src/HOL/Library/FuncSet.thy
author wenzelm
Tue May 02 20:42:32 2006 +0200 (2006-05-02)
changeset 19536 1a3a3cf8b4fa
parent 17781 32bb237158a5
child 19656 09be06943252
permissions -rw-r--r--
replaced syntax/translations by abbreviation;
paulson@13586
     1
(*  Title:      HOL/Library/FuncSet.thy
paulson@13586
     2
    ID:         $Id$
paulson@13586
     3
    Author:     Florian Kammueller and Lawrence C Paulson
paulson@13586
     4
*)
paulson@13586
     5
wenzelm@14706
     6
header {* Pi and Function Sets *}
paulson@13586
     7
nipkow@15131
     8
theory FuncSet
nipkow@15140
     9
imports Main
nipkow@15131
    10
begin
paulson@13586
    11
paulson@13586
    12
constdefs
wenzelm@14706
    13
  Pi :: "['a set, 'a => 'b set] => ('a => 'b) set"
wenzelm@14706
    14
  "Pi A B == {f. \<forall>x. x \<in> A --> f x \<in> B x}"
paulson@13586
    15
paulson@13586
    16
  extensional :: "'a set => ('a => 'b) set"
wenzelm@14706
    17
  "extensional A == {f. \<forall>x. x~:A --> f x = arbitrary}"
paulson@13586
    18
wenzelm@14706
    19
  "restrict" :: "['a => 'b, 'a set] => ('a => 'b)"
wenzelm@14706
    20
  "restrict f A == (%x. if x \<in> A then f x else arbitrary)"
paulson@13586
    21
wenzelm@19536
    22
abbreviation
wenzelm@19536
    23
  funcset :: "['a set, 'b set] => ('a => 'b) set"      (infixr "->" 60)
wenzelm@19536
    24
  "A -> B == Pi A (%_. B)"
wenzelm@19536
    25
wenzelm@19536
    26
abbreviation (xsymbols)
wenzelm@19536
    27
  funcset1  (infixr "\<rightarrow>" 60)
wenzelm@19536
    28
  "funcset1 == funcset"
wenzelm@19536
    29
paulson@13586
    30
syntax
paulson@13586
    31
  "@Pi"  :: "[pttrn, 'a set, 'b set] => ('a => 'b) set"  ("(3PI _:_./ _)" 10)
paulson@13586
    32
  "@lam" :: "[pttrn, 'a set, 'a => 'b] => ('a=>'b)"  ("(3%_:_./ _)" [0,0,3] 3)
paulson@13586
    33
paulson@13586
    34
syntax (xsymbols)
paulson@13586
    35
  "@Pi" :: "[pttrn, 'a set, 'b set] => ('a => 'b) set"  ("(3\<Pi> _\<in>_./ _)"   10)
paulson@13586
    36
  "@lam" :: "[pttrn, 'a set, 'a => 'b] => ('a=>'b)"  ("(3\<lambda>_\<in>_./ _)" [0,0,3] 3)
paulson@13586
    37
kleing@14565
    38
syntax (HTML output)
kleing@14565
    39
  "@Pi" :: "[pttrn, 'a set, 'b set] => ('a => 'b) set"  ("(3\<Pi> _\<in>_./ _)"   10)
kleing@14565
    40
  "@lam" :: "[pttrn, 'a set, 'a => 'b] => ('a=>'b)"  ("(3\<lambda>_\<in>_./ _)" [0,0,3] 3)
kleing@14565
    41
paulson@13586
    42
translations
wenzelm@19536
    43
  "PI x:A. B" == "Pi A (%x. B)"
wenzelm@14706
    44
  "%x:A. f" == "restrict (%x. f) A"
paulson@13586
    45
paulson@13586
    46
constdefs
wenzelm@14706
    47
  "compose" :: "['a set, 'b => 'c, 'a => 'b] => ('a => 'c)"
paulson@13586
    48
  "compose A g f == \<lambda>x\<in>A. g (f x)"
paulson@13586
    49
paulson@13586
    50
paulson@13586
    51
subsection{*Basic Properties of @{term Pi}*}
paulson@13586
    52
paulson@13586
    53
lemma Pi_I: "(!!x. x \<in> A ==> f x \<in> B x) ==> f \<in> Pi A B"
wenzelm@14706
    54
  by (simp add: Pi_def)
paulson@13586
    55
paulson@13586
    56
lemma funcsetI: "(!!x. x \<in> A ==> f x \<in> B) ==> f \<in> A -> B"
wenzelm@14706
    57
  by (simp add: Pi_def)
paulson@13586
    58
paulson@13586
    59
lemma Pi_mem: "[|f: Pi A B; x \<in> A|] ==> f x \<in> B x"
wenzelm@14706
    60
  by (simp add: Pi_def)
paulson@13586
    61
paulson@13586
    62
lemma funcset_mem: "[|f \<in> A -> B; x \<in> A|] ==> f x \<in> B"
wenzelm@14706
    63
  by (simp add: Pi_def)
paulson@13586
    64
paulson@14762
    65
lemma funcset_image: "f \<in> A\<rightarrow>B ==> f ` A \<subseteq> B"
paulson@14762
    66
by (auto simp add: Pi_def)
paulson@14762
    67
paulson@13586
    68
lemma Pi_eq_empty: "((PI x: A. B x) = {}) = (\<exists>x\<in>A. B(x) = {})"
paulson@13593
    69
apply (simp add: Pi_def, auto)
paulson@13586
    70
txt{*Converse direction requires Axiom of Choice to exhibit a function
paulson@13586
    71
picking an element from each non-empty @{term "B x"}*}
paulson@13593
    72
apply (drule_tac x = "%u. SOME y. y \<in> B u" in spec, auto)
wenzelm@14706
    73
apply (cut_tac P= "%y. y \<in> B x" in some_eq_ex, auto)
paulson@13586
    74
done
paulson@13586
    75
paulson@13593
    76
lemma Pi_empty [simp]: "Pi {} B = UNIV"
wenzelm@14706
    77
  by (simp add: Pi_def)
paulson@13593
    78
paulson@13593
    79
lemma Pi_UNIV [simp]: "A -> UNIV = UNIV"
wenzelm@14706
    80
  by (simp add: Pi_def)
paulson@13586
    81
paulson@13586
    82
text{*Covariance of Pi-sets in their second argument*}
paulson@13586
    83
lemma Pi_mono: "(!!x. x \<in> A ==> B x <= C x) ==> Pi A B <= Pi A C"
wenzelm@14706
    84
  by (simp add: Pi_def, blast)
paulson@13586
    85
paulson@13586
    86
text{*Contravariance of Pi-sets in their first argument*}
paulson@13586
    87
lemma Pi_anti_mono: "A' <= A ==> Pi A B <= Pi A' B"
wenzelm@14706
    88
  by (simp add: Pi_def, blast)
paulson@13586
    89
paulson@13586
    90
paulson@13586
    91
subsection{*Composition With a Restricted Domain: @{term compose}*}
paulson@13586
    92
wenzelm@14706
    93
lemma funcset_compose:
wenzelm@14706
    94
    "[| f \<in> A -> B; g \<in> B -> C |]==> compose A g f \<in> A -> C"
wenzelm@14706
    95
  by (simp add: Pi_def compose_def restrict_def)
paulson@13586
    96
paulson@13586
    97
lemma compose_assoc:
wenzelm@14706
    98
    "[| f \<in> A -> B; g \<in> B -> C; h \<in> C -> D |]
paulson@13586
    99
      ==> compose A h (compose A g f) = compose A (compose B h g) f"
wenzelm@14706
   100
  by (simp add: expand_fun_eq Pi_def compose_def restrict_def)
paulson@13586
   101
paulson@13586
   102
lemma compose_eq: "x \<in> A ==> compose A g f x = g(f(x))"
wenzelm@14706
   103
  by (simp add: compose_def restrict_def)
paulson@13586
   104
paulson@13586
   105
lemma surj_compose: "[| f ` A = B; g ` B = C |] ==> compose A g f ` A = C"
wenzelm@14706
   106
  by (auto simp add: image_def compose_eq)
paulson@13586
   107
paulson@13586
   108
paulson@13586
   109
subsection{*Bounded Abstraction: @{term restrict}*}
paulson@13586
   110
paulson@13586
   111
lemma restrict_in_funcset: "(!!x. x \<in> A ==> f x \<in> B) ==> (\<lambda>x\<in>A. f x) \<in> A -> B"
wenzelm@14706
   112
  by (simp add: Pi_def restrict_def)
paulson@13586
   113
paulson@13586
   114
lemma restrictI: "(!!x. x \<in> A ==> f x \<in> B x) ==> (\<lambda>x\<in>A. f x) \<in> Pi A B"
wenzelm@14706
   115
  by (simp add: Pi_def restrict_def)
paulson@13586
   116
paulson@13586
   117
lemma restrict_apply [simp]:
wenzelm@14706
   118
    "(\<lambda>y\<in>A. f y) x = (if x \<in> A then f x else arbitrary)"
wenzelm@14706
   119
  by (simp add: restrict_def)
paulson@13586
   120
wenzelm@14706
   121
lemma restrict_ext:
paulson@13586
   122
    "(!!x. x \<in> A ==> f x = g x) ==> (\<lambda>x\<in>A. f x) = (\<lambda>x\<in>A. g x)"
wenzelm@14706
   123
  by (simp add: expand_fun_eq Pi_def Pi_def restrict_def)
paulson@13586
   124
paulson@14853
   125
lemma inj_on_restrict_eq [simp]: "inj_on (restrict f A) A = inj_on f A"
wenzelm@14706
   126
  by (simp add: inj_on_def restrict_def)
paulson@13586
   127
paulson@13586
   128
lemma Id_compose:
wenzelm@14706
   129
    "[|f \<in> A -> B;  f \<in> extensional A|] ==> compose A (\<lambda>y\<in>B. y) f = f"
wenzelm@14706
   130
  by (auto simp add: expand_fun_eq compose_def extensional_def Pi_def)
paulson@13586
   131
paulson@13586
   132
lemma compose_Id:
wenzelm@14706
   133
    "[|g \<in> A -> B;  g \<in> extensional A|] ==> compose A g (\<lambda>x\<in>A. x) = g"
wenzelm@14706
   134
  by (auto simp add: expand_fun_eq compose_def extensional_def Pi_def)
paulson@13586
   135
paulson@14853
   136
lemma image_restrict_eq [simp]: "(restrict f A) ` A = f ` A"
paulson@14853
   137
  by (auto simp add: restrict_def) 
paulson@13586
   138
paulson@14745
   139
paulson@14762
   140
subsection{*Bijections Between Sets*}
paulson@14762
   141
paulson@14762
   142
text{*The basic definition could be moved to @{text "Fun.thy"}, but most of
paulson@14762
   143
the theorems belong here, or need at least @{term Hilbert_Choice}.*}
paulson@14762
   144
paulson@14762
   145
constdefs
paulson@14762
   146
  bij_betw :: "['a => 'b, 'a set, 'b set] => bool"         (*bijective*)
paulson@14762
   147
    "bij_betw f A B == inj_on f A & f ` A = B"
paulson@14762
   148
paulson@14762
   149
lemma bij_betw_imp_inj_on: "bij_betw f A B \<Longrightarrow> inj_on f A"
paulson@14762
   150
by (simp add: bij_betw_def)
paulson@14762
   151
paulson@14762
   152
lemma bij_betw_imp_funcset: "bij_betw f A B \<Longrightarrow> f \<in> A \<rightarrow> B"
paulson@14762
   153
by (auto simp add: bij_betw_def inj_on_Inv Pi_def)
paulson@14762
   154
paulson@14762
   155
lemma bij_betw_Inv: "bij_betw f A B \<Longrightarrow> bij_betw (Inv A f) B A"
paulson@14762
   156
apply (auto simp add: bij_betw_def inj_on_Inv Inv_mem) 
paulson@14762
   157
apply (simp add: image_compose [symmetric] o_def) 
paulson@14762
   158
apply (simp add: image_def Inv_f_f) 
paulson@14762
   159
done
paulson@14762
   160
paulson@14853
   161
lemma inj_on_compose:
paulson@14853
   162
    "[| bij_betw f A B; inj_on g B |] ==> inj_on (compose A g f) A"
paulson@14853
   163
  by (auto simp add: bij_betw_def inj_on_def compose_eq)
paulson@14853
   164
paulson@14762
   165
lemma bij_betw_compose:
paulson@14762
   166
    "[| bij_betw f A B; bij_betw g B C |] ==> bij_betw (compose A g f) A C"
paulson@14762
   167
apply (simp add: bij_betw_def compose_eq inj_on_compose)
paulson@14762
   168
apply (auto simp add: compose_def image_def)
paulson@14762
   169
done
paulson@14762
   170
paulson@14853
   171
lemma bij_betw_restrict_eq [simp]:
paulson@14853
   172
     "bij_betw (restrict f A) A B = bij_betw f A B"
paulson@14853
   173
  by (simp add: bij_betw_def)
paulson@14853
   174
paulson@14853
   175
paulson@14853
   176
subsection{*Extensionality*}
paulson@14853
   177
paulson@14853
   178
lemma extensional_arb: "[|f \<in> extensional A; x\<notin> A|] ==> f x = arbitrary"
paulson@14853
   179
  by (simp add: extensional_def)
paulson@14853
   180
paulson@14853
   181
lemma restrict_extensional [simp]: "restrict f A \<in> extensional A"
paulson@14853
   182
  by (simp add: restrict_def extensional_def)
paulson@14853
   183
paulson@14853
   184
lemma compose_extensional [simp]: "compose A f g \<in> extensional A"
paulson@14853
   185
  by (simp add: compose_def)
paulson@14853
   186
paulson@14853
   187
lemma extensionalityI:
paulson@14853
   188
    "[| f \<in> extensional A; g \<in> extensional A;
paulson@14853
   189
      !!x. x\<in>A ==> f x = g x |] ==> f = g"
paulson@14853
   190
  by (force simp add: expand_fun_eq extensional_def)
paulson@14853
   191
paulson@14853
   192
lemma Inv_funcset: "f ` A = B ==> (\<lambda>x\<in>B. Inv A f x) : B -> A"
paulson@14853
   193
  by (unfold Inv_def) (fast intro: restrict_in_funcset someI2)
paulson@14853
   194
paulson@14853
   195
lemma compose_Inv_id:
paulson@14853
   196
    "bij_betw f A B ==> compose A (\<lambda>y\<in>B. Inv A f y) f = (\<lambda>x\<in>A. x)"
paulson@14853
   197
  apply (simp add: bij_betw_def compose_def)
paulson@14853
   198
  apply (rule restrict_ext, auto)
paulson@14853
   199
  apply (erule subst)
paulson@14853
   200
  apply (simp add: Inv_f_f)
paulson@14853
   201
  done
paulson@14853
   202
paulson@14853
   203
lemma compose_id_Inv:
paulson@14853
   204
    "f ` A = B ==> compose B f (\<lambda>y\<in>B. Inv A f y) = (\<lambda>x\<in>B. x)"
paulson@14853
   205
  apply (simp add: compose_def)
paulson@14853
   206
  apply (rule restrict_ext)
paulson@14853
   207
  apply (simp add: f_Inv_f)
paulson@14853
   208
  done
paulson@14853
   209
paulson@14762
   210
paulson@14745
   211
subsection{*Cardinality*}
paulson@14745
   212
paulson@14745
   213
lemma card_inj: "[|f \<in> A\<rightarrow>B; inj_on f A; finite B|] ==> card(A) \<le> card(B)"
paulson@14745
   214
apply (rule card_inj_on_le)
paulson@14745
   215
apply (auto simp add: Pi_def)
paulson@14745
   216
done
paulson@14745
   217
paulson@14745
   218
lemma card_bij:
paulson@14745
   219
     "[|f \<in> A\<rightarrow>B; inj_on f A;
paulson@14745
   220
        g \<in> B\<rightarrow>A; inj_on g B; finite A; finite B|] ==> card(A) = card(B)"
paulson@14745
   221
by (blast intro: card_inj order_antisym)
paulson@14745
   222
paulson@13586
   223
end