src/HOL/Auth/Message.ML
author paulson
Thu Sep 26 12:50:48 1996 +0200 (1996-09-26)
changeset 2032 1bbf1bdcaf56
parent 2028 738bb98d65ec
child 2061 b14a08bf61bf
permissions -rw-r--r--
Introduction of "lost" argument
Changed Enemy -> Spy
Ran expandshort
paulson@1839
     1
(*  Title:      HOL/Auth/Message
paulson@1839
     2
    ID:         $Id$
paulson@1839
     3
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
paulson@1839
     4
    Copyright   1996  University of Cambridge
paulson@1839
     5
paulson@1839
     6
Datatypes of agents and messages;
paulson@1913
     7
Inductive relations "parts", "analz" and "synth"
paulson@1839
     8
*)
paulson@1839
     9
paulson@1839
    10
open Message;
paulson@1839
    11
paulson@1839
    12
paulson@1839
    13
(** Inverse of keys **)
paulson@1839
    14
paulson@1839
    15
goal thy "!!K K'. (invKey K = invKey K') = (K=K')";
paulson@1839
    16
by (Step_tac 1);
paulson@2032
    17
by (rtac box_equals 1);
paulson@1839
    18
by (REPEAT (rtac invKey 2));
paulson@1839
    19
by (Asm_simp_tac 1);
paulson@1839
    20
qed "invKey_eq";
paulson@1839
    21
paulson@1839
    22
Addsimps [invKey, invKey_eq];
paulson@1839
    23
paulson@1839
    24
paulson@1839
    25
(**** keysFor operator ****)
paulson@1839
    26
paulson@1839
    27
goalw thy [keysFor_def] "keysFor {} = {}";
paulson@1839
    28
by (Fast_tac 1);
paulson@1839
    29
qed "keysFor_empty";
paulson@1839
    30
paulson@1839
    31
goalw thy [keysFor_def] "keysFor (H Un H') = keysFor H Un keysFor H'";
paulson@1839
    32
by (Fast_tac 1);
paulson@1839
    33
qed "keysFor_Un";
paulson@1839
    34
paulson@1839
    35
goalw thy [keysFor_def] "keysFor (UN i. H i) = (UN i. keysFor (H i))";
paulson@1839
    36
by (Fast_tac 1);
paulson@1839
    37
qed "keysFor_UN";
paulson@1839
    38
paulson@1839
    39
(*Monotonicity*)
paulson@1839
    40
goalw thy [keysFor_def] "!!G H. G<=H ==> keysFor(G) <= keysFor(H)";
paulson@1839
    41
by (Fast_tac 1);
paulson@1839
    42
qed "keysFor_mono";
paulson@1839
    43
paulson@1839
    44
goalw thy [keysFor_def] "keysFor (insert (Agent A) H) = keysFor H";
paulson@1839
    45
by (fast_tac (!claset addss (!simpset)) 1);
paulson@1839
    46
qed "keysFor_insert_Agent";
paulson@1839
    47
paulson@1839
    48
goalw thy [keysFor_def] "keysFor (insert (Nonce N) H) = keysFor H";
paulson@1839
    49
by (fast_tac (!claset addss (!simpset)) 1);
paulson@1839
    50
qed "keysFor_insert_Nonce";
paulson@1839
    51
paulson@1839
    52
goalw thy [keysFor_def] "keysFor (insert (Key K) H) = keysFor H";
paulson@1839
    53
by (fast_tac (!claset addss (!simpset)) 1);
paulson@1839
    54
qed "keysFor_insert_Key";
paulson@1839
    55
paulson@1839
    56
goalw thy [keysFor_def] "keysFor (insert {|X,Y|} H) = keysFor H";
paulson@1839
    57
by (fast_tac (!claset addss (!simpset)) 1);
paulson@1839
    58
qed "keysFor_insert_MPair";
paulson@1839
    59
paulson@1839
    60
goalw thy [keysFor_def]
paulson@1839
    61
    "keysFor (insert (Crypt X K) H) = insert (invKey K) (keysFor H)";
paulson@1839
    62
by (Auto_tac());
paulson@1964
    63
by (Fast_tac 1);
paulson@1839
    64
qed "keysFor_insert_Crypt";
paulson@1839
    65
paulson@1839
    66
Addsimps [keysFor_empty, keysFor_Un, keysFor_UN, 
paulson@2032
    67
          keysFor_insert_Agent, keysFor_insert_Nonce,
paulson@2032
    68
          keysFor_insert_Key, keysFor_insert_MPair,
paulson@2032
    69
          keysFor_insert_Crypt];
paulson@1839
    70
paulson@1839
    71
paulson@1839
    72
(**** Inductive relation "parts" ****)
paulson@1839
    73
paulson@1839
    74
val major::prems = 
paulson@1839
    75
goal thy "[| {|X,Y|} : parts H;       \
paulson@1839
    76
\            [| X : parts H; Y : parts H |] ==> P  \
paulson@1839
    77
\         |] ==> P";
paulson@1839
    78
by (cut_facts_tac [major] 1);
paulson@2032
    79
by (resolve_tac prems 1);
paulson@1839
    80
by (REPEAT (eresolve_tac [asm_rl, parts.Fst, parts.Snd] 1));
paulson@1839
    81
qed "MPair_parts";
paulson@1839
    82
paulson@1839
    83
AddIs  [parts.Inj];
paulson@1929
    84
paulson@1929
    85
val partsEs = [MPair_parts, make_elim parts.Body];
paulson@1929
    86
paulson@1929
    87
AddSEs partsEs;
paulson@1929
    88
(*NB These two rules are UNSAFE in the formal sense, as they discard the
paulson@1929
    89
     compound message.  They work well on THIS FILE, perhaps because its
paulson@1929
    90
     proofs concern only atomic messages.*)
paulson@1839
    91
paulson@1839
    92
goal thy "H <= parts(H)";
paulson@1839
    93
by (Fast_tac 1);
paulson@1839
    94
qed "parts_increasing";
paulson@1839
    95
paulson@1839
    96
(*Monotonicity*)
paulson@1839
    97
goalw thy parts.defs "!!G H. G<=H ==> parts(G) <= parts(H)";
paulson@1839
    98
by (rtac lfp_mono 1);
paulson@1839
    99
by (REPEAT (ares_tac basic_monos 1));
paulson@1839
   100
qed "parts_mono";
paulson@1839
   101
paulson@1839
   102
goal thy "parts{} = {}";
paulson@1839
   103
by (Step_tac 1);
paulson@2032
   104
by (etac parts.induct 1);
paulson@1839
   105
by (ALLGOALS Fast_tac);
paulson@1839
   106
qed "parts_empty";
paulson@1839
   107
Addsimps [parts_empty];
paulson@1839
   108
paulson@1839
   109
goal thy "!!X. X: parts{} ==> P";
paulson@1839
   110
by (Asm_full_simp_tac 1);
paulson@1839
   111
qed "parts_emptyE";
paulson@1839
   112
AddSEs [parts_emptyE];
paulson@1839
   113
paulson@1893
   114
(*WARNING: loops if H = {Y}, therefore must not be repeated!*)
paulson@1893
   115
goal thy "!!H. X: parts H ==> EX Y:H. X: parts {Y}";
paulson@2032
   116
by (etac parts.induct 1);
paulson@1893
   117
by (ALLGOALS Fast_tac);
paulson@1893
   118
qed "parts_singleton";
paulson@1893
   119
paulson@1839
   120
paulson@1839
   121
(** Unions **)
paulson@1839
   122
paulson@1839
   123
goal thy "parts(G) Un parts(H) <= parts(G Un H)";
paulson@1839
   124
by (REPEAT (ares_tac [Un_least, parts_mono, Un_upper1, Un_upper2] 1));
paulson@1839
   125
val parts_Un_subset1 = result();
paulson@1839
   126
paulson@1839
   127
goal thy "parts(G Un H) <= parts(G) Un parts(H)";
paulson@2032
   128
by (rtac subsetI 1);
paulson@2032
   129
by (etac parts.induct 1);
paulson@1839
   130
by (ALLGOALS Fast_tac);
paulson@1839
   131
val parts_Un_subset2 = result();
paulson@1839
   132
paulson@1839
   133
goal thy "parts(G Un H) = parts(G) Un parts(H)";
paulson@1839
   134
by (REPEAT (ares_tac [equalityI, parts_Un_subset1, parts_Un_subset2] 1));
paulson@1839
   135
qed "parts_Un";
paulson@1839
   136
paulson@2011
   137
goal thy "parts (insert X H) = parts {X} Un parts H";
paulson@1852
   138
by (stac (read_instantiate [("A","H")] insert_is_Un) 1);
paulson@2011
   139
by (simp_tac (HOL_ss addsimps [parts_Un]) 1);
paulson@2011
   140
qed "parts_insert";
paulson@2011
   141
paulson@2011
   142
(*TWO inserts to avoid looping.  This rewrite is better than nothing.
paulson@2011
   143
  Not suitable for Addsimps: its behaviour can be strange.*)
paulson@2011
   144
goal thy "parts (insert X (insert Y H)) = parts {X} Un parts {Y} Un parts H";
paulson@2011
   145
by (simp_tac (!simpset addsimps [Un_assoc]) 1);
paulson@2011
   146
by (simp_tac (!simpset addsimps [parts_insert RS sym]) 1);
paulson@1852
   147
qed "parts_insert2";
paulson@1852
   148
paulson@1839
   149
goal thy "(UN x:A. parts(H x)) <= parts(UN x:A. H x)";
paulson@1839
   150
by (REPEAT (ares_tac [UN_least, parts_mono, UN_upper] 1));
paulson@1839
   151
val parts_UN_subset1 = result();
paulson@1839
   152
paulson@1839
   153
goal thy "parts(UN x:A. H x) <= (UN x:A. parts(H x))";
paulson@2032
   154
by (rtac subsetI 1);
paulson@2032
   155
by (etac parts.induct 1);
paulson@1839
   156
by (ALLGOALS Fast_tac);
paulson@1839
   157
val parts_UN_subset2 = result();
paulson@1839
   158
paulson@1839
   159
goal thy "parts(UN x:A. H x) = (UN x:A. parts(H x))";
paulson@1839
   160
by (REPEAT (ares_tac [equalityI, parts_UN_subset1, parts_UN_subset2] 1));
paulson@1839
   161
qed "parts_UN";
paulson@1839
   162
paulson@1839
   163
goal thy "parts(UN x. H x) = (UN x. parts(H x))";
paulson@1839
   164
by (simp_tac (!simpset addsimps [UNION1_def, parts_UN]) 1);
paulson@1839
   165
qed "parts_UN1";
paulson@1839
   166
paulson@1913
   167
(*Added to simplify arguments to parts, analz and synth*)
paulson@1839
   168
Addsimps [parts_Un, parts_UN, parts_UN1];
paulson@1839
   169
paulson@1839
   170
goal thy "insert X (parts H) <= parts(insert X H)";
paulson@1852
   171
by (fast_tac (!claset addEs [impOfSubs parts_mono]) 1);
paulson@1839
   172
qed "parts_insert_subset";
paulson@1839
   173
paulson@1839
   174
(** Idempotence and transitivity **)
paulson@1839
   175
paulson@1839
   176
goal thy "!!H. X: parts (parts H) ==> X: parts H";
paulson@2032
   177
by (etac parts.induct 1);
paulson@1839
   178
by (ALLGOALS Fast_tac);
paulson@1839
   179
qed "parts_partsE";
paulson@1839
   180
AddSEs [parts_partsE];
paulson@1839
   181
paulson@1839
   182
goal thy "parts (parts H) = parts H";
paulson@1839
   183
by (Fast_tac 1);
paulson@1839
   184
qed "parts_idem";
paulson@1839
   185
Addsimps [parts_idem];
paulson@1839
   186
paulson@1839
   187
goal thy "!!H. [| X: parts G;  G <= parts H |] ==> X: parts H";
paulson@1839
   188
by (dtac parts_mono 1);
paulson@1839
   189
by (Fast_tac 1);
paulson@1839
   190
qed "parts_trans";
paulson@1839
   191
paulson@1839
   192
(*Cut*)
paulson@1998
   193
goal thy "!!H. [| Y: parts (insert X H);  X: parts H |] ==> Y: parts H";
paulson@2032
   194
by (etac parts_trans 1);
paulson@1839
   195
by (Fast_tac 1);
paulson@1839
   196
qed "parts_cut";
paulson@1839
   197
paulson@2011
   198
val parts_insertI = impOfSubs (subset_insertI RS parts_mono);
paulson@2011
   199
paulson@1929
   200
goal thy "!!H. X: parts H ==> parts (insert X H) = parts H";
paulson@1929
   201
by (fast_tac (!claset addSEs [parts_cut]
paulson@2011
   202
                      addIs  [parts_insertI]) 1);
paulson@1929
   203
qed "parts_cut_eq";
paulson@1929
   204
paulson@2028
   205
Addsimps [parts_cut_eq];
paulson@2028
   206
paulson@1839
   207
paulson@1839
   208
(** Rewrite rules for pulling out atomic messages **)
paulson@1839
   209
paulson@1839
   210
goal thy "parts (insert (Agent agt) H) = insert (Agent agt) (parts H)";
paulson@1839
   211
by (rtac (parts_insert_subset RSN (2, equalityI)) 1);
paulson@2032
   212
by (rtac subsetI 1);
paulson@2032
   213
by (etac parts.induct 1);
paulson@1839
   214
(*Simplification breaks up equalities between messages;
paulson@1839
   215
  how to make it work for fast_tac??*)
paulson@1839
   216
by (ALLGOALS (fast_tac (!claset addss (!simpset))));
paulson@1839
   217
qed "parts_insert_Agent";
paulson@1839
   218
paulson@1839
   219
goal thy "parts (insert (Nonce N) H) = insert (Nonce N) (parts H)";
paulson@1839
   220
by (rtac (parts_insert_subset RSN (2, equalityI)) 1);
paulson@2032
   221
by (rtac subsetI 1);
paulson@2032
   222
by (etac parts.induct 1);
paulson@1839
   223
by (ALLGOALS (fast_tac (!claset addss (!simpset))));
paulson@1839
   224
qed "parts_insert_Nonce";
paulson@1839
   225
paulson@1839
   226
goal thy "parts (insert (Key K) H) = insert (Key K) (parts H)";
paulson@1839
   227
by (rtac (parts_insert_subset RSN (2, equalityI)) 1);
paulson@2032
   228
by (rtac subsetI 1);
paulson@2032
   229
by (etac parts.induct 1);
paulson@1839
   230
by (ALLGOALS (fast_tac (!claset addss (!simpset))));
paulson@1839
   231
qed "parts_insert_Key";
paulson@1839
   232
paulson@1839
   233
goal thy "parts (insert (Crypt X K) H) = \
paulson@1839
   234
\         insert (Crypt X K) (parts (insert X H))";
paulson@2032
   235
by (rtac equalityI 1);
paulson@2032
   236
by (rtac subsetI 1);
paulson@2032
   237
by (etac parts.induct 1);
paulson@1839
   238
by (Auto_tac());
paulson@2032
   239
by (etac parts.induct 1);
paulson@1839
   240
by (ALLGOALS (best_tac (!claset addIs [parts.Body])));
paulson@1839
   241
qed "parts_insert_Crypt";
paulson@1839
   242
paulson@1839
   243
goal thy "parts (insert {|X,Y|} H) = \
paulson@1839
   244
\         insert {|X,Y|} (parts (insert X (insert Y H)))";
paulson@2032
   245
by (rtac equalityI 1);
paulson@2032
   246
by (rtac subsetI 1);
paulson@2032
   247
by (etac parts.induct 1);
paulson@1839
   248
by (Auto_tac());
paulson@2032
   249
by (etac parts.induct 1);
paulson@1839
   250
by (ALLGOALS (best_tac (!claset addIs [parts.Fst, parts.Snd])));
paulson@1839
   251
qed "parts_insert_MPair";
paulson@1839
   252
paulson@1839
   253
Addsimps [parts_insert_Agent, parts_insert_Nonce, 
paulson@2032
   254
          parts_insert_Key, parts_insert_Crypt, parts_insert_MPair];
paulson@1839
   255
paulson@1839
   256
paulson@2026
   257
goal thy "parts (Key``N) = Key``N";
paulson@2026
   258
by (Auto_tac());
paulson@2032
   259
by (etac parts.induct 1);
paulson@2026
   260
by (Auto_tac());
paulson@2026
   261
qed "parts_image_Key";
paulson@2026
   262
paulson@2026
   263
Addsimps [parts_image_Key];
paulson@2026
   264
paulson@2026
   265
paulson@1913
   266
(**** Inductive relation "analz" ****)
paulson@1839
   267
paulson@1839
   268
val major::prems = 
paulson@1913
   269
goal thy "[| {|X,Y|} : analz H;       \
paulson@1913
   270
\            [| X : analz H; Y : analz H |] ==> P  \
paulson@1839
   271
\         |] ==> P";
paulson@1839
   272
by (cut_facts_tac [major] 1);
paulson@2032
   273
by (resolve_tac prems 1);
paulson@1913
   274
by (REPEAT (eresolve_tac [asm_rl, analz.Fst, analz.Snd] 1));
paulson@1913
   275
qed "MPair_analz";
paulson@1839
   276
paulson@1913
   277
AddIs  [analz.Inj];
paulson@2011
   278
AddSEs [MPair_analz];      (*Perhaps it should NOT be deemed safe!*)
paulson@1913
   279
AddDs  [analz.Decrypt];
paulson@1839
   280
paulson@1913
   281
Addsimps [analz.Inj];
paulson@1885
   282
paulson@1913
   283
goal thy "H <= analz(H)";
paulson@1839
   284
by (Fast_tac 1);
paulson@1913
   285
qed "analz_increasing";
paulson@1839
   286
paulson@1913
   287
goal thy "analz H <= parts H";
paulson@1839
   288
by (rtac subsetI 1);
paulson@2032
   289
by (etac analz.induct 1);
paulson@1839
   290
by (ALLGOALS Fast_tac);
paulson@1913
   291
qed "analz_subset_parts";
paulson@1839
   292
paulson@1913
   293
bind_thm ("not_parts_not_analz", analz_subset_parts RS contra_subsetD);
paulson@1839
   294
paulson@1839
   295
paulson@1913
   296
goal thy "parts (analz H) = parts H";
paulson@2032
   297
by (rtac equalityI 1);
paulson@2032
   298
by (rtac (analz_subset_parts RS parts_mono RS subset_trans) 1);
paulson@1839
   299
by (Simp_tac 1);
paulson@1913
   300
by (fast_tac (!claset addDs [analz_increasing RS parts_mono RS subsetD]) 1);
paulson@1913
   301
qed "parts_analz";
paulson@1913
   302
Addsimps [parts_analz];
paulson@1839
   303
paulson@1913
   304
goal thy "analz (parts H) = parts H";
paulson@1885
   305
by (Auto_tac());
paulson@2032
   306
by (etac analz.induct 1);
paulson@1885
   307
by (Auto_tac());
paulson@1913
   308
qed "analz_parts";
paulson@1913
   309
Addsimps [analz_parts];
paulson@1885
   310
paulson@1839
   311
(*Monotonicity; Lemma 1 of Lowe*)
paulson@1913
   312
goalw thy analz.defs "!!G H. G<=H ==> analz(G) <= analz(H)";
paulson@1839
   313
by (rtac lfp_mono 1);
paulson@1839
   314
by (REPEAT (ares_tac basic_monos 1));
paulson@1913
   315
qed "analz_mono";
paulson@1839
   316
paulson@1839
   317
(** General equational properties **)
paulson@1839
   318
paulson@1913
   319
goal thy "analz{} = {}";
paulson@1839
   320
by (Step_tac 1);
paulson@2032
   321
by (etac analz.induct 1);
paulson@1839
   322
by (ALLGOALS Fast_tac);
paulson@1913
   323
qed "analz_empty";
paulson@1913
   324
Addsimps [analz_empty];
paulson@1839
   325
paulson@1913
   326
(*Converse fails: we can analz more from the union than from the 
paulson@1839
   327
  separate parts, as a key in one might decrypt a message in the other*)
paulson@1913
   328
goal thy "analz(G) Un analz(H) <= analz(G Un H)";
paulson@1913
   329
by (REPEAT (ares_tac [Un_least, analz_mono, Un_upper1, Un_upper2] 1));
paulson@1913
   330
qed "analz_Un";
paulson@1839
   331
paulson@1913
   332
goal thy "insert X (analz H) <= analz(insert X H)";
paulson@1913
   333
by (fast_tac (!claset addEs [impOfSubs analz_mono]) 1);
paulson@1913
   334
qed "analz_insert";
paulson@1839
   335
paulson@1839
   336
(** Rewrite rules for pulling out atomic messages **)
paulson@1839
   337
paulson@1913
   338
goal thy "analz (insert (Agent agt) H) = insert (Agent agt) (analz H)";
paulson@1913
   339
by (rtac (analz_insert RSN (2, equalityI)) 1);
paulson@2032
   340
by (rtac subsetI 1);
paulson@2032
   341
by (etac analz.induct 1);
paulson@1839
   342
(*Simplification breaks up equalities between messages;
paulson@1839
   343
  how to make it work for fast_tac??*)
paulson@1839
   344
by (ALLGOALS (fast_tac (!claset addss (!simpset))));
paulson@1913
   345
qed "analz_insert_Agent";
paulson@1839
   346
paulson@1913
   347
goal thy "analz (insert (Nonce N) H) = insert (Nonce N) (analz H)";
paulson@1913
   348
by (rtac (analz_insert RSN (2, equalityI)) 1);
paulson@2032
   349
by (rtac subsetI 1);
paulson@2032
   350
by (etac analz.induct 1);
paulson@1839
   351
by (ALLGOALS (fast_tac (!claset addss (!simpset))));
paulson@1913
   352
qed "analz_insert_Nonce";
paulson@1839
   353
paulson@1839
   354
(*Can only pull out Keys if they are not needed to decrypt the rest*)
paulson@1839
   355
goalw thy [keysFor_def]
paulson@1913
   356
    "!!K. K ~: keysFor (analz H) ==>  \
paulson@1913
   357
\         analz (insert (Key K) H) = insert (Key K) (analz H)";
paulson@1913
   358
by (rtac (analz_insert RSN (2, equalityI)) 1);
paulson@2032
   359
by (rtac subsetI 1);
paulson@2032
   360
by (etac analz.induct 1);
paulson@1839
   361
by (ALLGOALS (fast_tac (!claset addss (!simpset))));
paulson@1913
   362
qed "analz_insert_Key";
paulson@1839
   363
paulson@1913
   364
goal thy "analz (insert {|X,Y|} H) = \
paulson@1913
   365
\         insert {|X,Y|} (analz (insert X (insert Y H)))";
paulson@2032
   366
by (rtac equalityI 1);
paulson@2032
   367
by (rtac subsetI 1);
paulson@2032
   368
by (etac analz.induct 1);
paulson@1885
   369
by (Auto_tac());
paulson@2032
   370
by (etac analz.induct 1);
paulson@1913
   371
by (ALLGOALS (deepen_tac (!claset addIs [analz.Fst, analz.Snd, analz.Decrypt]) 0));
paulson@1913
   372
qed "analz_insert_MPair";
paulson@1885
   373
paulson@1885
   374
(*Can pull out enCrypted message if the Key is not known*)
paulson@1913
   375
goal thy "!!H. Key (invKey K) ~: analz H ==>  \
paulson@1913
   376
\              analz (insert (Crypt X K) H) = \
paulson@1913
   377
\              insert (Crypt X K) (analz H)";
paulson@1913
   378
by (rtac (analz_insert RSN (2, equalityI)) 1);
paulson@2032
   379
by (rtac subsetI 1);
paulson@2032
   380
by (etac analz.induct 1);
paulson@1839
   381
by (ALLGOALS (fast_tac (!claset addss (!simpset))));
paulson@1913
   382
qed "analz_insert_Crypt";
paulson@1839
   383
paulson@1913
   384
goal thy "!!H. Key (invKey K) : analz H ==>  \
paulson@1913
   385
\              analz (insert (Crypt X K) H) <= \
paulson@1913
   386
\              insert (Crypt X K) (analz (insert X H))";
paulson@2032
   387
by (rtac subsetI 1);
paulson@1913
   388
by (eres_inst_tac [("za","x")] analz.induct 1);
paulson@1839
   389
by (ALLGOALS (fast_tac (!claset addss (!simpset))));
paulson@1839
   390
val lemma1 = result();
paulson@1839
   391
paulson@1913
   392
goal thy "!!H. Key (invKey K) : analz H ==>  \
paulson@1913
   393
\              insert (Crypt X K) (analz (insert X H)) <= \
paulson@1913
   394
\              analz (insert (Crypt X K) H)";
paulson@1839
   395
by (Auto_tac());
paulson@1913
   396
by (eres_inst_tac [("za","x")] analz.induct 1);
paulson@1839
   397
by (Auto_tac());
paulson@1913
   398
by (best_tac (!claset addIs [subset_insertI RS analz_mono RS subsetD,
paulson@2032
   399
                             analz.Decrypt]) 1);
paulson@1839
   400
val lemma2 = result();
paulson@1839
   401
paulson@1913
   402
goal thy "!!H. Key (invKey K) : analz H ==>  \
paulson@1913
   403
\              analz (insert (Crypt X K) H) = \
paulson@1913
   404
\              insert (Crypt X K) (analz (insert X H))";
paulson@1839
   405
by (REPEAT (ares_tac [equalityI, lemma1, lemma2] 1));
paulson@1913
   406
qed "analz_insert_Decrypt";
paulson@1839
   407
paulson@1885
   408
(*Case analysis: either the message is secure, or it is not!
paulson@1946
   409
  Effective, but can cause subgoals to blow up!
paulson@1885
   410
  Use with expand_if;  apparently split_tac does not cope with patterns
paulson@1913
   411
  such as "analz (insert (Crypt X' K) H)" *)
paulson@1913
   412
goal thy "analz (insert (Crypt X' K) H) = \
paulson@1913
   413
\         (if (Key (invKey K)  : analz H) then    \
paulson@1913
   414
\               insert (Crypt X' K) (analz (insert X' H)) \
paulson@1913
   415
\          else insert (Crypt X' K) (analz H))";
paulson@1913
   416
by (excluded_middle_tac "Key (invKey K)  : analz H " 1);
paulson@1913
   417
by (ALLGOALS (asm_simp_tac (!simpset addsimps [analz_insert_Crypt, 
paulson@2032
   418
                                               analz_insert_Decrypt])));
paulson@1913
   419
qed "analz_Crypt_if";
paulson@1885
   420
paulson@1913
   421
Addsimps [analz_insert_Agent, analz_insert_Nonce, 
paulson@2032
   422
          analz_insert_Key, analz_insert_MPair, 
paulson@2032
   423
          analz_Crypt_if];
paulson@1839
   424
paulson@1839
   425
(*This rule supposes "for the sake of argument" that we have the key.*)
paulson@1913
   426
goal thy  "analz (insert (Crypt X K) H) <=  \
paulson@1913
   427
\          insert (Crypt X K) (analz (insert X H))";
paulson@2032
   428
by (rtac subsetI 1);
paulson@2032
   429
by (etac analz.induct 1);
paulson@1839
   430
by (Auto_tac());
paulson@1913
   431
qed "analz_insert_Crypt_subset";
paulson@1839
   432
paulson@1839
   433
paulson@2026
   434
goal thy "analz (Key``N) = Key``N";
paulson@2026
   435
by (Auto_tac());
paulson@2032
   436
by (etac analz.induct 1);
paulson@2026
   437
by (Auto_tac());
paulson@2026
   438
qed "analz_image_Key";
paulson@2026
   439
paulson@2026
   440
Addsimps [analz_image_Key];
paulson@2026
   441
paulson@2026
   442
paulson@1839
   443
(** Idempotence and transitivity **)
paulson@1839
   444
paulson@1913
   445
goal thy "!!H. X: analz (analz H) ==> X: analz H";
paulson@2032
   446
by (etac analz.induct 1);
paulson@1839
   447
by (ALLGOALS Fast_tac);
paulson@1913
   448
qed "analz_analzE";
paulson@1913
   449
AddSEs [analz_analzE];
paulson@1839
   450
paulson@1913
   451
goal thy "analz (analz H) = analz H";
paulson@1839
   452
by (Fast_tac 1);
paulson@1913
   453
qed "analz_idem";
paulson@1913
   454
Addsimps [analz_idem];
paulson@1839
   455
paulson@1913
   456
goal thy "!!H. [| X: analz G;  G <= analz H |] ==> X: analz H";
paulson@1913
   457
by (dtac analz_mono 1);
paulson@1839
   458
by (Fast_tac 1);
paulson@1913
   459
qed "analz_trans";
paulson@1839
   460
paulson@1839
   461
(*Cut; Lemma 2 of Lowe*)
paulson@1998
   462
goal thy "!!H. [| Y: analz (insert X H);  X: analz H |] ==> Y: analz H";
paulson@2032
   463
by (etac analz_trans 1);
paulson@1839
   464
by (Fast_tac 1);
paulson@1913
   465
qed "analz_cut";
paulson@1839
   466
paulson@1839
   467
(*Cut can be proved easily by induction on
paulson@1913
   468
   "!!H. Y: analz (insert X H) ==> X: analz H --> Y: analz H"
paulson@1839
   469
*)
paulson@1839
   470
paulson@1885
   471
paulson@1913
   472
(** A congruence rule for "analz" **)
paulson@1885
   473
paulson@1913
   474
goal thy "!!H. [| analz G <= analz G'; analz H <= analz H' \
paulson@1913
   475
\              |] ==> analz (G Un H) <= analz (G' Un H')";
paulson@1885
   476
by (Step_tac 1);
paulson@2032
   477
by (etac analz.induct 1);
paulson@1913
   478
by (ALLGOALS (best_tac (!claset addIs [analz_mono RS subsetD])));
paulson@1913
   479
qed "analz_subset_cong";
paulson@1885
   480
paulson@1913
   481
goal thy "!!H. [| analz G = analz G'; analz H = analz H' \
paulson@1913
   482
\              |] ==> analz (G Un H) = analz (G' Un H')";
paulson@1913
   483
by (REPEAT_FIRST (ares_tac [equalityI, analz_subset_cong]
paulson@2032
   484
          ORELSE' etac equalityE));
paulson@1913
   485
qed "analz_cong";
paulson@1885
   486
paulson@1885
   487
paulson@1913
   488
goal thy "!!H. analz H = analz H' ==> analz(insert X H) = analz(insert X H')";
paulson@1885
   489
by (asm_simp_tac (!simpset addsimps [insert_def] 
paulson@2032
   490
                           setloop (rtac analz_cong)) 1);
paulson@1913
   491
qed "analz_insert_cong";
paulson@1885
   492
paulson@1913
   493
(*If there are no pairs or encryptions then analz does nothing*)
paulson@1839
   494
goal thy "!!H. [| ALL X Y. {|X,Y|} ~: H;  ALL X K. Crypt X K ~: H |] ==> \
paulson@1913
   495
\         analz H = H";
paulson@1839
   496
by (Step_tac 1);
paulson@2032
   497
by (etac analz.induct 1);
paulson@1839
   498
by (ALLGOALS Fast_tac);
paulson@1913
   499
qed "analz_trivial";
paulson@1839
   500
paulson@1839
   501
(*Helps to prove Fake cases*)
paulson@1913
   502
goal thy "!!X. X: analz (UN i. analz (H i)) ==> X: analz (UN i. H i)";
paulson@2032
   503
by (etac analz.induct 1);
paulson@1913
   504
by (ALLGOALS (fast_tac (!claset addEs [impOfSubs analz_mono])));
paulson@1839
   505
val lemma = result();
paulson@1839
   506
paulson@1913
   507
goal thy "analz (UN i. analz (H i)) = analz (UN i. H i)";
paulson@1839
   508
by (fast_tac (!claset addIs [lemma]
paulson@2032
   509
                      addEs [impOfSubs analz_mono]) 1);
paulson@1913
   510
qed "analz_UN_analz";
paulson@1913
   511
Addsimps [analz_UN_analz];
paulson@1839
   512
paulson@1839
   513
paulson@1913
   514
(**** Inductive relation "synth" ****)
paulson@1839
   515
paulson@1913
   516
AddIs  synth.intrs;
paulson@1839
   517
paulson@2011
   518
(*Can only produce a nonce or key if it is already known,
paulson@2011
   519
  but can synth a pair or encryption from its components...*)
paulson@2011
   520
val mk_cases = synth.mk_cases msg.simps;
paulson@2011
   521
paulson@2011
   522
(*NO Agent_synth, as any Agent name can be synthd*)
paulson@2011
   523
val Nonce_synth = mk_cases "Nonce n : synth H";
paulson@2011
   524
val Key_synth   = mk_cases "Key K : synth H";
paulson@2011
   525
val MPair_synth = mk_cases "{|X,Y|} : synth H";
paulson@2011
   526
val Crypt_synth = mk_cases "Crypt X K : synth H";
paulson@2011
   527
paulson@2011
   528
AddSEs [Nonce_synth, Key_synth, MPair_synth, Crypt_synth];
paulson@2011
   529
paulson@1913
   530
goal thy "H <= synth(H)";
paulson@1839
   531
by (Fast_tac 1);
paulson@1913
   532
qed "synth_increasing";
paulson@1839
   533
paulson@1839
   534
(*Monotonicity*)
paulson@1913
   535
goalw thy synth.defs "!!G H. G<=H ==> synth(G) <= synth(H)";
paulson@1839
   536
by (rtac lfp_mono 1);
paulson@1839
   537
by (REPEAT (ares_tac basic_monos 1));
paulson@1913
   538
qed "synth_mono";
paulson@1839
   539
paulson@1839
   540
(** Unions **)
paulson@1839
   541
paulson@1913
   542
(*Converse fails: we can synth more from the union than from the 
paulson@1839
   543
  separate parts, building a compound message using elements of each.*)
paulson@1913
   544
goal thy "synth(G) Un synth(H) <= synth(G Un H)";
paulson@1913
   545
by (REPEAT (ares_tac [Un_least, synth_mono, Un_upper1, Un_upper2] 1));
paulson@1913
   546
qed "synth_Un";
paulson@1839
   547
paulson@1913
   548
goal thy "insert X (synth H) <= synth(insert X H)";
paulson@1913
   549
by (fast_tac (!claset addEs [impOfSubs synth_mono]) 1);
paulson@1913
   550
qed "synth_insert";
paulson@1885
   551
paulson@1839
   552
(** Idempotence and transitivity **)
paulson@1839
   553
paulson@1913
   554
goal thy "!!H. X: synth (synth H) ==> X: synth H";
paulson@2032
   555
by (etac synth.induct 1);
paulson@1839
   556
by (ALLGOALS Fast_tac);
paulson@1913
   557
qed "synth_synthE";
paulson@1913
   558
AddSEs [synth_synthE];
paulson@1839
   559
paulson@1913
   560
goal thy "synth (synth H) = synth H";
paulson@1839
   561
by (Fast_tac 1);
paulson@1913
   562
qed "synth_idem";
paulson@1839
   563
paulson@1913
   564
goal thy "!!H. [| X: synth G;  G <= synth H |] ==> X: synth H";
paulson@1913
   565
by (dtac synth_mono 1);
paulson@1839
   566
by (Fast_tac 1);
paulson@1913
   567
qed "synth_trans";
paulson@1839
   568
paulson@1839
   569
(*Cut; Lemma 2 of Lowe*)
paulson@1998
   570
goal thy "!!H. [| Y: synth (insert X H);  X: synth H |] ==> Y: synth H";
paulson@2032
   571
by (etac synth_trans 1);
paulson@1839
   572
by (Fast_tac 1);
paulson@1913
   573
qed "synth_cut";
paulson@1839
   574
paulson@1946
   575
goal thy "Agent A : synth H";
paulson@1946
   576
by (Fast_tac 1);
paulson@1946
   577
qed "Agent_synth";
paulson@1946
   578
paulson@1913
   579
goal thy "(Nonce N : synth H) = (Nonce N : H)";
paulson@1839
   580
by (Fast_tac 1);
paulson@1913
   581
qed "Nonce_synth_eq";
paulson@1839
   582
paulson@1913
   583
goal thy "(Key K : synth H) = (Key K : H)";
paulson@1839
   584
by (Fast_tac 1);
paulson@1913
   585
qed "Key_synth_eq";
paulson@1839
   586
paulson@2011
   587
goal thy "!!K. Key K ~: H ==> (Crypt X K : synth H) = (Crypt X K: H)";
paulson@2011
   588
by (Fast_tac 1);
paulson@2011
   589
qed "Crypt_synth_eq";
paulson@2011
   590
paulson@2011
   591
Addsimps [Agent_synth, Nonce_synth_eq, Key_synth_eq, Crypt_synth_eq];
paulson@1839
   592
paulson@1839
   593
paulson@1839
   594
goalw thy [keysFor_def]
paulson@1913
   595
    "keysFor (synth H) = keysFor H Un invKey``{K. Key K : H}";
paulson@1839
   596
by (Fast_tac 1);
paulson@1913
   597
qed "keysFor_synth";
paulson@1913
   598
Addsimps [keysFor_synth];
paulson@1839
   599
paulson@1839
   600
paulson@1913
   601
(*** Combinations of parts, analz and synth ***)
paulson@1839
   602
paulson@1913
   603
goal thy "parts (synth H) = parts H Un synth H";
paulson@2032
   604
by (rtac equalityI 1);
paulson@2032
   605
by (rtac subsetI 1);
paulson@2032
   606
by (etac parts.induct 1);
paulson@1839
   607
by (ALLGOALS
paulson@1913
   608
    (best_tac (!claset addIs ((synth_increasing RS parts_mono RS subsetD)
paulson@2032
   609
                             ::parts.intrs))));
paulson@1913
   610
qed "parts_synth";
paulson@1913
   611
Addsimps [parts_synth];
paulson@1839
   612
paulson@1913
   613
goal thy "analz (synth H) = analz H Un synth H";
paulson@2032
   614
by (rtac equalityI 1);
paulson@2032
   615
by (rtac subsetI 1);
paulson@2032
   616
by (etac analz.induct 1);
paulson@1839
   617
by (best_tac
paulson@1913
   618
    (!claset addIs [synth_increasing RS analz_mono RS subsetD]) 5);
paulson@1839
   619
(*Strange that best_tac just can't hack this one...*)
paulson@1913
   620
by (ALLGOALS (deepen_tac (!claset addIs analz.intrs) 0));
paulson@1913
   621
qed "analz_synth";
paulson@1913
   622
Addsimps [analz_synth];
paulson@1839
   623
paulson@2032
   624
(*Hard to prove; still needed now that there's only one Spy?*)
paulson@1913
   625
goal thy "analz (UN i. synth (H i)) = \
paulson@1913
   626
\         analz (UN i. H i) Un (UN i. synth (H i))";
paulson@2032
   627
by (rtac equalityI 1);
paulson@2032
   628
by (rtac subsetI 1);
paulson@2032
   629
by (etac analz.induct 1);
paulson@1839
   630
by (best_tac
paulson@1913
   631
    (!claset addEs [impOfSubs synth_increasing,
paulson@2032
   632
                    impOfSubs analz_mono]) 5);
paulson@1839
   633
by (Best_tac 1);
paulson@1913
   634
by (deepen_tac (!claset addIs [analz.Fst]) 0 1);
paulson@1913
   635
by (deepen_tac (!claset addIs [analz.Snd]) 0 1);
paulson@1913
   636
by (deepen_tac (!claset addSEs [analz.Decrypt]
paulson@2032
   637
                        addIs  [analz.Decrypt]) 0 1);
paulson@1913
   638
qed "analz_UN1_synth";
paulson@1913
   639
Addsimps [analz_UN1_synth];
paulson@1929
   640
paulson@1946
   641
paulson@1946
   642
(** For reasoning about the Fake rule in traces **)
paulson@1946
   643
paulson@1929
   644
goal thy "!!Y. X: G ==> parts(insert X H) <= parts G Un parts H";
paulson@2032
   645
by (rtac ([parts_mono, parts_Un_subset2] MRS subset_trans) 1);
paulson@1929
   646
by (Fast_tac 1);
paulson@1929
   647
qed "parts_insert_subset_Un";
paulson@1929
   648
paulson@1946
   649
(*More specifically for Fake*)
paulson@1946
   650
goal thy "!!H. X: synth (analz G) ==> \
paulson@1946
   651
\              parts (insert X H) <= synth (analz G) Un parts G Un parts H";
paulson@2032
   652
by (dtac parts_insert_subset_Un 1);
paulson@1946
   653
by (Full_simp_tac 1);
paulson@1946
   654
by (Deepen_tac 0 1);
paulson@1946
   655
qed "Fake_parts_insert";
paulson@1946
   656
paulson@1946
   657
goal thy "!!H. [| X: synth (analz G); G <= H |] ==> \
paulson@1946
   658
\              analz (insert X H) <= synth (analz H) Un analz H";
paulson@2032
   659
by (rtac subsetI 1);
paulson@1946
   660
by (subgoal_tac "x : analz (synth (analz H))" 1);
paulson@1946
   661
by (best_tac (!claset addIs [impOfSubs (analz_mono RS synth_mono)]
paulson@1946
   662
                      addSEs [impOfSubs analz_mono]) 2);
paulson@1946
   663
by (Full_simp_tac 1);
paulson@1946
   664
by (Fast_tac 1);
paulson@1946
   665
qed "Fake_analz_insert";
paulson@1929
   666
paulson@2011
   667
goal thy "(X: analz H & X: parts H) = (X: analz H)";
paulson@2011
   668
by (fast_tac (!claset addDs [impOfSubs analz_subset_parts]) 1);
paulson@2011
   669
val analz_conj_parts = result();
paulson@2011
   670
paulson@2011
   671
goal thy "(X: analz H | X: parts H) = (X: parts H)";
paulson@2011
   672
by (fast_tac (!claset addDs [impOfSubs analz_subset_parts]) 1);
paulson@2011
   673
val analz_disj_parts = result();
paulson@2011
   674
paulson@2011
   675
AddIffs [analz_conj_parts, analz_disj_parts];
paulson@2011
   676
paulson@1998
   677
(*Without this equation, other rules for synth and analz would yield
paulson@1998
   678
  redundant cases*)
paulson@1998
   679
goal thy "({|X,Y|} : synth (analz H)) = \
paulson@1998
   680
\         (X : synth (analz H) & Y : synth (analz H))";
paulson@1998
   681
by (Fast_tac 1);
paulson@1998
   682
qed "MPair_synth_analz";
paulson@1998
   683
paulson@1998
   684
AddIffs [MPair_synth_analz];
paulson@1929
   685
paulson@1929
   686
paulson@1929
   687
(*We do NOT want Crypt... messages broken up in protocols!!*)
paulson@1929
   688
Delrules partsEs;
paulson@1929
   689