<omega>. restrict (\<lambda>i. X i \<omega>) {i})) = X i"
|
hoelzl@57235
|
969 |
by auto
|
hoelzl@57235
|
970 |
also have "((\<lambda>f. \<Prod>i\<in>I. f i) \<circ> (\<lambda>\<omega>. restrict (\<lambda>i. X i \<omega>) I)) = (\<lambda>\<omega>. \<Prod>i\<in>I. X i \<omega>)"
|
hoelzl@57235
|
971 |
by (auto cong: rev_conj_cong)
|
hoelzl@57235
|
972 |
finally show ?thesis .
|
hoelzl@57235
|
973 |
qed
|
hoelzl@57235
|
974 |
|
hoelzl@47694
|
975 |
lemma (in prob_space) indep_varsD_finite:
|
hoelzl@42989
|
976 |
assumes X: "indep_vars M' X I"
|
hoelzl@42988
|
977 |
assumes I: "I \<noteq> {}" "finite I" "\<And>i. i \<in> I \<Longrightarrow> A i \<in> sets (M' i)"
|
hoelzl@42988
|
978 |
shows "prob (\<Inter>i\<in>I. X i -` A i \<inter> space M) = (\<Prod>i\<in>I. prob (X i -` A i \<inter> space M))"
|
hoelzl@42988
|
979 |
proof (rule indep_setsD)
|
hoelzl@42988
|
980 |
show "indep_sets (\<lambda>i. sigma_sets (space M) {X i -` A \<inter> space M |A. A \<in> sets (M' i)}) I"
|
hoelzl@42989
|
981 |
using X by (auto simp: indep_vars_def)
|
hoelzl@42988
|
982 |
show "I \<subseteq> I" "I \<noteq> {}" "finite I" using I by auto
|
hoelzl@42988
|
983 |
show "\<forall>i\<in>I. X i -` A i \<inter> space M \<in> sigma_sets (space M) {X i -` A \<inter> space M |A. A \<in> sets (M' i)}"
|
hoelzl@47694
|
984 |
using I by auto
|
hoelzl@42988
|
985 |
qed
|
hoelzl@42988
|
986 |
|
hoelzl@47694
|
987 |
lemma (in prob_space) indep_varsD:
|
hoelzl@47694
|
988 |
assumes X: "indep_vars M' X I"
|
hoelzl@47694
|
989 |
assumes I: "J \<noteq> {}" "finite J" "J \<subseteq> I" "\<And>i. i \<in> J \<Longrightarrow> A i \<in> sets (M' i)"
|
hoelzl@47694
|
990 |
shows "prob (\<Inter>i\<in>J. X i -` A i \<inter> space M) = (\<Prod>i\<in>J. prob (X i -` A i \<inter> space M))"
|
hoelzl@47694
|
991 |
proof (rule indep_setsD)
|
hoelzl@47694
|
992 |
show "indep_sets (\<lambda>i. sigma_sets (space M) {X i -` A \<inter> space M |A. A \<in> sets (M' i)}) I"
|
hoelzl@47694
|
993 |
using X by (auto simp: indep_vars_def)
|
hoelzl@47694
|
994 |
show "\<forall>i\<in>J. X i -` A i \<inter> space M \<in> sigma_sets (space M) {X i -` A \<inter> space M |A. A \<in> sets (M' i)}"
|
hoelzl@47694
|
995 |
using I by auto
|
hoelzl@47694
|
996 |
qed fact+
|
hoelzl@47694
|
997 |
|
hoelzl@47694
|
998 |
lemma (in prob_space) indep_vars_iff_distr_eq_PiM:
|
hoelzl@47694
|
999 |
fixes I :: "'i set" and X :: "'i \<Rightarrow> 'a \<Rightarrow> 'b"
|
hoelzl@47694
|
1000 |
assumes "I \<noteq> {}"
|
hoelzl@42988
|
1001 |
assumes rv: "\<And>i. random_variable (M' i) (X i)"
|
hoelzl@42989
|
1002 |
shows "indep_vars M' X I \<longleftrightarrow>
|
wenzelm@53015
|
1003 |
distr M (\<Pi>\<^sub>M i\<in>I. M' i) (\<lambda>x. \<lambda>i\<in>I. X i x) = (\<Pi>\<^sub>M i\<in>I. distr M (M' i) (X i))"
|
hoelzl@42988
|
1004 |
proof -
|
wenzelm@53015
|
1005 |
let ?P = "\<Pi>\<^sub>M i\<in>I. M' i"
|
hoelzl@47694
|
1006 |
let ?X = "\<lambda>x. \<lambda>i\<in>I. X i x"
|
hoelzl@47694
|
1007 |
let ?D = "distr M ?P ?X"
|
hoelzl@47694
|
1008 |
have X: "random_variable ?P ?X" by (intro measurable_restrict rv)
|
hoelzl@47694
|
1009 |
interpret D: prob_space ?D by (intro prob_space_distr X)
|
hoelzl@42988
|
1010 |
|
hoelzl@47694
|
1011 |
let ?D' = "\<lambda>i. distr M (M' i) (X i)"
|
wenzelm@53015
|
1012 |
let ?P' = "\<Pi>\<^sub>M i\<in>I. distr M (M' i) (X i)"
|
hoelzl@47694
|
1013 |
interpret D': prob_space "?D' i" for i by (intro prob_space_distr rv)
|
hoelzl@47694
|
1014 |
interpret P: product_prob_space ?D' I ..
|
hoelzl@47694
|
1015 |
|
hoelzl@42988
|
1016 |
show ?thesis
|
hoelzl@47694
|
1017 |
proof
|
hoelzl@42989
|
1018 |
assume "indep_vars M' X I"
|
hoelzl@47694
|
1019 |
show "?D = ?P'"
|
hoelzl@47694
|
1020 |
proof (rule measure_eqI_generator_eq)
|
hoelzl@47694
|
1021 |
show "Int_stable (prod_algebra I M')"
|
hoelzl@47694
|
1022 |
by (rule Int_stable_prod_algebra)
|
hoelzl@47694
|
1023 |
show "prod_algebra I M' \<subseteq> Pow (space ?P)"
|
hoelzl@47694
|
1024 |
using prod_algebra_sets_into_space by (simp add: space_PiM)
|
hoelzl@47694
|
1025 |
show "sets ?D = sigma_sets (space ?P) (prod_algebra I M')"
|
hoelzl@47694
|
1026 |
by (simp add: sets_PiM space_PiM)
|
hoelzl@47694
|
1027 |
show "sets ?P' = sigma_sets (space ?P) (prod_algebra I M')"
|
hoelzl@47694
|
1028 |
by (simp add: sets_PiM space_PiM cong: prod_algebra_cong)
|
wenzelm@53015
|
1029 |
let ?A = "\<lambda>i. \<Pi>\<^sub>E i\<in>I. space (M' i)"
|
wenzelm@53015
|
1030 |
show "range ?A \<subseteq> prod_algebra I M'" "(\<Union>i. ?A i) = space (Pi\<^sub>M I M')"
|
hoelzl@47694
|
1031 |
by (auto simp: space_PiM intro!: space_in_prod_algebra cong: prod_algebra_cong)
|
wenzelm@53015
|
1032 |
{ fix i show "emeasure ?D (\<Pi>\<^sub>E i\<in>I. space (M' i)) \<noteq> \<infinity>" by auto }
|
hoelzl@47694
|
1033 |
next
|
hoelzl@47694
|
1034 |
fix E assume E: "E \<in> prod_algebra I M'"
|
hoelzl@47694
|
1035 |
from prod_algebraE[OF E] guess J Y . note J = this
|
hoelzl@43340
|
1036 |
|
hoelzl@47694
|
1037 |
from E have "E \<in> sets ?P" by (auto simp: sets_PiM)
|
hoelzl@47694
|
1038 |
then have "emeasure ?D E = emeasure M (?X -` E \<inter> space M)"
|
hoelzl@47694
|
1039 |
by (simp add: emeasure_distr X)
|
hoelzl@47694
|
1040 |
also have "?X -` E \<inter> space M = (\<Inter>i\<in>J. X i -` Y i \<inter> space M)"
|
hoelzl@50123
|
1041 |
using J `I \<noteq> {}` measurable_space[OF rv] by (auto simp: prod_emb_def PiE_iff split: split_if_asm)
|
hoelzl@47694
|
1042 |
also have "emeasure M (\<Inter>i\<in>J. X i -` Y i \<inter> space M) = (\<Prod> i\<in>J. emeasure M (X i -` Y i \<inter> space M))"
|
hoelzl@47694
|
1043 |
using `indep_vars M' X I` J `I \<noteq> {}` using indep_varsD[of M' X I J]
|
hoelzl@47694
|
1044 |
by (auto simp: emeasure_eq_measure setprod_ereal)
|
hoelzl@47694
|
1045 |
also have "\<dots> = (\<Prod> i\<in>J. emeasure (?D' i) (Y i))"
|
hoelzl@47694
|
1046 |
using rv J by (simp add: emeasure_distr)
|
hoelzl@47694
|
1047 |
also have "\<dots> = emeasure ?P' E"
|
hoelzl@47694
|
1048 |
using P.emeasure_PiM_emb[of J Y] J by (simp add: prod_emb_def)
|
hoelzl@47694
|
1049 |
finally show "emeasure ?D E = emeasure ?P' E" .
|
hoelzl@42988
|
1050 |
qed
|
hoelzl@42988
|
1051 |
next
|
hoelzl@47694
|
1052 |
assume "?D = ?P'"
|
hoelzl@47694
|
1053 |
show "indep_vars M' X I" unfolding indep_vars_def
|
hoelzl@47694
|
1054 |
proof (intro conjI indep_setsI ballI rv)
|
hoelzl@47694
|
1055 |
fix i show "sigma_sets (space M) {X i -` A \<inter> space M |A. A \<in> sets (M' i)} \<subseteq> events"
|
immler@50244
|
1056 |
by (auto intro!: sets.sigma_sets_subset measurable_sets rv)
|
hoelzl@42988
|
1057 |
next
|
hoelzl@47694
|
1058 |
fix J Y' assume J: "J \<noteq> {}" "J \<subseteq> I" "finite J"
|
hoelzl@47694
|
1059 |
assume Y': "\<forall>j\<in>J. Y' j \<in> sigma_sets (space M) {X j -` A \<inter> space M |A. A \<in> sets (M' j)}"
|
hoelzl@47694
|
1060 |
have "\<forall>j\<in>J. \<exists>Y. Y' j = X j -` Y \<inter> space M \<and> Y \<in> sets (M' j)"
|
hoelzl@42988
|
1061 |
proof
|
hoelzl@47694
|
1062 |
fix j assume "j \<in> J"
|
hoelzl@47694
|
1063 |
from Y'[rule_format, OF this] rv[of j]
|
hoelzl@47694
|
1064 |
show "\<exists>Y. Y' j = X j -` Y \<inter> space M \<and> Y \<in> sets (M' j)"
|
hoelzl@47694
|
1065 |
by (subst (asm) sigma_sets_vimage_commute[symmetric, of _ _ "space (M' j)"])
|
immler@50244
|
1066 |
(auto dest: measurable_space simp: sets.sigma_sets_eq)
|
hoelzl@42988
|
1067 |
qed
|
hoelzl@47694
|
1068 |
from bchoice[OF this] obtain Y where
|
hoelzl@47694
|
1069 |
Y: "\<And>j. j \<in> J \<Longrightarrow> Y' j = X j -` Y j \<inter> space M" "\<And>j. j \<in> J \<Longrightarrow> Y j \<in> sets (M' j)" by auto
|
wenzelm@53015
|
1070 |
let ?E = "prod_emb I M' J (Pi\<^sub>E J Y)"
|
hoelzl@47694
|
1071 |
from Y have "(\<Inter>j\<in>J. Y' j) = ?X -` ?E \<inter> space M"
|
hoelzl@50123
|
1072 |
using J `I \<noteq> {}` measurable_space[OF rv] by (auto simp: prod_emb_def PiE_iff split: split_if_asm)
|
hoelzl@47694
|
1073 |
then have "emeasure M (\<Inter>j\<in>J. Y' j) = emeasure M (?X -` ?E \<inter> space M)"
|
hoelzl@47694
|
1074 |
by simp
|
hoelzl@47694
|
1075 |
also have "\<dots> = emeasure ?D ?E"
|
hoelzl@47694
|
1076 |
using Y J by (intro emeasure_distr[symmetric] X sets_PiM_I) auto
|
hoelzl@47694
|
1077 |
also have "\<dots> = emeasure ?P' ?E"
|
hoelzl@47694
|
1078 |
using `?D = ?P'` by simp
|
hoelzl@47694
|
1079 |
also have "\<dots> = (\<Prod> i\<in>J. emeasure (?D' i) (Y i))"
|
hoelzl@47694
|
1080 |
using P.emeasure_PiM_emb[of J Y] J Y by (simp add: prod_emb_def)
|
hoelzl@47694
|
1081 |
also have "\<dots> = (\<Prod> i\<in>J. emeasure M (Y' i))"
|
hoelzl@47694
|
1082 |
using rv J Y by (simp add: emeasure_distr)
|
hoelzl@47694
|
1083 |
finally have "emeasure M (\<Inter>j\<in>J. Y' j) = (\<Prod> i\<in>J. emeasure M (Y' i))" .
|
hoelzl@47694
|
1084 |
then show "prob (\<Inter>j\<in>J. Y' j) = (\<Prod> i\<in>J. prob (Y' i))"
|
hoelzl@47694
|
1085 |
by (auto simp: emeasure_eq_measure setprod_ereal)
|
hoelzl@42988
|
1086 |
qed
|
hoelzl@42988
|
1087 |
qed
|
hoelzl@42987
|
1088 |
qed
|
hoelzl@42987
|
1089 |
|
hoelzl@42989
|
1090 |
lemma (in prob_space) indep_varD:
|
hoelzl@42989
|
1091 |
assumes indep: "indep_var Ma A Mb B"
|
hoelzl@42989
|
1092 |
assumes sets: "Xa \<in> sets Ma" "Xb \<in> sets Mb"
|
hoelzl@42989
|
1093 |
shows "prob ((\<lambda>x. (A x, B x)) -` (Xa \<times> Xb) \<inter> space M) =
|
hoelzl@42989
|
1094 |
prob (A -` Xa \<inter> space M) * prob (B -` Xb \<inter> space M)"
|
hoelzl@42989
|
1095 |
proof -
|
hoelzl@42989
|
1096 |
have "prob ((\<lambda>x. (A x, B x)) -` (Xa \<times> Xb) \<inter> space M) =
|
blanchet@55414
|
1097 |
prob (\<Inter>i\<in>UNIV. (case_bool A B i -` case_bool Xa Xb i \<inter> space M))"
|
hoelzl@42989
|
1098 |
by (auto intro!: arg_cong[where f=prob] simp: UNIV_bool)
|
blanchet@55414
|
1099 |
also have "\<dots> = (\<Prod>i\<in>UNIV. prob (case_bool A B i -` case_bool Xa Xb i \<inter> space M))"
|
hoelzl@42989
|
1100 |
using indep unfolding indep_var_def
|
hoelzl@42989
|
1101 |
by (rule indep_varsD) (auto split: bool.split intro: sets)
|
hoelzl@42989
|
1102 |
also have "\<dots> = prob (A -` Xa \<inter> space M) * prob (B -` Xb \<inter> space M)"
|
hoelzl@42989
|
1103 |
unfolding UNIV_bool by simp
|
hoelzl@42989
|
1104 |
finally show ?thesis .
|
hoelzl@42989
|
1105 |
qed
|
hoelzl@42989
|
1106 |
|
hoelzl@57235
|
1107 |
lemma (in prob_space) prob_indep_random_variable:
|
hoelzl@57235
|
1108 |
assumes ind[simp]: "indep_var N X N Y"
|
hoelzl@57235
|
1109 |
assumes [simp]: "A \<in> sets N" "B \<in> sets N"
|
hoelzl@57235
|
1110 |
shows "\<P>(x in M. X x \<in> A \<and> Y x \<in> B) = \<P>(x in M. X x \<in> A) * \<P>(x in M. Y x \<in> B)"
|
hoelzl@57235
|
1111 |
proof-
|
hoelzl@57235
|
1112 |
have " \<P>(x in M. (X x)\<in>A \<and> (Y x)\<in> B ) = prob ((\<lambda>x. (X x, Y x)) -` (A \<times> B) \<inter> space M)"
|
hoelzl@57235
|
1113 |
by (auto intro!: arg_cong[where f= prob])
|
hoelzl@57235
|
1114 |
also have "...= prob (X -` A \<inter> space M) * prob (Y -` B \<inter> space M)"
|
hoelzl@57235
|
1115 |
by (auto intro!: indep_varD[where Ma=N and Mb=N])
|
hoelzl@57235
|
1116 |
also have "... = \<P>(x in M. X x \<in> A) * \<P>(x in M. Y x \<in> B)"
|
hoelzl@57235
|
1117 |
by (auto intro!: arg_cong2[where f= "op *"] arg_cong[where f= prob])
|
hoelzl@57235
|
1118 |
finally show ?thesis .
|
hoelzl@57235
|
1119 |
qed
|
hoelzl@57235
|
1120 |
|
hoelzl@43340
|
1121 |
lemma (in prob_space)
|
hoelzl@43340
|
1122 |
assumes "indep_var S X T Y"
|
hoelzl@43340
|
1123 |
shows indep_var_rv1: "random_variable S X"
|
hoelzl@43340
|
1124 |
and indep_var_rv2: "random_variable T Y"
|
hoelzl@43340
|
1125 |
proof -
|
blanchet@55414
|
1126 |
have "\<forall>i\<in>UNIV. random_variable (case_bool S T i) (case_bool X Y i)"
|
hoelzl@43340
|
1127 |
using assms unfolding indep_var_def indep_vars_def by auto
|
hoelzl@43340
|
1128 |
then show "random_variable S X" "random_variable T Y"
|
hoelzl@43340
|
1129 |
unfolding UNIV_bool by auto
|
hoelzl@43340
|
1130 |
qed
|
hoelzl@43340
|
1131 |
|
hoelzl@47694
|
1132 |
lemma (in prob_space) indep_var_distribution_eq:
|
hoelzl@47694
|
1133 |
"indep_var S X T Y \<longleftrightarrow> random_variable S X \<and> random_variable T Y \<and>
|
wenzelm@53015
|
1134 |
distr M S X \<Otimes>\<^sub>M distr M T Y = distr M (S \<Otimes>\<^sub>M T) (\<lambda>x. (X x, Y x))" (is "_ \<longleftrightarrow> _ \<and> _ \<and> ?S \<Otimes>\<^sub>M ?T = ?J")
|
hoelzl@47694
|
1135 |
proof safe
|
hoelzl@47694
|
1136 |
assume "indep_var S X T Y"
|
hoelzl@47694
|
1137 |
then show rvs: "random_variable S X" "random_variable T Y"
|
hoelzl@47694
|
1138 |
by (blast dest: indep_var_rv1 indep_var_rv2)+
|
wenzelm@53015
|
1139 |
then have XY: "random_variable (S \<Otimes>\<^sub>M T) (\<lambda>x. (X x, Y x))"
|
hoelzl@47694
|
1140 |
by (rule measurable_Pair)
|
hoelzl@47694
|
1141 |
|
hoelzl@47694
|
1142 |
interpret X: prob_space ?S by (rule prob_space_distr) fact
|
hoelzl@47694
|
1143 |
interpret Y: prob_space ?T by (rule prob_space_distr) fact
|
hoelzl@47694
|
1144 |
interpret XY: pair_prob_space ?S ?T ..
|
wenzelm@53015
|
1145 |
show "?S \<Otimes>\<^sub>M ?T = ?J"
|
hoelzl@47694
|
1146 |
proof (rule pair_measure_eqI)
|
hoelzl@47694
|
1147 |
show "sigma_finite_measure ?S" ..
|
hoelzl@47694
|
1148 |
show "sigma_finite_measure ?T" ..
|
hoelzl@43340
|
1149 |
|
hoelzl@47694
|
1150 |
fix A B assume A: "A \<in> sets ?S" and B: "B \<in> sets ?T"
|
hoelzl@47694
|
1151 |
have "emeasure ?J (A \<times> B) = emeasure M ((\<lambda>x. (X x, Y x)) -` (A \<times> B) \<inter> space M)"
|
hoelzl@47694
|
1152 |
using A B by (intro emeasure_distr[OF XY]) auto
|
hoelzl@47694
|
1153 |
also have "\<dots> = emeasure M (X -` A \<inter> space M) * emeasure M (Y -` B \<inter> space M)"
|
hoelzl@47694
|
1154 |
using indep_varD[OF `indep_var S X T Y`, of A B] A B by (simp add: emeasure_eq_measure)
|
hoelzl@47694
|
1155 |
also have "\<dots> = emeasure ?S A * emeasure ?T B"
|
hoelzl@47694
|
1156 |
using rvs A B by (simp add: emeasure_distr)
|
hoelzl@47694
|
1157 |
finally show "emeasure ?S A * emeasure ?T B = emeasure ?J (A \<times> B)" by simp
|
hoelzl@47694
|
1158 |
qed simp
|
hoelzl@47694
|
1159 |
next
|
hoelzl@47694
|
1160 |
assume rvs: "random_variable S X" "random_variable T Y"
|
wenzelm@53015
|
1161 |
then have XY: "random_variable (S \<Otimes>\<^sub>M T) (\<lambda>x. (X x, Y x))"
|
hoelzl@47694
|
1162 |
by (rule measurable_Pair)
|
hoelzl@43340
|
1163 |
|
hoelzl@47694
|
1164 |
let ?S = "distr M S X" and ?T = "distr M T Y"
|
hoelzl@47694
|
1165 |
interpret X: prob_space ?S by (rule prob_space_distr) fact
|
hoelzl@47694
|
1166 |
interpret Y: prob_space ?T by (rule prob_space_distr) fact
|
hoelzl@47694
|
1167 |
interpret XY: pair_prob_space ?S ?T ..
|
hoelzl@47694
|
1168 |
|
wenzelm@53015
|
1169 |
assume "?S \<Otimes>\<^sub>M ?T = ?J"
|
hoelzl@43340
|
1170 |
|
hoelzl@47694
|
1171 |
{ fix S and X
|
hoelzl@47694
|
1172 |
have "Int_stable {X -` A \<inter> space M |A. A \<in> sets S}"
|
hoelzl@47694
|
1173 |
proof (safe intro!: Int_stableI)
|
hoelzl@47694
|
1174 |
fix A B assume "A \<in> sets S" "B \<in> sets S"
|
hoelzl@47694
|
1175 |
then show "\<exists>C. (X -` A \<inter> space M) \<inter> (X -` B \<inter> space M) = (X -` C \<inter> space M) \<and> C \<in> sets S"
|
hoelzl@47694
|
1176 |
by (intro exI[of _ "A \<inter> B"]) auto
|
hoelzl@47694
|
1177 |
qed }
|
hoelzl@47694
|
1178 |
note Int_stable = this
|
hoelzl@47694
|
1179 |
|
hoelzl@47694
|
1180 |
show "indep_var S X T Y" unfolding indep_var_eq
|
hoelzl@47694
|
1181 |
proof (intro conjI indep_set_sigma_sets Int_stable rvs)
|
hoelzl@47694
|
1182 |
show "indep_set {X -` A \<inter> space M |A. A \<in> sets S} {Y -` A \<inter> space M |A. A \<in> sets T}"
|
hoelzl@47694
|
1183 |
proof (safe intro!: indep_setI)
|
hoelzl@47694
|
1184 |
{ fix A assume "A \<in> sets S" then show "X -` A \<inter> space M \<in> sets M"
|
hoelzl@47694
|
1185 |
using `X \<in> measurable M S` by (auto intro: measurable_sets) }
|
hoelzl@47694
|
1186 |
{ fix A assume "A \<in> sets T" then show "Y -` A \<inter> space M \<in> sets M"
|
hoelzl@47694
|
1187 |
using `Y \<in> measurable M T` by (auto intro: measurable_sets) }
|
hoelzl@47694
|
1188 |
next
|
hoelzl@47694
|
1189 |
fix A B assume ab: "A \<in> sets S" "B \<in> sets T"
|
hoelzl@47694
|
1190 |
then have "ereal (prob ((X -` A \<inter> space M) \<inter> (Y -` B \<inter> space M))) = emeasure ?J (A \<times> B)"
|
hoelzl@47694
|
1191 |
using XY by (auto simp add: emeasure_distr emeasure_eq_measure intro!: arg_cong[where f="prob"])
|
wenzelm@53015
|
1192 |
also have "\<dots> = emeasure (?S \<Otimes>\<^sub>M ?T) (A \<times> B)"
|
wenzelm@53015
|
1193 |
unfolding `?S \<Otimes>\<^sub>M ?T = ?J` ..
|
hoelzl@47694
|
1194 |
also have "\<dots> = emeasure ?S A * emeasure ?T B"
|
hoelzl@49776
|
1195 |
using ab by (simp add: Y.emeasure_pair_measure_Times)
|
hoelzl@47694
|
1196 |
finally show "prob ((X -` A \<inter> space M) \<inter> (Y -` B \<inter> space M)) =
|
hoelzl@47694
|
1197 |
prob (X -` A \<inter> space M) * prob (Y -` B \<inter> space M)"
|
hoelzl@47694
|
1198 |
using rvs ab by (simp add: emeasure_eq_measure emeasure_distr)
|
hoelzl@47694
|
1199 |
qed
|
hoelzl@43340
|
1200 |
qed
|
hoelzl@43340
|
1201 |
qed
|
hoelzl@42989
|
1202 |
|
hoelzl@49795
|
1203 |
lemma (in prob_space) distributed_joint_indep:
|
hoelzl@49795
|
1204 |
assumes S: "sigma_finite_measure S" and T: "sigma_finite_measure T"
|
hoelzl@49795
|
1205 |
assumes X: "distributed M S X Px" and Y: "distributed M T Y Py"
|
hoelzl@49795
|
1206 |
assumes indep: "indep_var S X T Y"
|
wenzelm@53015
|
1207 |
shows "distributed M (S \<Otimes>\<^sub>M T) (\<lambda>x. (X x, Y x)) (\<lambda>(x, y). Px x * Py y)"
|
hoelzl@49795
|
1208 |
using indep_var_distribution_eq[of S X T Y] indep
|
hoelzl@49795
|
1209 |
by (intro distributed_joint_indep'[OF S T X Y]) auto
|
hoelzl@49795
|
1210 |
|
hoelzl@57235
|
1211 |
lemma (in prob_space) indep_vars_nn_integral:
|
hoelzl@57235
|
1212 |
assumes I: "finite I" "indep_vars (\<lambda>_. borel) X I" "\<And>i \<omega>. i \<in> I \<Longrightarrow> 0 \<le> X i \<omega>"
|
hoelzl@57235
|
1213 |
shows "(\<integral>\<^sup>+\<omega>. (\<Prod>i\<in>I. X i \<omega>) \<partial>M) = (\<Prod>i\<in>I. \<integral>\<^sup>+\<omega>. X i \<omega> \<partial>M)"
|
hoelzl@57235
|
1214 |
proof cases
|
hoelzl@57235
|
1215 |
assume "I \<noteq> {}"
|
hoelzl@57235
|
1216 |
def Y \<equiv> "\<lambda>i \<omega>. if i \<in> I then X i \<omega> else 0"
|
hoelzl@57235
|
1217 |
{ fix i have "i \<in> I \<Longrightarrow> random_variable borel (X i)"
|
hoelzl@57235
|
1218 |
using I(2) by (cases "i\<in>I") (auto simp: indep_vars_def) }
|
hoelzl@57235
|
1219 |
note rv_X = this
|
hoelzl@57235
|
1220 |
|
hoelzl@57235
|
1221 |
{ fix i have "random_variable borel (Y i)"
|
hoelzl@57235
|
1222 |
using I(2) by (cases "i\<in>I") (auto simp: Y_def rv_X) }
|
hoelzl@57235
|
1223 |
note rv_Y = this[measurable]
|
hoelzl@57235
|
1224 |
|
hoelzl@57235
|
1225 |
interpret Y: prob_space "distr M borel (Y i)" for i
|
hoelzl@57235
|
1226 |
using I(2) by (cases "i \<in> I") (auto intro!: prob_space_distr simp: Y_def indep_vars_def)
|
hoelzl@57235
|
1227 |
interpret product_sigma_finite "\<lambda>i. distr M borel (Y i)"
|
hoelzl@57235
|
1228 |
..
|
hoelzl@57235
|
1229 |
|
hoelzl@57235
|
1230 |
have indep_Y: "indep_vars (\<lambda>i. borel) Y I"
|
hoelzl@57235
|
1231 |
by (rule indep_vars_cong[THEN iffD1, OF _ _ _ I(2)]) (auto simp: Y_def)
|
hoelzl@57235
|
1232 |
|
hoelzl@57235
|
1233 |
have "(\<integral>\<^sup>+\<omega>. (\<Prod>i\<in>I. X i \<omega>) \<partial>M) = (\<integral>\<^sup>+\<omega>. (\<Prod>i\<in>I. max 0 (Y i \<omega>)) \<partial>M)"
|
haftmann@57418
|
1234 |
using I(3) by (auto intro!: nn_integral_cong setprod.cong simp add: Y_def max_def)
|
hoelzl@57235
|
1235 |
also have "\<dots> = (\<integral>\<^sup>+\<omega>. (\<Prod>i\<in>I. max 0 (\<omega> i)) \<partial>distr M (Pi\<^sub>M I (\<lambda>i. borel)) (\<lambda>x. \<lambda>i\<in>I. Y i x))"
|
hoelzl@57235
|
1236 |
by (subst nn_integral_distr) auto
|
hoelzl@57235
|
1237 |
also have "\<dots> = (\<integral>\<^sup>+\<omega>. (\<Prod>i\<in>I. max 0 (\<omega> i)) \<partial>Pi\<^sub>M I (\<lambda>i. distr M borel (Y i)))"
|
hoelzl@57235
|
1238 |
unfolding indep_vars_iff_distr_eq_PiM[THEN iffD1, OF `I \<noteq> {}` rv_Y indep_Y] ..
|
hoelzl@57235
|
1239 |
also have "\<dots> = (\<Prod>i\<in>I. (\<integral>\<^sup>+\<omega>. max 0 \<omega> \<partial>distr M borel (Y i)))"
|
hoelzl@57235
|
1240 |
by (rule product_nn_integral_setprod) (auto intro: `finite I`)
|
hoelzl@57235
|
1241 |
also have "\<dots> = (\<Prod>i\<in>I. \<integral>\<^sup>+\<omega>. X i \<omega> \<partial>M)"
|
haftmann@57418
|
1242 |
by (intro setprod.cong nn_integral_cong)
|
hoelzl@57235
|
1243 |
(auto simp: nn_integral_distr nn_integral_max_0 Y_def rv_X)
|
hoelzl@57235
|
1244 |
finally show ?thesis .
|
hoelzl@57235
|
1245 |
qed (simp add: emeasure_space_1)
|
hoelzl@57235
|
1246 |
|
hoelzl@57235
|
1247 |
lemma (in prob_space)
|
hoelzl@57235
|
1248 |
fixes X :: "'i \<Rightarrow> 'a \<Rightarrow> 'b::{real_normed_field, banach, second_countable_topology}"
|
hoelzl@57235
|
1249 |
assumes I: "finite I" "indep_vars (\<lambda>_. borel) X I" "\<And>i. i \<in> I \<Longrightarrow> integrable M (X i)"
|
hoelzl@57235
|
1250 |
shows indep_vars_lebesgue_integral: "(\<integral>\<omega>. (\<Prod>i\<in>I. X i \<omega>) \<partial>M) = (\<Prod>i\<in>I. \<integral>\<omega>. X i \<omega> \<partial>M)" (is ?eq)
|
hoelzl@57235
|
1251 |
and indep_vars_integrable: "integrable M (\<lambda>\<omega>. (\<Prod>i\<in>I. X i \<omega>))" (is ?int)
|
hoelzl@57235
|
1252 |
proof (induct rule: case_split)
|
hoelzl@57235
|
1253 |
assume "I \<noteq> {}"
|
hoelzl@57235
|
1254 |
def Y \<equiv> "\<lambda>i \<omega>. if i \<in> I then X i \<omega> else 0"
|
hoelzl@57235
|
1255 |
{ fix i have "i \<in> I \<Longrightarrow> random_variable borel (X i)"
|
hoelzl@57235
|
1256 |
using I(2) by (cases "i\<in>I") (auto simp: indep_vars_def) }
|
hoelzl@57235
|
1257 |
note rv_X = this[measurable]
|
hoelzl@57235
|
1258 |
|
hoelzl@57235
|
1259 |
{ fix i have "random_variable borel (Y i)"
|
hoelzl@57235
|
1260 |
using I(2) by (cases "i\<in>I") (auto simp: Y_def rv_X) }
|
hoelzl@57235
|
1261 |
note rv_Y = this[measurable]
|
hoelzl@57235
|
1262 |
|
hoelzl@57235
|
1263 |
{ fix i have "integrable M (Y i)"
|
hoelzl@57235
|
1264 |
using I(3) by (cases "i\<in>I") (auto simp: Y_def) }
|
hoelzl@57235
|
1265 |
note int_Y = this
|
hoelzl@57235
|
1266 |
|
hoelzl@57235
|
1267 |
interpret Y: prob_space "distr M borel (Y i)" for i
|
hoelzl@57235
|
1268 |
using I(2) by (cases "i \<in> I") (auto intro!: prob_space_distr simp: Y_def indep_vars_def)
|
hoelzl@57235
|
1269 |
interpret product_sigma_finite "\<lambda>i. distr M borel (Y i)"
|
hoelzl@57235
|
1270 |
..
|
hoelzl@57235
|
1271 |
|
hoelzl@57235
|
1272 |
have indep_Y: "indep_vars (\<lambda>i. borel) Y I"
|
hoelzl@57235
|
1273 |
by (rule indep_vars_cong[THEN iffD1, OF _ _ _ I(2)]) (auto simp: Y_def)
|
hoelzl@57235
|
1274 |
|
hoelzl@57235
|
1275 |
have "(\<integral>\<omega>. (\<Prod>i\<in>I. X i \<omega>) \<partial>M) = (\<integral>\<omega>. (\<Prod>i\<in>I. Y i \<omega>) \<partial>M)"
|
hoelzl@57235
|
1276 |
using I(3) by (simp add: Y_def)
|
hoelzl@57235
|
1277 |
also have "\<dots> = (\<integral>\<omega>. (\<Prod>i\<in>I. \<omega> i) \<partial>distr M (Pi\<^sub>M I (\<lambda>i. borel)) (\<lambda>x. \<lambda>i\<in>I. Y i x))"
|
hoelzl@57235
|
1278 |
by (subst integral_distr) auto
|
hoelzl@57235
|
1279 |
also have "\<dots> = (\<integral>\<omega>. (\<Prod>i\<in>I. \<omega> i) \<partial>Pi\<^sub>M I (\<lambda>i. distr M borel (Y i)))"
|
hoelzl@57235
|
1280 |
unfolding indep_vars_iff_distr_eq_PiM[THEN iffD1, OF `I \<noteq> {}` rv_Y indep_Y] ..
|
hoelzl@57235
|
1281 |
also have "\<dots> = (\<Prod>i\<in>I. (\<integral>\<omega>. \<omega> \<partial>distr M borel (Y i)))"
|
hoelzl@57235
|
1282 |
by (rule product_integral_setprod) (auto intro: `finite I` simp: integrable_distr_eq int_Y)
|
hoelzl@57235
|
1283 |
also have "\<dots> = (\<Prod>i\<in>I. \<integral>\<omega>. X i \<omega> \<partial>M)"
|
haftmann@57418
|
1284 |
by (intro setprod.cong integral_cong)
|
hoelzl@57235
|
1285 |
(auto simp: integral_distr Y_def rv_X)
|
hoelzl@57235
|
1286 |
finally show ?eq .
|
hoelzl@57235
|
1287 |
|
hoelzl@57235
|
1288 |
have "integrable (distr M (Pi\<^sub>M I (\<lambda>i. borel)) (\<lambda>x. \<lambda>i\<in>I. Y i x)) (\<lambda>\<omega>. (\<Prod>i\<in>I. \<omega> i))"
|
hoelzl@57235
|
1289 |
unfolding indep_vars_iff_distr_eq_PiM[THEN iffD1, OF `I \<noteq> {}` rv_Y indep_Y]
|
hoelzl@57235
|
1290 |
by (intro product_integrable_setprod[OF `finite I`])
|
hoelzl@57235
|
1291 |
(simp add: integrable_distr_eq int_Y)
|
hoelzl@57235
|
1292 |
then show ?int
|
hoelzl@57235
|
1293 |
by (simp add: integrable_distr_eq Y_def)
|
hoelzl@57235
|
1294 |
qed (simp_all add: prob_space)
|
hoelzl@57235
|
1295 |
|
hoelzl@57235
|
1296 |
lemma (in prob_space)
|
hoelzl@57235
|
1297 |
fixes X1 X2 :: "'a \<Rightarrow> 'b::{real_normed_field, banach, second_countable_topology}"
|
hoelzl@57235
|
1298 |
assumes "indep_var borel X1 borel X2" "integrable M X1" "integrable M X2"
|
hoelzl@57235
|
1299 |
shows indep_var_lebesgue_integral: "(\<integral>\<omega>. X1 \<omega> * X2 \<omega> \<partial>M) = (\<integral>\<omega>. X1 \<omega> \<partial>M) * (\<integral>\<omega>. X2 \<omega> \<partial>M)" (is ?eq)
|
hoelzl@57235
|
1300 |
and indep_var_integrable: "integrable M (\<lambda>\<omega>. X1 \<omega> * X2 \<omega>)" (is ?int)
|
hoelzl@57235
|
1301 |
unfolding indep_var_def
|
hoelzl@57235
|
1302 |
proof -
|
hoelzl@57235
|
1303 |
have *: "(\<lambda>\<omega>. X1 \<omega> * X2 \<omega>) = (\<lambda>\<omega>. \<Prod>i\<in>UNIV. (case_bool X1 X2 i \<omega>))"
|
haftmann@57512
|
1304 |
by (simp add: UNIV_bool mult.commute)
|
hoelzl@57235
|
1305 |
have **: "(\<lambda> _. borel) = case_bool borel borel"
|
hoelzl@57235
|
1306 |
by (rule ext, metis (full_types) bool.simps(3) bool.simps(4))
|
hoelzl@57235
|
1307 |
show ?eq
|
hoelzl@57235
|
1308 |
apply (subst *)
|
hoelzl@57235
|
1309 |
apply (subst indep_vars_lebesgue_integral)
|
hoelzl@57235
|
1310 |
apply (auto)
|
hoelzl@57235
|
1311 |
apply (subst **, subst indep_var_def [symmetric], rule assms)
|
hoelzl@57235
|
1312 |
apply (simp split: bool.split add: assms)
|
haftmann@57512
|
1313 |
by (simp add: UNIV_bool mult.commute)
|
hoelzl@57235
|
1314 |
show ?int
|
hoelzl@57235
|
1315 |
apply (subst *)
|
hoelzl@57235
|
1316 |
apply (rule indep_vars_integrable)
|
hoelzl@57235
|
1317 |
apply auto
|
hoelzl@57235
|
1318 |
apply (subst **, subst indep_var_def [symmetric], rule assms)
|
hoelzl@57235
|
1319 |
by (simp split: bool.split add: assms)
|
hoelzl@57235
|
1320 |
qed
|
hoelzl@57235
|
1321 |
|
hoelzl@42861
|
1322 |
end
|