src/HOL/Hyperreal/Transcendental.thy
author huffman
Thu Oct 05 05:46:32 2006 +0200 (2006-10-05)
changeset 20860 1a8efd618190
parent 20849 389cd9c8cfe1
child 21020 9af9ceb16d58
permissions -rw-r--r--
reorganize and speed up termdiffs proofs
paulson@12196
     1
(*  Title       : Transcendental.thy
paulson@12196
     2
    Author      : Jacques D. Fleuriot
paulson@12196
     3
    Copyright   : 1998,1999 University of Cambridge
paulson@13958
     4
                  1999,2001 University of Edinburgh
paulson@15077
     5
    Conversion to Isar and new proofs by Lawrence C Paulson, 2004
paulson@12196
     6
*)
paulson@12196
     7
paulson@15077
     8
header{*Power Series, Transcendental Functions etc.*}
paulson@15077
     9
nipkow@15131
    10
theory Transcendental
huffman@20690
    11
imports NthRoot Fact Series EvenOdd Lim
nipkow@15131
    12
begin
paulson@15077
    13
wenzelm@19765
    14
definition
wenzelm@19765
    15
wenzelm@19765
    16
  exp :: "real => real"
wenzelm@19765
    17
  "exp x = (\<Sum>n. inverse(real (fact n)) * (x ^ n))"
wenzelm@19765
    18
wenzelm@19765
    19
  sin :: "real => real"
wenzelm@19765
    20
  "sin x = (\<Sum>n. (if even(n) then 0 else
wenzelm@19765
    21
             ((- 1) ^ ((n - Suc 0) div 2))/(real (fact n))) * x ^ n)"
paulson@12196
    22
 
wenzelm@19765
    23
  diffs :: "(nat => real) => nat => real"
wenzelm@19765
    24
  "diffs c = (%n. real (Suc n) * c(Suc n))"
wenzelm@19765
    25
wenzelm@19765
    26
  cos :: "real => real"
wenzelm@19765
    27
  "cos x = (\<Sum>n. (if even(n) then ((- 1) ^ (n div 2))/(real (fact n)) 
wenzelm@19765
    28
                            else 0) * x ^ n)"
paulson@12196
    29
  
wenzelm@19765
    30
  ln :: "real => real"
wenzelm@19765
    31
  "ln x = (SOME u. exp u = x)"
wenzelm@19765
    32
wenzelm@19765
    33
  pi :: "real"
wenzelm@19765
    34
  "pi = 2 * (@x. 0 \<le> (x::real) & x \<le> 2 & cos x = 0)"
wenzelm@19765
    35
wenzelm@19765
    36
  tan :: "real => real"
wenzelm@19765
    37
  "tan x = (sin x)/(cos x)"
wenzelm@19765
    38
wenzelm@19765
    39
  arcsin :: "real => real"
wenzelm@19765
    40
  "arcsin y = (SOME x. -(pi/2) \<le> x & x \<le> pi/2 & sin x = y)"
wenzelm@19765
    41
wenzelm@19765
    42
  arcos :: "real => real"
wenzelm@19765
    43
  "arcos y = (SOME x. 0 \<le> x & x \<le> pi & cos x = y)"
paulson@12196
    44
     
wenzelm@19765
    45
  arctan :: "real => real"
wenzelm@19765
    46
  "arctan y = (SOME x. -(pi/2) < x & x < pi/2 & tan x = y)"
paulson@15077
    47
paulson@15077
    48
paulson@15077
    49
subsection{*Exponential Function*}
paulson@15077
    50
paulson@15077
    51
lemma summable_exp: "summable (%n. inverse (real (fact n)) * x ^ n)"
paulson@15077
    52
apply (cut_tac 'a = real in zero_less_one [THEN dense], safe)
paulson@15077
    53
apply (cut_tac x = r in reals_Archimedean3, auto)
paulson@15077
    54
apply (drule_tac x = "\<bar>x\<bar>" in spec, safe)
paulson@15077
    55
apply (rule_tac N = n and c = r in ratio_test)
huffman@20849
    56
apply (safe, simp add: abs_mult mult_assoc [symmetric] del: fact_Suc)
paulson@15077
    57
apply (rule mult_right_mono)
paulson@15077
    58
apply (rule_tac b1 = "\<bar>x\<bar>" in mult_commute [THEN ssubst])
paulson@15077
    59
apply (subst fact_Suc)
paulson@15077
    60
apply (subst real_of_nat_mult)
nipkow@15539
    61
apply (auto)
huffman@20849
    62
apply (simp add: mult_assoc [symmetric] positive_imp_inverse_positive)
paulson@15077
    63
apply (rule order_less_imp_le)
paulson@15229
    64
apply (rule_tac z1 = "real (Suc na)" in real_mult_less_iff1 [THEN iffD1])
nipkow@15539
    65
apply (auto simp add: real_not_refl2 [THEN not_sym] mult_assoc)
paulson@15077
    66
apply (erule order_less_trans)
paulson@15077
    67
apply (auto simp add: mult_less_cancel_left mult_ac)
paulson@15077
    68
done
paulson@15077
    69
paulson@15077
    70
lemma summable_sin: 
paulson@15077
    71
     "summable (%n.  
paulson@15077
    72
           (if even n then 0  
paulson@15077
    73
           else (- 1) ^ ((n - Suc 0) div 2)/(real (fact n))) *  
paulson@15077
    74
                x ^ n)"
paulson@15229
    75
apply (rule_tac g = "(%n. inverse (real (fact n)) * \<bar>x\<bar> ^ n)" in summable_comparison_test)
paulson@15077
    76
apply (rule_tac [2] summable_exp)
paulson@15077
    77
apply (rule_tac x = 0 in exI)
paulson@16924
    78
apply (auto simp add: divide_inverse abs_mult power_abs [symmetric] zero_le_mult_iff)
paulson@15077
    79
done
paulson@15077
    80
paulson@15077
    81
lemma summable_cos: 
paulson@15077
    82
      "summable (%n.  
paulson@15077
    83
           (if even n then  
paulson@15077
    84
           (- 1) ^ (n div 2)/(real (fact n)) else 0) * x ^ n)"
paulson@15229
    85
apply (rule_tac g = "(%n. inverse (real (fact n)) * \<bar>x\<bar> ^ n)" in summable_comparison_test)
paulson@15077
    86
apply (rule_tac [2] summable_exp)
paulson@15077
    87
apply (rule_tac x = 0 in exI)
paulson@16924
    88
apply (auto simp add: divide_inverse abs_mult power_abs [symmetric] zero_le_mult_iff)
paulson@15077
    89
done
paulson@15077
    90
paulson@15229
    91
lemma lemma_STAR_sin [simp]:
paulson@15229
    92
     "(if even n then 0  
paulson@15077
    93
       else (- 1) ^ ((n - Suc 0) div 2)/(real (fact n))) * 0 ^ n = 0"
paulson@15251
    94
by (induct "n", auto)
paulson@15229
    95
paulson@15229
    96
lemma lemma_STAR_cos [simp]:
paulson@15229
    97
     "0 < n -->  
paulson@15077
    98
      (- 1) ^ (n div 2)/(real (fact n)) * 0 ^ n = 0"
paulson@15251
    99
by (induct "n", auto)
paulson@15229
   100
paulson@15229
   101
lemma lemma_STAR_cos1 [simp]:
paulson@15229
   102
     "0 < n -->  
paulson@15077
   103
      (-1) ^ (n div 2)/(real (fact n)) * 0 ^ n = 0"
paulson@15251
   104
by (induct "n", auto)
paulson@15229
   105
paulson@15229
   106
lemma lemma_STAR_cos2 [simp]:
nipkow@15539
   107
  "(\<Sum>n=1..<n. if even n then (- 1) ^ (n div 2)/(real (fact n)) *  0 ^ n 
nipkow@15539
   108
                         else 0) = 0"
paulson@15251
   109
apply (induct "n")
paulson@15077
   110
apply (case_tac [2] "n", auto)
paulson@15077
   111
done
paulson@15077
   112
paulson@15077
   113
lemma exp_converges: "(%n. inverse (real (fact n)) * x ^ n) sums exp(x)"
paulson@15229
   114
apply (simp add: exp_def)
paulson@15077
   115
apply (rule summable_exp [THEN summable_sums])
paulson@15077
   116
done
paulson@15077
   117
paulson@15077
   118
lemma sin_converges: 
paulson@15077
   119
      "(%n. (if even n then 0  
paulson@15077
   120
            else (- 1) ^ ((n - Suc 0) div 2)/(real (fact n))) *  
paulson@15077
   121
                 x ^ n) sums sin(x)"
paulson@15229
   122
apply (simp add: sin_def)
paulson@15077
   123
apply (rule summable_sin [THEN summable_sums])
paulson@15077
   124
done
paulson@15077
   125
paulson@15077
   126
lemma cos_converges: 
paulson@15077
   127
      "(%n. (if even n then  
paulson@15077
   128
           (- 1) ^ (n div 2)/(real (fact n))  
paulson@15077
   129
           else 0) * x ^ n) sums cos(x)"
paulson@15229
   130
apply (simp add: cos_def)
paulson@15077
   131
apply (rule summable_cos [THEN summable_sums])
paulson@15077
   132
done
paulson@15077
   133
paulson@15229
   134
lemma lemma_realpow_diff [rule_format (no_asm)]:
paulson@15229
   135
     "p \<le> n --> y ^ (Suc n - p) = ((y::real) ^ (n - p)) * y"
paulson@15251
   136
apply (induct "n", auto)
paulson@15077
   137
apply (subgoal_tac "p = Suc n")
paulson@15077
   138
apply (simp (no_asm_simp), auto)
paulson@15077
   139
apply (drule sym)
paulson@15077
   140
apply (simp add: Suc_diff_le mult_commute realpow_Suc [symmetric] 
paulson@15077
   141
       del: realpow_Suc)
paulson@15077
   142
done
paulson@15077
   143
paulson@15077
   144
paulson@15077
   145
subsection{*Properties of Power Series*}
paulson@15077
   146
paulson@15077
   147
lemma lemma_realpow_diff_sumr:
nipkow@15539
   148
     "(\<Sum>p=0..<Suc n. (x ^ p) * y ^ ((Suc n) - p)) =  
nipkow@15539
   149
      y * (\<Sum>p=0..<Suc n. (x ^ p) * (y ^ (n - p))::real)"
ballarin@19279
   150
by (auto simp add: setsum_right_distrib lemma_realpow_diff mult_ac
berghofe@16641
   151
  simp del: setsum_op_ivl_Suc cong: strong_setsum_cong)
paulson@15077
   152
paulson@15229
   153
lemma lemma_realpow_diff_sumr2:
paulson@15229
   154
     "x ^ (Suc n) - y ^ (Suc n) =  
nipkow@15539
   155
      (x - y) * (\<Sum>p=0..<Suc n. (x ^ p) * (y ^(n - p))::real)"
paulson@15251
   156
apply (induct "n", simp)
nipkow@15561
   157
apply (auto simp del: setsum_op_ivl_Suc)
nipkow@15561
   158
apply (subst setsum_op_ivl_Suc)
paulson@15077
   159
apply (drule sym)
nipkow@15561
   160
apply (auto simp add: lemma_realpow_diff_sumr right_distrib diff_minus mult_ac simp del: setsum_op_ivl_Suc)
paulson@15077
   161
done
paulson@15077
   162
paulson@15229
   163
lemma lemma_realpow_rev_sumr:
nipkow@15539
   164
     "(\<Sum>p=0..<Suc n. (x ^ p) * (y ^ (n - p))) =  
nipkow@15539
   165
      (\<Sum>p=0..<Suc n. (x ^ (n - p)) * (y ^ p)::real)"
paulson@15077
   166
apply (case_tac "x = y")
nipkow@15561
   167
apply (auto simp add: mult_commute power_add [symmetric] simp del: setsum_op_ivl_Suc)
paulson@15077
   168
apply (rule_tac c1 = "x - y" in real_mult_left_cancel [THEN iffD1])
paulson@15077
   169
apply (rule_tac [2] minus_minus [THEN subst], simp)
paulson@15077
   170
apply (subst minus_mult_left)
nipkow@15561
   171
apply (simp add: lemma_realpow_diff_sumr2 [symmetric] del: setsum_op_ivl_Suc)
paulson@15077
   172
done
paulson@15077
   173
paulson@15077
   174
text{*Power series has a `circle` of convergence, i.e. if it sums for @{term
paulson@15077
   175
x}, then it sums absolutely for @{term z} with @{term "\<bar>z\<bar> < \<bar>x\<bar>"}.*}
paulson@15077
   176
paulson@15077
   177
lemma powser_insidea:
huffman@20849
   178
  fixes x z :: real
huffman@20849
   179
  assumes 1: "summable (\<lambda>n. f n * x ^ n)"
huffman@20849
   180
  assumes 2: "\<bar>z\<bar> < \<bar>x\<bar>"
huffman@20849
   181
  shows "summable (\<lambda>n. \<bar>f n\<bar> * z ^ n)"
huffman@20849
   182
proof -
huffman@20849
   183
  from 2 have x_neq_0: "x \<noteq> 0" by clarsimp
huffman@20849
   184
  from 1 have "(\<lambda>n. f n * x ^ n) ----> 0"
huffman@20849
   185
    by (rule summable_LIMSEQ_zero)
huffman@20849
   186
  hence "convergent (\<lambda>n. f n * x ^ n)"
huffman@20849
   187
    by (rule convergentI)
huffman@20849
   188
  hence "Cauchy (\<lambda>n. f n * x ^ n)"
huffman@20849
   189
    by (simp add: Cauchy_convergent_iff)
huffman@20849
   190
  hence "Bseq (\<lambda>n. f n * x ^ n)"
huffman@20849
   191
    by (rule Cauchy_Bseq)
huffman@20849
   192
  then obtain K where 3: "0 < K" and 4: "\<forall>n. \<bar>f n * x ^ n\<bar> \<le> K"
huffman@20849
   193
    by (simp add: Bseq_def, safe)
huffman@20849
   194
  have "\<exists>N. \<forall>n\<ge>N. norm (\<bar>f n\<bar> * z ^ n) \<le> K * \<bar>z ^ n\<bar> * inverse \<bar>x ^ n\<bar>"
huffman@20849
   195
  proof (intro exI allI impI)
huffman@20849
   196
    fix n::nat assume "0 \<le> n"
huffman@20849
   197
    have "norm (\<bar>f n\<bar> * z ^ n) * \<bar>x ^ n\<bar> = \<bar>f n * x ^ n\<bar> * \<bar>z ^ n\<bar>"
huffman@20849
   198
      by (simp add: abs_mult)
huffman@20849
   199
    also have "\<dots> \<le> K * \<bar>z ^ n\<bar>"
huffman@20849
   200
      by (simp only: mult_right_mono 4 abs_ge_zero)
huffman@20849
   201
    also have "\<dots> = K * \<bar>z ^ n\<bar> * (inverse \<bar>x ^ n\<bar> * \<bar>x ^ n\<bar>)"
huffman@20849
   202
      by (simp add: x_neq_0)
huffman@20849
   203
    also have "\<dots> = K * \<bar>z ^ n\<bar> * inverse \<bar>x ^ n\<bar> * \<bar>x ^ n\<bar>"
huffman@20849
   204
      by (simp only: mult_assoc)
huffman@20849
   205
    finally show "norm (\<bar>f n\<bar> * z ^ n) \<le> K * \<bar>z ^ n\<bar> * inverse \<bar>x ^ n\<bar>"
huffman@20849
   206
      by (simp add: mult_le_cancel_right x_neq_0)
huffman@20849
   207
  qed
huffman@20849
   208
  moreover have "summable (\<lambda>n. K * \<bar>z ^ n\<bar> * inverse \<bar>x ^ n\<bar>)"
huffman@20849
   209
  proof -
huffman@20849
   210
    from 2 have "norm \<bar>z * inverse x\<bar> < 1"
huffman@20849
   211
      by (simp add: abs_mult divide_inverse [symmetric])
huffman@20849
   212
    hence "summable (\<lambda>n. \<bar>z * inverse x\<bar> ^ n)"
huffman@20849
   213
      by (rule summable_geometric)
huffman@20849
   214
    hence "summable (\<lambda>n. K * \<bar>z * inverse x\<bar> ^ n)"
huffman@20849
   215
      by (rule summable_mult)
huffman@20849
   216
    thus "summable (\<lambda>n. K * \<bar>z ^ n\<bar> * inverse \<bar>x ^ n\<bar>)"
huffman@20849
   217
      by (simp add: abs_mult power_mult_distrib power_abs
huffman@20849
   218
                    power_inverse mult_assoc)
huffman@20849
   219
  qed
huffman@20849
   220
  ultimately show "summable (\<lambda>n. \<bar>f n\<bar> * z ^ n)"
huffman@20849
   221
    by (rule summable_comparison_test)
huffman@20849
   222
qed
paulson@15077
   223
paulson@15229
   224
lemma powser_inside:
huffman@20849
   225
  fixes f :: "nat \<Rightarrow> real" shows
paulson@15229
   226
     "[| summable (%n. f(n) * (x ^ n)); \<bar>z\<bar> < \<bar>x\<bar> |]  
paulson@15077
   227
      ==> summable (%n. f(n) * (z ^ n))"
huffman@20849
   228
apply (drule_tac z = "\<bar>z\<bar>" in powser_insidea, simp)
huffman@20849
   229
apply (rule summable_rabs_cancel)
huffman@20849
   230
apply (simp add: abs_mult power_abs [symmetric])
paulson@15077
   231
done
paulson@15077
   232
paulson@15077
   233
paulson@15077
   234
subsection{*Differentiation of Power Series*}
paulson@15077
   235
paulson@15077
   236
text{*Lemma about distributing negation over it*}
paulson@15077
   237
lemma diffs_minus: "diffs (%n. - c n) = (%n. - diffs c n)"
paulson@15077
   238
by (simp add: diffs_def)
paulson@15077
   239
paulson@15077
   240
text{*Show that we can shift the terms down one*}
paulson@15077
   241
lemma lemma_diffs:
nipkow@15539
   242
     "(\<Sum>n=0..<n. (diffs c)(n) * (x ^ n)) =  
nipkow@15539
   243
      (\<Sum>n=0..<n. real n * c(n) * (x ^ (n - Suc 0))) +  
paulson@15077
   244
      (real n * c(n) * x ^ (n - Suc 0))"
paulson@15251
   245
apply (induct "n")
paulson@15077
   246
apply (auto simp add: mult_assoc add_assoc [symmetric] diffs_def)
paulson@15077
   247
done
paulson@15077
   248
paulson@15229
   249
lemma lemma_diffs2:
nipkow@15539
   250
     "(\<Sum>n=0..<n. real n * c(n) * (x ^ (n - Suc 0))) =  
nipkow@15539
   251
      (\<Sum>n=0..<n. (diffs c)(n) * (x ^ n)) -  
paulson@15077
   252
      (real n * c(n) * x ^ (n - Suc 0))"
paulson@15077
   253
by (auto simp add: lemma_diffs)
paulson@15077
   254
paulson@15077
   255
paulson@15229
   256
lemma diffs_equiv:
paulson@15229
   257
     "summable (%n. (diffs c)(n) * (x ^ n)) ==>  
paulson@15077
   258
      (%n. real n * c(n) * (x ^ (n - Suc 0))) sums  
nipkow@15546
   259
         (\<Sum>n. (diffs c)(n) * (x ^ n))"
paulson@15077
   260
apply (subgoal_tac " (%n. real n * c (n) * (x ^ (n - Suc 0))) ----> 0")
paulson@15077
   261
apply (rule_tac [2] LIMSEQ_imp_Suc)
paulson@15077
   262
apply (drule summable_sums) 
paulson@15077
   263
apply (auto simp add: sums_def)
paulson@15077
   264
apply (drule_tac X="(\<lambda>n. \<Sum>n = 0..<n. diffs c n * x ^ n)" in LIMSEQ_diff)
paulson@15077
   265
apply (auto simp add: lemma_diffs2 [symmetric] diffs_def [symmetric])
paulson@15077
   266
apply (simp add: diffs_def summable_LIMSEQ_zero)
paulson@15077
   267
done
paulson@15077
   268
paulson@15077
   269
paulson@15077
   270
subsection{*Term-by-Term Differentiability of Power Series*}
paulson@15077
   271
paulson@15077
   272
lemma lemma_termdiff1:
nipkow@15539
   273
  "(\<Sum>p=0..<m. (((z + h) ^ (m - p)) * (z ^ p)) - (z ^ m)) =  
nipkow@15539
   274
   (\<Sum>p=0..<m. (z ^ p) * (((z + h) ^ (m - p)) - (z ^ (m - p)))::real)"
berghofe@16641
   275
by (auto simp add: right_distrib diff_minus power_add [symmetric] mult_ac
berghofe@16641
   276
  cong: strong_setsum_cong)
paulson@15077
   277
paulson@15077
   278
lemma less_add_one: "m < n ==> (\<exists>d. n = m + d + Suc 0)"
paulson@15077
   279
by (simp add: less_iff_Suc_add)
paulson@15077
   280
paulson@15077
   281
lemma sumdiff: "a + b - (c + d) = a - c + b - (d::real)"
paulson@15077
   282
by arith
paulson@15077
   283
paulson@15229
   284
lemma lemma_termdiff2:
huffman@20860
   285
  assumes h: "h \<noteq> 0" shows
huffman@20860
   286
  "((z + h) ^ n - z ^ n) / h - real n * z ^ (n - Suc 0) =
huffman@20860
   287
   h * (\<Sum>p=0..< n - Suc 0. \<Sum>q=0..< n - Suc 0 - p.
huffman@20860
   288
        (z + h) ^ q * z ^ (n - 2 - q))"
huffman@20860
   289
apply (rule real_mult_left_cancel [OF h, THEN iffD1])
huffman@20860
   290
apply (simp add: right_diff_distrib diff_divide_distrib h)
paulson@15077
   291
apply (simp add: mult_assoc [symmetric])
huffman@20860
   292
apply (cases "n", simp)
huffman@20860
   293
apply (simp add: lemma_realpow_diff_sumr2 h
huffman@20860
   294
                 right_diff_distrib [symmetric] mult_assoc
huffman@20860
   295
            del: realpow_Suc setsum_op_ivl_Suc)
huffman@20860
   296
apply (subst lemma_realpow_rev_sumr)
huffman@20860
   297
apply (subst sumr_diff_mult_const)
huffman@20860
   298
apply simp
huffman@20860
   299
apply (simp only: lemma_termdiff1 setsum_right_distrib)
huffman@20860
   300
apply (rule setsum_cong [OF refl])
nipkow@15539
   301
apply (simp add: diff_minus [symmetric] less_iff_Suc_add)
huffman@20860
   302
apply (clarify)
huffman@20860
   303
apply (simp add: setsum_right_distrib lemma_realpow_diff_sumr2 mult_ac
huffman@20860
   304
            del: setsum_op_ivl_Suc realpow_Suc)
huffman@20860
   305
apply (subst mult_assoc [symmetric], subst power_add [symmetric])
huffman@20860
   306
apply (simp add: mult_ac)
huffman@20860
   307
done
huffman@20860
   308
huffman@20860
   309
lemma real_setsum_nat_ivl_bounded2:
huffman@20860
   310
  "\<lbrakk>\<And>p::nat. p < n \<Longrightarrow> f p \<le> K; 0 \<le> K\<rbrakk>
huffman@20860
   311
   \<Longrightarrow> setsum f {0..<n-k} \<le> real n * K"
huffman@20860
   312
apply (rule order_trans [OF real_setsum_nat_ivl_bounded mult_right_mono])
huffman@20860
   313
apply simp_all
paulson@15077
   314
done
paulson@15077
   315
paulson@15229
   316
lemma lemma_termdiff3:
huffman@20860
   317
  assumes 1: "h \<noteq> 0"
huffman@20860
   318
  assumes 2: "\<bar>z\<bar> \<le> K"
huffman@20860
   319
  assumes 3: "\<bar>z + h\<bar> \<le> K"
huffman@20860
   320
  shows "\<bar>((z + h) ^ n - z ^ n) / h - real n * z ^ (n - Suc 0)\<bar>
paulson@15077
   321
          \<le> real n * real (n - Suc 0) * K ^ (n - 2) * \<bar>h\<bar>"
huffman@20860
   322
proof -
huffman@20860
   323
  have "\<bar>((z + h) ^ n - z ^ n) / h - real n * z ^ (n - Suc 0)\<bar> =
huffman@20860
   324
        \<bar>\<Sum>p = 0..<n - Suc 0. \<Sum>q = 0..<n - Suc 0 - p.
huffman@20860
   325
          (z + h) ^ q * z ^ (n - 2 - q)\<bar> * \<bar>h\<bar>"
huffman@20860
   326
    apply (subst lemma_termdiff2 [OF 1])
huffman@20860
   327
    apply (subst abs_mult)
huffman@20860
   328
    apply (rule mult_commute)
huffman@20860
   329
    done
huffman@20860
   330
  also have "\<dots> \<le> real n * (real (n - Suc 0) * K ^ (n - 2)) * \<bar>h\<bar>"
huffman@20860
   331
  proof (rule mult_right_mono [OF _ abs_ge_zero])
huffman@20860
   332
    from abs_ge_zero 2 have K: "0 \<le> K" by (rule order_trans)
huffman@20860
   333
    have le_Kn: "\<And>i j n. i + j = n \<Longrightarrow> \<bar>(z + h) ^ i * z ^ j\<bar> \<le> K ^ n"
huffman@20860
   334
      apply (erule subst)
huffman@20860
   335
      apply (simp only: abs_mult power_abs power_add)
huffman@20860
   336
      apply (intro mult_mono power_mono 2 3 abs_ge_zero zero_le_power K)
huffman@20860
   337
      done
huffman@20860
   338
    show "\<bar>\<Sum>p = 0..<n - Suc 0. \<Sum>q = 0..<n - Suc 0 - p.
huffman@20860
   339
              (z + h) ^ q * z ^ (n - 2 - q)\<bar>
huffman@20860
   340
          \<le> real n * (real (n - Suc 0) * K ^ (n - 2))"
huffman@20860
   341
      apply (intro
huffman@20860
   342
         order_trans [OF setsum_abs]
huffman@20860
   343
         real_setsum_nat_ivl_bounded2
huffman@20860
   344
         mult_nonneg_nonneg
huffman@20860
   345
         real_of_nat_ge_zero
huffman@20860
   346
         zero_le_power K)
huffman@20860
   347
      apply (rule le_Kn, simp)
huffman@20860
   348
      done
huffman@20860
   349
  qed
huffman@20860
   350
  also have "\<dots> = real n * real (n - Suc 0) * K ^ (n - 2) * \<bar>h\<bar>"
huffman@20860
   351
    by (simp only: mult_assoc)
huffman@20860
   352
  finally show ?thesis .
huffman@20860
   353
qed
paulson@15077
   354
huffman@20860
   355
lemma lemma_termdiff4:
huffman@20860
   356
  assumes k: "0 < (k::real)"
huffman@20860
   357
  assumes le: "\<And>h. \<lbrakk>h \<noteq> 0; \<bar>h\<bar> < k\<rbrakk> \<Longrightarrow> \<bar>f h\<bar> \<le> K * \<bar>h\<bar>"
huffman@20860
   358
  shows "f -- 0 --> 0"
huffman@20860
   359
proof (simp add: LIM_def, safe)
huffman@20860
   360
  fix r::real assume r: "0 < r"
huffman@20860
   361
  have zero_le_K: "0 \<le> K"
huffman@20860
   362
    apply (cut_tac k)
huffman@20860
   363
    apply (cut_tac h="k/2" in le, simp, simp)
huffman@20860
   364
    apply (subgoal_tac "0 \<le> K*k", simp add: zero_le_mult_iff) 
huffman@20860
   365
    apply (force intro: order_trans [of _ "\<bar>f (k / 2)\<bar> * 2"]) 
huffman@20860
   366
    done
huffman@20860
   367
  show "\<exists>s. 0 < s \<and> (\<forall>x. x \<noteq> 0 \<and> \<bar>x\<bar> < s \<longrightarrow> \<bar>f x\<bar> < r)"
huffman@20860
   368
  proof (cases)
huffman@20860
   369
    assume "K = 0"
huffman@20860
   370
    with k r le have "0 < k \<and> (\<forall>x. x \<noteq> 0 \<and> \<bar>x\<bar> < k \<longrightarrow> \<bar>f x\<bar> < r)"
huffman@20860
   371
      by simp
huffman@20860
   372
    thus "\<exists>s. 0 < s \<and> (\<forall>x. x \<noteq> 0 \<and> \<bar>x\<bar> < s \<longrightarrow> \<bar>f x\<bar> < r)" ..
huffman@20860
   373
  next
huffman@20860
   374
    assume K_neq_zero: "K \<noteq> 0"
huffman@20860
   375
    with zero_le_K have K: "0 < K" by simp
huffman@20860
   376
    show "\<exists>s. 0 < s \<and> (\<forall>x. x \<noteq> 0 \<and> \<bar>x\<bar> < s \<longrightarrow> \<bar>f x\<bar> < r)"
huffman@20860
   377
    proof (rule exI, safe)
huffman@20860
   378
      from k r K show "0 < min k (r * inverse K / 2)"
huffman@20860
   379
        by (simp add: mult_pos_pos positive_imp_inverse_positive)
huffman@20860
   380
    next
huffman@20860
   381
      fix x::real
huffman@20860
   382
      assume x1: "x \<noteq> 0" and x2: "\<bar>x\<bar> < min k (r * inverse K / 2)"
huffman@20860
   383
      from x2 have x3: "\<bar>x\<bar> < k" and x4: "\<bar>x\<bar> < r * inverse K / 2"
huffman@20860
   384
        by simp_all
huffman@20860
   385
      from x1 x3 le have "\<bar>f x\<bar> \<le> K * \<bar>x\<bar>" by simp
huffman@20860
   386
      also from x4 K have "K * \<bar>x\<bar> < K * (r * inverse K / 2)"
huffman@20860
   387
        by (rule mult_strict_left_mono)
huffman@20860
   388
      also have "\<dots> = r / 2"
huffman@20860
   389
        using K_neq_zero by simp
huffman@20860
   390
      also have "r / 2 < r"
huffman@20860
   391
        using r by simp
huffman@20860
   392
      finally show "\<bar>f x\<bar> < r" .
huffman@20860
   393
    qed
huffman@20860
   394
  qed
huffman@20860
   395
qed
paulson@15077
   396
paulson@15229
   397
lemma lemma_termdiff5:
huffman@20860
   398
  assumes k: "0 < (k::real)"
huffman@20860
   399
  assumes f: "summable f"
huffman@20860
   400
  assumes le: "\<And>h n. \<lbrakk>h \<noteq> 0; \<bar>h\<bar> < k\<rbrakk> \<Longrightarrow> \<bar>g h n\<bar> \<le> f n * \<bar>h\<bar>"
huffman@20860
   401
  shows "(\<lambda>h. suminf (g h)) -- 0 --> 0"
huffman@20860
   402
proof (rule lemma_termdiff4 [OF k])
huffman@20860
   403
  fix h assume "h \<noteq> 0" and "\<bar>h\<bar> < k"
huffman@20860
   404
  hence A: "\<forall>n. \<bar>g h n\<bar> \<le> f n * \<bar>h\<bar>"
huffman@20860
   405
    by (simp add: le)
huffman@20860
   406
  hence "\<exists>N. \<forall>n\<ge>N. norm \<bar>g h n\<bar> \<le> f n * \<bar>h\<bar>"
huffman@20860
   407
    by simp
huffman@20860
   408
  moreover from f have B: "summable (\<lambda>n. f n * \<bar>h\<bar>)"
huffman@20860
   409
    by (rule summable_mult2)
huffman@20860
   410
  ultimately have C: "summable (\<lambda>n. \<bar>g h n\<bar>)"
huffman@20860
   411
    by (rule summable_comparison_test)
huffman@20860
   412
  hence "\<bar>suminf (g h)\<bar> \<le> (\<Sum>n. \<bar>g h n\<bar>)"
huffman@20860
   413
    by (rule summable_rabs)
huffman@20860
   414
  also from A C B have "(\<Sum>n. \<bar>g h n\<bar>) \<le> (\<Sum>n. f n * \<bar>h\<bar>)"
huffman@20860
   415
    by (rule summable_le)
huffman@20860
   416
  also from f have "(\<Sum>n. f n * \<bar>h\<bar>) = suminf f * \<bar>h\<bar>"
huffman@20860
   417
    by (rule suminf_mult2 [symmetric])
huffman@20860
   418
  finally show "\<bar>suminf (g h)\<bar> \<le> suminf f * \<bar>h\<bar>" .
huffman@20860
   419
qed
paulson@15077
   420
paulson@15077
   421
paulson@15077
   422
text{* FIXME: Long proofs*}
paulson@15077
   423
paulson@15077
   424
lemma termdiffs_aux:
huffman@20849
   425
  assumes 1: "summable (\<lambda>n. diffs (diffs c) n * K ^ n)"
huffman@20849
   426
  assumes 2: "\<bar>x\<bar> < \<bar>K\<bar>"
huffman@20860
   427
  shows "(\<lambda>h. \<Sum>n. c n * (((x + h) ^ n - x ^ n) / h
huffman@20860
   428
             - real n * x ^ (n - Suc 0))) -- 0 --> 0"
huffman@20849
   429
proof -
huffman@20860
   430
  from dense [OF 2]
huffman@20860
   431
  obtain r where r1: "\<bar>x\<bar> < r" and r2: "r < \<bar>K\<bar>" by fast
huffman@20860
   432
  from abs_ge_zero r1 have r: "0 < r"
huffman@20860
   433
    by (rule order_le_less_trans)
huffman@20860
   434
  hence r_neq_0: "r \<noteq> 0" by simp
huffman@20860
   435
  show ?thesis
huffman@20849
   436
  proof (rule lemma_termdiff5)
huffman@20860
   437
    show "0 < r - \<bar>x\<bar>" using r1 by simp
huffman@20849
   438
  next
huffman@20860
   439
    from r r2 have "\<bar>r\<bar> < \<bar>K\<bar>"
huffman@20860
   440
      by (simp only: abs_of_nonneg order_less_imp_le)
huffman@20860
   441
    with 1 have "summable (\<lambda>n. \<bar>diffs (diffs c) n\<bar> * (r ^ n))"
huffman@20860
   442
      by (rule powser_insidea)
huffman@20860
   443
    hence "summable (\<lambda>n. diffs (diffs (\<lambda>n. \<bar>c n\<bar>)) n * r ^ n)"
huffman@20860
   444
      by (simp only: diffs_def abs_mult abs_real_of_nat_cancel)
huffman@20860
   445
    hence "summable (\<lambda>n. real n * diffs (\<lambda>n. \<bar>c n\<bar>) n * r ^ (n - Suc 0))"
huffman@20860
   446
      by (rule diffs_equiv [THEN sums_summable])
huffman@20860
   447
    also have "(\<lambda>n. real n * diffs (\<lambda>n. \<bar>c n\<bar>) n * r ^ (n - Suc 0))
huffman@20860
   448
      = (\<lambda>n. diffs (%m. real (m - Suc 0) * \<bar>c m\<bar> * inverse r) n * (r ^ n))"
huffman@20849
   449
      apply (rule ext)
huffman@20849
   450
      apply (simp add: diffs_def)
huffman@20849
   451
      apply (case_tac n, simp_all add: r_neq_0)
huffman@20849
   452
      done
huffman@20860
   453
    finally have "summable 
huffman@20860
   454
      (\<lambda>n. real n * (real (n - Suc 0) * \<bar>c n\<bar> * inverse r) * r ^ (n - Suc 0))"
huffman@20860
   455
      by (rule diffs_equiv [THEN sums_summable])
huffman@20860
   456
    also have
huffman@20860
   457
      "(\<lambda>n. real n * (real (n - Suc 0) * \<bar>c n\<bar> * inverse r) *
huffman@20860
   458
           r ^ (n - Suc 0)) =
huffman@20860
   459
       (\<lambda>n. \<bar>c n\<bar> * real n * real (n - Suc 0) * r ^ (n - 2))"
huffman@20849
   460
      apply (rule ext)
huffman@20849
   461
      apply (case_tac "n", simp)
huffman@20849
   462
      apply (case_tac "nat", simp)
huffman@20849
   463
      apply (simp add: r_neq_0)
huffman@20849
   464
      done
huffman@20860
   465
    finally show
huffman@20860
   466
      "summable (\<lambda>n. \<bar>c n\<bar> * real n * real (n - Suc 0) * r ^ (n - 2))" .
huffman@20849
   467
  next
huffman@20860
   468
    fix h::real and n::nat
huffman@20860
   469
    assume h: "h \<noteq> 0"
huffman@20860
   470
    assume "\<bar>h\<bar> < r - \<bar>x\<bar>"
huffman@20860
   471
    hence "\<bar>x\<bar> + \<bar>h\<bar> < r" by simp
huffman@20860
   472
    with abs_triangle_ineq have xh: "\<bar>x + h\<bar> < r"
huffman@20860
   473
      by (rule order_le_less_trans)
huffman@20860
   474
    show "\<bar>c n * (((x + h) ^ n - x ^ n) / h - real n * x ^ (n - Suc 0))\<bar>
huffman@20860
   475
          \<le> \<bar>c n\<bar> * real n * real (n - Suc 0) * r ^ (n - 2) * \<bar>h\<bar>"
huffman@20860
   476
      apply (simp only: abs_mult mult_assoc)
huffman@20860
   477
      apply (rule mult_left_mono [OF _ abs_ge_zero])
huffman@20860
   478
      apply (simp (no_asm) add: mult_assoc [symmetric])
huffman@20860
   479
      apply (rule lemma_termdiff3)
huffman@20860
   480
      apply (rule h)
huffman@20860
   481
      apply (rule r1 [THEN order_less_imp_le])
huffman@20860
   482
      apply (rule xh [THEN order_less_imp_le])
huffman@20860
   483
      done
huffman@20849
   484
  qed
huffman@20849
   485
qed
webertj@20217
   486
huffman@20860
   487
lemma termdiffs:
huffman@20860
   488
  assumes 1: "summable (\<lambda>n. c n * K ^ n)"
huffman@20860
   489
  assumes 2: "summable (\<lambda>n. (diffs c) n * K ^ n)"
huffman@20860
   490
  assumes 3: "summable (\<lambda>n. (diffs (diffs c)) n * K ^ n)"
huffman@20860
   491
  assumes 4: "\<bar>x\<bar> < \<bar>K\<bar>"
huffman@20860
   492
  shows "DERIV (\<lambda>x. \<Sum>n. c n * x ^ n) x :> (\<Sum>n. (diffs c) n * x ^ n)"
huffman@20860
   493
proof (simp add: deriv_def, rule LIM_zero_cancel)
huffman@20860
   494
  show "(\<lambda>h. (suminf (\<lambda>n. c n * (x + h) ^ n) - suminf (\<lambda>n. c n * x ^ n)) / h
huffman@20860
   495
            - suminf (\<lambda>n. diffs c n * x ^ n)) -- 0 --> 0"
huffman@20860
   496
  proof (rule LIM_equal2)
huffman@20860
   497
    show "0 < \<bar>K\<bar> - \<bar>x\<bar>" by (simp add: less_diff_eq 4)
huffman@20860
   498
  next
huffman@20860
   499
    fix h :: real
huffman@20860
   500
    assume "h \<noteq> 0"
huffman@20860
   501
    assume "norm (h - 0) < \<bar>K\<bar> - \<bar>x\<bar>"
huffman@20860
   502
    hence "\<bar>x\<bar> + \<bar>h\<bar> < \<bar>K\<bar>" by simp
huffman@20860
   503
    hence 5: "\<bar>x + h\<bar> < \<bar>K\<bar>"
huffman@20860
   504
      by (rule abs_triangle_ineq [THEN order_le_less_trans])
huffman@20860
   505
    have A: "summable (\<lambda>n. c n * x ^ n)"
huffman@20860
   506
      by (rule powser_inside [OF 1 4])
huffman@20860
   507
    have B: "summable (\<lambda>n. c n * (x + h) ^ n)"
huffman@20860
   508
      by (rule powser_inside [OF 1 5])
huffman@20860
   509
    have C: "summable (\<lambda>n. diffs c n * x ^ n)"
huffman@20860
   510
      by (rule powser_inside [OF 2 4])
huffman@20860
   511
    show "((\<Sum>n. c n * (x + h) ^ n) - (\<Sum>n. c n * x ^ n)) / h
huffman@20860
   512
             - (\<Sum>n. diffs c n * x ^ n) = 
huffman@20860
   513
          (\<Sum>n. c n * (((x + h) ^ n - x ^ n) / h - real n * x ^ (n - Suc 0)))"
huffman@20860
   514
      apply (subst sums_unique [OF diffs_equiv [OF C]])
huffman@20860
   515
      apply (subst suminf_diff [OF B A])
huffman@20860
   516
      apply (subst suminf_divide [symmetric])
huffman@20860
   517
      apply (rule summable_diff [OF B A])
huffman@20860
   518
      apply (subst suminf_diff)
huffman@20860
   519
      apply (rule summable_divide)
huffman@20860
   520
      apply (rule summable_diff [OF B A])
huffman@20860
   521
      apply (rule sums_summable [OF diffs_equiv [OF C]])
huffman@20860
   522
      apply (rule_tac f="suminf" in arg_cong)
huffman@20860
   523
      apply (rule ext)
huffman@20860
   524
      apply (simp add: ring_eq_simps)
huffman@20860
   525
      done
huffman@20860
   526
  next
huffman@20860
   527
    show "(\<lambda>h. \<Sum>n. c n * (((x + h) ^ n - x ^ n) / h -
huffman@20860
   528
               real n * x ^ (n - Suc 0))) -- 0 --> 0"
huffman@20860
   529
        by (rule termdiffs_aux [OF 3 4])
huffman@20860
   530
  qed
huffman@20860
   531
qed
huffman@20860
   532
paulson@15077
   533
paulson@15077
   534
subsection{*Formal Derivatives of Exp, Sin, and Cos Series*} 
paulson@15077
   535
paulson@15077
   536
lemma exp_fdiffs: 
paulson@15077
   537
      "diffs (%n. inverse(real (fact n))) = (%n. inverse(real (fact n)))"
paulson@15229
   538
by (simp add: diffs_def mult_assoc [symmetric] del: mult_Suc)
paulson@15077
   539
paulson@15077
   540
lemma sin_fdiffs: 
paulson@15077
   541
      "diffs(%n. if even n then 0  
paulson@15077
   542
           else (- 1) ^ ((n - Suc 0) div 2)/(real (fact n)))  
paulson@15077
   543
       = (%n. if even n then  
paulson@15077
   544
                 (- 1) ^ (n div 2)/(real (fact n))  
paulson@15077
   545
              else 0)"
paulson@15229
   546
by (auto intro!: ext 
paulson@15229
   547
         simp add: diffs_def divide_inverse simp del: mult_Suc)
paulson@15077
   548
paulson@15077
   549
lemma sin_fdiffs2: 
paulson@15077
   550
       "diffs(%n. if even n then 0  
paulson@15077
   551
           else (- 1) ^ ((n - Suc 0) div 2)/(real (fact n))) n  
paulson@15077
   552
       = (if even n then  
paulson@15077
   553
                 (- 1) ^ (n div 2)/(real (fact n))  
paulson@15077
   554
              else 0)"
paulson@15229
   555
by (auto intro!: ext 
paulson@15229
   556
         simp add: diffs_def divide_inverse simp del: mult_Suc)
paulson@15077
   557
paulson@15077
   558
lemma cos_fdiffs: 
paulson@15077
   559
      "diffs(%n. if even n then  
paulson@15077
   560
                 (- 1) ^ (n div 2)/(real (fact n)) else 0)  
paulson@15077
   561
       = (%n. - (if even n then 0  
paulson@15077
   562
           else (- 1) ^ ((n - Suc 0)div 2)/(real (fact n))))"
paulson@15229
   563
by (auto intro!: ext 
paulson@15229
   564
         simp add: diffs_def divide_inverse odd_Suc_mult_two_ex
paulson@15229
   565
         simp del: mult_Suc)
paulson@15077
   566
paulson@15077
   567
paulson@15077
   568
lemma cos_fdiffs2: 
paulson@15077
   569
      "diffs(%n. if even n then  
paulson@15077
   570
                 (- 1) ^ (n div 2)/(real (fact n)) else 0) n 
paulson@15077
   571
       = - (if even n then 0  
paulson@15077
   572
           else (- 1) ^ ((n - Suc 0)div 2)/(real (fact n)))"
paulson@15229
   573
by (auto intro!: ext 
paulson@15229
   574
         simp add: diffs_def divide_inverse odd_Suc_mult_two_ex
paulson@15229
   575
         simp del: mult_Suc)
paulson@15077
   576
paulson@15077
   577
text{*Now at last we can get the derivatives of exp, sin and cos*}
paulson@15077
   578
paulson@15077
   579
lemma lemma_sin_minus:
nipkow@15546
   580
     "- sin x = (\<Sum>n. - ((if even n then 0 
paulson@15077
   581
                  else (- 1) ^ ((n - Suc 0) div 2)/(real (fact n))) * x ^ n))"
paulson@15077
   582
by (auto intro!: sums_unique sums_minus sin_converges)
paulson@15077
   583
nipkow@15546
   584
lemma lemma_exp_ext: "exp = (%x. \<Sum>n. inverse (real (fact n)) * x ^ n)"
paulson@15077
   585
by (auto intro!: ext simp add: exp_def)
paulson@15077
   586
paulson@15077
   587
lemma DERIV_exp [simp]: "DERIV exp x :> exp(x)"
paulson@15229
   588
apply (simp add: exp_def)
paulson@15077
   589
apply (subst lemma_exp_ext)
nipkow@15546
   590
apply (subgoal_tac "DERIV (%u. \<Sum>n. inverse (real (fact n)) * u ^ n) x :> (\<Sum>n. diffs (%n. inverse (real (fact n))) n * x ^ n)")
paulson@15229
   591
apply (rule_tac [2] K = "1 + \<bar>x\<bar>" in termdiffs)
webertj@20217
   592
apply (auto intro: exp_converges [THEN sums_summable] simp add: exp_fdiffs)
paulson@15077
   593
done
paulson@15077
   594
paulson@15077
   595
lemma lemma_sin_ext:
nipkow@15546
   596
     "sin = (%x. \<Sum>n. 
paulson@15077
   597
                   (if even n then 0  
paulson@15077
   598
                       else (- 1) ^ ((n - Suc 0) div 2)/(real (fact n))) *  
nipkow@15546
   599
                   x ^ n)"
paulson@15077
   600
by (auto intro!: ext simp add: sin_def)
paulson@15077
   601
paulson@15077
   602
lemma lemma_cos_ext:
nipkow@15546
   603
     "cos = (%x. \<Sum>n. 
paulson@15077
   604
                   (if even n then (- 1) ^ (n div 2)/(real (fact n)) else 0) *
nipkow@15546
   605
                   x ^ n)"
paulson@15077
   606
by (auto intro!: ext simp add: cos_def)
paulson@15077
   607
paulson@15077
   608
lemma DERIV_sin [simp]: "DERIV sin x :> cos(x)"
paulson@15229
   609
apply (simp add: cos_def)
paulson@15077
   610
apply (subst lemma_sin_ext)
paulson@15077
   611
apply (auto simp add: sin_fdiffs2 [symmetric])
paulson@15229
   612
apply (rule_tac K = "1 + \<bar>x\<bar>" in termdiffs)
webertj@20217
   613
apply (auto intro: sin_converges cos_converges sums_summable intro!: sums_minus [THEN sums_summable] simp add: cos_fdiffs sin_fdiffs)
paulson@15077
   614
done
paulson@15077
   615
paulson@15077
   616
lemma DERIV_cos [simp]: "DERIV cos x :> -sin(x)"
paulson@15077
   617
apply (subst lemma_cos_ext)
paulson@15077
   618
apply (auto simp add: lemma_sin_minus cos_fdiffs2 [symmetric] minus_mult_left)
paulson@15229
   619
apply (rule_tac K = "1 + \<bar>x\<bar>" in termdiffs)
webertj@20217
   620
apply (auto intro: sin_converges cos_converges sums_summable intro!: sums_minus [THEN sums_summable] simp add: cos_fdiffs sin_fdiffs diffs_minus)
paulson@15077
   621
done
paulson@15077
   622
paulson@15077
   623
paulson@15077
   624
subsection{*Properties of the Exponential Function*}
paulson@15077
   625
paulson@15077
   626
lemma exp_zero [simp]: "exp 0 = 1"
paulson@15077
   627
proof -
paulson@15077
   628
  have "(\<Sum>n = 0..<1. inverse (real (fact n)) * 0 ^ n) =
nipkow@15546
   629
        (\<Sum>n. inverse (real (fact n)) * 0 ^ n)"
paulson@15077
   630
    by (rule series_zero [rule_format, THEN sums_unique],
paulson@15077
   631
        case_tac "m", auto)
paulson@15077
   632
  thus ?thesis by (simp add:  exp_def) 
paulson@15077
   633
qed
paulson@15077
   634
avigad@17014
   635
lemma exp_ge_add_one_self_aux: "0 \<le> x ==> (1 + x) \<le> exp(x)"
paulson@15077
   636
apply (drule real_le_imp_less_or_eq, auto)
paulson@15229
   637
apply (simp add: exp_def)
paulson@15077
   638
apply (rule real_le_trans)
paulson@15229
   639
apply (rule_tac [2] n = 2 and f = "(%n. inverse (real (fact n)) * x ^ n)" in series_pos_le)
paulson@15077
   640
apply (auto intro: summable_exp simp add: numeral_2_eq_2 zero_le_power zero_le_mult_iff)
paulson@15077
   641
done
paulson@15077
   642
paulson@15077
   643
lemma exp_gt_one [simp]: "0 < x ==> 1 < exp x"
paulson@15077
   644
apply (rule order_less_le_trans)
avigad@17014
   645
apply (rule_tac [2] exp_ge_add_one_self_aux, auto)
paulson@15077
   646
done
paulson@15077
   647
paulson@15077
   648
lemma DERIV_exp_add_const: "DERIV (%x. exp (x + y)) x :> exp(x + y)"
paulson@15077
   649
proof -
paulson@15077
   650
  have "DERIV (exp \<circ> (\<lambda>x. x + y)) x :> exp (x + y) * (1+0)"
paulson@15077
   651
    by (fast intro: DERIV_chain DERIV_add DERIV_exp DERIV_Id DERIV_const) 
paulson@15077
   652
  thus ?thesis by (simp add: o_def)
paulson@15077
   653
qed
paulson@15077
   654
paulson@15077
   655
lemma DERIV_exp_minus [simp]: "DERIV (%x. exp (-x)) x :> - exp(-x)"
paulson@15077
   656
proof -
paulson@15077
   657
  have "DERIV (exp \<circ> uminus) x :> exp (- x) * - 1"
paulson@15077
   658
    by (fast intro: DERIV_chain DERIV_minus DERIV_exp DERIV_Id) 
paulson@15077
   659
  thus ?thesis by (simp add: o_def)
paulson@15077
   660
qed
paulson@15077
   661
paulson@15077
   662
lemma DERIV_exp_exp_zero [simp]: "DERIV (%x. exp (x + y) * exp (- x)) x :> 0"
paulson@15077
   663
proof -
paulson@15077
   664
  have "DERIV (\<lambda>x. exp (x + y) * exp (- x)) x
paulson@15077
   665
       :> exp (x + y) * exp (- x) + - exp (- x) * exp (x + y)"
paulson@15077
   666
    by (fast intro: DERIV_exp_add_const DERIV_exp_minus DERIV_mult) 
paulson@15077
   667
  thus ?thesis by simp
paulson@15077
   668
qed
paulson@15077
   669
paulson@15077
   670
lemma exp_add_mult_minus [simp]: "exp(x + y)*exp(-x) = exp(y)"
paulson@15077
   671
proof -
paulson@15077
   672
  have "\<forall>x. DERIV (%x. exp (x + y) * exp (- x)) x :> 0" by simp
paulson@15077
   673
  hence "exp (x + y) * exp (- x) = exp (0 + y) * exp (- 0)" 
paulson@15077
   674
    by (rule DERIV_isconst_all) 
paulson@15077
   675
  thus ?thesis by simp
paulson@15077
   676
qed
paulson@15077
   677
paulson@15077
   678
lemma exp_mult_minus [simp]: "exp x * exp(-x) = 1"
paulson@15077
   679
proof -
paulson@15077
   680
  have "exp (x + 0) * exp (- x) = exp 0" by (rule exp_add_mult_minus) 
paulson@15077
   681
  thus ?thesis by simp
paulson@15077
   682
qed
paulson@15077
   683
paulson@15077
   684
lemma exp_mult_minus2 [simp]: "exp(-x)*exp(x) = 1"
paulson@15077
   685
by (simp add: mult_commute)
paulson@15077
   686
paulson@15077
   687
paulson@15077
   688
lemma exp_minus: "exp(-x) = inverse(exp(x))"
paulson@15077
   689
by (auto intro: inverse_unique [symmetric])
paulson@15077
   690
paulson@15077
   691
lemma exp_add: "exp(x + y) = exp(x) * exp(y)"
paulson@15077
   692
proof -
paulson@15077
   693
  have "exp x * exp y = exp x * (exp (x + y) * exp (- x))" by simp
paulson@15077
   694
  thus ?thesis by (simp (no_asm_simp) add: mult_ac)
paulson@15077
   695
qed
paulson@15077
   696
paulson@15077
   697
text{*Proof: because every exponential can be seen as a square.*}
paulson@15077
   698
lemma exp_ge_zero [simp]: "0 \<le> exp x"
paulson@15077
   699
apply (rule_tac t = x in real_sum_of_halves [THEN subst])
paulson@15077
   700
apply (subst exp_add, auto)
paulson@15077
   701
done
paulson@15077
   702
paulson@15077
   703
lemma exp_not_eq_zero [simp]: "exp x \<noteq> 0"
paulson@15077
   704
apply (cut_tac x = x in exp_mult_minus2)
paulson@15077
   705
apply (auto simp del: exp_mult_minus2)
paulson@15077
   706
done
paulson@15077
   707
paulson@15077
   708
lemma exp_gt_zero [simp]: "0 < exp x"
paulson@15077
   709
by (simp add: order_less_le)
paulson@15077
   710
paulson@15077
   711
lemma inv_exp_gt_zero [simp]: "0 < inverse(exp x)"
paulson@15077
   712
by (auto intro: positive_imp_inverse_positive)
paulson@15077
   713
paulson@15081
   714
lemma abs_exp_cancel [simp]: "\<bar>exp x\<bar> = exp x"
paulson@15229
   715
by auto
paulson@15077
   716
paulson@15077
   717
lemma exp_real_of_nat_mult: "exp(real n * x) = exp(x) ^ n"
paulson@15251
   718
apply (induct "n")
paulson@15077
   719
apply (auto simp add: real_of_nat_Suc right_distrib exp_add mult_commute)
paulson@15077
   720
done
paulson@15077
   721
paulson@15077
   722
lemma exp_diff: "exp(x - y) = exp(x)/(exp y)"
paulson@15229
   723
apply (simp add: diff_minus divide_inverse)
paulson@15077
   724
apply (simp (no_asm) add: exp_add exp_minus)
paulson@15077
   725
done
paulson@15077
   726
paulson@15077
   727
paulson@15077
   728
lemma exp_less_mono:
paulson@15077
   729
  assumes xy: "x < y" shows "exp x < exp y"
paulson@15077
   730
proof -
paulson@15077
   731
  have "1 < exp (y + - x)"
paulson@15077
   732
    by (rule real_less_sum_gt_zero [THEN exp_gt_one])
paulson@15077
   733
  hence "exp x * inverse (exp x) < exp y * inverse (exp x)"
paulson@15077
   734
    by (auto simp add: exp_add exp_minus)
paulson@15077
   735
  thus ?thesis
nipkow@15539
   736
    by (simp add: divide_inverse [symmetric] pos_less_divide_eq
paulson@15228
   737
             del: divide_self_if)
paulson@15077
   738
qed
paulson@15077
   739
paulson@15077
   740
lemma exp_less_cancel: "exp x < exp y ==> x < y"
paulson@15228
   741
apply (simp add: linorder_not_le [symmetric]) 
paulson@15228
   742
apply (auto simp add: order_le_less exp_less_mono) 
paulson@15077
   743
done
paulson@15077
   744
paulson@15077
   745
lemma exp_less_cancel_iff [iff]: "(exp(x) < exp(y)) = (x < y)"
paulson@15077
   746
by (auto intro: exp_less_mono exp_less_cancel)
paulson@15077
   747
paulson@15077
   748
lemma exp_le_cancel_iff [iff]: "(exp(x) \<le> exp(y)) = (x \<le> y)"
paulson@15077
   749
by (auto simp add: linorder_not_less [symmetric])
paulson@15077
   750
paulson@15077
   751
lemma exp_inj_iff [iff]: "(exp x = exp y) = (x = y)"
paulson@15077
   752
by (simp add: order_eq_iff)
paulson@15077
   753
paulson@15077
   754
lemma lemma_exp_total: "1 \<le> y ==> \<exists>x. 0 \<le> x & x \<le> y - 1 & exp(x) = y"
paulson@15077
   755
apply (rule IVT)
paulson@15077
   756
apply (auto intro: DERIV_exp [THEN DERIV_isCont] simp add: le_diff_eq)
paulson@15077
   757
apply (subgoal_tac "1 + (y - 1) \<le> exp (y - 1)") 
paulson@15077
   758
apply simp 
avigad@17014
   759
apply (rule exp_ge_add_one_self_aux, simp)
paulson@15077
   760
done
paulson@15077
   761
paulson@15077
   762
lemma exp_total: "0 < y ==> \<exists>x. exp x = y"
paulson@15077
   763
apply (rule_tac x = 1 and y = y in linorder_cases)
paulson@15077
   764
apply (drule order_less_imp_le [THEN lemma_exp_total])
paulson@15077
   765
apply (rule_tac [2] x = 0 in exI)
paulson@15077
   766
apply (frule_tac [3] real_inverse_gt_one)
paulson@15077
   767
apply (drule_tac [4] order_less_imp_le [THEN lemma_exp_total], auto)
paulson@15077
   768
apply (rule_tac x = "-x" in exI)
paulson@15077
   769
apply (simp add: exp_minus)
paulson@15077
   770
done
paulson@15077
   771
paulson@15077
   772
paulson@15077
   773
subsection{*Properties of the Logarithmic Function*}
paulson@15077
   774
paulson@15077
   775
lemma ln_exp[simp]: "ln(exp x) = x"
paulson@15077
   776
by (simp add: ln_def)
paulson@15077
   777
paulson@15077
   778
lemma exp_ln_iff[simp]: "(exp(ln x) = x) = (0 < x)"
paulson@15077
   779
apply (auto dest: exp_total)
paulson@15077
   780
apply (erule subst, simp) 
paulson@15077
   781
done
paulson@15077
   782
paulson@15077
   783
lemma ln_mult: "[| 0 < x; 0 < y |] ==> ln(x * y) = ln(x) + ln(y)"
paulson@15077
   784
apply (rule exp_inj_iff [THEN iffD1])
paulson@15077
   785
apply (frule real_mult_order)
paulson@15077
   786
apply (auto simp add: exp_add exp_ln_iff [symmetric] simp del: exp_inj_iff exp_ln_iff)
paulson@15077
   787
done
paulson@15077
   788
paulson@15077
   789
lemma ln_inj_iff[simp]: "[| 0 < x; 0 < y |] ==> (ln x = ln y) = (x = y)"
paulson@15077
   790
apply (simp only: exp_ln_iff [symmetric])
paulson@15077
   791
apply (erule subst)+
paulson@15077
   792
apply simp 
paulson@15077
   793
done
paulson@15077
   794
paulson@15077
   795
lemma ln_one[simp]: "ln 1 = 0"
paulson@15077
   796
by (rule exp_inj_iff [THEN iffD1], auto)
paulson@15077
   797
paulson@15077
   798
lemma ln_inverse: "0 < x ==> ln(inverse x) = - ln x"
paulson@15077
   799
apply (rule_tac a1 = "ln x" in add_left_cancel [THEN iffD1])
paulson@15077
   800
apply (auto simp add: positive_imp_inverse_positive ln_mult [symmetric])
paulson@15077
   801
done
paulson@15077
   802
paulson@15077
   803
lemma ln_div: 
paulson@15077
   804
    "[|0 < x; 0 < y|] ==> ln(x/y) = ln x - ln y"
paulson@15229
   805
apply (simp add: divide_inverse)
paulson@15077
   806
apply (auto simp add: positive_imp_inverse_positive ln_mult ln_inverse)
paulson@15077
   807
done
paulson@15077
   808
paulson@15077
   809
lemma ln_less_cancel_iff[simp]: "[| 0 < x; 0 < y|] ==> (ln x < ln y) = (x < y)"
paulson@15077
   810
apply (simp only: exp_ln_iff [symmetric])
paulson@15077
   811
apply (erule subst)+
paulson@15077
   812
apply simp 
paulson@15077
   813
done
paulson@15077
   814
paulson@15077
   815
lemma ln_le_cancel_iff[simp]: "[| 0 < x; 0 < y|] ==> (ln x \<le> ln y) = (x \<le> y)"
paulson@15077
   816
by (auto simp add: linorder_not_less [symmetric])
paulson@15077
   817
paulson@15077
   818
lemma ln_realpow: "0 < x ==> ln(x ^ n) = real n * ln(x)"
paulson@15077
   819
by (auto dest!: exp_total simp add: exp_real_of_nat_mult [symmetric])
paulson@15077
   820
paulson@15077
   821
lemma ln_add_one_self_le_self [simp]: "0 \<le> x ==> ln(1 + x) \<le> x"
paulson@15077
   822
apply (rule ln_exp [THEN subst])
avigad@17014
   823
apply (rule ln_le_cancel_iff [THEN iffD2]) 
avigad@17014
   824
apply (auto simp add: exp_ge_add_one_self_aux)
paulson@15077
   825
done
paulson@15077
   826
paulson@15077
   827
lemma ln_less_self [simp]: "0 < x ==> ln x < x"
paulson@15077
   828
apply (rule order_less_le_trans)
paulson@15077
   829
apply (rule_tac [2] ln_add_one_self_le_self)
paulson@15077
   830
apply (rule ln_less_cancel_iff [THEN iffD2], auto)
paulson@15077
   831
done
paulson@15077
   832
paulson@15234
   833
lemma ln_ge_zero [simp]:
paulson@15077
   834
  assumes x: "1 \<le> x" shows "0 \<le> ln x"
paulson@15077
   835
proof -
paulson@15077
   836
  have "0 < x" using x by arith
paulson@15077
   837
  hence "exp 0 \<le> exp (ln x)"
paulson@15077
   838
    by (simp add: x exp_ln_iff [symmetric] del: exp_ln_iff)
paulson@15077
   839
  thus ?thesis by (simp only: exp_le_cancel_iff)
paulson@15077
   840
qed
paulson@15077
   841
paulson@15077
   842
lemma ln_ge_zero_imp_ge_one:
paulson@15077
   843
  assumes ln: "0 \<le> ln x" 
paulson@15077
   844
      and x:  "0 < x"
paulson@15077
   845
  shows "1 \<le> x"
paulson@15077
   846
proof -
paulson@15077
   847
  from ln have "ln 1 \<le> ln x" by simp
paulson@15077
   848
  thus ?thesis by (simp add: x del: ln_one) 
paulson@15077
   849
qed
paulson@15077
   850
paulson@15077
   851
lemma ln_ge_zero_iff [simp]: "0 < x ==> (0 \<le> ln x) = (1 \<le> x)"
paulson@15077
   852
by (blast intro: ln_ge_zero ln_ge_zero_imp_ge_one)
paulson@15077
   853
paulson@15234
   854
lemma ln_less_zero_iff [simp]: "0 < x ==> (ln x < 0) = (x < 1)"
paulson@15234
   855
by (insert ln_ge_zero_iff [of x], arith)
paulson@15234
   856
paulson@15077
   857
lemma ln_gt_zero:
paulson@15077
   858
  assumes x: "1 < x" shows "0 < ln x"
paulson@15077
   859
proof -
paulson@15077
   860
  have "0 < x" using x by arith
paulson@15077
   861
  hence "exp 0 < exp (ln x)"
paulson@15077
   862
    by (simp add: x exp_ln_iff [symmetric] del: exp_ln_iff)
paulson@15077
   863
  thus ?thesis  by (simp only: exp_less_cancel_iff)
paulson@15077
   864
qed
paulson@15077
   865
paulson@15077
   866
lemma ln_gt_zero_imp_gt_one:
paulson@15077
   867
  assumes ln: "0 < ln x" 
paulson@15077
   868
      and x:  "0 < x"
paulson@15077
   869
  shows "1 < x"
paulson@15077
   870
proof -
paulson@15077
   871
  from ln have "ln 1 < ln x" by simp
paulson@15077
   872
  thus ?thesis by (simp add: x del: ln_one) 
paulson@15077
   873
qed
paulson@15077
   874
paulson@15077
   875
lemma ln_gt_zero_iff [simp]: "0 < x ==> (0 < ln x) = (1 < x)"
paulson@15077
   876
by (blast intro: ln_gt_zero ln_gt_zero_imp_gt_one)
paulson@15077
   877
paulson@15234
   878
lemma ln_eq_zero_iff [simp]: "0 < x ==> (ln x = 0) = (x = 1)"
paulson@15234
   879
by (insert ln_less_zero_iff [of x] ln_gt_zero_iff [of x], arith)
paulson@15077
   880
paulson@15077
   881
lemma ln_less_zero: "[| 0 < x; x < 1 |] ==> ln x < 0"
paulson@15234
   882
by simp
paulson@15077
   883
paulson@15077
   884
lemma exp_ln_eq: "exp u = x ==> ln x = u"
paulson@15077
   885
by auto
paulson@15077
   886
paulson@15077
   887
paulson@15077
   888
subsection{*Basic Properties of the Trigonometric Functions*}
paulson@15077
   889
paulson@15077
   890
lemma sin_zero [simp]: "sin 0 = 0"
paulson@15077
   891
by (auto intro!: sums_unique [symmetric] LIMSEQ_const 
paulson@15077
   892
         simp add: sin_def sums_def simp del: power_0_left)
paulson@15077
   893
nipkow@15539
   894
lemma lemma_series_zero2:
nipkow@15539
   895
 "(\<forall>m. n \<le> m --> f m = 0) --> f sums setsum f {0..<n}"
paulson@15077
   896
by (auto intro: series_zero)
paulson@15077
   897
paulson@15077
   898
lemma cos_zero [simp]: "cos 0 = 1"
paulson@15229
   899
apply (simp add: cos_def)
paulson@15077
   900
apply (rule sums_unique [symmetric])
paulson@15229
   901
apply (cut_tac n = 1 and f = "(%n. (if even n then (- 1) ^ (n div 2) / (real (fact n)) else 0) * 0 ^ n)" in lemma_series_zero2)
paulson@15077
   902
apply auto
paulson@15077
   903
done
paulson@15077
   904
paulson@15077
   905
lemma DERIV_sin_sin_mult [simp]:
paulson@15077
   906
     "DERIV (%x. sin(x)*sin(x)) x :> cos(x) * sin(x) + cos(x) * sin(x)"
paulson@15077
   907
by (rule DERIV_mult, auto)
paulson@15077
   908
paulson@15077
   909
lemma DERIV_sin_sin_mult2 [simp]:
paulson@15077
   910
     "DERIV (%x. sin(x)*sin(x)) x :> 2 * cos(x) * sin(x)"
paulson@15077
   911
apply (cut_tac x = x in DERIV_sin_sin_mult)
paulson@15077
   912
apply (auto simp add: mult_assoc)
paulson@15077
   913
done
paulson@15077
   914
paulson@15077
   915
lemma DERIV_sin_realpow2 [simp]:
paulson@15077
   916
     "DERIV (%x. (sin x)\<twosuperior>) x :> cos(x) * sin(x) + cos(x) * sin(x)"
paulson@15077
   917
by (auto simp add: numeral_2_eq_2 real_mult_assoc [symmetric])
paulson@15077
   918
paulson@15077
   919
lemma DERIV_sin_realpow2a [simp]:
paulson@15077
   920
     "DERIV (%x. (sin x)\<twosuperior>) x :> 2 * cos(x) * sin(x)"
paulson@15077
   921
by (auto simp add: numeral_2_eq_2)
paulson@15077
   922
paulson@15077
   923
lemma DERIV_cos_cos_mult [simp]:
paulson@15077
   924
     "DERIV (%x. cos(x)*cos(x)) x :> -sin(x) * cos(x) + -sin(x) * cos(x)"
paulson@15077
   925
by (rule DERIV_mult, auto)
paulson@15077
   926
paulson@15077
   927
lemma DERIV_cos_cos_mult2 [simp]:
paulson@15077
   928
     "DERIV (%x. cos(x)*cos(x)) x :> -2 * cos(x) * sin(x)"
paulson@15077
   929
apply (cut_tac x = x in DERIV_cos_cos_mult)
paulson@15077
   930
apply (auto simp add: mult_ac)
paulson@15077
   931
done
paulson@15077
   932
paulson@15077
   933
lemma DERIV_cos_realpow2 [simp]:
paulson@15077
   934
     "DERIV (%x. (cos x)\<twosuperior>) x :> -sin(x) * cos(x) + -sin(x) * cos(x)"
paulson@15077
   935
by (auto simp add: numeral_2_eq_2 real_mult_assoc [symmetric])
paulson@15077
   936
paulson@15077
   937
lemma DERIV_cos_realpow2a [simp]:
paulson@15077
   938
     "DERIV (%x. (cos x)\<twosuperior>) x :> -2 * cos(x) * sin(x)"
paulson@15077
   939
by (auto simp add: numeral_2_eq_2)
paulson@15077
   940
paulson@15077
   941
lemma lemma_DERIV_subst: "[| DERIV f x :> D; D = E |] ==> DERIV f x :> E"
paulson@15077
   942
by auto
paulson@15077
   943
paulson@15077
   944
lemma DERIV_cos_realpow2b: "DERIV (%x. (cos x)\<twosuperior>) x :> -(2 * cos(x) * sin(x))"
paulson@15077
   945
apply (rule lemma_DERIV_subst)
paulson@15077
   946
apply (rule DERIV_cos_realpow2a, auto)
paulson@15077
   947
done
paulson@15077
   948
paulson@15077
   949
(* most useful *)
paulson@15229
   950
lemma DERIV_cos_cos_mult3 [simp]:
paulson@15229
   951
     "DERIV (%x. cos(x)*cos(x)) x :> -(2 * cos(x) * sin(x))"
paulson@15077
   952
apply (rule lemma_DERIV_subst)
paulson@15077
   953
apply (rule DERIV_cos_cos_mult2, auto)
paulson@15077
   954
done
paulson@15077
   955
paulson@15077
   956
lemma DERIV_sin_circle_all: 
paulson@15077
   957
     "\<forall>x. DERIV (%x. (sin x)\<twosuperior> + (cos x)\<twosuperior>) x :>  
paulson@15077
   958
             (2*cos(x)*sin(x) - 2*cos(x)*sin(x))"
paulson@15229
   959
apply (simp only: diff_minus, safe)
paulson@15229
   960
apply (rule DERIV_add) 
paulson@15077
   961
apply (auto simp add: numeral_2_eq_2)
paulson@15077
   962
done
paulson@15077
   963
paulson@15229
   964
lemma DERIV_sin_circle_all_zero [simp]:
paulson@15229
   965
     "\<forall>x. DERIV (%x. (sin x)\<twosuperior> + (cos x)\<twosuperior>) x :> 0"
paulson@15077
   966
by (cut_tac DERIV_sin_circle_all, auto)
paulson@15077
   967
paulson@15077
   968
lemma sin_cos_squared_add [simp]: "((sin x)\<twosuperior>) + ((cos x)\<twosuperior>) = 1"
paulson@15077
   969
apply (cut_tac x = x and y = 0 in DERIV_sin_circle_all_zero [THEN DERIV_isconst_all])
paulson@15077
   970
apply (auto simp add: numeral_2_eq_2)
paulson@15077
   971
done
paulson@15077
   972
paulson@15077
   973
lemma sin_cos_squared_add2 [simp]: "((cos x)\<twosuperior>) + ((sin x)\<twosuperior>) = 1"
paulson@15077
   974
apply (subst real_add_commute)
paulson@15077
   975
apply (simp (no_asm) del: realpow_Suc)
paulson@15077
   976
done
paulson@15077
   977
paulson@15077
   978
lemma sin_cos_squared_add3 [simp]: "cos x * cos x + sin x * sin x = 1"
paulson@15077
   979
apply (cut_tac x = x in sin_cos_squared_add2)
paulson@15077
   980
apply (auto simp add: numeral_2_eq_2)
paulson@15077
   981
done
paulson@15077
   982
paulson@15077
   983
lemma sin_squared_eq: "(sin x)\<twosuperior> = 1 - (cos x)\<twosuperior>"
paulson@15229
   984
apply (rule_tac a1 = "(cos x)\<twosuperior>" in add_right_cancel [THEN iffD1])
paulson@15077
   985
apply (simp del: realpow_Suc)
paulson@15077
   986
done
paulson@15077
   987
paulson@15077
   988
lemma cos_squared_eq: "(cos x)\<twosuperior> = 1 - (sin x)\<twosuperior>"
paulson@15077
   989
apply (rule_tac a1 = "(sin x)\<twosuperior>" in add_right_cancel [THEN iffD1])
paulson@15077
   990
apply (simp del: realpow_Suc)
paulson@15077
   991
done
paulson@15077
   992
paulson@15077
   993
lemma real_gt_one_ge_zero_add_less: "[| 1 < x; 0 \<le> y |] ==> 1 < x + (y::real)"
paulson@15077
   994
by arith
paulson@15077
   995
paulson@15081
   996
lemma abs_sin_le_one [simp]: "\<bar>sin x\<bar> \<le> 1"
paulson@15077
   997
apply (auto simp add: linorder_not_less [symmetric])
paulson@15077
   998
apply (drule_tac n = "Suc 0" in power_gt1)
paulson@15077
   999
apply (auto simp del: realpow_Suc)
paulson@15077
  1000
apply (drule_tac r1 = "cos x" in realpow_two_le [THEN [2] real_gt_one_ge_zero_add_less])
paulson@15077
  1001
apply (simp add: numeral_2_eq_2 [symmetric] del: realpow_Suc)
paulson@15077
  1002
done
paulson@15077
  1003
paulson@15077
  1004
lemma sin_ge_minus_one [simp]: "-1 \<le> sin x"
paulson@15077
  1005
apply (insert abs_sin_le_one [of x]) 
paulson@15077
  1006
apply (simp add: abs_le_interval_iff del: abs_sin_le_one) 
paulson@15077
  1007
done
paulson@15077
  1008
paulson@15077
  1009
lemma sin_le_one [simp]: "sin x \<le> 1"
paulson@15077
  1010
apply (insert abs_sin_le_one [of x]) 
paulson@15077
  1011
apply (simp add: abs_le_interval_iff del: abs_sin_le_one) 
paulson@15077
  1012
done
paulson@15077
  1013
paulson@15081
  1014
lemma abs_cos_le_one [simp]: "\<bar>cos x\<bar> \<le> 1"
paulson@15077
  1015
apply (auto simp add: linorder_not_less [symmetric])
paulson@15077
  1016
apply (drule_tac n = "Suc 0" in power_gt1)
paulson@15077
  1017
apply (auto simp del: realpow_Suc)
paulson@15077
  1018
apply (drule_tac r1 = "sin x" in realpow_two_le [THEN [2] real_gt_one_ge_zero_add_less])
paulson@15077
  1019
apply (simp add: numeral_2_eq_2 [symmetric] del: realpow_Suc)
paulson@15077
  1020
done
paulson@15077
  1021
paulson@15077
  1022
lemma cos_ge_minus_one [simp]: "-1 \<le> cos x"
paulson@15077
  1023
apply (insert abs_cos_le_one [of x]) 
paulson@15077
  1024
apply (simp add: abs_le_interval_iff del: abs_cos_le_one) 
paulson@15077
  1025
done
paulson@15077
  1026
paulson@15077
  1027
lemma cos_le_one [simp]: "cos x \<le> 1"
paulson@15077
  1028
apply (insert abs_cos_le_one [of x]) 
paulson@15077
  1029
apply (simp add: abs_le_interval_iff del: abs_cos_le_one)
paulson@15077
  1030
done
paulson@15077
  1031
paulson@15077
  1032
lemma DERIV_fun_pow: "DERIV g x :> m ==>  
paulson@15077
  1033
      DERIV (%x. (g x) ^ n) x :> real n * (g x) ^ (n - 1) * m"
paulson@15077
  1034
apply (rule lemma_DERIV_subst)
paulson@15229
  1035
apply (rule_tac f = "(%x. x ^ n)" in DERIV_chain2)
paulson@15077
  1036
apply (rule DERIV_pow, auto)
paulson@15077
  1037
done
paulson@15077
  1038
paulson@15229
  1039
lemma DERIV_fun_exp:
paulson@15229
  1040
     "DERIV g x :> m ==> DERIV (%x. exp(g x)) x :> exp(g x) * m"
paulson@15077
  1041
apply (rule lemma_DERIV_subst)
paulson@15077
  1042
apply (rule_tac f = exp in DERIV_chain2)
paulson@15077
  1043
apply (rule DERIV_exp, auto)
paulson@15077
  1044
done
paulson@15077
  1045
paulson@15229
  1046
lemma DERIV_fun_sin:
paulson@15229
  1047
     "DERIV g x :> m ==> DERIV (%x. sin(g x)) x :> cos(g x) * m"
paulson@15077
  1048
apply (rule lemma_DERIV_subst)
paulson@15077
  1049
apply (rule_tac f = sin in DERIV_chain2)
paulson@15077
  1050
apply (rule DERIV_sin, auto)
paulson@15077
  1051
done
paulson@15077
  1052
paulson@15229
  1053
lemma DERIV_fun_cos:
paulson@15229
  1054
     "DERIV g x :> m ==> DERIV (%x. cos(g x)) x :> -sin(g x) * m"
paulson@15077
  1055
apply (rule lemma_DERIV_subst)
paulson@15077
  1056
apply (rule_tac f = cos in DERIV_chain2)
paulson@15077
  1057
apply (rule DERIV_cos, auto)
paulson@15077
  1058
done
paulson@15077
  1059
paulson@15077
  1060
lemmas DERIV_intros = DERIV_Id DERIV_const DERIV_cos DERIV_cmult 
paulson@15077
  1061
                    DERIV_sin  DERIV_exp  DERIV_inverse DERIV_pow 
paulson@15077
  1062
                    DERIV_add  DERIV_diff  DERIV_mult  DERIV_minus 
paulson@15077
  1063
                    DERIV_inverse_fun DERIV_quotient DERIV_fun_pow 
paulson@15077
  1064
                    DERIV_fun_exp DERIV_fun_sin DERIV_fun_cos 
paulson@15077
  1065
paulson@15077
  1066
(* lemma *)
paulson@15229
  1067
lemma lemma_DERIV_sin_cos_add:
paulson@15229
  1068
     "\<forall>x.  
paulson@15077
  1069
         DERIV (%x. (sin (x + y) - (sin x * cos y + cos x * sin y)) ^ 2 +  
paulson@15077
  1070
               (cos (x + y) - (cos x * cos y - sin x * sin y)) ^ 2) x :> 0"
paulson@15077
  1071
apply (safe, rule lemma_DERIV_subst)
paulson@15077
  1072
apply (best intro!: DERIV_intros intro: DERIV_chain2) 
paulson@15077
  1073
  --{*replaces the old @{text DERIV_tac}*}
paulson@15229
  1074
apply (auto simp add: diff_minus left_distrib right_distrib mult_ac add_ac)
paulson@15077
  1075
done
paulson@15077
  1076
paulson@15077
  1077
lemma sin_cos_add [simp]:
paulson@15077
  1078
     "(sin (x + y) - (sin x * cos y + cos x * sin y)) ^ 2 +  
paulson@15077
  1079
      (cos (x + y) - (cos x * cos y - sin x * sin y)) ^ 2 = 0"
paulson@15077
  1080
apply (cut_tac y = 0 and x = x and y7 = y 
paulson@15077
  1081
       in lemma_DERIV_sin_cos_add [THEN DERIV_isconst_all])
paulson@15077
  1082
apply (auto simp add: numeral_2_eq_2)
paulson@15077
  1083
done
paulson@15077
  1084
paulson@15077
  1085
lemma sin_add: "sin (x + y) = sin x * cos y + cos x * sin y"
paulson@15077
  1086
apply (cut_tac x = x and y = y in sin_cos_add)
paulson@15077
  1087
apply (auto dest!: real_sum_squares_cancel_a 
paulson@15085
  1088
            simp add: numeral_2_eq_2 real_add_eq_0_iff simp del: sin_cos_add)
paulson@15077
  1089
done
paulson@15077
  1090
paulson@15077
  1091
lemma cos_add: "cos (x + y) = cos x * cos y - sin x * sin y"
paulson@15077
  1092
apply (cut_tac x = x and y = y in sin_cos_add)
paulson@15077
  1093
apply (auto dest!: real_sum_squares_cancel_a
paulson@15085
  1094
            simp add: numeral_2_eq_2 real_add_eq_0_iff simp del: sin_cos_add)
paulson@15077
  1095
done
paulson@15077
  1096
paulson@15085
  1097
lemma lemma_DERIV_sin_cos_minus:
paulson@15085
  1098
    "\<forall>x. DERIV (%x. (sin(-x) + (sin x)) ^ 2 + (cos(-x) - (cos x)) ^ 2) x :> 0"
paulson@15077
  1099
apply (safe, rule lemma_DERIV_subst)
paulson@15077
  1100
apply (best intro!: DERIV_intros intro: DERIV_chain2) 
paulson@15229
  1101
apply (auto simp add: diff_minus left_distrib right_distrib mult_ac add_ac)
paulson@15077
  1102
done
paulson@15077
  1103
paulson@15085
  1104
lemma sin_cos_minus [simp]: 
paulson@15085
  1105
    "(sin(-x) + (sin x)) ^ 2 + (cos(-x) - (cos x)) ^ 2 = 0"
paulson@15085
  1106
apply (cut_tac y = 0 and x = x 
paulson@15085
  1107
       in lemma_DERIV_sin_cos_minus [THEN DERIV_isconst_all])
paulson@15077
  1108
apply (auto simp add: numeral_2_eq_2)
paulson@15077
  1109
done
paulson@15077
  1110
paulson@15077
  1111
lemma sin_minus [simp]: "sin (-x) = -sin(x)"
paulson@15077
  1112
apply (cut_tac x = x in sin_cos_minus)
paulson@15085
  1113
apply (auto dest!: real_sum_squares_cancel_a 
paulson@15085
  1114
       simp add: numeral_2_eq_2 real_add_eq_0_iff simp del: sin_cos_minus)
paulson@15077
  1115
done
paulson@15077
  1116
paulson@15077
  1117
lemma cos_minus [simp]: "cos (-x) = cos(x)"
paulson@15077
  1118
apply (cut_tac x = x in sin_cos_minus)
paulson@15085
  1119
apply (auto dest!: real_sum_squares_cancel_a 
paulson@15085
  1120
                   simp add: numeral_2_eq_2 simp del: sin_cos_minus)
paulson@15077
  1121
done
paulson@15077
  1122
paulson@15077
  1123
lemma sin_diff: "sin (x - y) = sin x * cos y - cos x * sin y"
paulson@15229
  1124
apply (simp add: diff_minus)
paulson@15077
  1125
apply (simp (no_asm) add: sin_add)
paulson@15077
  1126
done
paulson@15077
  1127
paulson@15077
  1128
lemma sin_diff2: "sin (x - y) = cos y * sin x - sin y * cos x"
paulson@15077
  1129
by (simp add: sin_diff mult_commute)
paulson@15077
  1130
paulson@15077
  1131
lemma cos_diff: "cos (x - y) = cos x * cos y + sin x * sin y"
paulson@15229
  1132
apply (simp add: diff_minus)
paulson@15077
  1133
apply (simp (no_asm) add: cos_add)
paulson@15077
  1134
done
paulson@15077
  1135
paulson@15077
  1136
lemma cos_diff2: "cos (x - y) = cos y * cos x + sin y * sin x"
paulson@15077
  1137
by (simp add: cos_diff mult_commute)
paulson@15077
  1138
paulson@15077
  1139
lemma sin_double [simp]: "sin(2 * x) = 2* sin x * cos x"
paulson@15077
  1140
by (cut_tac x = x and y = x in sin_add, auto)
paulson@15077
  1141
paulson@15077
  1142
paulson@15077
  1143
lemma cos_double: "cos(2* x) = ((cos x)\<twosuperior>) - ((sin x)\<twosuperior>)"
paulson@15077
  1144
apply (cut_tac x = x and y = x in cos_add)
paulson@15077
  1145
apply (auto simp add: numeral_2_eq_2)
paulson@15077
  1146
done
paulson@15077
  1147
paulson@15077
  1148
paulson@15077
  1149
subsection{*The Constant Pi*}
paulson@15077
  1150
paulson@15077
  1151
text{*Show that there's a least positive @{term x} with @{term "cos(x) = 0"}; 
paulson@15077
  1152
   hence define pi.*}
paulson@15077
  1153
paulson@15077
  1154
lemma sin_paired:
paulson@15077
  1155
     "(%n. (- 1) ^ n /(real (fact (2 * n + 1))) * x ^ (2 * n + 1)) 
paulson@15077
  1156
      sums  sin x"
paulson@15077
  1157
proof -
paulson@15077
  1158
  have "(\<lambda>n. \<Sum>k = n * 2..<n * 2 + 2.
paulson@15077
  1159
            (if even k then 0
paulson@15077
  1160
             else (- 1) ^ ((k - Suc 0) div 2) / real (fact k)) *
paulson@15077
  1161
            x ^ k) 
paulson@15077
  1162
	sums
nipkow@15546
  1163
	(\<Sum>n. (if even n then 0
paulson@15077
  1164
		     else (- 1) ^ ((n - Suc 0) div 2) / real (fact n)) *
paulson@15077
  1165
	            x ^ n)" 
paulson@15077
  1166
    by (rule sin_converges [THEN sums_summable, THEN sums_group], simp) 
paulson@15077
  1167
  thus ?thesis by (simp add: mult_ac sin_def)
paulson@15077
  1168
qed
paulson@15077
  1169
paulson@15077
  1170
lemma sin_gt_zero: "[|0 < x; x < 2 |] ==> 0 < sin x"
paulson@15077
  1171
apply (subgoal_tac 
paulson@15077
  1172
       "(\<lambda>n. \<Sum>k = n * 2..<n * 2 + 2.
paulson@15077
  1173
              (- 1) ^ k / real (fact (2 * k + 1)) * x ^ (2 * k + 1)) 
nipkow@15546
  1174
     sums (\<Sum>n. (- 1) ^ n / real (fact (2 * n + 1)) * x ^ (2 * n + 1))")
paulson@15077
  1175
 prefer 2
paulson@15077
  1176
 apply (rule sin_paired [THEN sums_summable, THEN sums_group], simp) 
paulson@15077
  1177
apply (rotate_tac 2)
paulson@15077
  1178
apply (drule sin_paired [THEN sums_unique, THEN ssubst])
paulson@15077
  1179
apply (auto simp del: fact_Suc realpow_Suc)
paulson@15077
  1180
apply (frule sums_unique)
paulson@15077
  1181
apply (auto simp del: fact_Suc realpow_Suc)
paulson@15077
  1182
apply (rule_tac n1 = 0 in series_pos_less [THEN [2] order_le_less_trans])
paulson@15077
  1183
apply (auto simp del: fact_Suc realpow_Suc)
paulson@15077
  1184
apply (erule sums_summable)
paulson@15077
  1185
apply (case_tac "m=0")
paulson@15077
  1186
apply (simp (no_asm_simp))
paulson@15234
  1187
apply (subgoal_tac "6 * (x * (x * x) / real (Suc (Suc (Suc (Suc (Suc (Suc 0))))))) < 6 * x") 
nipkow@15539
  1188
apply (simp only: mult_less_cancel_left, simp)  
nipkow@15539
  1189
apply (simp (no_asm_simp) add: numeral_2_eq_2 [symmetric] mult_assoc [symmetric])
paulson@15077
  1190
apply (subgoal_tac "x*x < 2*3", simp) 
paulson@15077
  1191
apply (rule mult_strict_mono)
paulson@15085
  1192
apply (auto simp add: real_0_less_add_iff real_of_nat_Suc simp del: fact_Suc)
paulson@15077
  1193
apply (subst fact_Suc)
paulson@15077
  1194
apply (subst fact_Suc)
paulson@15077
  1195
apply (subst fact_Suc)
paulson@15077
  1196
apply (subst fact_Suc)
paulson@15077
  1197
apply (subst real_of_nat_mult)
paulson@15077
  1198
apply (subst real_of_nat_mult)
paulson@15077
  1199
apply (subst real_of_nat_mult)
paulson@15077
  1200
apply (subst real_of_nat_mult)
nipkow@15539
  1201
apply (simp (no_asm) add: divide_inverse del: fact_Suc)
paulson@15077
  1202
apply (auto simp add: mult_assoc [symmetric] simp del: fact_Suc)
paulson@15077
  1203
apply (rule_tac c="real (Suc (Suc (4*m)))" in mult_less_imp_less_right) 
paulson@15077
  1204
apply (auto simp add: mult_assoc simp del: fact_Suc)
paulson@15077
  1205
apply (rule_tac c="real (Suc (Suc (Suc (4*m))))" in mult_less_imp_less_right) 
paulson@15077
  1206
apply (auto simp add: mult_assoc mult_less_cancel_left simp del: fact_Suc)
paulson@15077
  1207
apply (subgoal_tac "x * (x * x ^ (4*m)) = (x ^ (4*m)) * (x * x)") 
paulson@15077
  1208
apply (erule ssubst)+
paulson@15077
  1209
apply (auto simp del: fact_Suc)
paulson@15077
  1210
apply (subgoal_tac "0 < x ^ (4 * m) ")
paulson@15077
  1211
 prefer 2 apply (simp only: zero_less_power) 
paulson@15077
  1212
apply (simp (no_asm_simp) add: mult_less_cancel_left)
paulson@15077
  1213
apply (rule mult_strict_mono)
paulson@15077
  1214
apply (simp_all (no_asm_simp))
paulson@15077
  1215
done
paulson@15077
  1216
paulson@15077
  1217
lemma sin_gt_zero1: "[|0 < x; x < 2 |] ==> 0 < sin x"
paulson@15077
  1218
by (auto intro: sin_gt_zero)
paulson@15077
  1219
paulson@15077
  1220
lemma cos_double_less_one: "[| 0 < x; x < 2 |] ==> cos (2 * x) < 1"
paulson@15077
  1221
apply (cut_tac x = x in sin_gt_zero1)
paulson@15077
  1222
apply (auto simp add: cos_squared_eq cos_double)
paulson@15077
  1223
done
paulson@15077
  1224
paulson@15077
  1225
lemma cos_paired:
paulson@15077
  1226
     "(%n. (- 1) ^ n /(real (fact (2 * n))) * x ^ (2 * n)) sums cos x"
paulson@15077
  1227
proof -
paulson@15077
  1228
  have "(\<lambda>n. \<Sum>k = n * 2..<n * 2 + 2.
paulson@15077
  1229
            (if even k then (- 1) ^ (k div 2) / real (fact k) else 0) *
paulson@15077
  1230
            x ^ k) 
paulson@15077
  1231
        sums
nipkow@15546
  1232
	(\<Sum>n. (if even n then (- 1) ^ (n div 2) / real (fact n) else 0) *
paulson@15077
  1233
	      x ^ n)" 
paulson@15077
  1234
    by (rule cos_converges [THEN sums_summable, THEN sums_group], simp) 
paulson@15077
  1235
  thus ?thesis by (simp add: mult_ac cos_def)
paulson@15077
  1236
qed
paulson@15077
  1237
paulson@15077
  1238
declare zero_less_power [simp]
paulson@15077
  1239
paulson@15077
  1240
lemma fact_lemma: "real (n::nat) * 4 = real (4 * n)"
paulson@15077
  1241
by simp
paulson@15077
  1242
paulson@15077
  1243
lemma cos_two_less_zero: "cos (2) < 0"
paulson@15077
  1244
apply (cut_tac x = 2 in cos_paired)
paulson@15077
  1245
apply (drule sums_minus)
paulson@15077
  1246
apply (rule neg_less_iff_less [THEN iffD1]) 
nipkow@15539
  1247
apply (frule sums_unique, auto)
nipkow@15539
  1248
apply (rule_tac y =
nipkow@15539
  1249
 "\<Sum>n=0..< Suc(Suc(Suc 0)). - ((- 1) ^ n / (real(fact (2*n))) * 2 ^ (2*n))"
paulson@15481
  1250
       in order_less_trans)
paulson@15077
  1251
apply (simp (no_asm) add: fact_num_eq_if realpow_num_eq_if del: fact_Suc realpow_Suc)
nipkow@15561
  1252
apply (simp (no_asm) add: mult_assoc del: setsum_op_ivl_Suc)
paulson@15077
  1253
apply (rule sumr_pos_lt_pair)
paulson@15077
  1254
apply (erule sums_summable, safe)
paulson@15085
  1255
apply (simp (no_asm) add: divide_inverse real_0_less_add_iff mult_assoc [symmetric] 
paulson@15085
  1256
            del: fact_Suc)
paulson@15077
  1257
apply (rule real_mult_inverse_cancel2)
paulson@15077
  1258
apply (rule real_of_nat_fact_gt_zero)+
paulson@15077
  1259
apply (simp (no_asm) add: mult_assoc [symmetric] del: fact_Suc)
paulson@15077
  1260
apply (subst fact_lemma) 
paulson@15481
  1261
apply (subst fact_Suc [of "Suc (Suc (Suc (Suc (Suc (Suc (Suc (4 * d)))))))"])
paulson@15481
  1262
apply (simp only: real_of_nat_mult)
paulson@15077
  1263
apply (rule real_mult_less_mono, force)
paulson@15481
  1264
  apply (rule_tac [3] real_of_nat_fact_gt_zero)
paulson@15481
  1265
 prefer 2 apply force
paulson@15077
  1266
apply (rule real_of_nat_less_iff [THEN iffD2])
paulson@15077
  1267
apply (rule fact_less_mono, auto)
paulson@15077
  1268
done
paulson@15077
  1269
declare cos_two_less_zero [simp]
paulson@15077
  1270
declare cos_two_less_zero [THEN real_not_refl2, simp]
paulson@15077
  1271
declare cos_two_less_zero [THEN order_less_imp_le, simp]
paulson@15077
  1272
paulson@15077
  1273
lemma cos_is_zero: "EX! x. 0 \<le> x & x \<le> 2 & cos x = 0"
paulson@15077
  1274
apply (subgoal_tac "\<exists>x. 0 \<le> x & x \<le> 2 & cos x = 0")
paulson@15077
  1275
apply (rule_tac [2] IVT2)
paulson@15077
  1276
apply (auto intro: DERIV_isCont DERIV_cos)
paulson@15077
  1277
apply (cut_tac x = xa and y = y in linorder_less_linear)
paulson@15077
  1278
apply (rule ccontr)
paulson@15077
  1279
apply (subgoal_tac " (\<forall>x. cos differentiable x) & (\<forall>x. isCont cos x) ")
paulson@15077
  1280
apply (auto intro: DERIV_cos DERIV_isCont simp add: differentiable_def)
paulson@15077
  1281
apply (drule_tac f = cos in Rolle)
paulson@15077
  1282
apply (drule_tac [5] f = cos in Rolle)
paulson@15077
  1283
apply (auto dest!: DERIV_cos [THEN DERIV_unique] simp add: differentiable_def)
paulson@15077
  1284
apply (drule_tac y1 = xa in order_le_less_trans [THEN sin_gt_zero])
paulson@15077
  1285
apply (assumption, rule_tac y=y in order_less_le_trans, simp_all) 
paulson@15077
  1286
apply (drule_tac y1 = y in order_le_less_trans [THEN sin_gt_zero], assumption, simp_all) 
paulson@15077
  1287
done
paulson@15077
  1288
    
paulson@15077
  1289
lemma pi_half: "pi/2 = (@x. 0 \<le> x & x \<le> 2 & cos x = 0)"
paulson@15077
  1290
by (simp add: pi_def)
paulson@15077
  1291
paulson@15077
  1292
lemma cos_pi_half [simp]: "cos (pi / 2) = 0"
paulson@15077
  1293
apply (rule cos_is_zero [THEN ex1E])
paulson@15077
  1294
apply (auto intro!: someI2 simp add: pi_half)
paulson@15077
  1295
done
paulson@15077
  1296
paulson@15077
  1297
lemma pi_half_gt_zero: "0 < pi / 2"
paulson@15077
  1298
apply (rule cos_is_zero [THEN ex1E])
paulson@15077
  1299
apply (auto simp add: pi_half)
paulson@15077
  1300
apply (rule someI2, blast, safe)
paulson@15077
  1301
apply (drule_tac y = xa in real_le_imp_less_or_eq)
paulson@15077
  1302
apply (safe, simp)
paulson@15077
  1303
done
paulson@15077
  1304
declare pi_half_gt_zero [simp]
paulson@15077
  1305
declare pi_half_gt_zero [THEN real_not_refl2, THEN not_sym, simp]
paulson@15077
  1306
declare pi_half_gt_zero [THEN order_less_imp_le, simp]
paulson@15077
  1307
paulson@15077
  1308
lemma pi_half_less_two: "pi / 2 < 2"
paulson@15077
  1309
apply (rule cos_is_zero [THEN ex1E])
paulson@15077
  1310
apply (auto simp add: pi_half)
paulson@15077
  1311
apply (rule someI2, blast, safe)
paulson@15077
  1312
apply (drule_tac x = xa in order_le_imp_less_or_eq)
paulson@15077
  1313
apply (safe, simp)
paulson@15077
  1314
done
paulson@15077
  1315
declare pi_half_less_two [simp]
paulson@15077
  1316
declare pi_half_less_two [THEN real_not_refl2, simp]
paulson@15077
  1317
declare pi_half_less_two [THEN order_less_imp_le, simp]
paulson@15077
  1318
paulson@15077
  1319
lemma pi_gt_zero [simp]: "0 < pi"
paulson@15229
  1320
apply (insert pi_half_gt_zero) 
paulson@15229
  1321
apply (simp add: ); 
paulson@15077
  1322
done
paulson@15077
  1323
paulson@15077
  1324
lemma pi_neq_zero [simp]: "pi \<noteq> 0"
paulson@15077
  1325
by (rule pi_gt_zero [THEN real_not_refl2, THEN not_sym])
paulson@15077
  1326
paulson@15077
  1327
lemma pi_not_less_zero [simp]: "~ (pi < 0)"
paulson@15077
  1328
apply (insert pi_gt_zero)
paulson@15077
  1329
apply (blast elim: order_less_asym) 
paulson@15077
  1330
done
paulson@15077
  1331
paulson@15077
  1332
lemma pi_ge_zero [simp]: "0 \<le> pi"
paulson@15077
  1333
by (auto intro: order_less_imp_le)
paulson@15077
  1334
paulson@15077
  1335
lemma minus_pi_half_less_zero [simp]: "-(pi/2) < 0"
paulson@15077
  1336
by auto
paulson@15077
  1337
paulson@15077
  1338
lemma sin_pi_half [simp]: "sin(pi/2) = 1"
paulson@15077
  1339
apply (cut_tac x = "pi/2" in sin_cos_squared_add2)
paulson@15077
  1340
apply (cut_tac sin_gt_zero [OF pi_half_gt_zero pi_half_less_two])
paulson@15077
  1341
apply (auto simp add: numeral_2_eq_2)
paulson@15077
  1342
done
paulson@15077
  1343
paulson@15077
  1344
lemma cos_pi [simp]: "cos pi = -1"
nipkow@15539
  1345
by (cut_tac x = "pi/2" and y = "pi/2" in cos_add, simp)
paulson@15077
  1346
paulson@15077
  1347
lemma sin_pi [simp]: "sin pi = 0"
nipkow@15539
  1348
by (cut_tac x = "pi/2" and y = "pi/2" in sin_add, simp)
paulson@15077
  1349
paulson@15077
  1350
lemma sin_cos_eq: "sin x = cos (pi/2 - x)"
paulson@15229
  1351
by (simp add: diff_minus cos_add)
paulson@15077
  1352
paulson@15077
  1353
lemma minus_sin_cos_eq: "-sin x = cos (x + pi/2)"
paulson@15229
  1354
by (simp add: cos_add)
paulson@15077
  1355
declare minus_sin_cos_eq [symmetric, simp]
paulson@15077
  1356
paulson@15077
  1357
lemma cos_sin_eq: "cos x = sin (pi/2 - x)"
paulson@15229
  1358
by (simp add: diff_minus sin_add)
paulson@15077
  1359
declare sin_cos_eq [symmetric, simp] cos_sin_eq [symmetric, simp]
paulson@15077
  1360
paulson@15077
  1361
lemma sin_periodic_pi [simp]: "sin (x + pi) = - sin x"
paulson@15229
  1362
by (simp add: sin_add)
paulson@15077
  1363
paulson@15077
  1364
lemma sin_periodic_pi2 [simp]: "sin (pi + x) = - sin x"
paulson@15229
  1365
by (simp add: sin_add)
paulson@15077
  1366
paulson@15077
  1367
lemma cos_periodic_pi [simp]: "cos (x + pi) = - cos x"
paulson@15229
  1368
by (simp add: cos_add)
paulson@15077
  1369
paulson@15077
  1370
lemma sin_periodic [simp]: "sin (x + 2*pi) = sin x"
paulson@15077
  1371
by (simp add: sin_add cos_double)
paulson@15077
  1372
paulson@15077
  1373
lemma cos_periodic [simp]: "cos (x + 2*pi) = cos x"
paulson@15077
  1374
by (simp add: cos_add cos_double)
paulson@15077
  1375
paulson@15077
  1376
lemma cos_npi [simp]: "cos (real n * pi) = -1 ^ n"
paulson@15251
  1377
apply (induct "n")
paulson@15077
  1378
apply (auto simp add: real_of_nat_Suc left_distrib)
paulson@15077
  1379
done
paulson@15077
  1380
paulson@15383
  1381
lemma cos_npi2 [simp]: "cos (pi * real n) = -1 ^ n"
paulson@15383
  1382
proof -
paulson@15383
  1383
  have "cos (pi * real n) = cos (real n * pi)" by (simp only: mult_commute)
paulson@15383
  1384
  also have "... = -1 ^ n" by (rule cos_npi) 
paulson@15383
  1385
  finally show ?thesis .
paulson@15383
  1386
qed
paulson@15383
  1387
paulson@15077
  1388
lemma sin_npi [simp]: "sin (real (n::nat) * pi) = 0"
paulson@15251
  1389
apply (induct "n")
paulson@15077
  1390
apply (auto simp add: real_of_nat_Suc left_distrib)
paulson@15077
  1391
done
paulson@15077
  1392
paulson@15077
  1393
lemma sin_npi2 [simp]: "sin (pi * real (n::nat)) = 0"
paulson@15383
  1394
by (simp add: mult_commute [of pi]) 
paulson@15077
  1395
paulson@15077
  1396
lemma cos_two_pi [simp]: "cos (2 * pi) = 1"
paulson@15077
  1397
by (simp add: cos_double)
paulson@15077
  1398
paulson@15077
  1399
lemma sin_two_pi [simp]: "sin (2 * pi) = 0"
paulson@15229
  1400
by simp
paulson@15077
  1401
paulson@15077
  1402
lemma sin_gt_zero2: "[| 0 < x; x < pi/2 |] ==> 0 < sin x"
paulson@15077
  1403
apply (rule sin_gt_zero, assumption)
paulson@15077
  1404
apply (rule order_less_trans, assumption)
paulson@15077
  1405
apply (rule pi_half_less_two)
paulson@15077
  1406
done
paulson@15077
  1407
paulson@15077
  1408
lemma sin_less_zero: 
paulson@15077
  1409
  assumes lb: "- pi/2 < x" and "x < 0" shows "sin x < 0"
paulson@15077
  1410
proof -
paulson@15077
  1411
  have "0 < sin (- x)" using prems by (simp only: sin_gt_zero2) 
paulson@15077
  1412
  thus ?thesis by simp
paulson@15077
  1413
qed
paulson@15077
  1414
paulson@15077
  1415
lemma pi_less_4: "pi < 4"
paulson@15077
  1416
by (cut_tac pi_half_less_two, auto)
paulson@15077
  1417
paulson@15077
  1418
lemma cos_gt_zero: "[| 0 < x; x < pi/2 |] ==> 0 < cos x"
paulson@15077
  1419
apply (cut_tac pi_less_4)
paulson@15077
  1420
apply (cut_tac f = cos and a = 0 and b = x and y = 0 in IVT2_objl, safe, simp_all)
paulson@15077
  1421
apply (force intro: DERIV_isCont DERIV_cos)
paulson@15077
  1422
apply (cut_tac cos_is_zero, safe)
paulson@15077
  1423
apply (rename_tac y z)
paulson@15077
  1424
apply (drule_tac x = y in spec)
paulson@15077
  1425
apply (drule_tac x = "pi/2" in spec, simp) 
paulson@15077
  1426
done
paulson@15077
  1427
paulson@15077
  1428
lemma cos_gt_zero_pi: "[| -(pi/2) < x; x < pi/2 |] ==> 0 < cos x"
paulson@15077
  1429
apply (rule_tac x = x and y = 0 in linorder_cases)
paulson@15077
  1430
apply (rule cos_minus [THEN subst])
paulson@15077
  1431
apply (rule cos_gt_zero)
paulson@15077
  1432
apply (auto intro: cos_gt_zero)
paulson@15077
  1433
done
paulson@15077
  1434
 
paulson@15077
  1435
lemma cos_ge_zero: "[| -(pi/2) \<le> x; x \<le> pi/2 |] ==> 0 \<le> cos x"
paulson@15077
  1436
apply (auto simp add: order_le_less cos_gt_zero_pi)
paulson@15077
  1437
apply (subgoal_tac "x = pi/2", auto) 
paulson@15077
  1438
done
paulson@15077
  1439
paulson@15077
  1440
lemma sin_gt_zero_pi: "[| 0 < x; x < pi  |] ==> 0 < sin x"
paulson@15077
  1441
apply (subst sin_cos_eq)
paulson@15077
  1442
apply (rotate_tac 1)
paulson@15077
  1443
apply (drule real_sum_of_halves [THEN ssubst])
paulson@15077
  1444
apply (auto intro!: cos_gt_zero_pi simp del: sin_cos_eq [symmetric])
paulson@15077
  1445
done
paulson@15077
  1446
paulson@15077
  1447
lemma sin_ge_zero: "[| 0 \<le> x; x \<le> pi |] ==> 0 \<le> sin x"
paulson@15077
  1448
by (auto simp add: order_le_less sin_gt_zero_pi)
paulson@15077
  1449
paulson@15077
  1450
lemma cos_total: "[| -1 \<le> y; y \<le> 1 |] ==> EX! x. 0 \<le> x & x \<le> pi & (cos x = y)"
paulson@15077
  1451
apply (subgoal_tac "\<exists>x. 0 \<le> x & x \<le> pi & cos x = y")
paulson@15077
  1452
apply (rule_tac [2] IVT2)
paulson@15077
  1453
apply (auto intro: order_less_imp_le DERIV_isCont DERIV_cos)
paulson@15077
  1454
apply (cut_tac x = xa and y = y in linorder_less_linear)
paulson@15077
  1455
apply (rule ccontr, auto)
paulson@15077
  1456
apply (drule_tac f = cos in Rolle)
paulson@15077
  1457
apply (drule_tac [5] f = cos in Rolle)
paulson@15077
  1458
apply (auto intro: order_less_imp_le DERIV_isCont DERIV_cos
paulson@15077
  1459
            dest!: DERIV_cos [THEN DERIV_unique] 
paulson@15077
  1460
            simp add: differentiable_def)
paulson@15077
  1461
apply (auto dest: sin_gt_zero_pi [OF order_le_less_trans order_less_le_trans])
paulson@15077
  1462
done
paulson@15077
  1463
paulson@15077
  1464
lemma sin_total:
paulson@15077
  1465
     "[| -1 \<le> y; y \<le> 1 |] ==> EX! x. -(pi/2) \<le> x & x \<le> pi/2 & (sin x = y)"
paulson@15077
  1466
apply (rule ccontr)
paulson@15077
  1467
apply (subgoal_tac "\<forall>x. (- (pi/2) \<le> x & x \<le> pi/2 & (sin x = y)) = (0 \<le> (x + pi/2) & (x + pi/2) \<le> pi & (cos (x + pi/2) = -y))")
wenzelm@18585
  1468
apply (erule contrapos_np)
paulson@15077
  1469
apply (simp del: minus_sin_cos_eq [symmetric])
paulson@15077
  1470
apply (cut_tac y="-y" in cos_total, simp) apply simp 
paulson@15077
  1471
apply (erule ex1E)
paulson@15229
  1472
apply (rule_tac a = "x - (pi/2)" in ex1I)
paulson@15077
  1473
apply (simp (no_asm) add: real_add_assoc)
paulson@15077
  1474
apply (rotate_tac 3)
paulson@15077
  1475
apply (drule_tac x = "xa + pi/2" in spec, safe, simp_all) 
paulson@15077
  1476
done
paulson@15077
  1477
paulson@15077
  1478
lemma reals_Archimedean4:
paulson@15077
  1479
     "[| 0 < y; 0 \<le> x |] ==> \<exists>n. real n * y \<le> x & x < real (Suc n) * y"
paulson@15077
  1480
apply (auto dest!: reals_Archimedean3)
paulson@15077
  1481
apply (drule_tac x = x in spec, clarify) 
paulson@15077
  1482
apply (subgoal_tac "x < real(LEAST m::nat. x < real m * y) * y")
paulson@15077
  1483
 prefer 2 apply (erule LeastI) 
paulson@15077
  1484
apply (case_tac "LEAST m::nat. x < real m * y", simp) 
paulson@15077
  1485
apply (subgoal_tac "~ x < real nat * y")
paulson@15077
  1486
 prefer 2 apply (rule not_less_Least, simp, force)  
paulson@15077
  1487
done
paulson@15077
  1488
paulson@15077
  1489
(* Pre Isabelle99-2 proof was simpler- numerals arithmetic 
paulson@15077
  1490
   now causes some unwanted re-arrangements of literals!   *)
paulson@15229
  1491
lemma cos_zero_lemma:
paulson@15229
  1492
     "[| 0 \<le> x; cos x = 0 |] ==>  
paulson@15077
  1493
      \<exists>n::nat. ~even n & x = real n * (pi/2)"
paulson@15077
  1494
apply (drule pi_gt_zero [THEN reals_Archimedean4], safe)
paulson@15086
  1495
apply (subgoal_tac "0 \<le> x - real n * pi & 
paulson@15086
  1496
                    (x - real n * pi) \<le> pi & (cos (x - real n * pi) = 0) ")
paulson@15086
  1497
apply (auto simp add: compare_rls) 
paulson@15077
  1498
  prefer 3 apply (simp add: cos_diff) 
paulson@15077
  1499
 prefer 2 apply (simp add: real_of_nat_Suc left_distrib) 
paulson@15077
  1500
apply (simp add: cos_diff)
paulson@15077
  1501
apply (subgoal_tac "EX! x. 0 \<le> x & x \<le> pi & cos x = 0")
paulson@15077
  1502
apply (rule_tac [2] cos_total, safe)
paulson@15077
  1503
apply (drule_tac x = "x - real n * pi" in spec)
paulson@15077
  1504
apply (drule_tac x = "pi/2" in spec)
paulson@15077
  1505
apply (simp add: cos_diff)
paulson@15229
  1506
apply (rule_tac x = "Suc (2 * n)" in exI)
paulson@15077
  1507
apply (simp add: real_of_nat_Suc left_distrib, auto)
paulson@15077
  1508
done
paulson@15077
  1509
paulson@15229
  1510
lemma sin_zero_lemma:
paulson@15229
  1511
     "[| 0 \<le> x; sin x = 0 |] ==>  
paulson@15077
  1512
      \<exists>n::nat. even n & x = real n * (pi/2)"
paulson@15077
  1513
apply (subgoal_tac "\<exists>n::nat. ~ even n & x + pi/2 = real n * (pi/2) ")
paulson@15077
  1514
 apply (clarify, rule_tac x = "n - 1" in exI)
paulson@15077
  1515
 apply (force simp add: odd_Suc_mult_two_ex real_of_nat_Suc left_distrib)
paulson@15085
  1516
apply (rule cos_zero_lemma)
paulson@15085
  1517
apply (simp_all add: add_increasing)  
paulson@15077
  1518
done
paulson@15077
  1519
paulson@15077
  1520
paulson@15229
  1521
lemma cos_zero_iff:
paulson@15229
  1522
     "(cos x = 0) =  
paulson@15077
  1523
      ((\<exists>n::nat. ~even n & (x = real n * (pi/2))) |    
paulson@15077
  1524
       (\<exists>n::nat. ~even n & (x = -(real n * (pi/2)))))"
paulson@15077
  1525
apply (rule iffI)
paulson@15077
  1526
apply (cut_tac linorder_linear [of 0 x], safe)
paulson@15077
  1527
apply (drule cos_zero_lemma, assumption+)
paulson@15077
  1528
apply (cut_tac x="-x" in cos_zero_lemma, simp, simp) 
paulson@15077
  1529
apply (force simp add: minus_equation_iff [of x]) 
paulson@15077
  1530
apply (auto simp only: odd_Suc_mult_two_ex real_of_nat_Suc left_distrib) 
nipkow@15539
  1531
apply (auto simp add: cos_add)
paulson@15077
  1532
done
paulson@15077
  1533
paulson@15077
  1534
(* ditto: but to a lesser extent *)
paulson@15229
  1535
lemma sin_zero_iff:
paulson@15229
  1536
     "(sin x = 0) =  
paulson@15077
  1537
      ((\<exists>n::nat. even n & (x = real n * (pi/2))) |    
paulson@15077
  1538
       (\<exists>n::nat. even n & (x = -(real n * (pi/2)))))"
paulson@15077
  1539
apply (rule iffI)
paulson@15077
  1540
apply (cut_tac linorder_linear [of 0 x], safe)
paulson@15077
  1541
apply (drule sin_zero_lemma, assumption+)
paulson@15077
  1542
apply (cut_tac x="-x" in sin_zero_lemma, simp, simp, safe)
paulson@15077
  1543
apply (force simp add: minus_equation_iff [of x]) 
nipkow@15539
  1544
apply (auto simp add: even_mult_two_ex)
paulson@15077
  1545
done
paulson@15077
  1546
paulson@15077
  1547
paulson@15077
  1548
subsection{*Tangent*}
paulson@15077
  1549
paulson@15077
  1550
lemma tan_zero [simp]: "tan 0 = 0"
paulson@15077
  1551
by (simp add: tan_def)
paulson@15077
  1552
paulson@15077
  1553
lemma tan_pi [simp]: "tan pi = 0"
paulson@15077
  1554
by (simp add: tan_def)
paulson@15077
  1555
paulson@15077
  1556
lemma tan_npi [simp]: "tan (real (n::nat) * pi) = 0"
paulson@15077
  1557
by (simp add: tan_def)
paulson@15077
  1558
paulson@15077
  1559
lemma tan_minus [simp]: "tan (-x) = - tan x"
paulson@15077
  1560
by (simp add: tan_def minus_mult_left)
paulson@15077
  1561
paulson@15077
  1562
lemma tan_periodic [simp]: "tan (x + 2*pi) = tan x"
paulson@15077
  1563
by (simp add: tan_def)
paulson@15077
  1564
paulson@15077
  1565
lemma lemma_tan_add1: 
paulson@15077
  1566
      "[| cos x \<noteq> 0; cos y \<noteq> 0 |]  
paulson@15077
  1567
        ==> 1 - tan(x)*tan(y) = cos (x + y)/(cos x * cos y)"
paulson@15229
  1568
apply (simp add: tan_def divide_inverse)
paulson@15229
  1569
apply (auto simp del: inverse_mult_distrib 
paulson@15229
  1570
            simp add: inverse_mult_distrib [symmetric] mult_ac)
paulson@15077
  1571
apply (rule_tac c1 = "cos x * cos y" in real_mult_right_cancel [THEN subst])
paulson@15229
  1572
apply (auto simp del: inverse_mult_distrib 
paulson@15229
  1573
            simp add: mult_assoc left_diff_distrib cos_add)
paulson@15234
  1574
done  
paulson@15077
  1575
paulson@15077
  1576
lemma add_tan_eq: 
paulson@15077
  1577
      "[| cos x \<noteq> 0; cos y \<noteq> 0 |]  
paulson@15077
  1578
       ==> tan x + tan y = sin(x + y)/(cos x * cos y)"
paulson@15229
  1579
apply (simp add: tan_def)
paulson@15077
  1580
apply (rule_tac c1 = "cos x * cos y" in real_mult_right_cancel [THEN subst])
paulson@15077
  1581
apply (auto simp add: mult_assoc left_distrib)
nipkow@15539
  1582
apply (simp add: sin_add)
paulson@15077
  1583
done
paulson@15077
  1584
paulson@15229
  1585
lemma tan_add:
paulson@15229
  1586
     "[| cos x \<noteq> 0; cos y \<noteq> 0; cos (x + y) \<noteq> 0 |]  
paulson@15077
  1587
      ==> tan(x + y) = (tan(x) + tan(y))/(1 - tan(x) * tan(y))"
paulson@15077
  1588
apply (simp (no_asm_simp) add: add_tan_eq lemma_tan_add1)
paulson@15077
  1589
apply (simp add: tan_def)
paulson@15077
  1590
done
paulson@15077
  1591
paulson@15229
  1592
lemma tan_double:
paulson@15229
  1593
     "[| cos x \<noteq> 0; cos (2 * x) \<noteq> 0 |]  
paulson@15077
  1594
      ==> tan (2 * x) = (2 * tan x)/(1 - (tan(x) ^ 2))"
paulson@15077
  1595
apply (insert tan_add [of x x]) 
paulson@15077
  1596
apply (simp add: mult_2 [symmetric])  
paulson@15077
  1597
apply (auto simp add: numeral_2_eq_2)
paulson@15077
  1598
done
paulson@15077
  1599
paulson@15077
  1600
lemma tan_gt_zero: "[| 0 < x; x < pi/2 |] ==> 0 < tan x"
paulson@15229
  1601
by (simp add: tan_def zero_less_divide_iff sin_gt_zero2 cos_gt_zero_pi) 
paulson@15077
  1602
paulson@15077
  1603
lemma tan_less_zero: 
paulson@15077
  1604
  assumes lb: "- pi/2 < x" and "x < 0" shows "tan x < 0"
paulson@15077
  1605
proof -
paulson@15077
  1606
  have "0 < tan (- x)" using prems by (simp only: tan_gt_zero) 
paulson@15077
  1607
  thus ?thesis by simp
paulson@15077
  1608
qed
paulson@15077
  1609
paulson@15077
  1610
lemma lemma_DERIV_tan:
paulson@15077
  1611
     "cos x \<noteq> 0 ==> DERIV (%x. sin(x)/cos(x)) x :> inverse((cos x)\<twosuperior>)"
paulson@15077
  1612
apply (rule lemma_DERIV_subst)
paulson@15077
  1613
apply (best intro!: DERIV_intros intro: DERIV_chain2) 
paulson@15079
  1614
apply (auto simp add: divide_inverse numeral_2_eq_2)
paulson@15077
  1615
done
paulson@15077
  1616
paulson@15077
  1617
lemma DERIV_tan [simp]: "cos x \<noteq> 0 ==> DERIV tan x :> inverse((cos x)\<twosuperior>)"
paulson@15077
  1618
by (auto dest: lemma_DERIV_tan simp add: tan_def [symmetric])
paulson@15077
  1619
paulson@15077
  1620
lemma LIM_cos_div_sin [simp]: "(%x. cos(x)/sin(x)) -- pi/2 --> 0"
paulson@15077
  1621
apply (subgoal_tac "(\<lambda>x. cos x * inverse (sin x)) -- pi * inverse 2 --> 0*1")
paulson@15229
  1622
apply (simp add: divide_inverse [symmetric])
paulson@15077
  1623
apply (rule LIM_mult2)
paulson@15077
  1624
apply (rule_tac [2] inverse_1 [THEN subst])
paulson@15077
  1625
apply (rule_tac [2] LIM_inverse)
paulson@15077
  1626
apply (simp_all add: divide_inverse [symmetric]) 
paulson@15077
  1627
apply (simp_all only: isCont_def [symmetric] cos_pi_half [symmetric] sin_pi_half [symmetric]) 
paulson@15077
  1628
apply (blast intro!: DERIV_isCont DERIV_sin DERIV_cos)+
paulson@15077
  1629
done
paulson@15077
  1630
paulson@15077
  1631
lemma lemma_tan_total: "0 < y ==> \<exists>x. 0 < x & x < pi/2 & y < tan x"
paulson@15077
  1632
apply (cut_tac LIM_cos_div_sin)
paulson@15077
  1633
apply (simp only: LIM_def)
paulson@15077
  1634
apply (drule_tac x = "inverse y" in spec, safe, force)
paulson@15077
  1635
apply (drule_tac ?d1.0 = s in pi_half_gt_zero [THEN [2] real_lbound_gt_zero], safe)
paulson@15229
  1636
apply (rule_tac x = "(pi/2) - e" in exI)
paulson@15077
  1637
apply (simp (no_asm_simp))
paulson@15229
  1638
apply (drule_tac x = "(pi/2) - e" in spec)
paulson@15229
  1639
apply (auto simp add: tan_def)
paulson@15077
  1640
apply (rule inverse_less_iff_less [THEN iffD1])
paulson@15079
  1641
apply (auto simp add: divide_inverse)
paulson@15229
  1642
apply (rule real_mult_order) 
paulson@15229
  1643
apply (subgoal_tac [3] "0 < sin e & 0 < cos e")
paulson@15229
  1644
apply (auto intro: cos_gt_zero sin_gt_zero2 simp add: mult_commute) 
paulson@15077
  1645
done
paulson@15077
  1646
paulson@15077
  1647
lemma tan_total_pos: "0 \<le> y ==> \<exists>x. 0 \<le> x & x < pi/2 & tan x = y"
paulson@15077
  1648
apply (frule real_le_imp_less_or_eq, safe)
paulson@15077
  1649
 prefer 2 apply force
paulson@15077
  1650
apply (drule lemma_tan_total, safe)
paulson@15077
  1651
apply (cut_tac f = tan and a = 0 and b = x and y = y in IVT_objl)
paulson@15077
  1652
apply (auto intro!: DERIV_tan [THEN DERIV_isCont])
paulson@15077
  1653
apply (drule_tac y = xa in order_le_imp_less_or_eq)
paulson@15077
  1654
apply (auto dest: cos_gt_zero)
paulson@15077
  1655
done
paulson@15077
  1656
paulson@15077
  1657
lemma lemma_tan_total1: "\<exists>x. -(pi/2) < x & x < (pi/2) & tan x = y"
paulson@15077
  1658
apply (cut_tac linorder_linear [of 0 y], safe)
paulson@15077
  1659
apply (drule tan_total_pos)
paulson@15077
  1660
apply (cut_tac [2] y="-y" in tan_total_pos, safe)
paulson@15077
  1661
apply (rule_tac [3] x = "-x" in exI)
paulson@15077
  1662
apply (auto intro!: exI)
paulson@15077
  1663
done
paulson@15077
  1664
paulson@15077
  1665
lemma tan_total: "EX! x. -(pi/2) < x & x < (pi/2) & tan x = y"
paulson@15077
  1666
apply (cut_tac y = y in lemma_tan_total1, auto)
paulson@15077
  1667
apply (cut_tac x = xa and y = y in linorder_less_linear, auto)
paulson@15077
  1668
apply (subgoal_tac [2] "\<exists>z. y < z & z < xa & DERIV tan z :> 0")
paulson@15077
  1669
apply (subgoal_tac "\<exists>z. xa < z & z < y & DERIV tan z :> 0")
paulson@15077
  1670
apply (rule_tac [4] Rolle)
paulson@15077
  1671
apply (rule_tac [2] Rolle)
paulson@15077
  1672
apply (auto intro!: DERIV_tan DERIV_isCont exI 
paulson@15077
  1673
            simp add: differentiable_def)
paulson@15077
  1674
txt{*Now, simulate TRYALL*}
paulson@15077
  1675
apply (rule_tac [!] DERIV_tan asm_rl)
paulson@15077
  1676
apply (auto dest!: DERIV_unique [OF _ DERIV_tan]
paulson@15077
  1677
	    simp add: cos_gt_zero_pi [THEN real_not_refl2, THEN not_sym]) 
paulson@15077
  1678
done
paulson@15077
  1679
paulson@15229
  1680
lemma arcsin_pi:
paulson@15229
  1681
     "[| -1 \<le> y; y \<le> 1 |]  
paulson@15077
  1682
      ==> -(pi/2) \<le> arcsin y & arcsin y \<le> pi & sin(arcsin y) = y"
paulson@15077
  1683
apply (drule sin_total, assumption)
paulson@15077
  1684
apply (erule ex1E)
paulson@15229
  1685
apply (simp add: arcsin_def)
paulson@15077
  1686
apply (rule someI2, blast) 
paulson@15077
  1687
apply (force intro: order_trans) 
paulson@15077
  1688
done
paulson@15077
  1689
paulson@15229
  1690
lemma arcsin:
paulson@15229
  1691
     "[| -1 \<le> y; y \<le> 1 |]  
paulson@15077
  1692
      ==> -(pi/2) \<le> arcsin y &  
paulson@15077
  1693
           arcsin y \<le> pi/2 & sin(arcsin y) = y"
paulson@15077
  1694
apply (unfold arcsin_def)
paulson@15077
  1695
apply (drule sin_total, assumption)
paulson@15077
  1696
apply (fast intro: someI2)
paulson@15077
  1697
done
paulson@15077
  1698
paulson@15077
  1699
lemma sin_arcsin [simp]: "[| -1 \<le> y; y \<le> 1 |] ==> sin(arcsin y) = y"
paulson@15077
  1700
by (blast dest: arcsin)
paulson@15077
  1701
      
paulson@15077
  1702
lemma arcsin_bounded:
paulson@15077
  1703
     "[| -1 \<le> y; y \<le> 1 |] ==> -(pi/2) \<le> arcsin y & arcsin y \<le> pi/2"
paulson@15077
  1704
by (blast dest: arcsin)
paulson@15077
  1705
paulson@15077
  1706
lemma arcsin_lbound: "[| -1 \<le> y; y \<le> 1 |] ==> -(pi/2) \<le> arcsin y"
paulson@15077
  1707
by (blast dest: arcsin)
paulson@15077
  1708
paulson@15077
  1709
lemma arcsin_ubound: "[| -1 \<le> y; y \<le> 1 |] ==> arcsin y \<le> pi/2"
paulson@15077
  1710
by (blast dest: arcsin)
paulson@15077
  1711
paulson@15077
  1712
lemma arcsin_lt_bounded:
paulson@15077
  1713
     "[| -1 < y; y < 1 |] ==> -(pi/2) < arcsin y & arcsin y < pi/2"
paulson@15077
  1714
apply (frule order_less_imp_le)
paulson@15077
  1715
apply (frule_tac y = y in order_less_imp_le)
paulson@15077
  1716
apply (frule arcsin_bounded)
paulson@15077
  1717
apply (safe, simp)
paulson@15077
  1718
apply (drule_tac y = "arcsin y" in order_le_imp_less_or_eq)
paulson@15077
  1719
apply (drule_tac [2] y = "pi/2" in order_le_imp_less_or_eq, safe)
paulson@15077
  1720
apply (drule_tac [!] f = sin in arg_cong, auto)
paulson@15077
  1721
done
paulson@15077
  1722
paulson@15077
  1723
lemma arcsin_sin: "[|-(pi/2) \<le> x; x \<le> pi/2 |] ==> arcsin(sin x) = x"
paulson@15077
  1724
apply (unfold arcsin_def)
paulson@15077
  1725
apply (rule some1_equality)
paulson@15077
  1726
apply (rule sin_total, auto)
paulson@15077
  1727
done
paulson@15077
  1728
paulson@15229
  1729
lemma arcos:
paulson@15229
  1730
     "[| -1 \<le> y; y \<le> 1 |]  
paulson@15077
  1731
      ==> 0 \<le> arcos y & arcos y \<le> pi & cos(arcos y) = y"
paulson@15229
  1732
apply (simp add: arcos_def)
paulson@15077
  1733
apply (drule cos_total, assumption)
paulson@15077
  1734
apply (fast intro: someI2)
paulson@15077
  1735
done
paulson@15077
  1736
paulson@15077
  1737
lemma cos_arcos [simp]: "[| -1 \<le> y; y \<le> 1 |] ==> cos(arcos y) = y"
paulson@15077
  1738
by (blast dest: arcos)
paulson@15077
  1739
      
paulson@15077
  1740
lemma arcos_bounded: "[| -1 \<le> y; y \<le> 1 |] ==> 0 \<le> arcos y & arcos y \<le> pi"
paulson@15077
  1741
by (blast dest: arcos)
paulson@15077
  1742
paulson@15077
  1743
lemma arcos_lbound: "[| -1 \<le> y; y \<le> 1 |] ==> 0 \<le> arcos y"
paulson@15077
  1744
by (blast dest: arcos)
paulson@15077
  1745
paulson@15077
  1746
lemma arcos_ubound: "[| -1 \<le> y; y \<le> 1 |] ==> arcos y \<le> pi"
paulson@15077
  1747
by (blast dest: arcos)
paulson@15077
  1748
paulson@15229
  1749
lemma arcos_lt_bounded:
paulson@15229
  1750
     "[| -1 < y; y < 1 |]  
paulson@15077
  1751
      ==> 0 < arcos y & arcos y < pi"
paulson@15077
  1752
apply (frule order_less_imp_le)
paulson@15077
  1753
apply (frule_tac y = y in order_less_imp_le)
paulson@15077
  1754
apply (frule arcos_bounded, auto)
paulson@15077
  1755
apply (drule_tac y = "arcos y" in order_le_imp_less_or_eq)
paulson@15077
  1756
apply (drule_tac [2] y = pi in order_le_imp_less_or_eq, auto)
paulson@15077
  1757
apply (drule_tac [!] f = cos in arg_cong, auto)
paulson@15077
  1758
done
paulson@15077
  1759
paulson@15077
  1760
lemma arcos_cos: "[|0 \<le> x; x \<le> pi |] ==> arcos(cos x) = x"
paulson@15229
  1761
apply (simp add: arcos_def)
paulson@15077
  1762
apply (auto intro!: some1_equality cos_total)
paulson@15077
  1763
done
paulson@15077
  1764
paulson@15077
  1765
lemma arcos_cos2: "[|x \<le> 0; -pi \<le> x |] ==> arcos(cos x) = -x"
paulson@15229
  1766
apply (simp add: arcos_def)
paulson@15077
  1767
apply (auto intro!: some1_equality cos_total)
paulson@15077
  1768
done
paulson@15077
  1769
paulson@15077
  1770
lemma arctan [simp]:
paulson@15077
  1771
     "- (pi/2) < arctan y  & arctan y < pi/2 & tan (arctan y) = y"
paulson@15077
  1772
apply (cut_tac y = y in tan_total)
paulson@15229
  1773
apply (simp add: arctan_def)
paulson@15077
  1774
apply (fast intro: someI2)
paulson@15077
  1775
done
paulson@15077
  1776
paulson@15077
  1777
lemma tan_arctan: "tan(arctan y) = y"
paulson@15077
  1778
by auto
paulson@15077
  1779
paulson@15077
  1780
lemma arctan_bounded: "- (pi/2) < arctan y  & arctan y < pi/2"
paulson@15077
  1781
by (auto simp only: arctan)
paulson@15077
  1782
paulson@15077
  1783
lemma arctan_lbound: "- (pi/2) < arctan y"
paulson@15077
  1784
by auto
paulson@15077
  1785
paulson@15077
  1786
lemma arctan_ubound: "arctan y < pi/2"
paulson@15077
  1787
by (auto simp only: arctan)
paulson@15077
  1788
paulson@15077
  1789
lemma arctan_tan: 
paulson@15077
  1790
      "[|-(pi/2) < x; x < pi/2 |] ==> arctan(tan x) = x"
paulson@15077
  1791
apply (unfold arctan_def)
paulson@15077
  1792
apply (rule some1_equality)
paulson@15077
  1793
apply (rule tan_total, auto)
paulson@15077
  1794
done
paulson@15077
  1795
paulson@15077
  1796
lemma arctan_zero_zero [simp]: "arctan 0 = 0"
paulson@15077
  1797
by (insert arctan_tan [of 0], simp)
paulson@15077
  1798
paulson@15077
  1799
lemma cos_arctan_not_zero [simp]: "cos(arctan x) \<noteq> 0"
paulson@15077
  1800
apply (auto simp add: cos_zero_iff)
paulson@15077
  1801
apply (case_tac "n")
paulson@15077
  1802
apply (case_tac [3] "n")
paulson@15077
  1803
apply (cut_tac [2] y = x in arctan_ubound)
paulson@15077
  1804
apply (cut_tac [4] y = x in arctan_lbound) 
paulson@15077
  1805
apply (auto simp add: real_of_nat_Suc left_distrib mult_less_0_iff)
paulson@15077
  1806
done
paulson@15077
  1807
paulson@15077
  1808
lemma tan_sec: "cos x \<noteq> 0 ==> 1 + tan(x) ^ 2 = inverse(cos x) ^ 2"
paulson@15077
  1809
apply (rule power_inverse [THEN subst])
paulson@15077
  1810
apply (rule_tac c1 = "(cos x)\<twosuperior>" in real_mult_right_cancel [THEN iffD1])
paulson@15077
  1811
apply (auto dest: realpow_not_zero 
huffman@20516
  1812
        simp add: power_mult_distrib left_distrib power_divide tan_def 
paulson@15077
  1813
                  mult_assoc power_inverse [symmetric] 
paulson@15077
  1814
        simp del: realpow_Suc)
paulson@15077
  1815
done
paulson@15077
  1816
paulson@15085
  1817
text{*NEEDED??*}
paulson@15229
  1818
lemma [simp]:
paulson@15229
  1819
     "sin (x + 1 / 2 * real (Suc m) * pi) =  
paulson@15229
  1820
      cos (x + 1 / 2 * real  (m) * pi)"
paulson@15229
  1821
by (simp only: cos_add sin_add real_of_nat_Suc left_distrib right_distrib, auto)
paulson@15077
  1822
paulson@15085
  1823
text{*NEEDED??*}
paulson@15229
  1824
lemma [simp]:
paulson@15229
  1825
     "sin (x + real (Suc m) * pi / 2) =  
paulson@15229
  1826
      cos (x + real (m) * pi / 2)"
paulson@15229
  1827
by (simp only: cos_add sin_add real_of_nat_Suc add_divide_distrib left_distrib, auto)
paulson@15077
  1828
paulson@15077
  1829
lemma DERIV_sin_add [simp]: "DERIV (%x. sin (x + k)) xa :> cos (xa + k)"
paulson@15077
  1830
apply (rule lemma_DERIV_subst)
paulson@15077
  1831
apply (rule_tac f = sin and g = "%x. x + k" in DERIV_chain2)
paulson@15077
  1832
apply (best intro!: DERIV_intros intro: DERIV_chain2)+
paulson@15077
  1833
apply (simp (no_asm))
paulson@15077
  1834
done
paulson@15077
  1835
paulson@15383
  1836
lemma sin_cos_npi [simp]: "sin (real (Suc (2 * n)) * pi / 2) = (-1) ^ n"
paulson@15383
  1837
proof -
paulson@15383
  1838
  have "sin ((real n + 1/2) * pi) = cos (real n * pi)"
paulson@15383
  1839
    by (auto simp add: right_distrib sin_add left_distrib mult_ac)
paulson@15383
  1840
  thus ?thesis
paulson@15383
  1841
    by (simp add: real_of_nat_Suc left_distrib add_divide_distrib 
paulson@15383
  1842
                  mult_commute [of pi])
paulson@15383
  1843
qed
paulson@15077
  1844
paulson@15077
  1845
lemma cos_2npi [simp]: "cos (2 * real (n::nat) * pi) = 1"
paulson@15077
  1846
by (simp add: cos_double mult_assoc power_add [symmetric] numeral_2_eq_2)
paulson@15077
  1847
paulson@15077
  1848
lemma cos_3over2_pi [simp]: "cos (3 / 2 * pi) = 0"
paulson@15077
  1849
apply (subgoal_tac "3/2 = (1+1 / 2::real)")
paulson@15077
  1850
apply (simp only: left_distrib) 
paulson@15077
  1851
apply (auto simp add: cos_add mult_ac)
paulson@15077
  1852
done
paulson@15077
  1853
paulson@15077
  1854
lemma sin_2npi [simp]: "sin (2 * real (n::nat) * pi) = 0"
paulson@15077
  1855
by (auto simp add: mult_assoc)
paulson@15077
  1856
paulson@15077
  1857
lemma sin_3over2_pi [simp]: "sin (3 / 2 * pi) = - 1"
paulson@15077
  1858
apply (subgoal_tac "3/2 = (1+1 / 2::real)")
paulson@15077
  1859
apply (simp only: left_distrib) 
paulson@15077
  1860
apply (auto simp add: sin_add mult_ac)
paulson@15077
  1861
done
paulson@15077
  1862
paulson@15077
  1863
(*NEEDED??*)
paulson@15229
  1864
lemma [simp]:
paulson@15229
  1865
     "cos(x + 1 / 2 * real(Suc m) * pi) = -sin (x + 1 / 2 * real m * pi)"
paulson@15077
  1866
apply (simp only: cos_add sin_add real_of_nat_Suc right_distrib left_distrib minus_mult_right, auto)
paulson@15077
  1867
done
paulson@15077
  1868
paulson@15077
  1869
(*NEEDED??*)
paulson@15077
  1870
lemma [simp]: "cos (x + real(Suc m) * pi / 2) = -sin (x + real m * pi / 2)"
paulson@15229
  1871
by (simp only: cos_add sin_add real_of_nat_Suc left_distrib add_divide_distrib, auto)
paulson@15077
  1872
paulson@15077
  1873
lemma cos_pi_eq_zero [simp]: "cos (pi * real (Suc (2 * m)) / 2) = 0"
paulson@15229
  1874
by (simp only: cos_add sin_add real_of_nat_Suc left_distrib right_distrib add_divide_distrib, auto)
paulson@15077
  1875
paulson@15077
  1876
lemma DERIV_cos_add [simp]: "DERIV (%x. cos (x + k)) xa :> - sin (xa + k)"
paulson@15077
  1877
apply (rule lemma_DERIV_subst)
paulson@15077
  1878
apply (rule_tac f = cos and g = "%x. x + k" in DERIV_chain2)
paulson@15077
  1879
apply (best intro!: DERIV_intros intro: DERIV_chain2)+
paulson@15077
  1880
apply (simp (no_asm))
paulson@15077
  1881
done
paulson@15077
  1882
paulson@15077
  1883
lemma isCont_cos [simp]: "isCont cos x"
paulson@15077
  1884
by (rule DERIV_cos [THEN DERIV_isCont])
paulson@15077
  1885
paulson@15077
  1886
lemma isCont_sin [simp]: "isCont sin x"
paulson@15077
  1887
by (rule DERIV_sin [THEN DERIV_isCont])
paulson@15077
  1888
paulson@15077
  1889
lemma isCont_exp [simp]: "isCont exp x"
paulson@15077
  1890
by (rule DERIV_exp [THEN DERIV_isCont])
paulson@15077
  1891
paulson@15081
  1892
lemma sin_zero_abs_cos_one: "sin x = 0 ==> \<bar>cos x\<bar> = 1"
nipkow@15539
  1893
by (auto simp add: sin_zero_iff even_mult_two_ex)
paulson@15077
  1894
paulson@15077
  1895
lemma exp_eq_one_iff [simp]: "(exp x = 1) = (x = 0)"
paulson@15077
  1896
apply auto
paulson@15077
  1897
apply (drule_tac f = ln in arg_cong, auto)
paulson@15077
  1898
done
paulson@15077
  1899
paulson@15077
  1900
lemma cos_one_sin_zero: "cos x = 1 ==> sin x = 0"
paulson@15077
  1901
by (cut_tac x = x in sin_cos_squared_add3, auto)
paulson@15077
  1902
paulson@15077
  1903
paulson@15229
  1904
lemma real_root_less_mono:
paulson@15229
  1905
     "[| 0 \<le> x; x < y |] ==> root(Suc n) x < root(Suc n) y"
paulson@15077
  1906
apply (frule order_le_less_trans, assumption)
paulson@15077
  1907
apply (frule_tac n1 = n in real_root_pow_pos2 [THEN ssubst])
paulson@15077
  1908
apply (rotate_tac 1, assumption)
paulson@15077
  1909
apply (frule_tac n1 = n in real_root_pow_pos [THEN ssubst])
paulson@15077
  1910
apply (rotate_tac 3, assumption)
paulson@15077
  1911
apply (drule_tac y = "root (Suc n) y ^ Suc n" in order_less_imp_le)
paulson@15077
  1912
apply (frule_tac n = n in real_root_pos_pos_le)
paulson@15077
  1913
apply (frule_tac n = n in real_root_pos_pos)
paulson@15077
  1914
apply (drule_tac x = "root (Suc n) x" and y = "root (Suc n) y" in realpow_increasing)
paulson@15077
  1915
apply (assumption, assumption)
paulson@15077
  1916
apply (drule_tac x = "root (Suc n) x" in order_le_imp_less_or_eq)
paulson@15077
  1917
apply auto
paulson@15229
  1918
apply (drule_tac f = "%x. x ^ (Suc n)" in arg_cong)
paulson@15077
  1919
apply (auto simp add: real_root_pow_pos2 simp del: realpow_Suc)
paulson@15077
  1920
done
paulson@15077
  1921
paulson@15229
  1922
lemma real_root_le_mono:
paulson@15229
  1923
     "[| 0 \<le> x; x \<le> y |] ==> root(Suc n) x \<le> root(Suc n) y"
paulson@15077
  1924
apply (drule_tac y = y in order_le_imp_less_or_eq)
paulson@15077
  1925
apply (auto dest: real_root_less_mono intro: order_less_imp_le)
paulson@15077
  1926
done
paulson@15077
  1927
paulson@15229
  1928
lemma real_root_less_iff [simp]:
paulson@15229
  1929
     "[| 0 \<le> x; 0 \<le> y |] ==> (root(Suc n) x < root(Suc n) y) = (x < y)"
paulson@15077
  1930
apply (auto intro: real_root_less_mono)
paulson@15077
  1931
apply (rule ccontr, drule linorder_not_less [THEN iffD1])
paulson@15077
  1932
apply (drule_tac x = y and n = n in real_root_le_mono, auto)
paulson@15077
  1933
done
paulson@15077
  1934
paulson@15229
  1935
lemma real_root_le_iff [simp]:
paulson@15229
  1936
     "[| 0 \<le> x; 0 \<le> y |] ==> (root(Suc n) x \<le> root(Suc n) y) = (x \<le> y)"
paulson@15077
  1937
apply (auto intro: real_root_le_mono)
paulson@15077
  1938
apply (simp (no_asm) add: linorder_not_less [symmetric])
paulson@15077
  1939
apply auto
paulson@15077
  1940
apply (drule_tac x = y and n = n in real_root_less_mono, auto)
paulson@15077
  1941
done
paulson@15077
  1942
paulson@15229
  1943
lemma real_root_eq_iff [simp]:
paulson@15229
  1944
     "[| 0 \<le> x; 0 \<le> y |] ==> (root(Suc n) x = root(Suc n) y) = (x = y)"
paulson@15077
  1945
apply (auto intro!: order_antisym)
paulson@15077
  1946
apply (rule_tac n1 = n in real_root_le_iff [THEN iffD1])
paulson@15077
  1947
apply (rule_tac [4] n1 = n in real_root_le_iff [THEN iffD1], auto)
paulson@15077
  1948
done
paulson@15077
  1949
paulson@15229
  1950
lemma real_root_pos_unique:
paulson@15229
  1951
     "[| 0 \<le> x; 0 \<le> y; y ^ (Suc n) = x |] ==> root (Suc n) x = y"
paulson@15077
  1952
by (auto dest: real_root_pos2 simp del: realpow_Suc)
paulson@15077
  1953
paulson@15229
  1954
lemma real_root_mult:
paulson@15229
  1955
     "[| 0 \<le> x; 0 \<le> y |] 
paulson@15077
  1956
      ==> root(Suc n) (x * y) = root(Suc n) x * root(Suc n) y"
paulson@15077
  1957
apply (rule real_root_pos_unique)
paulson@15234
  1958
apply (auto intro!: real_root_pos_pos_le 
paulson@15234
  1959
            simp add: power_mult_distrib zero_le_mult_iff real_root_pow_pos2 
paulson@15234
  1960
            simp del: realpow_Suc)
paulson@15077
  1961
done
paulson@15077
  1962
paulson@15229
  1963
lemma real_root_inverse:
paulson@15229
  1964
     "0 \<le> x ==> (root(Suc n) (inverse x) = inverse(root(Suc n) x))"
paulson@15077
  1965
apply (rule real_root_pos_unique)
paulson@15234
  1966
apply (auto intro: real_root_pos_pos_le 
paulson@15234
  1967
            simp add: power_inverse [symmetric] real_root_pow_pos2 
paulson@15234
  1968
            simp del: realpow_Suc)
paulson@15077
  1969
done
paulson@15077
  1970
paulson@15077
  1971
lemma real_root_divide: 
paulson@15077
  1972
     "[| 0 \<le> x; 0 \<le> y |]  
paulson@15077
  1973
      ==> (root(Suc n) (x / y) = root(Suc n) x / root(Suc n) y)"
paulson@15229
  1974
apply (simp add: divide_inverse)
paulson@15077
  1975
apply (auto simp add: real_root_mult real_root_inverse)
paulson@15077
  1976
done
paulson@15077
  1977
paulson@15077
  1978
lemma real_sqrt_less_mono: "[| 0 \<le> x; x < y |] ==> sqrt(x) < sqrt(y)"
paulson@15229
  1979
by (simp add: sqrt_def)
paulson@15077
  1980
paulson@15077
  1981
lemma real_sqrt_le_mono: "[| 0 \<le> x; x \<le> y |] ==> sqrt(x) \<le> sqrt(y)"
paulson@15229
  1982
by (simp add: sqrt_def)
paulson@15229
  1983
paulson@15229
  1984
lemma real_sqrt_less_iff [simp]:
paulson@15229
  1985
     "[| 0 \<le> x; 0 \<le> y |] ==> (sqrt(x) < sqrt(y)) = (x < y)"
paulson@15229
  1986
by (simp add: sqrt_def)
paulson@15229
  1987
paulson@15229
  1988
lemma real_sqrt_le_iff [simp]:
paulson@15229
  1989
     "[| 0 \<le> x; 0 \<le> y |] ==> (sqrt(x) \<le> sqrt(y)) = (x \<le> y)"
paulson@15229
  1990
by (simp add: sqrt_def)
paulson@15229
  1991
paulson@15229
  1992
lemma real_sqrt_eq_iff [simp]:
paulson@15229
  1993
     "[| 0 \<le> x; 0 \<le> y |] ==> (sqrt(x) = sqrt(y)) = (x = y)"
paulson@15229
  1994
by (simp add: sqrt_def)
paulson@15077
  1995
paulson@15077
  1996
lemma real_sqrt_sos_less_one_iff [simp]: "(sqrt(x\<twosuperior> + y\<twosuperior>) < 1) = (x\<twosuperior> + y\<twosuperior> < 1)"
paulson@15077
  1997
apply (rule real_sqrt_one [THEN subst], safe)
paulson@15077
  1998
apply (rule_tac [2] real_sqrt_less_mono)
paulson@15077
  1999
apply (drule real_sqrt_less_iff [THEN [2] rev_iffD1], auto)
paulson@15077
  2000
done
paulson@15077
  2001
paulson@15077
  2002
lemma real_sqrt_sos_eq_one_iff [simp]: "(sqrt(x\<twosuperior> + y\<twosuperior>) = 1) = (x\<twosuperior> + y\<twosuperior> = 1)"
paulson@15077
  2003
apply (rule real_sqrt_one [THEN subst], safe)
paulson@15077
  2004
apply (drule real_sqrt_eq_iff [THEN [2] rev_iffD1], auto)
paulson@15077
  2005
done
paulson@15077
  2006
paulson@15077
  2007
lemma real_divide_square_eq [simp]: "(((r::real) * a) / (r * r)) = a / r"
paulson@15229
  2008
apply (simp add: divide_inverse)
paulson@15077
  2009
apply (case_tac "r=0")
nipkow@15539
  2010
apply (auto simp add: mult_ac)
paulson@15077
  2011
done
paulson@15077
  2012
paulson@15077
  2013
paulson@15077
  2014
subsection{*Theorems About Sqrt, Transcendental Functions for Complex*}
paulson@15077
  2015
paulson@15228
  2016
lemma le_real_sqrt_sumsq [simp]: "x \<le> sqrt (x * x + y * y)"
paulson@15228
  2017
proof (rule order_trans)
paulson@15228
  2018
  show "x \<le> sqrt(x*x)" by (simp add: abs_if) 
paulson@15228
  2019
  show "sqrt (x * x) \<le> sqrt (x * x + y * y)"
paulson@15228
  2020
    by (rule real_sqrt_le_mono, auto) 
paulson@15228
  2021
qed
paulson@15228
  2022
paulson@15228
  2023
lemma minus_le_real_sqrt_sumsq [simp]: "-x \<le> sqrt (x * x + y * y)"
paulson@15228
  2024
proof (rule order_trans)
paulson@15228
  2025
  show "-x \<le> sqrt(x*x)" by (simp add: abs_if) 
paulson@15228
  2026
  show "sqrt (x * x) \<le> sqrt (x * x + y * y)"
paulson@15228
  2027
    by (rule real_sqrt_le_mono, auto) 
paulson@15228
  2028
qed
paulson@15077
  2029
paulson@15077
  2030
lemma lemma_real_divide_sqrt_ge_minus_one:
paulson@15228
  2031
     "0 < x ==> -1 \<le> x/(sqrt (x * x + y * y))" 
paulson@15228
  2032
by (simp add: divide_const_simps linorder_not_le [symmetric])
paulson@15077
  2033
paulson@15077
  2034
lemma real_sqrt_sum_squares_gt_zero1: "x < 0 ==> 0 < sqrt (x * x + y * y)"
paulson@15077
  2035
apply (rule real_sqrt_gt_zero)
paulson@15077
  2036
apply (subgoal_tac "0 < x*x & 0 \<le> y*y", arith) 
paulson@15077
  2037
apply (auto simp add: zero_less_mult_iff)
paulson@15077
  2038
done
paulson@15077
  2039
paulson@15077
  2040
lemma real_sqrt_sum_squares_gt_zero2: "0 < x ==> 0 < sqrt (x * x + y * y)"
paulson@15077
  2041
apply (rule real_sqrt_gt_zero)
paulson@15077
  2042
apply (subgoal_tac "0 < x*x & 0 \<le> y*y", arith) 
paulson@15077
  2043
apply (auto simp add: zero_less_mult_iff)
paulson@15077
  2044
done
paulson@15077
  2045
paulson@15077
  2046
lemma real_sqrt_sum_squares_gt_zero3: "x \<noteq> 0 ==> 0 < sqrt(x\<twosuperior> + y\<twosuperior>)"
paulson@15077
  2047
apply (cut_tac x = x and y = 0 in linorder_less_linear)
paulson@15077
  2048
apply (auto intro: real_sqrt_sum_squares_gt_zero2 real_sqrt_sum_squares_gt_zero1 simp add: numeral_2_eq_2)
paulson@15077
  2049
done
paulson@15077
  2050
paulson@15077
  2051
lemma real_sqrt_sum_squares_gt_zero3a: "y \<noteq> 0 ==> 0 < sqrt(x\<twosuperior> + y\<twosuperior>)"
paulson@15077
  2052
apply (drule_tac y = x in real_sqrt_sum_squares_gt_zero3)
paulson@15077
  2053
apply (auto simp add: real_add_commute)
paulson@15077
  2054
done
paulson@15077
  2055
paulson@15544
  2056
lemma real_sqrt_sum_squares_eq_cancel: "sqrt(x\<twosuperior> + y\<twosuperior>) = x ==> y = 0"
paulson@15077
  2057
by (drule_tac f = "%x. x\<twosuperior>" in arg_cong, auto)
paulson@15077
  2058
paulson@15544
  2059
lemma real_sqrt_sum_squares_eq_cancel2: "sqrt(x\<twosuperior> + y\<twosuperior>) = y ==> x = 0"
paulson@15077
  2060
apply (rule_tac x = y in real_sqrt_sum_squares_eq_cancel)
paulson@15077
  2061
apply (simp add: real_add_commute)
paulson@15077
  2062
done
paulson@15077
  2063
paulson@15077
  2064
lemma lemma_real_divide_sqrt_le_one: "x < 0 ==> x/(sqrt (x * x + y * y)) \<le> 1"
paulson@15077
  2065
by (insert lemma_real_divide_sqrt_ge_minus_one [of "-x" y], simp)
paulson@15077
  2066
paulson@15077
  2067
lemma lemma_real_divide_sqrt_ge_minus_one2:
paulson@15077
  2068
     "x < 0 ==> -1 \<le> x/(sqrt (x * x + y * y))"
paulson@15229
  2069
apply (simp add: divide_const_simps) 
paulson@15229
  2070
apply (insert minus_le_real_sqrt_sumsq [of x y], arith)
paulson@15077
  2071
done
paulson@15077
  2072
paulson@15077
  2073
lemma lemma_real_divide_sqrt_le_one2: "0 < x ==> x/(sqrt (x * x + y * y)) \<le> 1"
paulson@15077
  2074
by (cut_tac x = "-x" and y = y in lemma_real_divide_sqrt_ge_minus_one2, auto)
paulson@15077
  2075
paulson@15228
  2076
lemma minus_sqrt_le: "- sqrt (x * x + y * y) \<le> x"
paulson@15228
  2077
by (insert minus_le_real_sqrt_sumsq [of x y], arith) 
paulson@15228
  2078
paulson@15228
  2079
lemma minus_sqrt_le2: "- sqrt (x * x + y * y) \<le> y"
paulson@15228
  2080
by (subst add_commute, simp add: minus_sqrt_le) 
paulson@15228
  2081
paulson@15228
  2082
lemma not_neg_sqrt_sumsq: "~ sqrt (x * x + y * y) < 0"
paulson@15228
  2083
by (simp add: linorder_not_less)
paulson@15077
  2084
paulson@15077
  2085
lemma cos_x_y_ge_minus_one: "-1 \<le> x / sqrt (x * x + y * y)"
paulson@15229
  2086
by (simp add: minus_sqrt_le not_neg_sqrt_sumsq divide_const_simps)
paulson@15077
  2087
paulson@15077
  2088
lemma cos_x_y_ge_minus_one1a [simp]: "-1 \<le> y / sqrt (x * x + y * y)"
paulson@15229
  2089
by (subst add_commute, simp add: cos_x_y_ge_minus_one)
paulson@15077
  2090
paulson@15228
  2091
lemma cos_x_y_le_one [simp]: "x / sqrt (x * x + y * y) \<le> 1" 
paulson@15077
  2092
apply (cut_tac x = x and y = 0 in linorder_less_linear, safe)
paulson@15077
  2093
apply (rule lemma_real_divide_sqrt_le_one)
paulson@15077
  2094
apply (rule_tac [3] lemma_real_divide_sqrt_le_one2, auto)
paulson@15077
  2095
done
paulson@15077
  2096
paulson@15077
  2097
lemma cos_x_y_le_one2 [simp]: "y / sqrt (x * x + y * y) \<le> 1"
paulson@15077
  2098
apply (cut_tac x = y and y = x in cos_x_y_le_one)
paulson@15077
  2099
apply (simp add: real_add_commute)
paulson@15077
  2100
done
paulson@15077
  2101
paulson@15077
  2102
declare cos_arcos [OF cos_x_y_ge_minus_one cos_x_y_le_one, simp] 
paulson@15077
  2103
declare arcos_bounded [OF cos_x_y_ge_minus_one cos_x_y_le_one, simp] 
paulson@15077
  2104
paulson@15077
  2105
declare cos_arcos [OF cos_x_y_ge_minus_one1a cos_x_y_le_one2, simp] 
paulson@15077
  2106
declare arcos_bounded [OF cos_x_y_ge_minus_one1a cos_x_y_le_one2, simp] 
paulson@15077
  2107
paulson@15077
  2108
lemma cos_abs_x_y_ge_minus_one [simp]:
paulson@15077
  2109
     "-1 \<le> \<bar>x\<bar> / sqrt (x * x + y * y)"
paulson@15228
  2110
by (auto simp add: divide_const_simps abs_if linorder_not_le [symmetric]) 
paulson@15077
  2111
paulson@15077
  2112
lemma cos_abs_x_y_le_one [simp]: "\<bar>x\<bar> / sqrt (x * x + y * y) \<le> 1"
paulson@15228
  2113
apply (insert minus_le_real_sqrt_sumsq [of x y] le_real_sqrt_sumsq [of x y]) 
paulson@15228
  2114
apply (auto simp add: divide_const_simps abs_if linorder_neq_iff) 
paulson@15077
  2115
done
paulson@15077
  2116
paulson@15077
  2117
declare cos_arcos [OF cos_abs_x_y_ge_minus_one cos_abs_x_y_le_one, simp] 
paulson@15077
  2118
declare arcos_bounded [OF cos_abs_x_y_ge_minus_one cos_abs_x_y_le_one, simp] 
paulson@15077
  2119
paulson@15077
  2120
lemma minus_pi_less_zero: "-pi < 0"
paulson@15228
  2121
by simp
paulson@15228
  2122
paulson@15077
  2123
declare minus_pi_less_zero [simp]
paulson@15077
  2124
declare minus_pi_less_zero [THEN order_less_imp_le, simp]
paulson@15077
  2125
paulson@15077
  2126
lemma arcos_ge_minus_pi: "[| -1 \<le> y; y \<le> 1 |] ==> -pi \<le> arcos y"
paulson@15077
  2127
apply (rule real_le_trans)
paulson@15077
  2128
apply (rule_tac [2] arcos_lbound, auto)
paulson@15077
  2129
done
paulson@15077
  2130
paulson@15077
  2131
declare arcos_ge_minus_pi [OF cos_x_y_ge_minus_one cos_x_y_le_one, simp] 
paulson@15077
  2132
paulson@15077
  2133
(* How tedious! *)
paulson@15077
  2134
lemma lemma_divide_rearrange:
paulson@15077
  2135
     "[| x + (y::real) \<noteq> 0; 1 - z = x/(x + y) |] ==> z = y/(x + y)"
paulson@15077
  2136
apply (rule_tac c1 = "x + y" in real_mult_right_cancel [THEN iffD1])
paulson@15077
  2137
apply (frule_tac [2] c1 = "x + y" in real_mult_right_cancel [THEN iffD2])
paulson@15077
  2138
prefer 2 apply assumption
paulson@15077
  2139
apply (rotate_tac [2] 2)
paulson@15077
  2140
apply (drule_tac [2] mult_assoc [THEN subst])
paulson@15077
  2141
apply (rotate_tac [2] 2)
paulson@15077
  2142
apply (frule_tac [2] left_inverse [THEN subst])
paulson@15077
  2143
prefer 2 apply assumption
paulson@15229
  2144
apply (erule_tac [2] V = "(1 - z) * (x + y) = x / (x + y) * (x + y)" in thin_rl)
paulson@15229
  2145
apply (erule_tac [2] V = "1 - z = x / (x + y)" in thin_rl)
paulson@15077
  2146
apply (auto simp add: mult_assoc)
paulson@15077
  2147
apply (auto simp add: right_distrib left_diff_distrib)
paulson@15077
  2148
done
paulson@15077
  2149
paulson@15077
  2150
lemma lemma_cos_sin_eq:
paulson@15077
  2151
     "[| 0 < x * x + y * y;  
paulson@15077
  2152
         1 - (sin xa)\<twosuperior> = (x / sqrt (x * x + y * y)) ^ 2 |] 
paulson@15077
  2153
      ==> (sin xa)\<twosuperior> = (y / sqrt (x * x + y * y)) ^ 2"
paulson@15077
  2154
by (auto intro: lemma_divide_rearrange
huffman@20516
  2155
         simp add: power_divide power2_eq_square [symmetric])
paulson@15077
  2156
paulson@15077
  2157
paulson@15077
  2158
lemma lemma_sin_cos_eq:
paulson@15077
  2159
     "[| 0 < x * x + y * y;  
paulson@15077
  2160
         1 - (cos xa)\<twosuperior> = (y / sqrt (x * x + y * y)) ^ 2 |]
paulson@15077
  2161
      ==> (cos xa)\<twosuperior> = (x / sqrt (x * x + y * y)) ^ 2"
huffman@20516
  2162
apply (auto simp add: power_divide power2_eq_square [symmetric])
paulson@15085
  2163
apply (subst add_commute)
paulson@15085
  2164
apply (rule lemma_divide_rearrange, simp add: real_add_eq_0_iff)
paulson@15077
  2165
apply (simp add: add_commute)
paulson@15077
  2166
done
paulson@15077
  2167
paulson@15077
  2168
lemma sin_x_y_disj:
paulson@15077
  2169
     "[| x \<noteq> 0;  
paulson@15077
  2170
         cos xa = x / sqrt (x * x + y * y)  
paulson@15077
  2171
      |] ==>  sin xa = y / sqrt (x * x + y * y) |  
paulson@15077
  2172
              sin xa = - y / sqrt (x * x + y * y)"
paulson@15077
  2173
apply (drule_tac f = "%x. x\<twosuperior>" in arg_cong)
paulson@15077
  2174
apply (frule_tac y = y in real_sum_square_gt_zero)
paulson@15077
  2175
apply (simp add: cos_squared_eq)
paulson@15077
  2176
apply (subgoal_tac "(sin xa)\<twosuperior> = (y / sqrt (x * x + y * y)) ^ 2")
paulson@15077
  2177
apply (rule_tac [2] lemma_cos_sin_eq)
paulson@15077
  2178
apply (auto simp add: realpow_two_disj numeral_2_eq_2 simp del: realpow_Suc)
paulson@15077
  2179
done
paulson@15077
  2180
paulson@15077
  2181
lemma lemma_cos_not_eq_zero: "x \<noteq> 0 ==> x / sqrt (x * x + y * y) \<noteq> 0"
paulson@15229
  2182
apply (simp add: divide_inverse)
paulson@15077
  2183
apply (frule_tac y3 = y in real_sqrt_sum_squares_gt_zero3 [THEN real_not_refl2, THEN not_sym, THEN nonzero_imp_inverse_nonzero])
paulson@15077
  2184
apply (auto simp add: power2_eq_square)
paulson@15077
  2185
done
paulson@15077
  2186
paulson@15229
  2187
lemma cos_x_y_disj:
paulson@15229
  2188
     "[| x \<noteq> 0;  
paulson@15077
  2189
         sin xa = y / sqrt (x * x + y * y)  
paulson@15077
  2190
      |] ==>  cos xa = x / sqrt (x * x + y * y) |  
paulson@15077
  2191
              cos xa = - x / sqrt (x * x + y * y)"
paulson@15077
  2192
apply (drule_tac f = "%x. x\<twosuperior>" in arg_cong)
paulson@15077
  2193
apply (frule_tac y = y in real_sum_square_gt_zero)
paulson@15077
  2194
apply (simp add: sin_squared_eq del: realpow_Suc)
paulson@15077
  2195
apply (subgoal_tac "(cos xa)\<twosuperior> = (x / sqrt (x * x + y * y)) ^ 2")
paulson@15077
  2196
apply (rule_tac [2] lemma_sin_cos_eq)
paulson@15077
  2197
apply (auto simp add: realpow_two_disj numeral_2_eq_2 simp del: realpow_Suc)
paulson@15077
  2198
done
paulson@15077
  2199
paulson@15077
  2200
lemma real_sqrt_divide_less_zero: "0 < y ==> - y / sqrt (x * x + y * y) < 0"
paulson@15229
  2201
apply (case_tac "x = 0", auto)
paulson@15077
  2202
apply (drule_tac y = y in real_sqrt_sum_squares_gt_zero3)
paulson@15079
  2203
apply (auto simp add: zero_less_mult_iff divide_inverse power2_eq_square)
paulson@15077
  2204
done
paulson@15077
  2205
paulson@15229
  2206
lemma polar_ex1:
paulson@15229
  2207
     "[| x \<noteq> 0; 0 < y |] ==> \<exists>r a. x = r * cos a & y = r * sin a"
paulson@15229
  2208
apply (rule_tac x = "sqrt (x\<twosuperior> + y\<twosuperior>)" in exI)
paulson@15077
  2209
apply (rule_tac x = "arcos (x / sqrt (x * x + y * y))" in exI)
paulson@15077
  2210
apply auto
paulson@15077
  2211
apply (drule_tac y2 = y in real_sqrt_sum_squares_gt_zero3 [THEN real_not_refl2, THEN not_sym])
paulson@15077
  2212
apply (auto simp add: power2_eq_square)
paulson@15229
  2213
apply (simp add: arcos_def)
paulson@15077
  2214
apply (cut_tac x1 = x and y1 = y 
paulson@15077
  2215
       in cos_total [OF cos_x_y_ge_minus_one cos_x_y_le_one])
paulson@15077
  2216
apply (rule someI2_ex, blast)
paulson@15229
  2217
apply (erule_tac V = "EX! xa. 0 \<le> xa & xa \<le> pi & cos xa = x / sqrt (x * x + y * y)" in thin_rl)
paulson@15077
  2218
apply (frule sin_x_y_disj, blast)
paulson@15077
  2219
apply (drule_tac y2 = y in real_sqrt_sum_squares_gt_zero3 [THEN real_not_refl2, THEN not_sym])
paulson@15077
  2220
apply (auto simp add: power2_eq_square)
paulson@15077
  2221
apply (drule sin_ge_zero, assumption)
paulson@15077
  2222
apply (drule_tac x = x in real_sqrt_divide_less_zero, auto)
paulson@15077
  2223
done
paulson@15077
  2224
paulson@15077
  2225
lemma real_sum_squares_cancel2a: "x * x = -(y * y) ==> y = (0::real)"
paulson@15085
  2226
by (auto intro: real_sum_squares_cancel iff: real_add_eq_0_iff)
paulson@15077
  2227
paulson@15229
  2228
lemma polar_ex2:
paulson@15229
  2229
     "[| x \<noteq> 0; y < 0 |] ==> \<exists>r a. x = r * cos a & y = r * sin a"
paulson@15077
  2230
apply (cut_tac x = 0 and y = x in linorder_less_linear, auto)
paulson@15228
  2231
apply (rule_tac x = "sqrt (x\<twosuperior> + y\<twosuperior>)" in exI)
paulson@15228
  2232
apply (rule_tac x = "arcsin (y / sqrt (x * x + y * y))" in exI) 
paulson@15085
  2233
apply (auto dest: real_sum_squares_cancel2a 
paulson@15085
  2234
            simp add: power2_eq_square real_0_le_add_iff real_add_eq_0_iff)
paulson@15077
  2235
apply (unfold arcsin_def)
paulson@15077
  2236
apply (cut_tac x1 = x and y1 = y 
paulson@15077
  2237
       in sin_total [OF cos_x_y_ge_minus_one1a cos_x_y_le_one2])
paulson@15077
  2238
apply (rule someI2_ex, blast)
paulson@15228
  2239
apply (erule_tac V = "EX! v. ?P v" in thin_rl)
paulson@15085
  2240
apply (cut_tac x=x and y=y in cos_x_y_disj, simp, blast)
paulson@15085
  2241
apply (auto simp add: real_0_le_add_iff real_add_eq_0_iff)
paulson@15077
  2242
apply (drule cos_ge_zero, force)
paulson@15077
  2243
apply (drule_tac x = y in real_sqrt_divide_less_zero)
paulson@15085
  2244
apply (auto simp add: add_commute)
paulson@15077
  2245
apply (insert polar_ex1 [of x "-y"], simp, clarify) 
paulson@15077
  2246
apply (rule_tac x = r in exI)
paulson@15077
  2247
apply (rule_tac x = "-a" in exI, simp) 
paulson@15077
  2248
done
paulson@15077
  2249
paulson@15077
  2250
lemma polar_Ex: "\<exists>r a. x = r * cos a & y = r * sin a"
paulson@15077
  2251
apply (case_tac "x = 0", auto)
paulson@15077
  2252
apply (rule_tac x = y in exI)
paulson@15077
  2253
apply (rule_tac x = "pi/2" in exI, auto)
paulson@15077
  2254
apply (cut_tac x = 0 and y = y in linorder_less_linear, auto)
paulson@15077
  2255
apply (rule_tac [2] x = x in exI)
paulson@15077
  2256
apply (rule_tac [2] x = 0 in exI, auto)
paulson@15077
  2257
apply (blast intro: polar_ex1 polar_ex2)+
paulson@15077
  2258
done
paulson@15077
  2259
paulson@15077
  2260
lemma real_sqrt_ge_abs1 [simp]: "\<bar>x\<bar> \<le> sqrt (x\<twosuperior> + y\<twosuperior>)"
paulson@15077
  2261
apply (rule_tac n = 1 in realpow_increasing)
avigad@16775
  2262
apply (auto simp add: numeral_2_eq_2 [symmetric] power2_abs)
paulson@15077
  2263
done
paulson@15077
  2264
paulson@15077
  2265
lemma real_sqrt_ge_abs2 [simp]: "\<bar>y\<bar> \<le> sqrt (x\<twosuperior> + y\<twosuperior>)"
paulson@15077
  2266
apply (rule real_add_commute [THEN subst])
paulson@15077
  2267
apply (rule real_sqrt_ge_abs1)
paulson@15077
  2268
done
paulson@15077
  2269
declare real_sqrt_ge_abs1 [simp] real_sqrt_ge_abs2 [simp]
paulson@15077
  2270
paulson@15077
  2271
lemma real_sqrt_two_gt_zero [simp]: "0 < sqrt 2"
paulson@15077
  2272
by (auto intro: real_sqrt_gt_zero)
paulson@15077
  2273
paulson@15077
  2274
lemma real_sqrt_two_ge_zero [simp]: "0 \<le> sqrt 2"
paulson@15077
  2275
by (auto intro: real_sqrt_ge_zero)
paulson@15077
  2276
paulson@15077
  2277
lemma real_sqrt_two_gt_one [simp]: "1 < sqrt 2"
paulson@15077
  2278
apply (rule order_less_le_trans [of _ "7/5"], simp) 
paulson@15077
  2279
apply (rule_tac n = 1 in realpow_increasing)
paulson@15077
  2280
  prefer 3 apply (simp add: numeral_2_eq_2 [symmetric] del: realpow_Suc)
nipkow@15539
  2281
apply (simp_all add: numeral_2_eq_2)
paulson@15077
  2282
done
paulson@15077
  2283
paulson@15077
  2284
lemma lemma_real_divide_sqrt_less: "0 < u ==> u / sqrt 2 < u"
paulson@15234
  2285
by (simp add: divide_less_eq mult_compare_simps) 
paulson@15077
  2286
paulson@15077
  2287
lemma four_x_squared: 
paulson@15077
  2288
  fixes x::real
paulson@15077
  2289
  shows "4 * x\<twosuperior> = (2 * x)\<twosuperior>"
paulson@15077
  2290
by (simp add: power2_eq_square)
paulson@15077
  2291
paulson@15077
  2292
paulson@15077
  2293
text{*Needed for the infinitely close relation over the nonstandard
paulson@15077
  2294
    complex numbers*}
paulson@15077
  2295
lemma lemma_sqrt_hcomplex_capprox:
paulson@15077
  2296
     "[| 0 < u; x < u/2; y < u/2; 0 \<le> x; 0 \<le> y |] ==> sqrt (x\<twosuperior> + y\<twosuperior>) < u"
paulson@15077
  2297
apply (rule_tac y = "u/sqrt 2" in order_le_less_trans)
paulson@15077
  2298
apply (erule_tac [2] lemma_real_divide_sqrt_less)
paulson@15077
  2299
apply (rule_tac n = 1 in realpow_increasing)
huffman@20516
  2300
apply (auto simp add: real_0_le_divide_iff power_divide numeral_2_eq_2 [symmetric] 
paulson@15077
  2301
        simp del: realpow_Suc)
paulson@15077
  2302
apply (rule_tac t = "u\<twosuperior>" in real_sum_of_halves [THEN subst])
paulson@15077
  2303
apply (rule add_mono)
paulson@15077
  2304
apply (auto simp add: four_x_squared simp del: realpow_Suc intro: power_mono)
paulson@15077
  2305
done
paulson@15077
  2306
avigad@16775
  2307
declare real_sqrt_sum_squares_ge_zero [THEN abs_of_nonneg, simp]
paulson@15077
  2308
paulson@15077
  2309
paulson@15077
  2310
subsection{*A Few Theorems Involving Ln, Derivatives, etc.*}
paulson@15077
  2311
paulson@15077
  2312
lemma lemma_DERIV_ln:
paulson@15077
  2313
     "DERIV ln z :> l ==> DERIV (%x. exp (ln x)) z :> exp (ln z) * l"
paulson@15077
  2314
by (erule DERIV_fun_exp)
paulson@15077
  2315
paulson@15077
  2316
lemma STAR_exp_ln: "0 < z ==> ( *f* (%x. exp (ln x))) z = z"
huffman@17318
  2317
apply (cases z)
huffman@17318
  2318
apply (auto simp add: starfun star_n_zero_num star_n_less star_n_eq_iff)
paulson@15077
  2319
done
paulson@15077
  2320
paulson@15229
  2321
lemma hypreal_add_Infinitesimal_gt_zero:
paulson@15229
  2322
     "[|e : Infinitesimal; 0 < x |] ==> 0 < hypreal_of_real x + e"
paulson@15077
  2323
apply (rule_tac c1 = "-e" in add_less_cancel_right [THEN iffD1])
paulson@15077
  2324
apply (auto intro: Infinitesimal_less_SReal)
paulson@15077
  2325
done
paulson@15077
  2326
paulson@15077
  2327
lemma NSDERIV_exp_ln_one: "0 < z ==> NSDERIV (%x. exp (ln x)) z :> 1"
paulson@15229
  2328
apply (simp add: nsderiv_def NSLIM_def, auto)
paulson@15077
  2329
apply (rule ccontr)
paulson@15077
  2330
apply (subgoal_tac "0 < hypreal_of_real z + h")
paulson@15077
  2331
apply (drule STAR_exp_ln)
paulson@15077
  2332
apply (rule_tac [2] hypreal_add_Infinitesimal_gt_zero)
paulson@15077
  2333
apply (subgoal_tac "h/h = 1")
paulson@15077
  2334
apply (auto simp add: exp_ln_iff [symmetric] simp del: exp_ln_iff)
paulson@15077
  2335
done
paulson@15077
  2336
paulson@15077
  2337
lemma DERIV_exp_ln_one: "0 < z ==> DERIV (%x. exp (ln x)) z :> 1"
paulson@15077
  2338
by (auto intro: NSDERIV_exp_ln_one simp add: NSDERIV_DERIV_iff [symmetric])
paulson@15077
  2339
paulson@15229
  2340
lemma lemma_DERIV_ln2:
paulson@15229
  2341
     "[| 0 < z; DERIV ln z :> l |] ==>  exp (ln z) * l = 1"
paulson@15077
  2342
apply (rule DERIV_unique)
paulson@15077
  2343
apply (rule lemma_DERIV_ln)
paulson@15077
  2344
apply (rule_tac [2] DERIV_exp_ln_one, auto)
paulson@15077
  2345
done
paulson@15077
  2346
paulson@15229
  2347
lemma lemma_DERIV_ln3:
paulson@15229
  2348
     "[| 0 < z; DERIV ln z :> l |] ==>  l = 1/(exp (ln z))"
paulson@15229
  2349
apply (rule_tac c1 = "exp (ln z)" in real_mult_left_cancel [THEN iffD1])
paulson@15077
  2350
apply (auto intro: lemma_DERIV_ln2)
paulson@15077
  2351
done
paulson@15077
  2352
paulson@15077
  2353
lemma lemma_DERIV_ln4: "[| 0 < z; DERIV ln z :> l |] ==>  l = 1/z"
paulson@15077
  2354
apply (rule_tac t = z in exp_ln_iff [THEN iffD2, THEN subst])
paulson@15077
  2355
apply (auto intro: lemma_DERIV_ln3)
paulson@15077
  2356
done
paulson@15077
  2357
paulson@15077
  2358
(* need to rename second isCont_inverse *)
paulson@15077
  2359
paulson@15229
  2360
lemma isCont_inv_fun:
huffman@20561
  2361
  fixes f g :: "real \<Rightarrow> real"
huffman@20561
  2362
  shows "[| 0 < d; \<forall>z. \<bar>z - x\<bar> \<le> d --> g(f(z)) = z;  
paulson@15077
  2363
         \<forall>z. \<bar>z - x\<bar> \<le> d --> isCont f z |]  
paulson@15077
  2364
      ==> isCont g (f x)"
paulson@15077
  2365
apply (simp (no_asm) add: isCont_iff LIM_def)
paulson@15077
  2366
apply safe
paulson@15077
  2367
apply (drule_tac ?d1.0 = r in real_lbound_gt_zero)
paulson@15077
  2368
apply (assumption, safe)
paulson@15077
  2369
apply (subgoal_tac "\<forall>z. \<bar>z - x\<bar> \<le> e --> (g (f z) = z) ")
paulson@15077
  2370
prefer 2 apply force
paulson@15077
  2371
apply (subgoal_tac "\<forall>z. \<bar>z - x\<bar> \<le> e --> isCont f z")
paulson@15077
  2372
prefer 2 apply force
paulson@15077
  2373
apply (drule_tac d = e in isCont_inj_range)
paulson@15077
  2374
prefer 2 apply (assumption, assumption, safe)
paulson@15077
  2375
apply (rule_tac x = ea in exI, auto)
paulson@15085
  2376
apply (drule_tac x = "f (x) + xa" and P = "%y. \<bar>y - f x\<bar> \<le> ea \<longrightarrow> (\<exists>z. \<bar>z - x\<bar> \<le> e \<and> f z = y)" in spec)
paulson@15077
  2377
apply auto
webertj@20217
  2378
apply (drule sym, auto)
paulson@15077
  2379
done
paulson@15077
  2380
paulson@15077
  2381
lemma isCont_inv_fun_inv:
huffman@20552
  2382
  fixes f g :: "real \<Rightarrow> real"
huffman@20552
  2383
  shows "[| 0 < d;  
paulson@15077
  2384
         \<forall>z. \<bar>z - x\<bar> \<le> d --> g(f(z)) = z;  
paulson@15077
  2385
         \<forall>z. \<bar>z - x\<bar> \<le> d --> isCont f z |]  
paulson@15077
  2386
       ==> \<exists>e. 0 < e &  
paulson@15081
  2387
             (\<forall>y. 0 < \<bar>y - f(x)\<bar> & \<bar>y - f(x)\<bar> < e --> f(g(y)) = y)"
paulson@15077
  2388
apply (drule isCont_inj_range)
paulson@15077
  2389
prefer 2 apply (assumption, assumption, auto)
paulson@15077
  2390
apply (rule_tac x = e in exI, auto)
paulson@15077
  2391
apply (rotate_tac 2)
paulson@15077
  2392
apply (drule_tac x = y in spec, auto)
paulson@15077
  2393
done
paulson@15077
  2394
paulson@15077
  2395
paulson@15077
  2396
text{*Bartle/Sherbert: Introduction to Real Analysis, Theorem 4.2.9, p. 110*}
paulson@15229
  2397
lemma LIM_fun_gt_zero:
huffman@20552
  2398
     "[| f -- c --> (l::real); 0 < l |]  
huffman@20561
  2399
         ==> \<exists>r. 0 < r & (\<forall>x::real. x \<noteq> c & \<bar>c - x\<bar> < r --> 0 < f x)"
paulson@15077
  2400
apply (auto simp add: LIM_def)
paulson@15077
  2401
apply (drule_tac x = "l/2" in spec, safe, force)
paulson@15077
  2402
apply (rule_tac x = s in exI)
paulson@15077
  2403
apply (auto simp only: abs_interval_iff)
paulson@15077
  2404
done
paulson@15077
  2405
paulson@15229
  2406
lemma LIM_fun_less_zero:
huffman@20552
  2407
     "[| f -- c --> (l::real); l < 0 |]  
huffman@20561
  2408
      ==> \<exists>r. 0 < r & (\<forall>x::real. x \<noteq> c & \<bar>c - x\<bar> < r --> f x < 0)"
paulson@15077
  2409
apply (auto simp add: LIM_def)
paulson@15077
  2410
apply (drule_tac x = "-l/2" in spec, safe, force)
paulson@15077
  2411
apply (rule_tac x = s in exI)
paulson@15077
  2412
apply (auto simp only: abs_interval_iff)
paulson@15077
  2413
done
paulson@15077
  2414
paulson@15077
  2415
paulson@15077
  2416
lemma LIM_fun_not_zero:
huffman@20552
  2417
     "[| f -- c --> (l::real); l \<noteq> 0 |] 
huffman@20561
  2418
      ==> \<exists>r. 0 < r & (\<forall>x::real. x \<noteq> c & \<bar>c - x\<bar> < r --> f x \<noteq> 0)"
paulson@15077
  2419
apply (cut_tac x = l and y = 0 in linorder_less_linear, auto)
paulson@15077
  2420
apply (drule LIM_fun_less_zero)
paulson@15241
  2421
apply (drule_tac [3] LIM_fun_gt_zero)
paulson@15241
  2422
apply force+
paulson@15077
  2423
done
webertj@20432
  2424
  
paulson@12196
  2425
end