src/HOL/RealVector.thy
author huffman
Sun Jun 07 20:57:24 2009 -0700 (2009-06-07)
changeset 31494 1ba61c7b129f
parent 31492 5400beeddb55
child 31564 d2abf6f6f619
permissions -rw-r--r--
fix type of open
haftmann@29197
     1
(*  Title:      HOL/RealVector.thy
haftmann@27552
     2
    Author:     Brian Huffman
huffman@20504
     3
*)
huffman@20504
     4
huffman@20504
     5
header {* Vector Spaces and Algebras over the Reals *}
huffman@20504
     6
huffman@20504
     7
theory RealVector
haftmann@29197
     8
imports RealPow
huffman@20504
     9
begin
huffman@20504
    10
huffman@20504
    11
subsection {* Locale for additive functions *}
huffman@20504
    12
huffman@20504
    13
locale additive =
huffman@20504
    14
  fixes f :: "'a::ab_group_add \<Rightarrow> 'b::ab_group_add"
huffman@20504
    15
  assumes add: "f (x + y) = f x + f y"
huffman@27443
    16
begin
huffman@20504
    17
huffman@27443
    18
lemma zero: "f 0 = 0"
huffman@20504
    19
proof -
huffman@20504
    20
  have "f 0 = f (0 + 0)" by simp
huffman@20504
    21
  also have "\<dots> = f 0 + f 0" by (rule add)
huffman@20504
    22
  finally show "f 0 = 0" by simp
huffman@20504
    23
qed
huffman@20504
    24
huffman@27443
    25
lemma minus: "f (- x) = - f x"
huffman@20504
    26
proof -
huffman@20504
    27
  have "f (- x) + f x = f (- x + x)" by (rule add [symmetric])
huffman@20504
    28
  also have "\<dots> = - f x + f x" by (simp add: zero)
huffman@20504
    29
  finally show "f (- x) = - f x" by (rule add_right_imp_eq)
huffman@20504
    30
qed
huffman@20504
    31
huffman@27443
    32
lemma diff: "f (x - y) = f x - f y"
huffman@20504
    33
by (simp add: diff_def add minus)
huffman@20504
    34
huffman@27443
    35
lemma setsum: "f (setsum g A) = (\<Sum>x\<in>A. f (g x))"
huffman@22942
    36
apply (cases "finite A")
huffman@22942
    37
apply (induct set: finite)
huffman@22942
    38
apply (simp add: zero)
huffman@22942
    39
apply (simp add: add)
huffman@22942
    40
apply (simp add: zero)
huffman@22942
    41
done
huffman@22942
    42
huffman@27443
    43
end
huffman@20504
    44
huffman@28029
    45
subsection {* Vector spaces *}
huffman@28029
    46
huffman@28029
    47
locale vector_space =
huffman@28029
    48
  fixes scale :: "'a::field \<Rightarrow> 'b::ab_group_add \<Rightarrow> 'b"
huffman@30070
    49
  assumes scale_right_distrib [algebra_simps]:
huffman@30070
    50
    "scale a (x + y) = scale a x + scale a y"
huffman@30070
    51
  and scale_left_distrib [algebra_simps]:
huffman@30070
    52
    "scale (a + b) x = scale a x + scale b x"
huffman@28029
    53
  and scale_scale [simp]: "scale a (scale b x) = scale (a * b) x"
huffman@28029
    54
  and scale_one [simp]: "scale 1 x = x"
huffman@28029
    55
begin
huffman@28029
    56
huffman@28029
    57
lemma scale_left_commute:
huffman@28029
    58
  "scale a (scale b x) = scale b (scale a x)"
huffman@28029
    59
by (simp add: mult_commute)
huffman@28029
    60
huffman@28029
    61
lemma scale_zero_left [simp]: "scale 0 x = 0"
huffman@28029
    62
  and scale_minus_left [simp]: "scale (- a) x = - (scale a x)"
huffman@30070
    63
  and scale_left_diff_distrib [algebra_simps]:
huffman@30070
    64
        "scale (a - b) x = scale a x - scale b x"
huffman@28029
    65
proof -
ballarin@29229
    66
  interpret s: additive "\<lambda>a. scale a x"
haftmann@28823
    67
    proof qed (rule scale_left_distrib)
huffman@28029
    68
  show "scale 0 x = 0" by (rule s.zero)
huffman@28029
    69
  show "scale (- a) x = - (scale a x)" by (rule s.minus)
huffman@28029
    70
  show "scale (a - b) x = scale a x - scale b x" by (rule s.diff)
huffman@28029
    71
qed
huffman@28029
    72
huffman@28029
    73
lemma scale_zero_right [simp]: "scale a 0 = 0"
huffman@28029
    74
  and scale_minus_right [simp]: "scale a (- x) = - (scale a x)"
huffman@30070
    75
  and scale_right_diff_distrib [algebra_simps]:
huffman@30070
    76
        "scale a (x - y) = scale a x - scale a y"
huffman@28029
    77
proof -
ballarin@29229
    78
  interpret s: additive "\<lambda>x. scale a x"
haftmann@28823
    79
    proof qed (rule scale_right_distrib)
huffman@28029
    80
  show "scale a 0 = 0" by (rule s.zero)
huffman@28029
    81
  show "scale a (- x) = - (scale a x)" by (rule s.minus)
huffman@28029
    82
  show "scale a (x - y) = scale a x - scale a y" by (rule s.diff)
huffman@28029
    83
qed
huffman@28029
    84
huffman@28029
    85
lemma scale_eq_0_iff [simp]:
huffman@28029
    86
  "scale a x = 0 \<longleftrightarrow> a = 0 \<or> x = 0"
huffman@28029
    87
proof cases
huffman@28029
    88
  assume "a = 0" thus ?thesis by simp
huffman@28029
    89
next
huffman@28029
    90
  assume anz [simp]: "a \<noteq> 0"
huffman@28029
    91
  { assume "scale a x = 0"
huffman@28029
    92
    hence "scale (inverse a) (scale a x) = 0" by simp
huffman@28029
    93
    hence "x = 0" by simp }
huffman@28029
    94
  thus ?thesis by force
huffman@28029
    95
qed
huffman@28029
    96
huffman@28029
    97
lemma scale_left_imp_eq:
huffman@28029
    98
  "\<lbrakk>a \<noteq> 0; scale a x = scale a y\<rbrakk> \<Longrightarrow> x = y"
huffman@28029
    99
proof -
huffman@28029
   100
  assume nonzero: "a \<noteq> 0"
huffman@28029
   101
  assume "scale a x = scale a y"
huffman@28029
   102
  hence "scale a (x - y) = 0"
huffman@28029
   103
     by (simp add: scale_right_diff_distrib)
huffman@28029
   104
  hence "x - y = 0" by (simp add: nonzero)
huffman@28029
   105
  thus "x = y" by (simp only: right_minus_eq)
huffman@28029
   106
qed
huffman@28029
   107
huffman@28029
   108
lemma scale_right_imp_eq:
huffman@28029
   109
  "\<lbrakk>x \<noteq> 0; scale a x = scale b x\<rbrakk> \<Longrightarrow> a = b"
huffman@28029
   110
proof -
huffman@28029
   111
  assume nonzero: "x \<noteq> 0"
huffman@28029
   112
  assume "scale a x = scale b x"
huffman@28029
   113
  hence "scale (a - b) x = 0"
huffman@28029
   114
     by (simp add: scale_left_diff_distrib)
huffman@28029
   115
  hence "a - b = 0" by (simp add: nonzero)
huffman@28029
   116
  thus "a = b" by (simp only: right_minus_eq)
huffman@28029
   117
qed
huffman@28029
   118
huffman@28029
   119
lemma scale_cancel_left:
huffman@28029
   120
  "scale a x = scale a y \<longleftrightarrow> x = y \<or> a = 0"
huffman@28029
   121
by (auto intro: scale_left_imp_eq)
huffman@28029
   122
huffman@28029
   123
lemma scale_cancel_right:
huffman@28029
   124
  "scale a x = scale b x \<longleftrightarrow> a = b \<or> x = 0"
huffman@28029
   125
by (auto intro: scale_right_imp_eq)
huffman@28029
   126
huffman@28029
   127
end
huffman@28029
   128
huffman@20504
   129
subsection {* Real vector spaces *}
huffman@20504
   130
haftmann@29608
   131
class scaleR =
haftmann@25062
   132
  fixes scaleR :: "real \<Rightarrow> 'a \<Rightarrow> 'a" (infixr "*\<^sub>R" 75)
haftmann@24748
   133
begin
huffman@20504
   134
huffman@20763
   135
abbreviation
haftmann@25062
   136
  divideR :: "'a \<Rightarrow> real \<Rightarrow> 'a" (infixl "'/\<^sub>R" 70)
haftmann@24748
   137
where
haftmann@25062
   138
  "x /\<^sub>R r == scaleR (inverse r) x"
haftmann@24748
   139
haftmann@24748
   140
end
haftmann@24748
   141
haftmann@24588
   142
class real_vector = scaleR + ab_group_add +
haftmann@25062
   143
  assumes scaleR_right_distrib: "scaleR a (x + y) = scaleR a x + scaleR a y"
haftmann@25062
   144
  and scaleR_left_distrib: "scaleR (a + b) x = scaleR a x + scaleR b x"
huffman@30070
   145
  and scaleR_scaleR: "scaleR a (scaleR b x) = scaleR (a * b) x"
huffman@30070
   146
  and scaleR_one: "scaleR 1 x = x"
huffman@20504
   147
wenzelm@30729
   148
interpretation real_vector:
ballarin@29229
   149
  vector_space "scaleR :: real \<Rightarrow> 'a \<Rightarrow> 'a::real_vector"
huffman@28009
   150
apply unfold_locales
huffman@28009
   151
apply (rule scaleR_right_distrib)
huffman@28009
   152
apply (rule scaleR_left_distrib)
huffman@28009
   153
apply (rule scaleR_scaleR)
huffman@28009
   154
apply (rule scaleR_one)
huffman@28009
   155
done
huffman@28009
   156
huffman@28009
   157
text {* Recover original theorem names *}
huffman@28009
   158
huffman@28009
   159
lemmas scaleR_left_commute = real_vector.scale_left_commute
huffman@28009
   160
lemmas scaleR_zero_left = real_vector.scale_zero_left
huffman@28009
   161
lemmas scaleR_minus_left = real_vector.scale_minus_left
huffman@28009
   162
lemmas scaleR_left_diff_distrib = real_vector.scale_left_diff_distrib
huffman@28009
   163
lemmas scaleR_zero_right = real_vector.scale_zero_right
huffman@28009
   164
lemmas scaleR_minus_right = real_vector.scale_minus_right
huffman@28009
   165
lemmas scaleR_right_diff_distrib = real_vector.scale_right_diff_distrib
huffman@28009
   166
lemmas scaleR_eq_0_iff = real_vector.scale_eq_0_iff
huffman@28009
   167
lemmas scaleR_left_imp_eq = real_vector.scale_left_imp_eq
huffman@28009
   168
lemmas scaleR_right_imp_eq = real_vector.scale_right_imp_eq
huffman@28009
   169
lemmas scaleR_cancel_left = real_vector.scale_cancel_left
huffman@28009
   170
lemmas scaleR_cancel_right = real_vector.scale_cancel_right
huffman@28009
   171
huffman@31285
   172
lemma scaleR_minus1_left [simp]:
huffman@31285
   173
  fixes x :: "'a::real_vector"
huffman@31285
   174
  shows "scaleR (-1) x = - x"
huffman@31285
   175
  using scaleR_minus_left [of 1 x] by simp
huffman@31285
   176
haftmann@24588
   177
class real_algebra = real_vector + ring +
haftmann@25062
   178
  assumes mult_scaleR_left [simp]: "scaleR a x * y = scaleR a (x * y)"
haftmann@25062
   179
  and mult_scaleR_right [simp]: "x * scaleR a y = scaleR a (x * y)"
huffman@20504
   180
haftmann@24588
   181
class real_algebra_1 = real_algebra + ring_1
huffman@20554
   182
haftmann@24588
   183
class real_div_algebra = real_algebra_1 + division_ring
huffman@20584
   184
haftmann@24588
   185
class real_field = real_div_algebra + field
huffman@20584
   186
huffman@30069
   187
instantiation real :: real_field
huffman@30069
   188
begin
huffman@30069
   189
huffman@30069
   190
definition
huffman@30069
   191
  real_scaleR_def [simp]: "scaleR a x = a * x"
huffman@30069
   192
huffman@30070
   193
instance proof
huffman@30070
   194
qed (simp_all add: algebra_simps)
huffman@20554
   195
huffman@30069
   196
end
huffman@30069
   197
wenzelm@30729
   198
interpretation scaleR_left: additive "(\<lambda>a. scaleR a x::'a::real_vector)"
haftmann@28823
   199
proof qed (rule scaleR_left_distrib)
huffman@20504
   200
wenzelm@30729
   201
interpretation scaleR_right: additive "(\<lambda>x. scaleR a x::'a::real_vector)"
haftmann@28823
   202
proof qed (rule scaleR_right_distrib)
huffman@20504
   203
huffman@20584
   204
lemma nonzero_inverse_scaleR_distrib:
huffman@21809
   205
  fixes x :: "'a::real_div_algebra" shows
huffman@21809
   206
  "\<lbrakk>a \<noteq> 0; x \<noteq> 0\<rbrakk> \<Longrightarrow> inverse (scaleR a x) = scaleR (inverse a) (inverse x)"
huffman@20763
   207
by (rule inverse_unique, simp)
huffman@20584
   208
huffman@20584
   209
lemma inverse_scaleR_distrib:
huffman@20584
   210
  fixes x :: "'a::{real_div_algebra,division_by_zero}"
huffman@21809
   211
  shows "inverse (scaleR a x) = scaleR (inverse a) (inverse x)"
huffman@20584
   212
apply (case_tac "a = 0", simp)
huffman@20584
   213
apply (case_tac "x = 0", simp)
huffman@20584
   214
apply (erule (1) nonzero_inverse_scaleR_distrib)
huffman@20584
   215
done
huffman@20584
   216
huffman@20554
   217
huffman@20554
   218
subsection {* Embedding of the Reals into any @{text real_algebra_1}:
huffman@20554
   219
@{term of_real} *}
huffman@20554
   220
huffman@20554
   221
definition
wenzelm@21404
   222
  of_real :: "real \<Rightarrow> 'a::real_algebra_1" where
huffman@21809
   223
  "of_real r = scaleR r 1"
huffman@20554
   224
huffman@21809
   225
lemma scaleR_conv_of_real: "scaleR r x = of_real r * x"
huffman@20763
   226
by (simp add: of_real_def)
huffman@20763
   227
huffman@20554
   228
lemma of_real_0 [simp]: "of_real 0 = 0"
huffman@20554
   229
by (simp add: of_real_def)
huffman@20554
   230
huffman@20554
   231
lemma of_real_1 [simp]: "of_real 1 = 1"
huffman@20554
   232
by (simp add: of_real_def)
huffman@20554
   233
huffman@20554
   234
lemma of_real_add [simp]: "of_real (x + y) = of_real x + of_real y"
huffman@20554
   235
by (simp add: of_real_def scaleR_left_distrib)
huffman@20554
   236
huffman@20554
   237
lemma of_real_minus [simp]: "of_real (- x) = - of_real x"
huffman@20554
   238
by (simp add: of_real_def)
huffman@20554
   239
huffman@20554
   240
lemma of_real_diff [simp]: "of_real (x - y) = of_real x - of_real y"
huffman@20554
   241
by (simp add: of_real_def scaleR_left_diff_distrib)
huffman@20554
   242
huffman@20554
   243
lemma of_real_mult [simp]: "of_real (x * y) = of_real x * of_real y"
huffman@20763
   244
by (simp add: of_real_def mult_commute)
huffman@20554
   245
huffman@20584
   246
lemma nonzero_of_real_inverse:
huffman@20584
   247
  "x \<noteq> 0 \<Longrightarrow> of_real (inverse x) =
huffman@20584
   248
   inverse (of_real x :: 'a::real_div_algebra)"
huffman@20584
   249
by (simp add: of_real_def nonzero_inverse_scaleR_distrib)
huffman@20584
   250
huffman@20584
   251
lemma of_real_inverse [simp]:
huffman@20584
   252
  "of_real (inverse x) =
huffman@20584
   253
   inverse (of_real x :: 'a::{real_div_algebra,division_by_zero})"
huffman@20584
   254
by (simp add: of_real_def inverse_scaleR_distrib)
huffman@20584
   255
huffman@20584
   256
lemma nonzero_of_real_divide:
huffman@20584
   257
  "y \<noteq> 0 \<Longrightarrow> of_real (x / y) =
huffman@20584
   258
   (of_real x / of_real y :: 'a::real_field)"
huffman@20584
   259
by (simp add: divide_inverse nonzero_of_real_inverse)
huffman@20722
   260
huffman@20722
   261
lemma of_real_divide [simp]:
huffman@20584
   262
  "of_real (x / y) =
huffman@20584
   263
   (of_real x / of_real y :: 'a::{real_field,division_by_zero})"
huffman@20584
   264
by (simp add: divide_inverse)
huffman@20584
   265
huffman@20722
   266
lemma of_real_power [simp]:
haftmann@31017
   267
  "of_real (x ^ n) = (of_real x :: 'a::{real_algebra_1}) ^ n"
huffman@30273
   268
by (induct n) simp_all
huffman@20722
   269
huffman@20554
   270
lemma of_real_eq_iff [simp]: "(of_real x = of_real y) = (x = y)"
huffman@20554
   271
by (simp add: of_real_def scaleR_cancel_right)
huffman@20554
   272
huffman@20584
   273
lemmas of_real_eq_0_iff [simp] = of_real_eq_iff [of _ 0, simplified]
huffman@20554
   274
huffman@20554
   275
lemma of_real_eq_id [simp]: "of_real = (id :: real \<Rightarrow> real)"
huffman@20554
   276
proof
huffman@20554
   277
  fix r
huffman@20554
   278
  show "of_real r = id r"
huffman@22973
   279
    by (simp add: of_real_def)
huffman@20554
   280
qed
huffman@20554
   281
huffman@20554
   282
text{*Collapse nested embeddings*}
huffman@20554
   283
lemma of_real_of_nat_eq [simp]: "of_real (of_nat n) = of_nat n"
wenzelm@20772
   284
by (induct n) auto
huffman@20554
   285
huffman@20554
   286
lemma of_real_of_int_eq [simp]: "of_real (of_int z) = of_int z"
huffman@20554
   287
by (cases z rule: int_diff_cases, simp)
huffman@20554
   288
huffman@20554
   289
lemma of_real_number_of_eq:
huffman@20554
   290
  "of_real (number_of w) = (number_of w :: 'a::{number_ring,real_algebra_1})"
huffman@20554
   291
by (simp add: number_of_eq)
huffman@20554
   292
huffman@22912
   293
text{*Every real algebra has characteristic zero*}
huffman@22912
   294
instance real_algebra_1 < ring_char_0
huffman@22912
   295
proof
huffman@23282
   296
  fix m n :: nat
huffman@23282
   297
  have "(of_real (of_nat m) = (of_real (of_nat n)::'a)) = (m = n)"
huffman@23282
   298
    by (simp only: of_real_eq_iff of_nat_eq_iff)
huffman@23282
   299
  thus "(of_nat m = (of_nat n::'a)) = (m = n)"
huffman@23282
   300
    by (simp only: of_real_of_nat_eq)
huffman@22912
   301
qed
huffman@22912
   302
huffman@27553
   303
instance real_field < field_char_0 ..
huffman@27553
   304
huffman@20554
   305
huffman@20554
   306
subsection {* The Set of Real Numbers *}
huffman@20554
   307
wenzelm@20772
   308
definition
wenzelm@21404
   309
  Reals :: "'a::real_algebra_1 set" where
huffman@30070
   310
  [code del]: "Reals = range of_real"
huffman@20554
   311
wenzelm@21210
   312
notation (xsymbols)
huffman@20554
   313
  Reals  ("\<real>")
huffman@20554
   314
huffman@21809
   315
lemma Reals_of_real [simp]: "of_real r \<in> Reals"
huffman@20554
   316
by (simp add: Reals_def)
huffman@20554
   317
huffman@21809
   318
lemma Reals_of_int [simp]: "of_int z \<in> Reals"
huffman@21809
   319
by (subst of_real_of_int_eq [symmetric], rule Reals_of_real)
huffman@20718
   320
huffman@21809
   321
lemma Reals_of_nat [simp]: "of_nat n \<in> Reals"
huffman@21809
   322
by (subst of_real_of_nat_eq [symmetric], rule Reals_of_real)
huffman@21809
   323
huffman@21809
   324
lemma Reals_number_of [simp]:
huffman@21809
   325
  "(number_of w::'a::{number_ring,real_algebra_1}) \<in> Reals"
huffman@21809
   326
by (subst of_real_number_of_eq [symmetric], rule Reals_of_real)
huffman@20718
   327
huffman@20554
   328
lemma Reals_0 [simp]: "0 \<in> Reals"
huffman@20554
   329
apply (unfold Reals_def)
huffman@20554
   330
apply (rule range_eqI)
huffman@20554
   331
apply (rule of_real_0 [symmetric])
huffman@20554
   332
done
huffman@20554
   333
huffman@20554
   334
lemma Reals_1 [simp]: "1 \<in> Reals"
huffman@20554
   335
apply (unfold Reals_def)
huffman@20554
   336
apply (rule range_eqI)
huffman@20554
   337
apply (rule of_real_1 [symmetric])
huffman@20554
   338
done
huffman@20554
   339
huffman@20584
   340
lemma Reals_add [simp]: "\<lbrakk>a \<in> Reals; b \<in> Reals\<rbrakk> \<Longrightarrow> a + b \<in> Reals"
huffman@20554
   341
apply (auto simp add: Reals_def)
huffman@20554
   342
apply (rule range_eqI)
huffman@20554
   343
apply (rule of_real_add [symmetric])
huffman@20554
   344
done
huffman@20554
   345
huffman@20584
   346
lemma Reals_minus [simp]: "a \<in> Reals \<Longrightarrow> - a \<in> Reals"
huffman@20584
   347
apply (auto simp add: Reals_def)
huffman@20584
   348
apply (rule range_eqI)
huffman@20584
   349
apply (rule of_real_minus [symmetric])
huffman@20584
   350
done
huffman@20584
   351
huffman@20584
   352
lemma Reals_diff [simp]: "\<lbrakk>a \<in> Reals; b \<in> Reals\<rbrakk> \<Longrightarrow> a - b \<in> Reals"
huffman@20584
   353
apply (auto simp add: Reals_def)
huffman@20584
   354
apply (rule range_eqI)
huffman@20584
   355
apply (rule of_real_diff [symmetric])
huffman@20584
   356
done
huffman@20584
   357
huffman@20584
   358
lemma Reals_mult [simp]: "\<lbrakk>a \<in> Reals; b \<in> Reals\<rbrakk> \<Longrightarrow> a * b \<in> Reals"
huffman@20554
   359
apply (auto simp add: Reals_def)
huffman@20554
   360
apply (rule range_eqI)
huffman@20554
   361
apply (rule of_real_mult [symmetric])
huffman@20554
   362
done
huffman@20554
   363
huffman@20584
   364
lemma nonzero_Reals_inverse:
huffman@20584
   365
  fixes a :: "'a::real_div_algebra"
huffman@20584
   366
  shows "\<lbrakk>a \<in> Reals; a \<noteq> 0\<rbrakk> \<Longrightarrow> inverse a \<in> Reals"
huffman@20584
   367
apply (auto simp add: Reals_def)
huffman@20584
   368
apply (rule range_eqI)
huffman@20584
   369
apply (erule nonzero_of_real_inverse [symmetric])
huffman@20584
   370
done
huffman@20584
   371
huffman@20584
   372
lemma Reals_inverse [simp]:
huffman@20584
   373
  fixes a :: "'a::{real_div_algebra,division_by_zero}"
huffman@20584
   374
  shows "a \<in> Reals \<Longrightarrow> inverse a \<in> Reals"
huffman@20584
   375
apply (auto simp add: Reals_def)
huffman@20584
   376
apply (rule range_eqI)
huffman@20584
   377
apply (rule of_real_inverse [symmetric])
huffman@20584
   378
done
huffman@20584
   379
huffman@20584
   380
lemma nonzero_Reals_divide:
huffman@20584
   381
  fixes a b :: "'a::real_field"
huffman@20584
   382
  shows "\<lbrakk>a \<in> Reals; b \<in> Reals; b \<noteq> 0\<rbrakk> \<Longrightarrow> a / b \<in> Reals"
huffman@20584
   383
apply (auto simp add: Reals_def)
huffman@20584
   384
apply (rule range_eqI)
huffman@20584
   385
apply (erule nonzero_of_real_divide [symmetric])
huffman@20584
   386
done
huffman@20584
   387
huffman@20584
   388
lemma Reals_divide [simp]:
huffman@20584
   389
  fixes a b :: "'a::{real_field,division_by_zero}"
huffman@20584
   390
  shows "\<lbrakk>a \<in> Reals; b \<in> Reals\<rbrakk> \<Longrightarrow> a / b \<in> Reals"
huffman@20584
   391
apply (auto simp add: Reals_def)
huffman@20584
   392
apply (rule range_eqI)
huffman@20584
   393
apply (rule of_real_divide [symmetric])
huffman@20584
   394
done
huffman@20584
   395
huffman@20722
   396
lemma Reals_power [simp]:
haftmann@31017
   397
  fixes a :: "'a::{real_algebra_1}"
huffman@20722
   398
  shows "a \<in> Reals \<Longrightarrow> a ^ n \<in> Reals"
huffman@20722
   399
apply (auto simp add: Reals_def)
huffman@20722
   400
apply (rule range_eqI)
huffman@20722
   401
apply (rule of_real_power [symmetric])
huffman@20722
   402
done
huffman@20722
   403
huffman@20554
   404
lemma Reals_cases [cases set: Reals]:
huffman@20554
   405
  assumes "q \<in> \<real>"
huffman@20554
   406
  obtains (of_real) r where "q = of_real r"
huffman@20554
   407
  unfolding Reals_def
huffman@20554
   408
proof -
huffman@20554
   409
  from `q \<in> \<real>` have "q \<in> range of_real" unfolding Reals_def .
huffman@20554
   410
  then obtain r where "q = of_real r" ..
huffman@20554
   411
  then show thesis ..
huffman@20554
   412
qed
huffman@20554
   413
huffman@20554
   414
lemma Reals_induct [case_names of_real, induct set: Reals]:
huffman@20554
   415
  "q \<in> \<real> \<Longrightarrow> (\<And>r. P (of_real r)) \<Longrightarrow> P q"
huffman@20554
   416
  by (rule Reals_cases) auto
huffman@20554
   417
huffman@20504
   418
huffman@31413
   419
subsection {* Topological spaces *}
huffman@31413
   420
huffman@31492
   421
class "open" =
huffman@31494
   422
  fixes "open" :: "'a set \<Rightarrow> bool"
huffman@31490
   423
huffman@31492
   424
class topological_space = "open" +
huffman@31492
   425
  assumes open_UNIV [simp, intro]: "open UNIV"
huffman@31492
   426
  assumes open_Int [intro]: "open S \<Longrightarrow> open T \<Longrightarrow> open (S \<inter> T)"
huffman@31492
   427
  assumes open_Union [intro]: "\<forall>S\<in>K. open S \<Longrightarrow> open (\<Union> K)"
huffman@31490
   428
begin
huffman@31490
   429
huffman@31490
   430
definition
huffman@31490
   431
  closed :: "'a set \<Rightarrow> bool" where
huffman@31490
   432
  "closed S \<longleftrightarrow> open (- S)"
huffman@31490
   433
huffman@31490
   434
lemma open_empty [intro, simp]: "open {}"
huffman@31490
   435
  using open_Union [of "{}"] by simp
huffman@31490
   436
huffman@31490
   437
lemma open_Un [intro]: "open S \<Longrightarrow> open T \<Longrightarrow> open (S \<union> T)"
huffman@31490
   438
  using open_Union [of "{S, T}"] by simp
huffman@31490
   439
huffman@31490
   440
lemma open_UN [intro]: "\<forall>x\<in>A. open (B x) \<Longrightarrow> open (\<Union>x\<in>A. B x)"
huffman@31490
   441
  unfolding UN_eq by (rule open_Union) auto
huffman@31490
   442
huffman@31490
   443
lemma open_INT [intro]: "finite A \<Longrightarrow> \<forall>x\<in>A. open (B x) \<Longrightarrow> open (\<Inter>x\<in>A. B x)"
huffman@31490
   444
  by (induct set: finite) auto
huffman@31490
   445
huffman@31490
   446
lemma open_Inter [intro]: "finite S \<Longrightarrow> \<forall>T\<in>S. open T \<Longrightarrow> open (\<Inter>S)"
huffman@31490
   447
  unfolding Inter_def by (rule open_INT)
huffman@31490
   448
huffman@31490
   449
lemma closed_empty [intro, simp]:  "closed {}"
huffman@31490
   450
  unfolding closed_def by simp
huffman@31490
   451
huffman@31490
   452
lemma closed_Un [intro]: "closed S \<Longrightarrow> closed T \<Longrightarrow> closed (S \<union> T)"
huffman@31490
   453
  unfolding closed_def by auto
huffman@31490
   454
huffman@31490
   455
lemma closed_Inter [intro]: "\<forall>S\<in>K. closed S \<Longrightarrow> closed (\<Inter> K)"
huffman@31490
   456
  unfolding closed_def Inter_def by auto
huffman@31490
   457
huffman@31490
   458
lemma closed_UNIV [intro, simp]: "closed UNIV"
huffman@31490
   459
  unfolding closed_def by simp
huffman@31490
   460
huffman@31490
   461
lemma closed_Int [intro]: "closed S \<Longrightarrow> closed T \<Longrightarrow> closed (S \<inter> T)"
huffman@31490
   462
  unfolding closed_def by auto
huffman@31490
   463
huffman@31490
   464
lemma closed_INT [intro]: "\<forall>x\<in>A. closed (B x) \<Longrightarrow> closed (\<Inter>x\<in>A. B x)"
huffman@31490
   465
  unfolding closed_def by auto
huffman@31490
   466
huffman@31490
   467
lemma closed_UN [intro]: "finite A \<Longrightarrow> \<forall>x\<in>A. closed (B x) \<Longrightarrow> closed (\<Union>x\<in>A. B x)"
huffman@31490
   468
  by (induct set: finite) auto
huffman@31490
   469
huffman@31490
   470
lemma closed_Union [intro]: "finite S \<Longrightarrow> \<forall>T\<in>S. closed T \<Longrightarrow> closed (\<Union>S)"
huffman@31490
   471
  unfolding Union_def by (rule closed_UN)
huffman@31490
   472
huffman@31490
   473
lemma open_closed: "open S \<longleftrightarrow> closed (- S)"
huffman@31490
   474
  unfolding closed_def by simp
huffman@31490
   475
huffman@31490
   476
lemma closed_open: "closed S \<longleftrightarrow> open (- S)"
huffman@31490
   477
  unfolding closed_def by simp
huffman@31490
   478
huffman@31490
   479
lemma open_Diff [intro]: "open S \<Longrightarrow> closed T \<Longrightarrow> open (S - T)"
huffman@31490
   480
  unfolding closed_open Diff_eq by (rule open_Int)
huffman@31490
   481
huffman@31490
   482
lemma closed_Diff [intro]: "closed S \<Longrightarrow> open T \<Longrightarrow> closed (S - T)"
huffman@31490
   483
  unfolding open_closed Diff_eq by (rule closed_Int)
huffman@31490
   484
huffman@31490
   485
lemma open_Compl [intro]: "closed S \<Longrightarrow> open (- S)"
huffman@31490
   486
  unfolding closed_open .
huffman@31490
   487
huffman@31490
   488
lemma closed_Compl [intro]: "open S \<Longrightarrow> closed (- S)"
huffman@31490
   489
  unfolding open_closed .
huffman@31490
   490
huffman@31490
   491
end
huffman@31413
   492
huffman@31413
   493
huffman@31289
   494
subsection {* Metric spaces *}
huffman@31289
   495
huffman@31289
   496
class dist =
huffman@31289
   497
  fixes dist :: "'a \<Rightarrow> 'a \<Rightarrow> real"
huffman@31289
   498
huffman@31492
   499
class open_dist = "open" + dist +
huffman@31492
   500
  assumes open_dist: "open S \<longleftrightarrow> (\<forall>x\<in>S. \<exists>e>0. \<forall>y. dist y x < e \<longrightarrow> y \<in> S)"
huffman@31413
   501
huffman@31492
   502
class metric_space = open_dist +
huffman@31289
   503
  assumes dist_eq_0_iff [simp]: "dist x y = 0 \<longleftrightarrow> x = y"
huffman@31289
   504
  assumes dist_triangle2: "dist x y \<le> dist x z + dist y z"
huffman@31289
   505
begin
huffman@31289
   506
huffman@31289
   507
lemma dist_self [simp]: "dist x x = 0"
huffman@31289
   508
by simp
huffman@31289
   509
huffman@31289
   510
lemma zero_le_dist [simp]: "0 \<le> dist x y"
huffman@31289
   511
using dist_triangle2 [of x x y] by simp
huffman@31289
   512
huffman@31289
   513
lemma zero_less_dist_iff: "0 < dist x y \<longleftrightarrow> x \<noteq> y"
huffman@31289
   514
by (simp add: less_le)
huffman@31289
   515
huffman@31289
   516
lemma dist_not_less_zero [simp]: "\<not> dist x y < 0"
huffman@31289
   517
by (simp add: not_less)
huffman@31289
   518
huffman@31289
   519
lemma dist_le_zero_iff [simp]: "dist x y \<le> 0 \<longleftrightarrow> x = y"
huffman@31289
   520
by (simp add: le_less)
huffman@31289
   521
huffman@31289
   522
lemma dist_commute: "dist x y = dist y x"
huffman@31289
   523
proof (rule order_antisym)
huffman@31289
   524
  show "dist x y \<le> dist y x"
huffman@31289
   525
    using dist_triangle2 [of x y x] by simp
huffman@31289
   526
  show "dist y x \<le> dist x y"
huffman@31289
   527
    using dist_triangle2 [of y x y] by simp
huffman@31289
   528
qed
huffman@31289
   529
huffman@31289
   530
lemma dist_triangle: "dist x z \<le> dist x y + dist y z"
huffman@31289
   531
using dist_triangle2 [of x z y] by (simp add: dist_commute)
huffman@31289
   532
huffman@31413
   533
subclass topological_space
huffman@31413
   534
proof
huffman@31413
   535
  have "\<exists>e::real. 0 < e"
huffman@31413
   536
    by (fast intro: zero_less_one)
huffman@31492
   537
  then show "open UNIV"
huffman@31492
   538
    unfolding open_dist by simp
huffman@31413
   539
next
huffman@31492
   540
  fix S T assume "open S" "open T"
huffman@31492
   541
  then show "open (S \<inter> T)"
huffman@31492
   542
    unfolding open_dist
huffman@31413
   543
    apply clarify
huffman@31413
   544
    apply (drule (1) bspec)+
huffman@31413
   545
    apply (clarify, rename_tac r s)
huffman@31413
   546
    apply (rule_tac x="min r s" in exI, simp)
huffman@31413
   547
    done
huffman@31413
   548
next
huffman@31492
   549
  fix K assume "\<forall>S\<in>K. open S" thus "open (\<Union>K)"
huffman@31492
   550
    unfolding open_dist by fast
huffman@31413
   551
qed
huffman@31413
   552
huffman@31289
   553
end
huffman@31289
   554
huffman@31289
   555
huffman@20504
   556
subsection {* Real normed vector spaces *}
huffman@20504
   557
haftmann@29608
   558
class norm =
huffman@22636
   559
  fixes norm :: "'a \<Rightarrow> real"
huffman@20504
   560
huffman@24520
   561
class sgn_div_norm = scaleR + norm + sgn +
haftmann@25062
   562
  assumes sgn_div_norm: "sgn x = x /\<^sub>R norm x"
nipkow@24506
   563
huffman@31289
   564
class dist_norm = dist + norm + minus +
huffman@31289
   565
  assumes dist_norm: "dist x y = norm (x - y)"
huffman@31289
   566
huffman@31492
   567
class real_normed_vector = real_vector + sgn_div_norm + dist_norm + open_dist +
haftmann@24588
   568
  assumes norm_ge_zero [simp]: "0 \<le> norm x"
haftmann@25062
   569
  and norm_eq_zero [simp]: "norm x = 0 \<longleftrightarrow> x = 0"
haftmann@25062
   570
  and norm_triangle_ineq: "norm (x + y) \<le> norm x + norm y"
haftmann@24588
   571
  and norm_scaleR: "norm (scaleR a x) = \<bar>a\<bar> * norm x"
huffman@20504
   572
haftmann@24588
   573
class real_normed_algebra = real_algebra + real_normed_vector +
haftmann@25062
   574
  assumes norm_mult_ineq: "norm (x * y) \<le> norm x * norm y"
huffman@20504
   575
haftmann@24588
   576
class real_normed_algebra_1 = real_algebra_1 + real_normed_algebra +
haftmann@25062
   577
  assumes norm_one [simp]: "norm 1 = 1"
huffman@22852
   578
haftmann@24588
   579
class real_normed_div_algebra = real_div_algebra + real_normed_vector +
haftmann@25062
   580
  assumes norm_mult: "norm (x * y) = norm x * norm y"
huffman@20504
   581
haftmann@24588
   582
class real_normed_field = real_field + real_normed_div_algebra
huffman@20584
   583
huffman@22852
   584
instance real_normed_div_algebra < real_normed_algebra_1
huffman@20554
   585
proof
huffman@20554
   586
  fix x y :: 'a
huffman@20554
   587
  show "norm (x * y) \<le> norm x * norm y"
huffman@20554
   588
    by (simp add: norm_mult)
huffman@22852
   589
next
huffman@22852
   590
  have "norm (1 * 1::'a) = norm (1::'a) * norm (1::'a)"
huffman@22852
   591
    by (rule norm_mult)
huffman@22852
   592
  thus "norm (1::'a) = 1" by simp
huffman@20554
   593
qed
huffman@20554
   594
huffman@30069
   595
instantiation real :: real_normed_field
huffman@30069
   596
begin
huffman@30069
   597
huffman@31413
   598
definition real_norm_def [simp]:
huffman@31413
   599
  "norm r = \<bar>r\<bar>"
huffman@30069
   600
huffman@31413
   601
definition dist_real_def:
huffman@31413
   602
  "dist x y = \<bar>x - y\<bar>"
huffman@31413
   603
huffman@31492
   604
definition open_real_def [code del]:
huffman@31492
   605
  "open (S :: real set) \<longleftrightarrow> (\<forall>x\<in>S. \<exists>e>0. \<forall>y. dist y x < e \<longrightarrow> y \<in> S)"
huffman@31289
   606
huffman@30069
   607
instance
huffman@22852
   608
apply (intro_classes, unfold real_norm_def real_scaleR_def)
huffman@31289
   609
apply (rule dist_real_def)
huffman@31492
   610
apply (rule open_real_def)
nipkow@24506
   611
apply (simp add: real_sgn_def)
huffman@20554
   612
apply (rule abs_ge_zero)
huffman@20554
   613
apply (rule abs_eq_0)
huffman@20554
   614
apply (rule abs_triangle_ineq)
huffman@22852
   615
apply (rule abs_mult)
huffman@20554
   616
apply (rule abs_mult)
huffman@20554
   617
done
huffman@20504
   618
huffman@30069
   619
end
huffman@30069
   620
huffman@22852
   621
lemma norm_zero [simp]: "norm (0::'a::real_normed_vector) = 0"
huffman@20504
   622
by simp
huffman@20504
   623
huffman@22852
   624
lemma zero_less_norm_iff [simp]:
huffman@22852
   625
  fixes x :: "'a::real_normed_vector"
huffman@22852
   626
  shows "(0 < norm x) = (x \<noteq> 0)"
huffman@20504
   627
by (simp add: order_less_le)
huffman@20504
   628
huffman@22852
   629
lemma norm_not_less_zero [simp]:
huffman@22852
   630
  fixes x :: "'a::real_normed_vector"
huffman@22852
   631
  shows "\<not> norm x < 0"
huffman@20828
   632
by (simp add: linorder_not_less)
huffman@20828
   633
huffman@22852
   634
lemma norm_le_zero_iff [simp]:
huffman@22852
   635
  fixes x :: "'a::real_normed_vector"
huffman@22852
   636
  shows "(norm x \<le> 0) = (x = 0)"
huffman@20828
   637
by (simp add: order_le_less)
huffman@20828
   638
huffman@20504
   639
lemma norm_minus_cancel [simp]:
huffman@20584
   640
  fixes x :: "'a::real_normed_vector"
huffman@20584
   641
  shows "norm (- x) = norm x"
huffman@20504
   642
proof -
huffman@21809
   643
  have "norm (- x) = norm (scaleR (- 1) x)"
huffman@20504
   644
    by (simp only: scaleR_minus_left scaleR_one)
huffman@20533
   645
  also have "\<dots> = \<bar>- 1\<bar> * norm x"
huffman@20504
   646
    by (rule norm_scaleR)
huffman@20504
   647
  finally show ?thesis by simp
huffman@20504
   648
qed
huffman@20504
   649
huffman@20504
   650
lemma norm_minus_commute:
huffman@20584
   651
  fixes a b :: "'a::real_normed_vector"
huffman@20584
   652
  shows "norm (a - b) = norm (b - a)"
huffman@20504
   653
proof -
huffman@22898
   654
  have "norm (- (b - a)) = norm (b - a)"
huffman@22898
   655
    by (rule norm_minus_cancel)
huffman@22898
   656
  thus ?thesis by simp
huffman@20504
   657
qed
huffman@20504
   658
huffman@20504
   659
lemma norm_triangle_ineq2:
huffman@20584
   660
  fixes a b :: "'a::real_normed_vector"
huffman@20533
   661
  shows "norm a - norm b \<le> norm (a - b)"
huffman@20504
   662
proof -
huffman@20533
   663
  have "norm (a - b + b) \<le> norm (a - b) + norm b"
huffman@20504
   664
    by (rule norm_triangle_ineq)
huffman@22898
   665
  thus ?thesis by simp
huffman@20504
   666
qed
huffman@20504
   667
huffman@20584
   668
lemma norm_triangle_ineq3:
huffman@20584
   669
  fixes a b :: "'a::real_normed_vector"
huffman@20584
   670
  shows "\<bar>norm a - norm b\<bar> \<le> norm (a - b)"
huffman@20584
   671
apply (subst abs_le_iff)
huffman@20584
   672
apply auto
huffman@20584
   673
apply (rule norm_triangle_ineq2)
huffman@20584
   674
apply (subst norm_minus_commute)
huffman@20584
   675
apply (rule norm_triangle_ineq2)
huffman@20584
   676
done
huffman@20584
   677
huffman@20504
   678
lemma norm_triangle_ineq4:
huffman@20584
   679
  fixes a b :: "'a::real_normed_vector"
huffman@20533
   680
  shows "norm (a - b) \<le> norm a + norm b"
huffman@20504
   681
proof -
huffman@22898
   682
  have "norm (a + - b) \<le> norm a + norm (- b)"
huffman@20504
   683
    by (rule norm_triangle_ineq)
huffman@22898
   684
  thus ?thesis
huffman@22898
   685
    by (simp only: diff_minus norm_minus_cancel)
huffman@22898
   686
qed
huffman@22898
   687
huffman@22898
   688
lemma norm_diff_ineq:
huffman@22898
   689
  fixes a b :: "'a::real_normed_vector"
huffman@22898
   690
  shows "norm a - norm b \<le> norm (a + b)"
huffman@22898
   691
proof -
huffman@22898
   692
  have "norm a - norm (- b) \<le> norm (a - - b)"
huffman@22898
   693
    by (rule norm_triangle_ineq2)
huffman@22898
   694
  thus ?thesis by simp
huffman@20504
   695
qed
huffman@20504
   696
huffman@20551
   697
lemma norm_diff_triangle_ineq:
huffman@20551
   698
  fixes a b c d :: "'a::real_normed_vector"
huffman@20551
   699
  shows "norm ((a + b) - (c + d)) \<le> norm (a - c) + norm (b - d)"
huffman@20551
   700
proof -
huffman@20551
   701
  have "norm ((a + b) - (c + d)) = norm ((a - c) + (b - d))"
huffman@20551
   702
    by (simp add: diff_minus add_ac)
huffman@20551
   703
  also have "\<dots> \<le> norm (a - c) + norm (b - d)"
huffman@20551
   704
    by (rule norm_triangle_ineq)
huffman@20551
   705
  finally show ?thesis .
huffman@20551
   706
qed
huffman@20551
   707
huffman@22857
   708
lemma abs_norm_cancel [simp]:
huffman@22857
   709
  fixes a :: "'a::real_normed_vector"
huffman@22857
   710
  shows "\<bar>norm a\<bar> = norm a"
huffman@22857
   711
by (rule abs_of_nonneg [OF norm_ge_zero])
huffman@22857
   712
huffman@22880
   713
lemma norm_add_less:
huffman@22880
   714
  fixes x y :: "'a::real_normed_vector"
huffman@22880
   715
  shows "\<lbrakk>norm x < r; norm y < s\<rbrakk> \<Longrightarrow> norm (x + y) < r + s"
huffman@22880
   716
by (rule order_le_less_trans [OF norm_triangle_ineq add_strict_mono])
huffman@22880
   717
huffman@22880
   718
lemma norm_mult_less:
huffman@22880
   719
  fixes x y :: "'a::real_normed_algebra"
huffman@22880
   720
  shows "\<lbrakk>norm x < r; norm y < s\<rbrakk> \<Longrightarrow> norm (x * y) < r * s"
huffman@22880
   721
apply (rule order_le_less_trans [OF norm_mult_ineq])
huffman@22880
   722
apply (simp add: mult_strict_mono')
huffman@22880
   723
done
huffman@22880
   724
huffman@22857
   725
lemma norm_of_real [simp]:
huffman@22857
   726
  "norm (of_real r :: 'a::real_normed_algebra_1) = \<bar>r\<bar>"
huffman@22852
   727
unfolding of_real_def by (simp add: norm_scaleR)
huffman@20560
   728
huffman@22876
   729
lemma norm_number_of [simp]:
huffman@22876
   730
  "norm (number_of w::'a::{number_ring,real_normed_algebra_1})
huffman@22876
   731
    = \<bar>number_of w\<bar>"
huffman@22876
   732
by (subst of_real_number_of_eq [symmetric], rule norm_of_real)
huffman@22876
   733
huffman@22876
   734
lemma norm_of_int [simp]:
huffman@22876
   735
  "norm (of_int z::'a::real_normed_algebra_1) = \<bar>of_int z\<bar>"
huffman@22876
   736
by (subst of_real_of_int_eq [symmetric], rule norm_of_real)
huffman@22876
   737
huffman@22876
   738
lemma norm_of_nat [simp]:
huffman@22876
   739
  "norm (of_nat n::'a::real_normed_algebra_1) = of_nat n"
huffman@22876
   740
apply (subst of_real_of_nat_eq [symmetric])
huffman@22876
   741
apply (subst norm_of_real, simp)
huffman@22876
   742
done
huffman@22876
   743
huffman@20504
   744
lemma nonzero_norm_inverse:
huffman@20504
   745
  fixes a :: "'a::real_normed_div_algebra"
huffman@20533
   746
  shows "a \<noteq> 0 \<Longrightarrow> norm (inverse a) = inverse (norm a)"
huffman@20504
   747
apply (rule inverse_unique [symmetric])
huffman@20504
   748
apply (simp add: norm_mult [symmetric])
huffman@20504
   749
done
huffman@20504
   750
huffman@20504
   751
lemma norm_inverse:
huffman@20504
   752
  fixes a :: "'a::{real_normed_div_algebra,division_by_zero}"
huffman@20533
   753
  shows "norm (inverse a) = inverse (norm a)"
huffman@20504
   754
apply (case_tac "a = 0", simp)
huffman@20504
   755
apply (erule nonzero_norm_inverse)
huffman@20504
   756
done
huffman@20504
   757
huffman@20584
   758
lemma nonzero_norm_divide:
huffman@20584
   759
  fixes a b :: "'a::real_normed_field"
huffman@20584
   760
  shows "b \<noteq> 0 \<Longrightarrow> norm (a / b) = norm a / norm b"
huffman@20584
   761
by (simp add: divide_inverse norm_mult nonzero_norm_inverse)
huffman@20584
   762
huffman@20584
   763
lemma norm_divide:
huffman@20584
   764
  fixes a b :: "'a::{real_normed_field,division_by_zero}"
huffman@20584
   765
  shows "norm (a / b) = norm a / norm b"
huffman@20584
   766
by (simp add: divide_inverse norm_mult norm_inverse)
huffman@20584
   767
huffman@22852
   768
lemma norm_power_ineq:
haftmann@31017
   769
  fixes x :: "'a::{real_normed_algebra_1}"
huffman@22852
   770
  shows "norm (x ^ n) \<le> norm x ^ n"
huffman@22852
   771
proof (induct n)
huffman@22852
   772
  case 0 show "norm (x ^ 0) \<le> norm x ^ 0" by simp
huffman@22852
   773
next
huffman@22852
   774
  case (Suc n)
huffman@22852
   775
  have "norm (x * x ^ n) \<le> norm x * norm (x ^ n)"
huffman@22852
   776
    by (rule norm_mult_ineq)
huffman@22852
   777
  also from Suc have "\<dots> \<le> norm x * norm x ^ n"
huffman@22852
   778
    using norm_ge_zero by (rule mult_left_mono)
huffman@22852
   779
  finally show "norm (x ^ Suc n) \<le> norm x ^ Suc n"
huffman@30273
   780
    by simp
huffman@22852
   781
qed
huffman@22852
   782
huffman@20684
   783
lemma norm_power:
haftmann@31017
   784
  fixes x :: "'a::{real_normed_div_algebra}"
huffman@20684
   785
  shows "norm (x ^ n) = norm x ^ n"
huffman@30273
   786
by (induct n) (simp_all add: norm_mult)
huffman@20684
   787
huffman@31289
   788
text {* Every normed vector space is a metric space. *}
huffman@31285
   789
huffman@31289
   790
instance real_normed_vector < metric_space
huffman@31289
   791
proof
huffman@31289
   792
  fix x y :: 'a show "dist x y = 0 \<longleftrightarrow> x = y"
huffman@31289
   793
    unfolding dist_norm by simp
huffman@31289
   794
next
huffman@31289
   795
  fix x y z :: 'a show "dist x y \<le> dist x z + dist y z"
huffman@31289
   796
    unfolding dist_norm
huffman@31289
   797
    using norm_triangle_ineq4 [of "x - z" "y - z"] by simp
huffman@31289
   798
qed
huffman@31285
   799
huffman@31446
   800
subsection {* Extra type constraints *}
huffman@31446
   801
huffman@31492
   802
text {* Only allow @{term "open"} in class @{text topological_space}. *}
huffman@31492
   803
huffman@31492
   804
setup {* Sign.add_const_constraint
huffman@31492
   805
  (@{const_name "open"}, SOME @{typ "'a::topological_space set \<Rightarrow> bool"}) *}
huffman@31492
   806
huffman@31446
   807
text {* Only allow @{term dist} in class @{text metric_space}. *}
huffman@31446
   808
huffman@31446
   809
setup {* Sign.add_const_constraint
huffman@31446
   810
  (@{const_name dist}, SOME @{typ "'a::metric_space \<Rightarrow> 'a \<Rightarrow> real"}) *}
huffman@31446
   811
huffman@31446
   812
text {* Only allow @{term norm} in class @{text real_normed_vector}. *}
huffman@31446
   813
huffman@31446
   814
setup {* Sign.add_const_constraint
huffman@31446
   815
  (@{const_name norm}, SOME @{typ "'a::real_normed_vector \<Rightarrow> real"}) *}
huffman@31446
   816
huffman@31285
   817
huffman@22972
   818
subsection {* Sign function *}
huffman@22972
   819
nipkow@24506
   820
lemma norm_sgn:
nipkow@24506
   821
  "norm (sgn(x::'a::real_normed_vector)) = (if x = 0 then 0 else 1)"
nipkow@24506
   822
by (simp add: sgn_div_norm norm_scaleR)
huffman@22972
   823
nipkow@24506
   824
lemma sgn_zero [simp]: "sgn(0::'a::real_normed_vector) = 0"
nipkow@24506
   825
by (simp add: sgn_div_norm)
huffman@22972
   826
nipkow@24506
   827
lemma sgn_zero_iff: "(sgn(x::'a::real_normed_vector) = 0) = (x = 0)"
nipkow@24506
   828
by (simp add: sgn_div_norm)
huffman@22972
   829
nipkow@24506
   830
lemma sgn_minus: "sgn (- x) = - sgn(x::'a::real_normed_vector)"
nipkow@24506
   831
by (simp add: sgn_div_norm)
huffman@22972
   832
nipkow@24506
   833
lemma sgn_scaleR:
nipkow@24506
   834
  "sgn (scaleR r x) = scaleR (sgn r) (sgn(x::'a::real_normed_vector))"
nipkow@24506
   835
by (simp add: sgn_div_norm norm_scaleR mult_ac)
huffman@22973
   836
huffman@22972
   837
lemma sgn_one [simp]: "sgn (1::'a::real_normed_algebra_1) = 1"
nipkow@24506
   838
by (simp add: sgn_div_norm)
huffman@22972
   839
huffman@22972
   840
lemma sgn_of_real:
huffman@22972
   841
  "sgn (of_real r::'a::real_normed_algebra_1) = of_real (sgn r)"
huffman@22972
   842
unfolding of_real_def by (simp only: sgn_scaleR sgn_one)
huffman@22972
   843
huffman@22973
   844
lemma sgn_mult:
huffman@22973
   845
  fixes x y :: "'a::real_normed_div_algebra"
huffman@22973
   846
  shows "sgn (x * y) = sgn x * sgn y"
nipkow@24506
   847
by (simp add: sgn_div_norm norm_mult mult_commute)
huffman@22973
   848
huffman@22972
   849
lemma real_sgn_eq: "sgn (x::real) = x / \<bar>x\<bar>"
nipkow@24506
   850
by (simp add: sgn_div_norm divide_inverse)
huffman@22972
   851
huffman@22972
   852
lemma real_sgn_pos: "0 < (x::real) \<Longrightarrow> sgn x = 1"
huffman@22972
   853
unfolding real_sgn_eq by simp
huffman@22972
   854
huffman@22972
   855
lemma real_sgn_neg: "(x::real) < 0 \<Longrightarrow> sgn x = -1"
huffman@22972
   856
unfolding real_sgn_eq by simp
huffman@22972
   857
huffman@22972
   858
huffman@22442
   859
subsection {* Bounded Linear and Bilinear Operators *}
huffman@22442
   860
huffman@22442
   861
locale bounded_linear = additive +
huffman@22442
   862
  constrains f :: "'a::real_normed_vector \<Rightarrow> 'b::real_normed_vector"
huffman@22442
   863
  assumes scaleR: "f (scaleR r x) = scaleR r (f x)"
huffman@22442
   864
  assumes bounded: "\<exists>K. \<forall>x. norm (f x) \<le> norm x * K"
huffman@27443
   865
begin
huffman@22442
   866
huffman@27443
   867
lemma pos_bounded:
huffman@22442
   868
  "\<exists>K>0. \<forall>x. norm (f x) \<le> norm x * K"
huffman@22442
   869
proof -
huffman@22442
   870
  obtain K where K: "\<And>x. norm (f x) \<le> norm x * K"
huffman@22442
   871
    using bounded by fast
huffman@22442
   872
  show ?thesis
huffman@22442
   873
  proof (intro exI impI conjI allI)
huffman@22442
   874
    show "0 < max 1 K"
huffman@22442
   875
      by (rule order_less_le_trans [OF zero_less_one le_maxI1])
huffman@22442
   876
  next
huffman@22442
   877
    fix x
huffman@22442
   878
    have "norm (f x) \<le> norm x * K" using K .
huffman@22442
   879
    also have "\<dots> \<le> norm x * max 1 K"
huffman@22442
   880
      by (rule mult_left_mono [OF le_maxI2 norm_ge_zero])
huffman@22442
   881
    finally show "norm (f x) \<le> norm x * max 1 K" .
huffman@22442
   882
  qed
huffman@22442
   883
qed
huffman@22442
   884
huffman@27443
   885
lemma nonneg_bounded:
huffman@22442
   886
  "\<exists>K\<ge>0. \<forall>x. norm (f x) \<le> norm x * K"
huffman@22442
   887
proof -
huffman@22442
   888
  from pos_bounded
huffman@22442
   889
  show ?thesis by (auto intro: order_less_imp_le)
huffman@22442
   890
qed
huffman@22442
   891
huffman@27443
   892
end
huffman@27443
   893
huffman@22442
   894
locale bounded_bilinear =
huffman@22442
   895
  fixes prod :: "['a::real_normed_vector, 'b::real_normed_vector]
huffman@22442
   896
                 \<Rightarrow> 'c::real_normed_vector"
huffman@22442
   897
    (infixl "**" 70)
huffman@22442
   898
  assumes add_left: "prod (a + a') b = prod a b + prod a' b"
huffman@22442
   899
  assumes add_right: "prod a (b + b') = prod a b + prod a b'"
huffman@22442
   900
  assumes scaleR_left: "prod (scaleR r a) b = scaleR r (prod a b)"
huffman@22442
   901
  assumes scaleR_right: "prod a (scaleR r b) = scaleR r (prod a b)"
huffman@22442
   902
  assumes bounded: "\<exists>K. \<forall>a b. norm (prod a b) \<le> norm a * norm b * K"
huffman@27443
   903
begin
huffman@22442
   904
huffman@27443
   905
lemma pos_bounded:
huffman@22442
   906
  "\<exists>K>0. \<forall>a b. norm (a ** b) \<le> norm a * norm b * K"
huffman@22442
   907
apply (cut_tac bounded, erule exE)
huffman@22442
   908
apply (rule_tac x="max 1 K" in exI, safe)
huffman@22442
   909
apply (rule order_less_le_trans [OF zero_less_one le_maxI1])
huffman@22442
   910
apply (drule spec, drule spec, erule order_trans)
huffman@22442
   911
apply (rule mult_left_mono [OF le_maxI2])
huffman@22442
   912
apply (intro mult_nonneg_nonneg norm_ge_zero)
huffman@22442
   913
done
huffman@22442
   914
huffman@27443
   915
lemma nonneg_bounded:
huffman@22442
   916
  "\<exists>K\<ge>0. \<forall>a b. norm (a ** b) \<le> norm a * norm b * K"
huffman@22442
   917
proof -
huffman@22442
   918
  from pos_bounded
huffman@22442
   919
  show ?thesis by (auto intro: order_less_imp_le)
huffman@22442
   920
qed
huffman@22442
   921
huffman@27443
   922
lemma additive_right: "additive (\<lambda>b. prod a b)"
huffman@22442
   923
by (rule additive.intro, rule add_right)
huffman@22442
   924
huffman@27443
   925
lemma additive_left: "additive (\<lambda>a. prod a b)"
huffman@22442
   926
by (rule additive.intro, rule add_left)
huffman@22442
   927
huffman@27443
   928
lemma zero_left: "prod 0 b = 0"
huffman@22442
   929
by (rule additive.zero [OF additive_left])
huffman@22442
   930
huffman@27443
   931
lemma zero_right: "prod a 0 = 0"
huffman@22442
   932
by (rule additive.zero [OF additive_right])
huffman@22442
   933
huffman@27443
   934
lemma minus_left: "prod (- a) b = - prod a b"
huffman@22442
   935
by (rule additive.minus [OF additive_left])
huffman@22442
   936
huffman@27443
   937
lemma minus_right: "prod a (- b) = - prod a b"
huffman@22442
   938
by (rule additive.minus [OF additive_right])
huffman@22442
   939
huffman@27443
   940
lemma diff_left:
huffman@22442
   941
  "prod (a - a') b = prod a b - prod a' b"
huffman@22442
   942
by (rule additive.diff [OF additive_left])
huffman@22442
   943
huffman@27443
   944
lemma diff_right:
huffman@22442
   945
  "prod a (b - b') = prod a b - prod a b'"
huffman@22442
   946
by (rule additive.diff [OF additive_right])
huffman@22442
   947
huffman@27443
   948
lemma bounded_linear_left:
huffman@22442
   949
  "bounded_linear (\<lambda>a. a ** b)"
huffman@22442
   950
apply (unfold_locales)
huffman@22442
   951
apply (rule add_left)
huffman@22442
   952
apply (rule scaleR_left)
huffman@22442
   953
apply (cut_tac bounded, safe)
huffman@22442
   954
apply (rule_tac x="norm b * K" in exI)
huffman@22442
   955
apply (simp add: mult_ac)
huffman@22442
   956
done
huffman@22442
   957
huffman@27443
   958
lemma bounded_linear_right:
huffman@22442
   959
  "bounded_linear (\<lambda>b. a ** b)"
huffman@22442
   960
apply (unfold_locales)
huffman@22442
   961
apply (rule add_right)
huffman@22442
   962
apply (rule scaleR_right)
huffman@22442
   963
apply (cut_tac bounded, safe)
huffman@22442
   964
apply (rule_tac x="norm a * K" in exI)
huffman@22442
   965
apply (simp add: mult_ac)
huffman@22442
   966
done
huffman@22442
   967
huffman@27443
   968
lemma prod_diff_prod:
huffman@22442
   969
  "(x ** y - a ** b) = (x - a) ** (y - b) + (x - a) ** b + a ** (y - b)"
huffman@22442
   970
by (simp add: diff_left diff_right)
huffman@22442
   971
huffman@27443
   972
end
huffman@27443
   973
wenzelm@30729
   974
interpretation mult:
ballarin@29229
   975
  bounded_bilinear "op * :: 'a \<Rightarrow> 'a \<Rightarrow> 'a::real_normed_algebra"
huffman@22442
   976
apply (rule bounded_bilinear.intro)
huffman@22442
   977
apply (rule left_distrib)
huffman@22442
   978
apply (rule right_distrib)
huffman@22442
   979
apply (rule mult_scaleR_left)
huffman@22442
   980
apply (rule mult_scaleR_right)
huffman@22442
   981
apply (rule_tac x="1" in exI)
huffman@22442
   982
apply (simp add: norm_mult_ineq)
huffman@22442
   983
done
huffman@22442
   984
wenzelm@30729
   985
interpretation mult_left:
ballarin@29229
   986
  bounded_linear "(\<lambda>x::'a::real_normed_algebra. x * y)"
huffman@23127
   987
by (rule mult.bounded_linear_left)
huffman@22442
   988
wenzelm@30729
   989
interpretation mult_right:
ballarin@29229
   990
  bounded_linear "(\<lambda>y::'a::real_normed_algebra. x * y)"
huffman@23127
   991
by (rule mult.bounded_linear_right)
huffman@23127
   992
wenzelm@30729
   993
interpretation divide:
ballarin@29229
   994
  bounded_linear "(\<lambda>x::'a::real_normed_field. x / y)"
huffman@23127
   995
unfolding divide_inverse by (rule mult.bounded_linear_left)
huffman@23120
   996
wenzelm@30729
   997
interpretation scaleR: bounded_bilinear "scaleR"
huffman@22442
   998
apply (rule bounded_bilinear.intro)
huffman@22442
   999
apply (rule scaleR_left_distrib)
huffman@22442
  1000
apply (rule scaleR_right_distrib)
huffman@22973
  1001
apply simp
huffman@22442
  1002
apply (rule scaleR_left_commute)
huffman@22442
  1003
apply (rule_tac x="1" in exI)
huffman@22442
  1004
apply (simp add: norm_scaleR)
huffman@22442
  1005
done
huffman@22442
  1006
wenzelm@30729
  1007
interpretation scaleR_left: bounded_linear "\<lambda>r. scaleR r x"
huffman@23127
  1008
by (rule scaleR.bounded_linear_left)
huffman@23127
  1009
wenzelm@30729
  1010
interpretation scaleR_right: bounded_linear "\<lambda>x. scaleR r x"
huffman@23127
  1011
by (rule scaleR.bounded_linear_right)
huffman@23127
  1012
wenzelm@30729
  1013
interpretation of_real: bounded_linear "\<lambda>r. of_real r"
huffman@23127
  1014
unfolding of_real_def by (rule scaleR.bounded_linear_left)
huffman@22625
  1015
huffman@20504
  1016
end