src/Pure/meta_simplifier.ML
author wenzelm
Thu Dec 22 00:29:00 2005 +0100 (2005-12-22)
changeset 18470 19be817913c4
parent 18208 dbdcf366db53
child 18573 0ee7eab8c845
permissions -rw-r--r--
renamed imp_cong' to imp_cong_rule;
berghofe@10413
     1
(*  Title:      Pure/meta_simplifier.ML
berghofe@10413
     2
    ID:         $Id$
wenzelm@11672
     3
    Author:     Tobias Nipkow and Stefan Berghofer
berghofe@10413
     4
wenzelm@11672
     5
Meta-level Simplification.
berghofe@10413
     6
*)
berghofe@10413
     7
skalberg@15006
     8
infix 4
wenzelm@15023
     9
  addsimps delsimps addeqcongs deleqcongs addcongs delcongs addsimprocs delsimprocs
nipkow@15199
    10
  setmksimps setmkcong setmksym setmkeqTrue settermless setsubgoaler
wenzelm@17882
    11
  setloop' setloop addloop addloop' delloop setSSolver addSSolver setSolver addSolver;
skalberg@15006
    12
wenzelm@11672
    13
signature BASIC_META_SIMPLIFIER =
wenzelm@11672
    14
sig
wenzelm@15023
    15
  val debug_simp: bool ref
wenzelm@11672
    16
  val trace_simp: bool ref
nipkow@13828
    17
  val simp_depth_limit: int ref
nipkow@16042
    18
  val trace_simp_depth_limit: int ref
wenzelm@15023
    19
  type rrule
wenzelm@16807
    20
  val eq_rrule: rrule * rrule -> bool
wenzelm@15023
    21
  type cong
wenzelm@15023
    22
  type simpset
wenzelm@15023
    23
  type proc
wenzelm@17614
    24
  type solver
wenzelm@17614
    25
  val mk_solver': string -> (simpset -> int -> tactic) -> solver
wenzelm@17614
    26
  val mk_solver: string -> (thm list -> int -> tactic) -> solver
skalberg@15006
    27
  val rep_ss: simpset ->
wenzelm@15023
    28
   {rules: rrule Net.net,
wenzelm@15023
    29
    prems: thm list,
wenzelm@17882
    30
    bounds: int * ((string * typ) * string) list,
wenzelm@17882
    31
    context: Context.proof option} *
wenzelm@15023
    32
   {congs: (string * cong) list * string list,
wenzelm@15023
    33
    procs: proc Net.net,
wenzelm@15023
    34
    mk_rews:
wenzelm@15023
    35
     {mk: thm -> thm list,
wenzelm@15023
    36
      mk_cong: thm -> thm,
wenzelm@15023
    37
      mk_sym: thm -> thm option,
wenzelm@18208
    38
      mk_eq_True: thm -> thm option,
wenzelm@18208
    39
      reorient: theory -> term list -> term -> term -> bool},
wenzelm@15023
    40
    termless: term * term -> bool,
skalberg@15006
    41
    subgoal_tac: simpset -> int -> tactic,
wenzelm@17882
    42
    loop_tacs: (string * (simpset -> int -> tactic)) list,
wenzelm@15023
    43
    solvers: solver list * solver list}
skalberg@15006
    44
  val print_ss: simpset -> unit
wenzelm@15023
    45
  val empty_ss: simpset
wenzelm@15023
    46
  val merge_ss: simpset * simpset -> simpset
wenzelm@15023
    47
  type simproc
wenzelm@15023
    48
  val mk_simproc: string -> cterm list ->
wenzelm@16458
    49
    (theory -> simpset -> term -> thm option) -> simproc
wenzelm@15023
    50
  val add_prems: thm list -> simpset -> simpset
wenzelm@15023
    51
  val prems_of_ss: simpset -> thm list
wenzelm@15023
    52
  val addsimps: simpset * thm list -> simpset
wenzelm@15023
    53
  val delsimps: simpset * thm list -> simpset
wenzelm@15023
    54
  val addeqcongs: simpset * thm list -> simpset
wenzelm@15023
    55
  val deleqcongs: simpset * thm list -> simpset
wenzelm@15023
    56
  val addcongs: simpset * thm list -> simpset
wenzelm@15023
    57
  val delcongs: simpset * thm list -> simpset
wenzelm@15023
    58
  val addsimprocs: simpset * simproc list -> simpset
wenzelm@15023
    59
  val delsimprocs: simpset * simproc list -> simpset
wenzelm@15023
    60
  val setmksimps: simpset * (thm -> thm list) -> simpset
wenzelm@15023
    61
  val setmkcong: simpset * (thm -> thm) -> simpset
wenzelm@15023
    62
  val setmksym: simpset * (thm -> thm option) -> simpset
wenzelm@15023
    63
  val setmkeqTrue: simpset * (thm -> thm option) -> simpset
wenzelm@15023
    64
  val settermless: simpset * (term * term -> bool) -> simpset
wenzelm@15023
    65
  val setsubgoaler: simpset * (simpset -> int -> tactic) -> simpset
wenzelm@17882
    66
  val setloop': simpset * (simpset -> int -> tactic) -> simpset
wenzelm@15023
    67
  val setloop: simpset * (int -> tactic) -> simpset
wenzelm@17882
    68
  val addloop': simpset * (string * (simpset -> int -> tactic)) -> simpset
wenzelm@15023
    69
  val addloop: simpset * (string * (int -> tactic)) -> simpset
wenzelm@15023
    70
  val delloop: simpset * string -> simpset
wenzelm@15023
    71
  val setSSolver: simpset * solver -> simpset
wenzelm@15023
    72
  val addSSolver: simpset * solver -> simpset
wenzelm@15023
    73
  val setSolver: simpset * solver -> simpset
wenzelm@15023
    74
  val addSolver: simpset * solver -> simpset
skalberg@15006
    75
end;
skalberg@15006
    76
berghofe@10413
    77
signature META_SIMPLIFIER =
berghofe@10413
    78
sig
wenzelm@11672
    79
  include BASIC_META_SIMPLIFIER
berghofe@10413
    80
  exception SIMPLIFIER of string * thm
wenzelm@17966
    81
  val solver: simpset -> solver -> int -> tactic
wenzelm@15023
    82
  val clear_ss: simpset -> simpset
wenzelm@15023
    83
  exception SIMPROC_FAIL of string * exn
wenzelm@16458
    84
  val simproc_i: theory -> string -> term list
wenzelm@16458
    85
    -> (theory -> simpset -> term -> thm option) -> simproc
wenzelm@16458
    86
  val simproc: theory -> string -> string list
wenzelm@16458
    87
    -> (theory -> simpset -> term -> thm option) -> simproc
wenzelm@17882
    88
  val inherit_context: simpset -> simpset -> simpset
wenzelm@17882
    89
  val the_context: simpset -> Context.proof
wenzelm@17897
    90
  val context: Context.proof -> simpset -> simpset
wenzelm@17897
    91
  val theory_context: theory  -> simpset -> simpset
wenzelm@17723
    92
  val debug_bounds: bool ref
wenzelm@18208
    93
  val set_reorient: (theory -> term list -> term -> term -> bool) -> simpset -> simpset
wenzelm@17966
    94
  val set_solvers: solver list -> simpset -> simpset
wenzelm@11672
    95
  val rewrite_cterm: bool * bool * bool ->
wenzelm@15023
    96
    (simpset -> thm -> thm option) -> simpset -> cterm -> thm
wenzelm@15023
    97
  val rewrite_aux: (simpset -> thm -> thm option) -> bool -> thm list -> cterm -> thm
wenzelm@15023
    98
  val simplify_aux: (simpset -> thm -> thm option) -> bool -> thm list -> thm -> thm
wenzelm@16458
    99
  val rewrite_term: theory -> thm list -> (term -> term option) list -> term -> term
wenzelm@15023
   100
  val rewrite_thm: bool * bool * bool ->
wenzelm@15023
   101
    (simpset -> thm -> thm option) -> simpset -> thm -> thm
wenzelm@15023
   102
  val rewrite_goals_rule_aux: (simpset -> thm -> thm option) -> thm list -> thm -> thm
wenzelm@15023
   103
  val rewrite_goal_rule: bool * bool * bool ->
wenzelm@15023
   104
    (simpset -> thm -> thm option) -> simpset -> int -> thm -> thm
berghofe@10413
   105
end;
berghofe@10413
   106
wenzelm@15023
   107
structure MetaSimplifier: META_SIMPLIFIER =
berghofe@10413
   108
struct
berghofe@10413
   109
wenzelm@15023
   110
wenzelm@15023
   111
(** datatype simpset **)
wenzelm@15023
   112
wenzelm@15023
   113
(* rewrite rules *)
berghofe@10413
   114
berghofe@13607
   115
type rrule = {thm: thm, name: string, lhs: term, elhs: cterm, fo: bool, perm: bool};
wenzelm@15023
   116
wenzelm@15023
   117
(*thm: the rewrite rule;
wenzelm@15023
   118
  name: name of theorem from which rewrite rule was extracted;
wenzelm@15023
   119
  lhs: the left-hand side;
wenzelm@15023
   120
  elhs: the etac-contracted lhs;
wenzelm@15023
   121
  fo: use first-order matching;
wenzelm@15023
   122
  perm: the rewrite rule is permutative;
wenzelm@15023
   123
wenzelm@12603
   124
Remarks:
berghofe@10413
   125
  - elhs is used for matching,
wenzelm@15023
   126
    lhs only for preservation of bound variable names;
berghofe@10413
   127
  - fo is set iff
berghofe@10413
   128
    either elhs is first-order (no Var is applied),
wenzelm@15023
   129
      in which case fo-matching is complete,
berghofe@10413
   130
    or elhs is not a pattern,
wenzelm@15023
   131
      in which case there is nothing better to do;*)
berghofe@10413
   132
berghofe@10413
   133
fun eq_rrule ({thm = thm1, ...}: rrule, {thm = thm2, ...}: rrule) =
wenzelm@15023
   134
  Drule.eq_thm_prop (thm1, thm2);
wenzelm@15023
   135
wenzelm@15023
   136
wenzelm@15023
   137
(* congruences *)
wenzelm@15023
   138
wenzelm@15023
   139
type cong = {thm: thm, lhs: cterm};
berghofe@10413
   140
wenzelm@12603
   141
fun eq_cong ({thm = thm1, ...}: cong, {thm = thm2, ...}: cong) =
wenzelm@15023
   142
  Drule.eq_thm_prop (thm1, thm2);
berghofe@10413
   143
berghofe@10413
   144
wenzelm@17614
   145
(* simplification sets, procedures, and solvers *)
wenzelm@15023
   146
wenzelm@15023
   147
(*A simpset contains data required during conversion:
berghofe@10413
   148
    rules: discrimination net of rewrite rules;
wenzelm@15023
   149
    prems: current premises;
berghofe@15249
   150
    bounds: maximal index of bound variables already used
wenzelm@15023
   151
      (for generating new names when rewriting under lambda abstractions);
berghofe@10413
   152
    congs: association list of congruence rules and
berghofe@10413
   153
           a list of `weak' congruence constants.
berghofe@10413
   154
           A congruence is `weak' if it avoids normalization of some argument.
berghofe@10413
   155
    procs: discrimination net of simplification procedures
berghofe@10413
   156
      (functions that prove rewrite rules on the fly);
wenzelm@15023
   157
    mk_rews:
wenzelm@15023
   158
      mk: turn simplification thms into rewrite rules;
wenzelm@15023
   159
      mk_cong: prepare congruence rules;
wenzelm@15023
   160
      mk_sym: turn == around;
wenzelm@15023
   161
      mk_eq_True: turn P into P == True;
wenzelm@15023
   162
    termless: relation for ordered rewriting;*)
skalberg@15011
   163
wenzelm@15023
   164
type mk_rews =
wenzelm@15023
   165
 {mk: thm -> thm list,
wenzelm@15023
   166
  mk_cong: thm -> thm,
wenzelm@15023
   167
  mk_sym: thm -> thm option,
wenzelm@18208
   168
  mk_eq_True: thm -> thm option,
wenzelm@18208
   169
  reorient: theory -> term list -> term -> term -> bool};
wenzelm@15023
   170
wenzelm@15023
   171
datatype simpset =
wenzelm@15023
   172
  Simpset of
wenzelm@15023
   173
   {rules: rrule Net.net,
berghofe@10413
   174
    prems: thm list,
wenzelm@17882
   175
    bounds: int * ((string * typ) * string) list,
wenzelm@17882
   176
    context: Context.proof option} *
wenzelm@15023
   177
   {congs: (string * cong) list * string list,
wenzelm@15023
   178
    procs: proc Net.net,
wenzelm@15023
   179
    mk_rews: mk_rews,
nipkow@11504
   180
    termless: term * term -> bool,
skalberg@15011
   181
    subgoal_tac: simpset -> int -> tactic,
wenzelm@17882
   182
    loop_tacs: (string * (simpset -> int -> tactic)) list,
wenzelm@15023
   183
    solvers: solver list * solver list}
wenzelm@15023
   184
and proc =
wenzelm@15023
   185
  Proc of
wenzelm@15023
   186
   {name: string,
wenzelm@15023
   187
    lhs: cterm,
wenzelm@16458
   188
    proc: theory -> simpset -> term -> thm option,
wenzelm@17614
   189
    id: stamp}
wenzelm@17614
   190
and solver =
wenzelm@17614
   191
  Solver of
wenzelm@17614
   192
   {name: string,
wenzelm@17614
   193
    solver: simpset -> int -> tactic,
wenzelm@15023
   194
    id: stamp};
wenzelm@15023
   195
wenzelm@15023
   196
wenzelm@15023
   197
fun rep_ss (Simpset args) = args;
berghofe@10413
   198
wenzelm@17882
   199
fun make_ss1 (rules, prems, bounds, context) =
wenzelm@17882
   200
  {rules = rules, prems = prems, bounds = bounds, context = context};
wenzelm@15023
   201
wenzelm@17882
   202
fun map_ss1 f {rules, prems, bounds, context} =
wenzelm@17882
   203
  make_ss1 (f (rules, prems, bounds, context));
berghofe@10413
   204
wenzelm@15023
   205
fun make_ss2 (congs, procs, mk_rews, termless, subgoal_tac, loop_tacs, solvers) =
wenzelm@15023
   206
  {congs = congs, procs = procs, mk_rews = mk_rews, termless = termless,
wenzelm@15023
   207
    subgoal_tac = subgoal_tac, loop_tacs = loop_tacs, solvers = solvers};
wenzelm@15023
   208
wenzelm@15023
   209
fun map_ss2 f {congs, procs, mk_rews, termless, subgoal_tac, loop_tacs, solvers} =
wenzelm@15023
   210
  make_ss2 (f (congs, procs, mk_rews, termless, subgoal_tac, loop_tacs, solvers));
wenzelm@15023
   211
wenzelm@15023
   212
fun make_simpset (args1, args2) = Simpset (make_ss1 args1, make_ss2 args2);
berghofe@10413
   213
wenzelm@17882
   214
fun map_simpset f (Simpset ({rules, prems, bounds, context},
wenzelm@15023
   215
    {congs, procs, mk_rews, termless, subgoal_tac, loop_tacs, solvers})) =
wenzelm@17882
   216
  make_simpset (f ((rules, prems, bounds, context),
wenzelm@15023
   217
    (congs, procs, mk_rews, termless, subgoal_tac, loop_tacs, solvers)));
berghofe@10413
   218
wenzelm@15023
   219
fun map_simpset1 f (Simpset (r1, r2)) = Simpset (map_ss1 f r1, r2);
wenzelm@15023
   220
fun map_simpset2 f (Simpset (r1, r2)) = Simpset (r1, map_ss2 f r2);
wenzelm@15023
   221
wenzelm@17614
   222
fun prems_of_ss (Simpset ({prems, ...}, _)) = prems;
wenzelm@17614
   223
wenzelm@17614
   224
wenzelm@17614
   225
fun eq_proc (Proc {id = id1, ...}, Proc {id = id2, ...}) = (id1 = id2);
wenzelm@17614
   226
wenzelm@17614
   227
fun mk_solver' name solver = Solver {name = name, solver = solver, id = stamp ()};
wenzelm@17614
   228
fun mk_solver name solver = mk_solver' name (solver o prems_of_ss);
wenzelm@17614
   229
wenzelm@17614
   230
fun solver_name (Solver {name, ...}) = name;
wenzelm@17966
   231
fun solver ss (Solver {solver = tac, ...}) = tac ss;
wenzelm@17614
   232
fun eq_solver (Solver {id = id1, ...}, Solver {id = id2, ...}) = (id1 = id2);
wenzelm@17614
   233
val merge_solvers = gen_merge_lists eq_solver;
wenzelm@17614
   234
wenzelm@15023
   235
wenzelm@16985
   236
(* diagnostics *)
wenzelm@16985
   237
wenzelm@16985
   238
exception SIMPLIFIER of string * thm;
wenzelm@16985
   239
wenzelm@16985
   240
val debug_simp = ref false;
wenzelm@16985
   241
val trace_simp = ref false;
wenzelm@16985
   242
val simp_depth = ref 0;
wenzelm@16985
   243
val simp_depth_limit = ref 100;
wenzelm@16985
   244
val trace_simp_depth_limit = ref 100;
wenzelm@16985
   245
wenzelm@16985
   246
local
wenzelm@16985
   247
wenzelm@16985
   248
fun println a =
wenzelm@16985
   249
  if ! simp_depth > ! trace_simp_depth_limit then ()
wenzelm@16985
   250
  else tracing (enclose "[" "]" (string_of_int (! simp_depth)) ^ a);
wenzelm@16985
   251
wenzelm@16985
   252
fun prnt warn a = if warn then warning a else println a;
wenzelm@16985
   253
wenzelm@16985
   254
fun show_bounds (Simpset ({bounds = (_, bs), ...}, _)) t =
wenzelm@16985
   255
  let
wenzelm@16985
   256
    val used = Term.add_term_names (t, []);
wenzelm@17614
   257
    val xs = rev (Term.variantlist (rev (map #2 bs), used));
wenzelm@17614
   258
    fun subst (((b, T), _), x') = (Free (b, T), Syntax.mark_boundT (x', T));
wenzelm@16985
   259
  in Term.subst_atomic (ListPair.map subst (bs, xs)) t end;
wenzelm@16985
   260
wenzelm@17705
   261
in
wenzelm@17705
   262
wenzelm@17705
   263
fun print_term warn a ss thy t = prnt warn (a ^ "\n" ^
wenzelm@16985
   264
  Sign.string_of_term thy (if ! debug_simp then t else show_bounds ss t));
wenzelm@16985
   265
wenzelm@16985
   266
fun debug warn a = if ! debug_simp then prnt warn a else ();
wenzelm@16985
   267
fun trace warn a = if ! trace_simp then prnt warn a else ();
wenzelm@16985
   268
wenzelm@17705
   269
fun debug_term warn a ss thy t = if ! debug_simp then print_term warn a ss thy t else ();
wenzelm@17705
   270
fun trace_term warn a ss thy t = if ! trace_simp then print_term warn a ss thy t else ();
wenzelm@16985
   271
wenzelm@16985
   272
fun trace_cterm warn a ss ct =
wenzelm@17705
   273
  if ! trace_simp then print_term warn a ss (Thm.theory_of_cterm ct) (Thm.term_of ct) else ();
wenzelm@16985
   274
wenzelm@16985
   275
fun trace_thm a ss th =
wenzelm@17705
   276
  if ! trace_simp then print_term false a ss (Thm.theory_of_thm th) (Thm.full_prop_of th) else ();
wenzelm@16985
   277
wenzelm@16985
   278
fun trace_named_thm a ss (th, name) =
wenzelm@16985
   279
  if ! trace_simp then
wenzelm@17705
   280
    print_term false (if name = "" then a else a ^ " " ^ quote name ^ ":") ss
wenzelm@16985
   281
      (Thm.theory_of_thm th) (Thm.full_prop_of th)
wenzelm@16985
   282
  else ();
wenzelm@16985
   283
wenzelm@17705
   284
fun warn_thm a ss th = print_term true a ss (Thm.theory_of_thm th) (Thm.full_prop_of th);
wenzelm@16985
   285
wenzelm@16985
   286
end;
wenzelm@16985
   287
wenzelm@16985
   288
wenzelm@15023
   289
(* print simpsets *)
berghofe@10413
   290
wenzelm@15023
   291
fun print_ss ss =
wenzelm@15023
   292
  let
wenzelm@15034
   293
    val pretty_thms = map Display.pretty_thm;
wenzelm@15023
   294
wenzelm@15034
   295
    fun pretty_cong (name, th) =
wenzelm@15034
   296
      Pretty.block [Pretty.str (name ^ ":"), Pretty.brk 1, Display.pretty_thm th];
wenzelm@15023
   297
    fun pretty_proc (name, lhss) =
wenzelm@15023
   298
      Pretty.big_list (name ^ ":") (map Display.pretty_cterm lhss);
wenzelm@15034
   299
wenzelm@15034
   300
    val Simpset ({rules, ...}, {congs, procs, loop_tacs, solvers, ...}) = ss;
wenzelm@16807
   301
    val smps = map #thm (Net.entries rules);
wenzelm@15034
   302
    val cngs = map (fn (name, {thm, ...}) => (name, thm)) (#1 congs);
wenzelm@16807
   303
    val prcs = Net.entries procs |>
wenzelm@16807
   304
      map (fn Proc {name, lhs, id, ...} => ((name, lhs), id))
haftmann@17496
   305
      |> partition_eq (eq_snd (op =))
wenzelm@17756
   306
      |> map (fn ps => (fst (fst (hd ps)), map (snd o fst) ps))
wenzelm@17756
   307
      |> Library.sort_wrt fst;
wenzelm@15023
   308
  in
wenzelm@15034
   309
    [Pretty.big_list "simplification rules:" (pretty_thms smps),
wenzelm@15034
   310
      Pretty.big_list "simplification procedures:" (map pretty_proc prcs),
wenzelm@15034
   311
      Pretty.big_list "congruences:" (map pretty_cong cngs),
wenzelm@15088
   312
      Pretty.strs ("loopers:" :: map (quote o #1) loop_tacs),
wenzelm@15088
   313
      Pretty.strs ("unsafe solvers:" :: map (quote o solver_name) (#1 solvers)),
wenzelm@15088
   314
      Pretty.strs ("safe solvers:" :: map (quote o solver_name) (#2 solvers))]
wenzelm@15023
   315
    |> Pretty.chunks |> Pretty.writeln
nipkow@13828
   316
  end;
berghofe@10413
   317
wenzelm@15023
   318
wenzelm@15023
   319
(* simprocs *)
wenzelm@15023
   320
wenzelm@15023
   321
exception SIMPROC_FAIL of string * exn;
wenzelm@15023
   322
wenzelm@15023
   323
datatype simproc = Simproc of proc list;
wenzelm@15023
   324
wenzelm@15023
   325
fun mk_simproc name lhss proc =
wenzelm@15023
   326
  let val id = stamp () in
wenzelm@15023
   327
    Simproc (lhss |> map (fn lhs =>
wenzelm@15023
   328
      Proc {name = name, lhs = lhs, proc = proc, id = id}))
wenzelm@15023
   329
  end;
wenzelm@15023
   330
wenzelm@16458
   331
fun simproc_i thy name = mk_simproc name o map (Thm.cterm_of thy o Logic.varify);
wenzelm@16807
   332
fun simproc thy name = simproc_i thy name o map (Sign.read_term thy);
wenzelm@15023
   333
skalberg@15011
   334
berghofe@10413
   335
berghofe@10413
   336
(** simpset operations **)
berghofe@10413
   337
wenzelm@17882
   338
(* context *)
berghofe@10413
   339
wenzelm@17614
   340
fun eq_bound (x: string, (y, _)) = x = y;
wenzelm@17614
   341
wenzelm@17882
   342
fun add_bound bound = map_simpset1 (fn (rules, prems, (count, bounds), context) =>
wenzelm@17882
   343
  (rules, prems, (count + 1, bound :: bounds), context));
wenzelm@17882
   344
wenzelm@17882
   345
fun add_prems ths = map_simpset1 (fn (rules, prems, bounds, context) =>
wenzelm@17882
   346
  (rules, ths @ prems, bounds, context));
wenzelm@17882
   347
wenzelm@17882
   348
fun inherit_context (Simpset ({bounds, context, ...}, _)) =
wenzelm@17882
   349
  map_simpset1 (fn (rules, prems, _, _) => (rules, prems, bounds, context));
wenzelm@16985
   350
wenzelm@17882
   351
fun the_context (Simpset ({context = SOME ctxt, ...}, _)) = ctxt
wenzelm@17882
   352
  | the_context _ = raise Fail "Simplifier: no proof context in simpset";
berghofe@10413
   353
wenzelm@17897
   354
fun context ctxt =
wenzelm@17882
   355
  map_simpset1 (fn (rules, prems, bounds, _) => (rules, prems, bounds, SOME ctxt));
wenzelm@17882
   356
wenzelm@17897
   357
val theory_context = context o Context.init_proof;
wenzelm@17897
   358
wenzelm@17882
   359
fun fallback_context _ (ss as Simpset ({context = SOME _, ...}, _)) = ss
wenzelm@17882
   360
  | fallback_context thy ss =
wenzelm@17882
   361
     (warning "Simplifier: no proof context in simpset -- fallback to theory context!";
wenzelm@17897
   362
      theory_context thy ss);
wenzelm@17897
   363
wenzelm@17897
   364
wenzelm@15023
   365
(* addsimps *)
berghofe@10413
   366
wenzelm@15023
   367
fun mk_rrule2 {thm, name, lhs, elhs, perm} =
wenzelm@15023
   368
  let
wenzelm@15023
   369
    val fo = Pattern.first_order (term_of elhs) orelse not (Pattern.pattern (term_of elhs))
wenzelm@15023
   370
  in {thm = thm, name = name, lhs = lhs, elhs = elhs, fo = fo, perm = perm} end;
berghofe@10413
   371
wenzelm@15023
   372
fun insert_rrule quiet (ss, rrule as {thm, name, lhs, elhs, perm}) =
wenzelm@16985
   373
 (trace_named_thm "Adding rewrite rule" ss (thm, name);
wenzelm@17882
   374
  ss |> map_simpset1 (fn (rules, prems, bounds, context) =>
wenzelm@15023
   375
    let
wenzelm@15023
   376
      val rrule2 as {elhs, ...} = mk_rrule2 rrule;
wenzelm@16807
   377
      val rules' = Net.insert_term eq_rrule (term_of elhs, rrule2) rules;
wenzelm@17882
   378
    in (rules', prems, bounds, context) end)
wenzelm@15023
   379
  handle Net.INSERT =>
wenzelm@16985
   380
    (if quiet then () else warn_thm "Ignoring duplicate rewrite rule:" ss thm; ss));
berghofe@10413
   381
berghofe@10413
   382
fun vperm (Var _, Var _) = true
berghofe@10413
   383
  | vperm (Abs (_, _, s), Abs (_, _, t)) = vperm (s, t)
berghofe@10413
   384
  | vperm (t1 $ t2, u1 $ u2) = vperm (t1, u1) andalso vperm (t2, u2)
berghofe@10413
   385
  | vperm (t, u) = (t = u);
berghofe@10413
   386
berghofe@10413
   387
fun var_perm (t, u) =
berghofe@10413
   388
  vperm (t, u) andalso eq_set (term_varnames t, term_varnames u);
berghofe@10413
   389
berghofe@10413
   390
(* FIXME: it seems that the conditions on extra variables are too liberal if
berghofe@10413
   391
prems are nonempty: does solving the prems really guarantee instantiation of
berghofe@10413
   392
all its Vars? Better: a dynamic check each time a rule is applied.
berghofe@10413
   393
*)
berghofe@10413
   394
fun rewrite_rule_extra_vars prems elhs erhs =
wenzelm@16861
   395
  not (term_varnames erhs subset fold add_term_varnames prems (term_varnames elhs))
berghofe@10413
   396
  orelse
wenzelm@15023
   397
  not (term_tvars erhs subset (term_tvars elhs union List.concat (map term_tvars prems)));
berghofe@10413
   398
wenzelm@15023
   399
(*simple test for looping rewrite rules and stupid orientations*)
wenzelm@18208
   400
fun default_reorient thy prems lhs rhs =
wenzelm@15023
   401
  rewrite_rule_extra_vars prems lhs rhs
wenzelm@15023
   402
    orelse
wenzelm@15023
   403
  is_Var (head_of lhs)
wenzelm@15023
   404
    orelse
nipkow@16305
   405
(* turns t = x around, which causes a headache if x is a local variable -
nipkow@16305
   406
   usually it is very useful :-(
nipkow@16305
   407
  is_Free rhs andalso not(is_Free lhs) andalso not(Logic.occs(rhs,lhs))
nipkow@16305
   408
  andalso not(exists_subterm is_Var lhs)
nipkow@16305
   409
    orelse
nipkow@16305
   410
*)
wenzelm@16842
   411
  exists (fn t => Logic.occs (lhs, t)) (rhs :: prems)
wenzelm@15023
   412
    orelse
wenzelm@17203
   413
  null prems andalso Pattern.matches thy (lhs, rhs)
berghofe@10413
   414
    (*the condition "null prems" is necessary because conditional rewrites
berghofe@10413
   415
      with extra variables in the conditions may terminate although
wenzelm@15023
   416
      the rhs is an instance of the lhs; example: ?m < ?n ==> f(?n) == f(?m)*)
wenzelm@15023
   417
    orelse
wenzelm@15023
   418
  is_Const lhs andalso not (is_Const rhs);
berghofe@10413
   419
berghofe@10413
   420
fun decomp_simp thm =
wenzelm@15023
   421
  let
wenzelm@16458
   422
    val {thy, prop, ...} = Thm.rep_thm thm;
wenzelm@15023
   423
    val prems = Logic.strip_imp_prems prop;
wenzelm@15023
   424
    val concl = Drule.strip_imp_concl (Thm.cprop_of thm);
wenzelm@15023
   425
    val (lhs, rhs) = Drule.dest_equals concl handle TERM _ =>
wenzelm@15023
   426
      raise SIMPLIFIER ("Rewrite rule not a meta-equality", thm);
wenzelm@15023
   427
    val (_, elhs) = Drule.dest_equals (Thm.cprop_of (Thm.eta_conversion lhs));
wenzelm@16665
   428
    val elhs = if term_of elhs aconv term_of lhs then lhs else elhs;  (*share identical copies*)
wenzelm@15023
   429
    val erhs = Pattern.eta_contract (term_of rhs);
wenzelm@15023
   430
    val perm =
wenzelm@15023
   431
      var_perm (term_of elhs, erhs) andalso
wenzelm@15023
   432
      not (term_of elhs aconv erhs) andalso
wenzelm@15023
   433
      not (is_Var (term_of elhs));
wenzelm@16458
   434
  in (thy, prems, term_of lhs, elhs, term_of rhs, perm) end;
berghofe@10413
   435
wenzelm@12783
   436
fun decomp_simp' thm =
wenzelm@12979
   437
  let val (_, _, lhs, _, rhs, _) = decomp_simp thm in
wenzelm@12783
   438
    if Thm.nprems_of thm > 0 then raise SIMPLIFIER ("Bad conditional rewrite rule", thm)
wenzelm@12979
   439
    else (lhs, rhs)
wenzelm@12783
   440
  end;
wenzelm@12783
   441
wenzelm@15023
   442
fun mk_eq_True (Simpset (_, {mk_rews = {mk_eq_True, ...}, ...})) (thm, name) =
wenzelm@15023
   443
  (case mk_eq_True thm of
skalberg@15531
   444
    NONE => []
skalberg@15531
   445
  | SOME eq_True =>
wenzelm@15023
   446
      let val (_, _, lhs, elhs, _, _) = decomp_simp eq_True
wenzelm@15023
   447
      in [{thm = eq_True, name = name, lhs = lhs, elhs = elhs, perm = false}] end);
berghofe@10413
   448
wenzelm@15023
   449
(*create the rewrite rule and possibly also the eq_True variant,
wenzelm@15023
   450
  in case there are extra vars on the rhs*)
wenzelm@15023
   451
fun rrule_eq_True (thm, name, lhs, elhs, rhs, ss, thm2) =
wenzelm@15023
   452
  let val rrule = {thm = thm, name = name, lhs = lhs, elhs = elhs, perm = false} in
wenzelm@15023
   453
    if term_varnames rhs subset term_varnames lhs andalso
wenzelm@15023
   454
      term_tvars rhs subset term_tvars lhs then [rrule]
wenzelm@15023
   455
    else mk_eq_True ss (thm2, name) @ [rrule]
berghofe@10413
   456
  end;
berghofe@10413
   457
wenzelm@15023
   458
fun mk_rrule ss (thm, name) =
wenzelm@15023
   459
  let val (_, prems, lhs, elhs, rhs, perm) = decomp_simp thm in
wenzelm@15023
   460
    if perm then [{thm = thm, name = name, lhs = lhs, elhs = elhs, perm = true}]
wenzelm@15023
   461
    else
wenzelm@15023
   462
      (*weak test for loops*)
wenzelm@15023
   463
      if rewrite_rule_extra_vars prems lhs rhs orelse is_Var (term_of elhs)
wenzelm@15023
   464
      then mk_eq_True ss (thm, name)
wenzelm@15023
   465
      else rrule_eq_True (thm, name, lhs, elhs, rhs, ss, thm)
berghofe@10413
   466
  end;
berghofe@10413
   467
wenzelm@15023
   468
fun orient_rrule ss (thm, name) =
wenzelm@18208
   469
  let
wenzelm@18208
   470
    val (thy, prems, lhs, elhs, rhs, perm) = decomp_simp thm;
wenzelm@18208
   471
    val Simpset (_, {mk_rews = {reorient, mk_sym, ...}, ...}) = ss;
wenzelm@18208
   472
  in
wenzelm@15023
   473
    if perm then [{thm = thm, name = name, lhs = lhs, elhs = elhs, perm = true}]
wenzelm@16458
   474
    else if reorient thy prems lhs rhs then
wenzelm@16458
   475
      if reorient thy prems rhs lhs
wenzelm@15023
   476
      then mk_eq_True ss (thm, name)
wenzelm@15023
   477
      else
wenzelm@18208
   478
        (case mk_sym thm of
wenzelm@18208
   479
          NONE => []
wenzelm@18208
   480
        | SOME thm' =>
wenzelm@18208
   481
            let val (_, _, lhs', elhs', rhs', _) = decomp_simp thm'
wenzelm@18208
   482
            in rrule_eq_True (thm', name, lhs', elhs', rhs', ss, thm) end)
wenzelm@15023
   483
    else rrule_eq_True (thm, name, lhs, elhs, rhs, ss, thm)
berghofe@10413
   484
  end;
berghofe@10413
   485
nipkow@15199
   486
fun extract_rews (Simpset (_, {mk_rews = {mk, ...}, ...}), thms) =
skalberg@15570
   487
  List.concat (map (fn thm => map (rpair (Thm.name_of_thm thm)) (mk thm)) thms);
berghofe@10413
   488
wenzelm@15023
   489
fun orient_comb_simps comb mk_rrule (ss, thms) =
wenzelm@15023
   490
  let
wenzelm@15023
   491
    val rews = extract_rews (ss, thms);
skalberg@15570
   492
    val rrules = List.concat (map mk_rrule rews);
skalberg@15570
   493
  in Library.foldl comb (ss, rrules) end;
berghofe@10413
   494
wenzelm@15023
   495
fun extract_safe_rrules (ss, thm) =
skalberg@15570
   496
  List.concat (map (orient_rrule ss) (extract_rews (ss, [thm])));
berghofe@10413
   497
wenzelm@15023
   498
(*add rewrite rules explicitly; do not reorient!*)
wenzelm@15023
   499
fun ss addsimps thms =
wenzelm@15023
   500
  orient_comb_simps (insert_rrule false) (mk_rrule ss) (ss, thms);
berghofe@10413
   501
berghofe@10413
   502
wenzelm@15023
   503
(* delsimps *)
berghofe@10413
   504
wenzelm@15023
   505
fun del_rrule (ss, rrule as {thm, elhs, ...}) =
wenzelm@17882
   506
  ss |> map_simpset1 (fn (rules, prems, bounds, context) =>
wenzelm@17882
   507
    (Net.delete_term eq_rrule (term_of elhs, rrule) rules, prems, bounds, context))
wenzelm@16985
   508
  handle Net.DELETE => (warn_thm "Rewrite rule not in simpset:" ss thm; ss);
berghofe@10413
   509
wenzelm@15023
   510
fun ss delsimps thms =
wenzelm@15023
   511
  orient_comb_simps del_rrule (map mk_rrule2 o mk_rrule ss) (ss, thms);
wenzelm@15023
   512
wenzelm@15023
   513
wenzelm@15023
   514
(* congs *)
berghofe@10413
   515
skalberg@15531
   516
fun cong_name (Const (a, _)) = SOME a
skalberg@15531
   517
  | cong_name (Free (a, _)) = SOME ("Free: " ^ a)
skalberg@15531
   518
  | cong_name _ = NONE;
ballarin@13835
   519
wenzelm@15023
   520
local
wenzelm@15023
   521
wenzelm@15023
   522
fun is_full_cong_prems [] [] = true
wenzelm@15023
   523
  | is_full_cong_prems [] _ = false
wenzelm@15023
   524
  | is_full_cong_prems (p :: prems) varpairs =
wenzelm@15023
   525
      (case Logic.strip_assums_concl p of
wenzelm@15023
   526
        Const ("==", _) $ lhs $ rhs =>
wenzelm@15023
   527
          let val (x, xs) = strip_comb lhs and (y, ys) = strip_comb rhs in
wenzelm@15023
   528
            is_Var x andalso forall is_Bound xs andalso
wenzelm@15023
   529
            null (findrep xs) andalso xs = ys andalso
wenzelm@15023
   530
            (x, y) mem varpairs andalso
wenzelm@15023
   531
            is_full_cong_prems prems (varpairs \ (x, y))
wenzelm@15023
   532
          end
wenzelm@15023
   533
      | _ => false);
wenzelm@15023
   534
wenzelm@15023
   535
fun is_full_cong thm =
berghofe@10413
   536
  let
wenzelm@15023
   537
    val prems = prems_of thm and concl = concl_of thm;
wenzelm@15023
   538
    val (lhs, rhs) = Logic.dest_equals concl;
wenzelm@15023
   539
    val (f, xs) = strip_comb lhs and (g, ys) = strip_comb rhs;
berghofe@10413
   540
  in
wenzelm@15023
   541
    f = g andalso null (findrep (xs @ ys)) andalso length xs = length ys andalso
wenzelm@15023
   542
    is_full_cong_prems prems (xs ~~ ys)
berghofe@10413
   543
  end;
berghofe@10413
   544
wenzelm@15023
   545
fun add_cong (ss, thm) = ss |>
wenzelm@15023
   546
  map_simpset2 (fn (congs, procs, mk_rews, termless, subgoal_tac, loop_tacs, solvers) =>
wenzelm@15023
   547
    let
wenzelm@15023
   548
      val (lhs, _) = Drule.dest_equals (Drule.strip_imp_concl (Thm.cprop_of thm))
wenzelm@15023
   549
        handle TERM _ => raise SIMPLIFIER ("Congruence not a meta-equality", thm);
wenzelm@15023
   550
    (*val lhs = Pattern.eta_contract lhs;*)
skalberg@15570
   551
      val a = valOf (cong_name (head_of (term_of lhs))) handle Option =>
wenzelm@15023
   552
        raise SIMPLIFIER ("Congruence must start with a constant or free variable", thm);
wenzelm@15023
   553
      val (alist, weak) = congs;
wenzelm@15023
   554
      val alist2 = overwrite_warn (alist, (a, {lhs = lhs, thm = thm}))
wenzelm@15023
   555
        ("Overwriting congruence rule for " ^ quote a);
wenzelm@15023
   556
      val weak2 = if is_full_cong thm then weak else a :: weak;
wenzelm@15023
   557
    in ((alist2, weak2), procs, mk_rews, termless, subgoal_tac, loop_tacs, solvers) end);
berghofe@10413
   558
wenzelm@15023
   559
fun del_cong (ss, thm) = ss |>
wenzelm@15023
   560
  map_simpset2 (fn (congs, procs, mk_rews, termless, subgoal_tac, loop_tacs, solvers) =>
wenzelm@15023
   561
    let
wenzelm@15023
   562
      val (lhs, _) = Logic.dest_equals (Thm.concl_of thm) handle TERM _ =>
wenzelm@15023
   563
        raise SIMPLIFIER ("Congruence not a meta-equality", thm);
wenzelm@15023
   564
    (*val lhs = Pattern.eta_contract lhs;*)
skalberg@15570
   565
      val a = valOf (cong_name (head_of lhs)) handle Option =>
wenzelm@15023
   566
        raise SIMPLIFIER ("Congruence must start with a constant", thm);
wenzelm@15023
   567
      val (alist, _) = congs;
skalberg@15570
   568
      val alist2 = List.filter (fn (x, _) => x <> a) alist;
wenzelm@17756
   569
      val weak2 = alist2 |> List.mapPartial (fn (a, {thm, ...}: cong) =>
skalberg@15531
   570
        if is_full_cong thm then NONE else SOME a);
wenzelm@15023
   571
    in ((alist2, weak2), procs, mk_rews, termless, subgoal_tac, loop_tacs, solvers) end);
berghofe@10413
   572
wenzelm@15023
   573
fun mk_cong (Simpset (_, {mk_rews = {mk_cong = f, ...}, ...})) = f;
wenzelm@15023
   574
wenzelm@15023
   575
in
wenzelm@15023
   576
skalberg@15570
   577
val (op addeqcongs) = Library.foldl add_cong;
skalberg@15570
   578
val (op deleqcongs) = Library.foldl del_cong;
wenzelm@15023
   579
wenzelm@15023
   580
fun ss addcongs congs = ss addeqcongs map (mk_cong ss) congs;
wenzelm@15023
   581
fun ss delcongs congs = ss deleqcongs map (mk_cong ss) congs;
wenzelm@15023
   582
wenzelm@15023
   583
end;
berghofe@10413
   584
berghofe@10413
   585
wenzelm@15023
   586
(* simprocs *)
wenzelm@15023
   587
wenzelm@15023
   588
local
berghofe@10413
   589
wenzelm@16985
   590
fun add_proc (proc as Proc {name, lhs, ...}) ss =
wenzelm@16985
   591
 (trace_cterm false ("Adding simplification procedure " ^ quote name ^ " for") ss lhs;
wenzelm@15023
   592
  map_simpset2 (fn (congs, procs, mk_rews, termless, subgoal_tac, loop_tacs, solvers) =>
wenzelm@16807
   593
    (congs, Net.insert_term eq_proc (term_of lhs, proc) procs,
wenzelm@15023
   594
      mk_rews, termless, subgoal_tac, loop_tacs, solvers)) ss
wenzelm@15023
   595
  handle Net.INSERT =>
wenzelm@15023
   596
    (warning ("Ignoring duplicate simplification procedure " ^ quote name); ss));
berghofe@10413
   597
wenzelm@16985
   598
fun del_proc (proc as Proc {name, lhs, ...}) ss =
wenzelm@15023
   599
  map_simpset2 (fn (congs, procs, mk_rews, termless, subgoal_tac, loop_tacs, solvers) =>
wenzelm@16807
   600
    (congs, Net.delete_term eq_proc (term_of lhs, proc) procs,
wenzelm@15023
   601
      mk_rews, termless, subgoal_tac, loop_tacs, solvers)) ss
wenzelm@15023
   602
  handle Net.DELETE =>
wenzelm@15023
   603
    (warning ("Simplification procedure " ^ quote name ^ " not in simpset"); ss);
berghofe@10413
   604
wenzelm@15023
   605
in
berghofe@10413
   606
wenzelm@16985
   607
fun ss addsimprocs ps = fold (fn Simproc procs => fold add_proc procs) ps ss;
wenzelm@16985
   608
fun ss delsimprocs ps = fold (fn Simproc procs => fold del_proc procs) ps ss;
berghofe@10413
   609
wenzelm@15023
   610
end;
berghofe@10413
   611
berghofe@10413
   612
berghofe@10413
   613
(* mk_rews *)
berghofe@10413
   614
wenzelm@15023
   615
local
wenzelm@15023
   616
wenzelm@18208
   617
fun map_mk_rews f = map_simpset2 (fn (congs, procs, {mk, mk_cong, mk_sym, mk_eq_True, reorient},
wenzelm@15023
   618
      termless, subgoal_tac, loop_tacs, solvers) =>
wenzelm@18208
   619
  let
wenzelm@18208
   620
    val (mk', mk_cong', mk_sym', mk_eq_True', reorient') =
wenzelm@18208
   621
      f (mk, mk_cong, mk_sym, mk_eq_True, reorient);
wenzelm@18208
   622
    val mk_rews' = {mk = mk', mk_cong = mk_cong', mk_sym = mk_sym', mk_eq_True = mk_eq_True',
wenzelm@18208
   623
      reorient = reorient'};
wenzelm@18208
   624
  in (congs, procs, mk_rews', termless, subgoal_tac, loop_tacs, solvers) end);
wenzelm@15023
   625
wenzelm@15023
   626
in
berghofe@10413
   627
wenzelm@18208
   628
fun ss setmksimps mk = ss |> map_mk_rews (fn (_, mk_cong, mk_sym, mk_eq_True, reorient) =>
wenzelm@18208
   629
  (mk, mk_cong, mk_sym, mk_eq_True, reorient));
wenzelm@15023
   630
wenzelm@18208
   631
fun ss setmkcong mk_cong = ss |> map_mk_rews (fn (mk, _, mk_sym, mk_eq_True, reorient) =>
wenzelm@18208
   632
  (mk, mk_cong, mk_sym, mk_eq_True, reorient));
berghofe@10413
   633
wenzelm@18208
   634
fun ss setmksym mk_sym = ss |> map_mk_rews (fn (mk, mk_cong, _, mk_eq_True, reorient) =>
wenzelm@18208
   635
  (mk, mk_cong, mk_sym, mk_eq_True, reorient));
berghofe@10413
   636
wenzelm@18208
   637
fun ss setmkeqTrue mk_eq_True = ss |> map_mk_rews (fn (mk, mk_cong, mk_sym, _, reorient) =>
wenzelm@18208
   638
  (mk, mk_cong, mk_sym, mk_eq_True, reorient));
wenzelm@18208
   639
wenzelm@18208
   640
fun set_reorient reorient = map_mk_rews (fn (mk, mk_cong, mk_sym, mk_eq_True, _) =>
wenzelm@18208
   641
  (mk, mk_cong, mk_sym, mk_eq_True, reorient));
wenzelm@15023
   642
wenzelm@15023
   643
end;
wenzelm@15023
   644
skalberg@14242
   645
berghofe@10413
   646
(* termless *)
berghofe@10413
   647
wenzelm@15023
   648
fun ss settermless termless = ss |>
wenzelm@15023
   649
  map_simpset2 (fn (congs, procs, mk_rews, _, subgoal_tac, loop_tacs, solvers) =>
wenzelm@15023
   650
   (congs, procs, mk_rews, termless, subgoal_tac, loop_tacs, solvers));
skalberg@15006
   651
skalberg@15006
   652
wenzelm@15023
   653
(* tactics *)
skalberg@15006
   654
wenzelm@15023
   655
fun ss setsubgoaler subgoal_tac = ss |>
wenzelm@15023
   656
  map_simpset2 (fn (congs, procs, mk_rews, termless, _, loop_tacs, solvers) =>
wenzelm@15023
   657
   (congs, procs, mk_rews, termless, subgoal_tac, loop_tacs, solvers));
skalberg@15006
   658
wenzelm@17882
   659
fun ss setloop' tac = ss |>
wenzelm@15023
   660
  map_simpset2 (fn (congs, procs, mk_rews, termless, subgoal_tac, _, solvers) =>
wenzelm@15023
   661
   (congs, procs, mk_rews, termless, subgoal_tac, [("", tac)], solvers));
skalberg@15006
   662
wenzelm@17882
   663
fun ss setloop tac = ss setloop' (K tac);
wenzelm@17882
   664
wenzelm@17882
   665
fun ss addloop' (name, tac) = ss |>
wenzelm@15023
   666
  map_simpset2 (fn (congs, procs, mk_rews, termless, subgoal_tac, loop_tacs, solvers) =>
wenzelm@15023
   667
    (congs, procs, mk_rews, termless, subgoal_tac,
wenzelm@15023
   668
      overwrite_warn (loop_tacs, (name, tac)) ("Overwriting looper " ^ quote name),
wenzelm@15023
   669
      solvers));
skalberg@15006
   670
wenzelm@17882
   671
fun ss addloop (name, tac) = ss addloop' (name, K tac);
wenzelm@17882
   672
wenzelm@15023
   673
fun ss delloop name = ss |>
wenzelm@15023
   674
  map_simpset2 (fn (congs, procs, mk_rews, termless, subgoal_tac, loop_tacs, solvers) =>
wenzelm@17756
   675
    let val loop_tacs' = filter_out (equal name o fst) loop_tacs in
wenzelm@15034
   676
      if length loop_tacs <> length loop_tacs' then ()
wenzelm@15034
   677
      else warning ("No such looper in simpset: " ^ quote name);
wenzelm@15034
   678
      (congs, procs, mk_rews, termless, subgoal_tac, loop_tacs', solvers)
wenzelm@15023
   679
    end);
skalberg@15006
   680
wenzelm@15023
   681
fun ss setSSolver solver = ss |> map_simpset2 (fn (congs, procs, mk_rews, termless,
wenzelm@15023
   682
  subgoal_tac, loop_tacs, (unsafe_solvers, _)) =>
wenzelm@15023
   683
    (congs, procs, mk_rews, termless, subgoal_tac, loop_tacs, (unsafe_solvers, [solver])));
skalberg@15006
   684
wenzelm@15023
   685
fun ss addSSolver solver = ss |> map_simpset2 (fn (congs, procs, mk_rews, termless,
wenzelm@15023
   686
  subgoal_tac, loop_tacs, (unsafe_solvers, solvers)) => (congs, procs, mk_rews, termless,
wenzelm@15023
   687
    subgoal_tac, loop_tacs, (unsafe_solvers, merge_solvers solvers [solver])));
skalberg@15006
   688
wenzelm@15023
   689
fun ss setSolver solver = ss |> map_simpset2 (fn (congs, procs, mk_rews, termless,
wenzelm@15023
   690
  subgoal_tac, loop_tacs, (_, solvers)) => (congs, procs, mk_rews, termless,
wenzelm@15023
   691
    subgoal_tac, loop_tacs, ([solver], solvers)));
skalberg@15006
   692
wenzelm@15023
   693
fun ss addSolver solver = ss |> map_simpset2 (fn (congs, procs, mk_rews, termless,
wenzelm@15023
   694
  subgoal_tac, loop_tacs, (unsafe_solvers, solvers)) => (congs, procs, mk_rews, termless,
wenzelm@15023
   695
    subgoal_tac, loop_tacs, (merge_solvers unsafe_solvers [solver], solvers)));
skalberg@15006
   696
wenzelm@15023
   697
fun set_solvers solvers = map_simpset2 (fn (congs, procs, mk_rews, termless,
wenzelm@15023
   698
  subgoal_tac, loop_tacs, _) => (congs, procs, mk_rews, termless,
wenzelm@15023
   699
  subgoal_tac, loop_tacs, (solvers, solvers)));
skalberg@15006
   700
skalberg@15006
   701
wenzelm@18208
   702
(* empty *)
wenzelm@18208
   703
wenzelm@18208
   704
fun init_ss mk_rews termless subgoal_tac solvers =
wenzelm@18208
   705
  make_simpset ((Net.empty, [], (0, []), NONE),
wenzelm@18208
   706
    (([], []), Net.empty, mk_rews, termless, subgoal_tac, [], solvers));
wenzelm@18208
   707
wenzelm@18208
   708
fun clear_ss (ss as Simpset (_, {mk_rews, termless, subgoal_tac, solvers, ...})) =
wenzelm@18208
   709
  init_ss mk_rews termless subgoal_tac solvers
wenzelm@18208
   710
  |> inherit_context ss;
wenzelm@18208
   711
wenzelm@18208
   712
val basic_mk_rews: mk_rews =
wenzelm@18208
   713
 {mk = fn th => if can Logic.dest_equals (Thm.concl_of th) then [th] else [],
wenzelm@18208
   714
  mk_cong = I,
wenzelm@18208
   715
  mk_sym = SOME o Drule.symmetric_fun,
wenzelm@18208
   716
  mk_eq_True = K NONE,
wenzelm@18208
   717
  reorient = default_reorient};
wenzelm@18208
   718
wenzelm@18208
   719
val empty_ss = init_ss basic_mk_rews Term.termless (K (K no_tac)) ([], []);
wenzelm@18208
   720
wenzelm@18208
   721
wenzelm@18208
   722
(* merge *)  (*NOTE: ignores some fields of 2nd simpset*)
wenzelm@18208
   723
wenzelm@18208
   724
fun merge_ss (ss1, ss2) =
wenzelm@18208
   725
  let
wenzelm@18208
   726
    val Simpset ({rules = rules1, prems = prems1, bounds = bounds1, context = _},
wenzelm@18208
   727
     {congs = (congs1, weak1), procs = procs1, mk_rews, termless, subgoal_tac,
wenzelm@18208
   728
      loop_tacs = loop_tacs1, solvers = (unsafe_solvers1, solvers1)}) = ss1;
wenzelm@18208
   729
    val Simpset ({rules = rules2, prems = prems2, bounds = bounds2, context = _},
wenzelm@18208
   730
     {congs = (congs2, weak2), procs = procs2, mk_rews = _, termless = _, subgoal_tac = _,
wenzelm@18208
   731
      loop_tacs = loop_tacs2, solvers = (unsafe_solvers2, solvers2)}) = ss2;
wenzelm@18208
   732
wenzelm@18208
   733
    val rules' = Net.merge eq_rrule (rules1, rules2);
wenzelm@18208
   734
    val prems' = gen_merge_lists Drule.eq_thm_prop prems1 prems2;
wenzelm@18208
   735
    val bounds' = if #1 bounds1 < #1 bounds2 then bounds2 else bounds1;
wenzelm@18208
   736
    val congs' = gen_merge_lists (eq_cong o pairself #2) congs1 congs2;
wenzelm@18208
   737
    val weak' = merge_lists weak1 weak2;
wenzelm@18208
   738
    val procs' = Net.merge eq_proc (procs1, procs2);
wenzelm@18208
   739
    val loop_tacs' = merge_alists loop_tacs1 loop_tacs2;
wenzelm@18208
   740
    val unsafe_solvers' = merge_solvers unsafe_solvers1 unsafe_solvers2;
wenzelm@18208
   741
    val solvers' = merge_solvers solvers1 solvers2;
wenzelm@18208
   742
  in
wenzelm@18208
   743
    make_simpset ((rules', prems', bounds', NONE), ((congs', weak'), procs',
wenzelm@18208
   744
      mk_rews, termless, subgoal_tac, loop_tacs', (unsafe_solvers', solvers')))
wenzelm@18208
   745
  end;
wenzelm@18208
   746
wenzelm@18208
   747
skalberg@15006
   748
berghofe@10413
   749
(** rewriting **)
berghofe@10413
   750
berghofe@10413
   751
(*
berghofe@10413
   752
  Uses conversions, see:
berghofe@10413
   753
    L C Paulson, A higher-order implementation of rewriting,
berghofe@10413
   754
    Science of Computer Programming 3 (1983), pages 119-149.
berghofe@10413
   755
*)
berghofe@10413
   756
wenzelm@15023
   757
val dest_eq = Drule.dest_equals o Thm.cprop_of;
wenzelm@15023
   758
val lhs_of = #1 o dest_eq;
wenzelm@15023
   759
val rhs_of = #2 o dest_eq;
berghofe@10413
   760
wenzelm@16985
   761
fun check_conv msg ss thm thm' =
berghofe@10413
   762
  let
berghofe@10413
   763
    val thm'' = transitive thm (transitive
skalberg@15001
   764
      (symmetric (Drule.beta_eta_conversion (lhs_of thm'))) thm')
wenzelm@16985
   765
  in if msg then trace_thm "SUCCEEDED" ss thm' else (); SOME thm'' end
berghofe@10413
   766
  handle THM _ =>
wenzelm@16458
   767
    let val {thy, prop = _ $ _ $ prop0, ...} = Thm.rep_thm thm in
wenzelm@16985
   768
      trace_thm "Proved wrong thm (Check subgoaler?)" ss thm';
wenzelm@16985
   769
      trace_term false "Should have proved:" ss thy prop0;
skalberg@15531
   770
      NONE
berghofe@10413
   771
    end;
berghofe@10413
   772
berghofe@10413
   773
berghofe@10413
   774
(* mk_procrule *)
berghofe@10413
   775
wenzelm@16985
   776
fun mk_procrule ss thm =
wenzelm@15023
   777
  let val (_, prems, lhs, elhs, rhs, _) = decomp_simp thm in
wenzelm@15023
   778
    if rewrite_rule_extra_vars prems lhs rhs
wenzelm@16985
   779
    then (warn_thm "Extra vars on rhs:" ss thm; [])
wenzelm@15023
   780
    else [mk_rrule2 {thm = thm, name = "", lhs = lhs, elhs = elhs, perm = false}]
berghofe@10413
   781
  end;
berghofe@10413
   782
berghofe@10413
   783
wenzelm@15023
   784
(* rewritec: conversion to apply the meta simpset to a term *)
berghofe@10413
   785
wenzelm@15023
   786
(*Since the rewriting strategy is bottom-up, we avoid re-normalizing already
wenzelm@15023
   787
  normalized terms by carrying around the rhs of the rewrite rule just
wenzelm@15023
   788
  applied. This is called the `skeleton'. It is decomposed in parallel
wenzelm@15023
   789
  with the term. Once a Var is encountered, the corresponding term is
wenzelm@15023
   790
  already in normal form.
wenzelm@15023
   791
  skel0 is a dummy skeleton that is to enforce complete normalization.*)
wenzelm@15023
   792
berghofe@10413
   793
val skel0 = Bound 0;
berghofe@10413
   794
wenzelm@15023
   795
(*Use rhs as skeleton only if the lhs does not contain unnormalized bits.
wenzelm@15023
   796
  The latter may happen iff there are weak congruence rules for constants
wenzelm@15023
   797
  in the lhs.*)
berghofe@10413
   798
wenzelm@15023
   799
fun uncond_skel ((_, weak), (lhs, rhs)) =
wenzelm@15023
   800
  if null weak then rhs  (*optimization*)
wenzelm@15023
   801
  else if exists_Const (fn (c, _) => c mem weak) lhs then skel0
wenzelm@15023
   802
  else rhs;
wenzelm@15023
   803
wenzelm@15023
   804
(*Behaves like unconditional rule if rhs does not contain vars not in the lhs.
wenzelm@15023
   805
  Otherwise those vars may become instantiated with unnormalized terms
wenzelm@15023
   806
  while the premises are solved.*)
wenzelm@15023
   807
wenzelm@15023
   808
fun cond_skel (args as (congs, (lhs, rhs))) =
wenzelm@15023
   809
  if term_varnames rhs subset term_varnames lhs then uncond_skel args
berghofe@10413
   810
  else skel0;
berghofe@10413
   811
berghofe@10413
   812
(*
wenzelm@15023
   813
  Rewriting -- we try in order:
berghofe@10413
   814
    (1) beta reduction
berghofe@10413
   815
    (2) unconditional rewrite rules
berghofe@10413
   816
    (3) conditional rewrite rules
berghofe@10413
   817
    (4) simplification procedures
berghofe@10413
   818
berghofe@10413
   819
  IMPORTANT: rewrite rules must not introduce new Vars or TVars!
berghofe@10413
   820
*)
berghofe@10413
   821
wenzelm@16458
   822
fun rewritec (prover, thyt, maxt) ss t =
berghofe@10413
   823
  let
wenzelm@15023
   824
    val Simpset ({rules, ...}, {congs, procs, termless, ...}) = ss;
berghofe@10413
   825
    val eta_thm = Thm.eta_conversion t;
berghofe@10413
   826
    val eta_t' = rhs_of eta_thm;
berghofe@10413
   827
    val eta_t = term_of eta_t';
berghofe@13607
   828
    fun rew {thm, name, lhs, elhs, fo, perm} =
berghofe@10413
   829
      let
wenzelm@16458
   830
        val {thy, prop, maxidx, ...} = rep_thm thm;
berghofe@10413
   831
        val (rthm, elhs') = if maxt = ~1 then (thm, elhs)
berghofe@10413
   832
          else (Thm.incr_indexes (maxt+1) thm, Thm.cterm_incr_indexes (maxt+1) elhs);
berghofe@10413
   833
        val insts = if fo then Thm.cterm_first_order_match (elhs', eta_t')
berghofe@10413
   834
                          else Thm.cterm_match (elhs', eta_t');
berghofe@10413
   835
        val thm' = Thm.instantiate insts (Thm.rename_boundvars lhs eta_t rthm);
wenzelm@14643
   836
        val prop' = Thm.prop_of thm';
berghofe@10413
   837
        val unconditional = (Logic.count_prems (prop',0) = 0);
berghofe@10413
   838
        val (lhs', rhs') = Logic.dest_equals (Logic.strip_imp_concl prop')
berghofe@10413
   839
      in
nipkow@11295
   840
        if perm andalso not (termless (rhs', lhs'))
wenzelm@16985
   841
        then (trace_named_thm "Cannot apply permutative rewrite rule" ss (thm, name);
wenzelm@16985
   842
              trace_thm "Term does not become smaller:" ss thm'; NONE)
wenzelm@16985
   843
        else (trace_named_thm "Applying instance of rewrite rule" ss (thm, name);
berghofe@10413
   844
           if unconditional
berghofe@10413
   845
           then
wenzelm@16985
   846
             (trace_thm "Rewriting:" ss thm';
berghofe@10413
   847
              let val lr = Logic.dest_equals prop;
wenzelm@16985
   848
                  val SOME thm'' = check_conv false ss eta_thm thm'
skalberg@15531
   849
              in SOME (thm'', uncond_skel (congs, lr)) end)
berghofe@10413
   850
           else
wenzelm@16985
   851
             (trace_thm "Trying to rewrite:" ss thm';
nipkow@16042
   852
              if !simp_depth > !simp_depth_limit
nipkow@16042
   853
              then let val s = "simp_depth_limit exceeded - giving up"
nipkow@16042
   854
                   in trace false s; warning s; NONE end
nipkow@16042
   855
              else
nipkow@16042
   856
              case prover ss thm' of
wenzelm@16985
   857
                NONE => (trace_thm "FAILED" ss thm'; NONE)
skalberg@15531
   858
              | SOME thm2 =>
wenzelm@16985
   859
                  (case check_conv true ss eta_thm thm2 of
skalberg@15531
   860
                     NONE => NONE |
skalberg@15531
   861
                     SOME thm2' =>
berghofe@10413
   862
                       let val concl = Logic.strip_imp_concl prop
berghofe@10413
   863
                           val lr = Logic.dest_equals concl
nipkow@16042
   864
                       in SOME (thm2', cond_skel (congs, lr)) end)))
berghofe@10413
   865
      end
berghofe@10413
   866
skalberg@15531
   867
    fun rews [] = NONE
berghofe@10413
   868
      | rews (rrule :: rrules) =
skalberg@15531
   869
          let val opt = rew rrule handle Pattern.MATCH => NONE
skalberg@15531
   870
          in case opt of NONE => rews rrules | some => some end;
berghofe@10413
   871
berghofe@10413
   872
    fun sort_rrules rrs = let
wenzelm@14643
   873
      fun is_simple({thm, ...}:rrule) = case Thm.prop_of thm of
berghofe@10413
   874
                                      Const("==",_) $ _ $ _ => true
wenzelm@12603
   875
                                      | _                   => false
berghofe@10413
   876
      fun sort []        (re1,re2) = re1 @ re2
wenzelm@12603
   877
        | sort (rr::rrs) (re1,re2) = if is_simple rr
berghofe@10413
   878
                                     then sort rrs (rr::re1,re2)
berghofe@10413
   879
                                     else sort rrs (re1,rr::re2)
berghofe@10413
   880
    in sort rrs ([],[]) end
berghofe@10413
   881
skalberg@15531
   882
    fun proc_rews [] = NONE
wenzelm@15023
   883
      | proc_rews (Proc {name, proc, lhs, ...} :: ps) =
wenzelm@17203
   884
          if Pattern.matches thyt (Thm.term_of lhs, Thm.term_of t) then
wenzelm@16985
   885
            (debug_term false ("Trying procedure " ^ quote name ^ " on:") ss thyt eta_t;
wenzelm@13486
   886
             case transform_failure (curry SIMPROC_FAIL name)
wenzelm@16458
   887
                 (fn () => proc thyt ss eta_t) () of
skalberg@15531
   888
               NONE => (debug false "FAILED"; proc_rews ps)
skalberg@15531
   889
             | SOME raw_thm =>
wenzelm@16985
   890
                 (trace_thm ("Procedure " ^ quote name ^ " produced rewrite rule:") ss raw_thm;
wenzelm@16985
   891
                  (case rews (mk_procrule ss raw_thm) of
skalberg@15531
   892
                    NONE => (trace_cterm true ("IGNORED result of simproc " ^ quote name ^
wenzelm@16985
   893
                      " -- does not match") ss t; proc_rews ps)
berghofe@10413
   894
                  | some => some)))
berghofe@10413
   895
          else proc_rews ps;
berghofe@10413
   896
  in case eta_t of
skalberg@15531
   897
       Abs _ $ _ => SOME (transitive eta_thm
berghofe@12155
   898
         (beta_conversion false eta_t'), skel0)
berghofe@10413
   899
     | _ => (case rews (sort_rrules (Net.match_term rules eta_t)) of
skalberg@15531
   900
               NONE => proc_rews (Net.match_term procs eta_t)
berghofe@10413
   901
             | some => some)
berghofe@10413
   902
  end;
berghofe@10413
   903
berghofe@10413
   904
berghofe@10413
   905
(* conversion to apply a congruence rule to a term *)
berghofe@10413
   906
wenzelm@16985
   907
fun congc prover ss maxt {thm=cong,lhs=lhs} t =
wenzelm@16985
   908
  let val rthm = Thm.incr_indexes (maxt+1) cong;
berghofe@10413
   909
      val rlhs = fst (Drule.dest_equals (Drule.strip_imp_concl (cprop_of rthm)));
berghofe@10413
   910
      val insts = Thm.cterm_match (rlhs, t)
berghofe@10413
   911
      (* Pattern.match can raise Pattern.MATCH;
berghofe@10413
   912
         is handled when congc is called *)
berghofe@10413
   913
      val thm' = Thm.instantiate insts (Thm.rename_boundvars (term_of rlhs) (term_of t) rthm);
wenzelm@16985
   914
      val unit = trace_thm "Applying congruence rule:" ss thm';
wenzelm@16985
   915
      fun err (msg, thm) = (trace_thm msg ss thm; NONE)
berghofe@10413
   916
  in case prover thm' of
skalberg@15531
   917
       NONE => err ("Congruence proof failed.  Could not prove", thm')
wenzelm@16985
   918
     | SOME thm2 => (case check_conv true ss (Drule.beta_eta_conversion t) thm2 of
skalberg@15531
   919
          NONE => err ("Congruence proof failed.  Should not have proved", thm2)
skalberg@15531
   920
        | SOME thm2' =>
berghofe@12155
   921
            if op aconv (pairself term_of (dest_equals (cprop_of thm2')))
skalberg@15531
   922
            then NONE else SOME thm2')
berghofe@10413
   923
  end;
berghofe@10413
   924
berghofe@10413
   925
val (cA, (cB, cC)) =
berghofe@10413
   926
  apsnd dest_equals (dest_implies (hd (cprems_of Drule.imp_cong)));
berghofe@10413
   927
skalberg@15531
   928
fun transitive1 NONE NONE = NONE
skalberg@15531
   929
  | transitive1 (SOME thm1) NONE = SOME thm1
skalberg@15531
   930
  | transitive1 NONE (SOME thm2) = SOME thm2
skalberg@15531
   931
  | transitive1 (SOME thm1) (SOME thm2) = SOME (transitive thm1 thm2)
berghofe@10413
   932
skalberg@15531
   933
fun transitive2 thm = transitive1 (SOME thm);
skalberg@15531
   934
fun transitive3 thm = transitive1 thm o SOME;
berghofe@13607
   935
wenzelm@16458
   936
fun bottomc ((simprem, useprem, mutsimp), prover, thy, maxidx) =
berghofe@10413
   937
  let
wenzelm@15023
   938
    fun botc skel ss t =
skalberg@15531
   939
          if is_Var skel then NONE
berghofe@10413
   940
          else
wenzelm@15023
   941
          (case subc skel ss t of
skalberg@15531
   942
             some as SOME thm1 =>
wenzelm@16458
   943
               (case rewritec (prover, thy, maxidx) ss (rhs_of thm1) of
skalberg@15531
   944
                  SOME (thm2, skel2) =>
berghofe@13607
   945
                    transitive2 (transitive thm1 thm2)
wenzelm@15023
   946
                      (botc skel2 ss (rhs_of thm2))
skalberg@15531
   947
                | NONE => some)
skalberg@15531
   948
           | NONE =>
wenzelm@16458
   949
               (case rewritec (prover, thy, maxidx) ss t of
skalberg@15531
   950
                  SOME (thm2, skel2) => transitive2 thm2
wenzelm@15023
   951
                    (botc skel2 ss (rhs_of thm2))
skalberg@15531
   952
                | NONE => NONE))
berghofe@10413
   953
wenzelm@15023
   954
    and try_botc ss t =
wenzelm@15023
   955
          (case botc skel0 ss t of
skalberg@15531
   956
             SOME trec1 => trec1 | NONE => (reflexive t))
berghofe@10413
   957
wenzelm@15023
   958
    and subc skel (ss as Simpset ({bounds, ...}, {congs, ...})) t0 =
berghofe@10413
   959
       (case term_of t0 of
berghofe@10413
   960
           Abs (a, T, t) =>
wenzelm@15023
   961
             let
wenzelm@16985
   962
                 val b = Term.bound (#1 bounds);
wenzelm@16985
   963
                 val (v, t') = Thm.dest_abs (SOME b) t0;
wenzelm@16985
   964
                 val b' = #1 (Term.dest_Free (Thm.term_of v));
wenzelm@16985
   965
                 val _ = conditional (b <> b') (fn () =>
wenzelm@16985
   966
                   warning ("Simplifier: renamed bound variable " ^ quote b ^ " to " ^ quote b'));
wenzelm@17614
   967
                 val ss' = add_bound ((b', T), a) ss;
wenzelm@15023
   968
                 val skel' = case skel of Abs (_, _, sk) => sk | _ => skel0;
wenzelm@15023
   969
             in case botc skel' ss' t' of
skalberg@15531
   970
                  SOME thm => SOME (abstract_rule a v thm)
skalberg@15531
   971
                | NONE => NONE
berghofe@10413
   972
             end
berghofe@10413
   973
         | t $ _ => (case t of
wenzelm@15023
   974
             Const ("==>", _) $ _  => impc t0 ss
berghofe@10413
   975
           | Abs _ =>
berghofe@10413
   976
               let val thm = beta_conversion false t0
wenzelm@15023
   977
               in case subc skel0 ss (rhs_of thm) of
skalberg@15531
   978
                    NONE => SOME thm
skalberg@15531
   979
                  | SOME thm' => SOME (transitive thm thm')
berghofe@10413
   980
               end
berghofe@10413
   981
           | _  =>
berghofe@10413
   982
               let fun appc () =
berghofe@10413
   983
                     let
berghofe@10413
   984
                       val (tskel, uskel) = case skel of
berghofe@10413
   985
                           tskel $ uskel => (tskel, uskel)
berghofe@10413
   986
                         | _ => (skel0, skel0);
wenzelm@10767
   987
                       val (ct, cu) = Thm.dest_comb t0
berghofe@10413
   988
                     in
wenzelm@15023
   989
                     (case botc tskel ss ct of
skalberg@15531
   990
                        SOME thm1 =>
wenzelm@15023
   991
                          (case botc uskel ss cu of
skalberg@15531
   992
                             SOME thm2 => SOME (combination thm1 thm2)
skalberg@15531
   993
                           | NONE => SOME (combination thm1 (reflexive cu)))
skalberg@15531
   994
                      | NONE =>
wenzelm@15023
   995
                          (case botc uskel ss cu of
skalberg@15531
   996
                             SOME thm1 => SOME (combination (reflexive ct) thm1)
skalberg@15531
   997
                           | NONE => NONE))
berghofe@10413
   998
                     end
berghofe@10413
   999
                   val (h, ts) = strip_comb t
ballarin@13835
  1000
               in case cong_name h of
skalberg@15531
  1001
                    SOME a =>
haftmann@17232
  1002
                      (case AList.lookup (op =) (fst congs) a of
skalberg@15531
  1003
                         NONE => appc ()
skalberg@15531
  1004
                       | SOME cong =>
wenzelm@15023
  1005
  (*post processing: some partial applications h t1 ... tj, j <= length ts,
wenzelm@15023
  1006
    may be a redex. Example: map (%x. x) = (%xs. xs) wrt map_cong*)
berghofe@10413
  1007
                          (let
wenzelm@16985
  1008
                             val thm = congc (prover ss) ss maxidx cong t0;
skalberg@15570
  1009
                             val t = getOpt (Option.map rhs_of thm, t0);
wenzelm@10767
  1010
                             val (cl, cr) = Thm.dest_comb t
berghofe@10413
  1011
                             val dVar = Var(("", 0), dummyT)
berghofe@10413
  1012
                             val skel =
berghofe@10413
  1013
                               list_comb (h, replicate (length ts) dVar)
wenzelm@15023
  1014
                           in case botc skel ss cl of
skalberg@15531
  1015
                                NONE => thm
skalberg@15531
  1016
                              | SOME thm' => transitive3 thm
berghofe@12155
  1017
                                  (combination thm' (reflexive cr))
berghofe@10413
  1018
                           end handle TERM _ => error "congc result"
berghofe@10413
  1019
                                    | Pattern.MATCH => appc ()))
berghofe@10413
  1020
                  | _ => appc ()
berghofe@10413
  1021
               end)
skalberg@15531
  1022
         | _ => NONE)
berghofe@10413
  1023
wenzelm@15023
  1024
    and impc ct ss =
wenzelm@15023
  1025
      if mutsimp then mut_impc0 [] ct [] [] ss else nonmut_impc ct ss
berghofe@10413
  1026
wenzelm@15023
  1027
    and rules_of_prem ss prem =
berghofe@13607
  1028
      if maxidx_of_term (term_of prem) <> ~1
berghofe@13607
  1029
      then (trace_cterm true
wenzelm@16985
  1030
        "Cannot add premise as rewrite rule because it contains (type) unknowns:" ss prem; ([], NONE))
berghofe@13607
  1031
      else
berghofe@13607
  1032
        let val asm = assume prem
skalberg@15531
  1033
        in (extract_safe_rrules (ss, asm), SOME asm) end
berghofe@10413
  1034
wenzelm@15023
  1035
    and add_rrules (rrss, asms) ss =
skalberg@15570
  1036
      Library.foldl (insert_rrule true) (ss, List.concat rrss) |> add_prems (List.mapPartial I asms)
berghofe@10413
  1037
berghofe@13607
  1038
    and disch r (prem, eq) =
berghofe@13607
  1039
      let
berghofe@13607
  1040
        val (lhs, rhs) = dest_eq eq;
berghofe@13607
  1041
        val eq' = implies_elim (Thm.instantiate
berghofe@13607
  1042
          ([], [(cA, prem), (cB, lhs), (cC, rhs)]) Drule.imp_cong)
berghofe@13607
  1043
          (implies_intr prem eq)
berghofe@13607
  1044
      in if not r then eq' else
berghofe@10413
  1045
        let
berghofe@13607
  1046
          val (prem', concl) = dest_implies lhs;
berghofe@13607
  1047
          val (prem'', _) = dest_implies rhs
berghofe@13607
  1048
        in transitive (transitive
berghofe@13607
  1049
          (Thm.instantiate ([], [(cA, prem'), (cB, prem), (cC, concl)])
berghofe@13607
  1050
             Drule.swap_prems_eq) eq')
berghofe@13607
  1051
          (Thm.instantiate ([], [(cA, prem), (cB, prem''), (cC, concl)])
berghofe@13607
  1052
             Drule.swap_prems_eq)
berghofe@10413
  1053
        end
berghofe@10413
  1054
      end
berghofe@10413
  1055
berghofe@13607
  1056
    and rebuild [] _ _ _ _ eq = eq
wenzelm@15023
  1057
      | rebuild (prem :: prems) concl (rrs :: rrss) (asm :: asms) ss eq =
berghofe@13607
  1058
          let
wenzelm@15023
  1059
            val ss' = add_rrules (rev rrss, rev asms) ss;
berghofe@13607
  1060
            val concl' =
skalberg@15570
  1061
              Drule.mk_implies (prem, getOpt (Option.map rhs_of eq, concl));
skalberg@15570
  1062
            val dprem = Option.map (curry (disch false) prem)
wenzelm@16458
  1063
          in case rewritec (prover, thy, maxidx) ss' concl' of
skalberg@15531
  1064
              NONE => rebuild prems concl' rrss asms ss (dprem eq)
skalberg@15570
  1065
            | SOME (eq', _) => transitive2 (Library.foldl (disch false o swap)
skalberg@15570
  1066
                  (valOf (transitive3 (dprem eq) eq'), prems))
wenzelm@15023
  1067
                (mut_impc0 (rev prems) (rhs_of eq') (rev rrss) (rev asms) ss)
berghofe@13607
  1068
          end
wenzelm@15023
  1069
wenzelm@15023
  1070
    and mut_impc0 prems concl rrss asms ss =
berghofe@13607
  1071
      let
berghofe@13607
  1072
        val prems' = strip_imp_prems concl;
wenzelm@15023
  1073
        val (rrss', asms') = split_list (map (rules_of_prem ss) prems')
berghofe@13607
  1074
      in mut_impc (prems @ prems') (strip_imp_concl concl) (rrss @ rrss')
wenzelm@15023
  1075
        (asms @ asms') [] [] [] [] ss ~1 ~1
berghofe@13607
  1076
      end
wenzelm@15023
  1077
wenzelm@15023
  1078
    and mut_impc [] concl [] [] prems' rrss' asms' eqns ss changed k =
skalberg@15570
  1079
        transitive1 (Library.foldl (fn (eq2, (eq1, prem)) => transitive1 eq1
skalberg@15570
  1080
            (Option.map (curry (disch false) prem) eq2)) (NONE, eqns ~~ prems'))
berghofe@13607
  1081
          (if changed > 0 then
berghofe@13607
  1082
             mut_impc (rev prems') concl (rev rrss') (rev asms')
wenzelm@15023
  1083
               [] [] [] [] ss ~1 changed
wenzelm@15023
  1084
           else rebuild prems' concl rrss' asms' ss
wenzelm@15023
  1085
             (botc skel0 (add_rrules (rev rrss', rev asms') ss) concl))
berghofe@13607
  1086
berghofe@13607
  1087
      | mut_impc (prem :: prems) concl (rrs :: rrss) (asm :: asms)
wenzelm@15023
  1088
          prems' rrss' asms' eqns ss changed k =
skalberg@15531
  1089
        case (if k = 0 then NONE else botc skel0 (add_rrules
wenzelm@15023
  1090
          (rev rrss' @ rrss, rev asms' @ asms) ss) prem) of
skalberg@15531
  1091
            NONE => mut_impc prems concl rrss asms (prem :: prems')
skalberg@15531
  1092
              (rrs :: rrss') (asm :: asms') (NONE :: eqns) ss changed
berghofe@13607
  1093
              (if k = 0 then 0 else k - 1)
skalberg@15531
  1094
          | SOME eqn =>
berghofe@13607
  1095
            let
berghofe@13607
  1096
              val prem' = rhs_of eqn;
berghofe@13607
  1097
              val tprems = map term_of prems;
skalberg@15570
  1098
              val i = 1 + Library.foldl Int.max (~1, map (fn p =>
berghofe@13607
  1099
                find_index_eq p tprems) (#hyps (rep_thm eqn)));
wenzelm@15023
  1100
              val (rrs', asm') = rules_of_prem ss prem'
berghofe@13607
  1101
            in mut_impc prems concl rrss asms (prem' :: prems')
skalberg@15574
  1102
              (rrs' :: rrss') (asm' :: asms') (SOME (foldr (disch true)
wenzelm@18470
  1103
                (Drule.imp_cong_rule eqn (reflexive (Drule.list_implies
skalberg@15574
  1104
                  (Library.drop (i, prems), concl)))) (Library.take (i, prems))) :: eqns) ss (length prems') ~1
berghofe@13607
  1105
            end
berghofe@13607
  1106
wenzelm@15023
  1107
     (*legacy code - only for backwards compatibility*)
wenzelm@15023
  1108
     and nonmut_impc ct ss =
berghofe@13607
  1109
       let val (prem, conc) = dest_implies ct;
skalberg@15531
  1110
           val thm1 = if simprem then botc skel0 ss prem else NONE;
skalberg@15570
  1111
           val prem1 = getOpt (Option.map rhs_of thm1, prem);
wenzelm@15023
  1112
           val ss1 = if not useprem then ss else add_rrules
wenzelm@15023
  1113
             (apsnd single (apfst single (rules_of_prem ss prem1))) ss
wenzelm@15023
  1114
       in (case botc skel0 ss1 conc of
skalberg@15531
  1115
           NONE => (case thm1 of
skalberg@15531
  1116
               NONE => NONE
wenzelm@18470
  1117
             | SOME thm1' => SOME (Drule.imp_cong_rule thm1' (reflexive conc)))
skalberg@15531
  1118
         | SOME thm2 =>
berghofe@13607
  1119
           let val thm2' = disch false (prem1, thm2)
berghofe@10413
  1120
           in (case thm1 of
skalberg@15531
  1121
               NONE => SOME thm2'
skalberg@15531
  1122
             | SOME thm1' =>
wenzelm@18470
  1123
                 SOME (transitive (Drule.imp_cong_rule thm1' (reflexive conc)) thm2'))
berghofe@10413
  1124
           end)
berghofe@10413
  1125
       end
berghofe@10413
  1126
wenzelm@15023
  1127
 in try_botc end;
berghofe@10413
  1128
berghofe@10413
  1129
wenzelm@15023
  1130
(* Meta-rewriting: rewrites t to u and returns the theorem t==u *)
berghofe@10413
  1131
berghofe@10413
  1132
(*
berghofe@10413
  1133
  Parameters:
berghofe@10413
  1134
    mode = (simplify A,
berghofe@10413
  1135
            use A in simplifying B,
berghofe@10413
  1136
            use prems of B (if B is again a meta-impl.) to simplify A)
berghofe@10413
  1137
           when simplifying A ==> B
berghofe@10413
  1138
    prover: how to solve premises in conditional rewrites and congruences
berghofe@10413
  1139
*)
berghofe@10413
  1140
wenzelm@17705
  1141
val debug_bounds = ref false;
wenzelm@17705
  1142
wenzelm@17705
  1143
fun check_bounds ss ct = conditional (! debug_bounds) (fn () =>
wenzelm@17614
  1144
  let
wenzelm@17614
  1145
    val Simpset ({bounds = (_, bounds), ...}, _) = ss;
wenzelm@17614
  1146
    val bs = fold_aterms (fn Free (x, _) =>
wenzelm@17614
  1147
        if Term.is_bound x andalso not (AList.defined eq_bound bounds x)
wenzelm@17614
  1148
        then insert (op =) x else I
wenzelm@17614
  1149
      | _ => I) (term_of ct) [];
wenzelm@17705
  1150
  in
wenzelm@17705
  1151
    if null bs then ()
wenzelm@17723
  1152
    else print_term true ("Simplifier: term contains loose bounds: " ^ commas_quote bs) ss
wenzelm@17705
  1153
      (Thm.theory_of_cterm ct) (Thm.term_of ct)
wenzelm@17705
  1154
  end);
wenzelm@17614
  1155
wenzelm@17882
  1156
fun rewrite_cterm mode prover raw_ss ct =
wenzelm@17882
  1157
  let
wenzelm@17882
  1158
    val {thy, t, maxidx, ...} = Thm.rep_cterm ct;
wenzelm@17882
  1159
    val ss = fallback_context thy raw_ss;
wenzelm@17882
  1160
    val _ = inc simp_depth;
wenzelm@17882
  1161
    val _ = conditional (!simp_depth mod 20 = 0) (fn () =>
wenzelm@17882
  1162
      warning ("Simplification depth " ^ string_of_int (! simp_depth)));
wenzelm@17882
  1163
    val _ = trace_cterm false "SIMPLIFIER INVOKED ON THE FOLLOWING TERM:" ss ct;
wenzelm@17882
  1164
    val _ = check_bounds ss ct;
wenzelm@17882
  1165
    val res = bottomc (mode, Option.map Drule.flexflex_unique oo prover, thy, maxidx) ss ct
wenzelm@17882
  1166
  in dec simp_depth; res end
wenzelm@17882
  1167
  handle exn => (dec simp_depth; raise exn);
berghofe@10413
  1168
wenzelm@11760
  1169
(*Rewrite a cterm*)
wenzelm@17897
  1170
fun rewrite_aux _ _ [] ct = Thm.reflexive ct
wenzelm@17897
  1171
  | rewrite_aux prover full thms ct =
wenzelm@17897
  1172
      rewrite_cterm (full, false, false) prover
wenzelm@17897
  1173
      (theory_context (Thm.theory_of_cterm ct) empty_ss addsimps thms) ct;
wenzelm@11672
  1174
berghofe@10413
  1175
(*Rewrite a theorem*)
wenzelm@17897
  1176
fun simplify_aux _ _ [] th = th
wenzelm@17897
  1177
  | simplify_aux prover full thms th =
wenzelm@17897
  1178
      Drule.fconv_rule (rewrite_cterm (full, false, false) prover
wenzelm@17897
  1179
        (theory_context (Thm.theory_of_thm th) empty_ss addsimps thms)) th;
berghofe@10413
  1180
wenzelm@15023
  1181
(*simple term rewriting -- no proof*)
wenzelm@16458
  1182
fun rewrite_term thy rules procs =
wenzelm@17203
  1183
  Pattern.rewrite_term thy (map decomp_simp' rules) procs;
wenzelm@15023
  1184
wenzelm@15023
  1185
fun rewrite_thm mode prover ss = Drule.fconv_rule (rewrite_cterm mode prover ss);
berghofe@10413
  1186
berghofe@10413
  1187
(*Rewrite the subgoals of a proof state (represented by a theorem) *)
berghofe@10413
  1188
fun rewrite_goals_rule_aux _ []   th = th
berghofe@10413
  1189
  | rewrite_goals_rule_aux prover thms th =
skalberg@15001
  1190
      Drule.fconv_rule (Drule.goals_conv (K true) (rewrite_cterm (true, true, false) prover
wenzelm@17897
  1191
        (theory_context (Thm.theory_of_thm th) empty_ss addsimps thms))) th;
berghofe@10413
  1192
wenzelm@15023
  1193
(*Rewrite the subgoal of a proof state (represented by a theorem)*)
skalberg@15011
  1194
fun rewrite_goal_rule mode prover ss i thm =
berghofe@10413
  1195
  if 0 < i  andalso  i <= nprems_of thm
skalberg@15011
  1196
  then Drule.fconv_rule (Drule.goals_conv (fn j => j=i) (rewrite_cterm mode prover ss)) thm
berghofe@10413
  1197
  else raise THM("rewrite_goal_rule",i,[thm]);
berghofe@10413
  1198
berghofe@10413
  1199
end;
berghofe@10413
  1200
wenzelm@11672
  1201
structure BasicMetaSimplifier: BASIC_META_SIMPLIFIER = MetaSimplifier;
wenzelm@11672
  1202
open BasicMetaSimplifier;