src/HOL/Nat.thy
author haftmann
Wed Nov 22 10:20:16 2006 +0100 (2006-11-22)
changeset 21456 1c2b9df41e98
parent 21411 a9671d4f7c03
child 21672 29c346b165d4
permissions -rw-r--r--
cleanup
clasohm@923
     1
(*  Title:      HOL/Nat.thy
clasohm@923
     2
    ID:         $Id$
wenzelm@21243
     3
    Author:     Tobias Nipkow and Lawrence C Paulson and Markus Wenzel
clasohm@923
     4
wenzelm@9436
     5
Type "nat" is a linear order, and a datatype; arithmetic operators + -
wenzelm@9436
     6
and * (for div, mod and dvd, see theory Divides).
clasohm@923
     7
*)
clasohm@923
     8
berghofe@13449
     9
header {* Natural numbers *}
berghofe@13449
    10
nipkow@15131
    11
theory Nat
nipkow@15140
    12
imports Wellfounded_Recursion Ring_and_Field
wenzelm@21243
    13
uses ("arith_data.ML")
nipkow@15131
    14
begin
berghofe@13449
    15
berghofe@13449
    16
subsection {* Type @{text ind} *}
berghofe@13449
    17
berghofe@13449
    18
typedecl ind
berghofe@13449
    19
wenzelm@19573
    20
axiomatization
wenzelm@19573
    21
  Zero_Rep :: ind and
wenzelm@19573
    22
  Suc_Rep :: "ind => ind"
wenzelm@19573
    23
where
berghofe@13449
    24
  -- {* the axiom of infinity in 2 parts *}
wenzelm@19573
    25
  inj_Suc_Rep:          "inj Suc_Rep" and
paulson@14267
    26
  Suc_Rep_not_Zero_Rep: "Suc_Rep x \<noteq> Zero_Rep"
wenzelm@19573
    27
berghofe@13449
    28
berghofe@13449
    29
subsection {* Type nat *}
berghofe@13449
    30
berghofe@13449
    31
text {* Type definition *}
berghofe@13449
    32
berghofe@13449
    33
consts
berghofe@13449
    34
  Nat :: "ind set"
berghofe@13449
    35
berghofe@13449
    36
inductive Nat
berghofe@13449
    37
intros
berghofe@13449
    38
  Zero_RepI: "Zero_Rep : Nat"
berghofe@13449
    39
  Suc_RepI: "i : Nat ==> Suc_Rep i : Nat"
berghofe@13449
    40
berghofe@13449
    41
global
berghofe@13449
    42
berghofe@13449
    43
typedef (open Nat)
wenzelm@21243
    44
  nat = Nat
wenzelm@21243
    45
proof
wenzelm@21243
    46
  show "Zero_Rep : Nat" by (rule Nat.Zero_RepI)
wenzelm@21243
    47
qed
berghofe@13449
    48
berghofe@13449
    49
text {* Abstract constants and syntax *}
berghofe@13449
    50
berghofe@13449
    51
consts
berghofe@13449
    52
  Suc :: "nat => nat"
berghofe@13449
    53
  pred_nat :: "(nat * nat) set"
berghofe@13449
    54
berghofe@13449
    55
local
berghofe@13449
    56
berghofe@13449
    57
defs
paulson@18648
    58
  Suc_def:      "Suc == (%n. Abs_Nat (Suc_Rep (Rep_Nat n)))"
berghofe@13449
    59
  pred_nat_def: "pred_nat == {(m, n). n = Suc m}"
berghofe@13449
    60
haftmann@21456
    61
instance nat :: "{ord, zero, one}"
haftmann@21456
    62
  Zero_nat_def: "0 == Abs_Nat Zero_Rep"
haftmann@21456
    63
  One_nat_def [simp]: "1 == Suc 0"
berghofe@13449
    64
  less_def: "m < n == (m, n) : trancl pred_nat"
haftmann@21456
    65
  le_def: "m \<le> (n::nat) == ~ (n < m)" ..
berghofe@13449
    66
berghofe@13449
    67
text {* Induction *}
clasohm@923
    68
berghofe@13449
    69
theorem nat_induct: "P 0 ==> (!!n. P n ==> P (Suc n)) ==> P n"
berghofe@13449
    70
  apply (unfold Zero_nat_def Suc_def)
berghofe@13449
    71
  apply (rule Rep_Nat_inverse [THEN subst]) -- {* types force good instantiation *}
berghofe@13449
    72
  apply (erule Rep_Nat [THEN Nat.induct])
nipkow@17589
    73
  apply (iprover elim: Abs_Nat_inverse [THEN subst])
berghofe@13449
    74
  done
berghofe@13449
    75
berghofe@13449
    76
text {* Distinctness of constructors *}
berghofe@13449
    77
paulson@14267
    78
lemma Suc_not_Zero [iff]: "Suc m \<noteq> 0"
paulson@15413
    79
  by (simp add: Zero_nat_def Suc_def Abs_Nat_inject Rep_Nat Suc_RepI Zero_RepI
paulson@15413
    80
                Suc_Rep_not_Zero_Rep) 
berghofe@13449
    81
paulson@14267
    82
lemma Zero_not_Suc [iff]: "0 \<noteq> Suc m"
berghofe@13449
    83
  by (rule not_sym, rule Suc_not_Zero not_sym)
berghofe@13449
    84
berghofe@13449
    85
lemma Suc_neq_Zero: "Suc m = 0 ==> R"
berghofe@13449
    86
  by (rule notE, rule Suc_not_Zero)
berghofe@13449
    87
berghofe@13449
    88
lemma Zero_neq_Suc: "0 = Suc m ==> R"
berghofe@13449
    89
  by (rule Suc_neq_Zero, erule sym)
berghofe@13449
    90
berghofe@13449
    91
text {* Injectiveness of @{term Suc} *}
berghofe@13449
    92
nipkow@16733
    93
lemma inj_Suc[simp]: "inj_on Suc N"
paulson@15413
    94
  by (simp add: Suc_def inj_on_def Abs_Nat_inject Rep_Nat Suc_RepI 
paulson@15413
    95
                inj_Suc_Rep [THEN inj_eq] Rep_Nat_inject) 
berghofe@13449
    96
berghofe@13449
    97
lemma Suc_inject: "Suc x = Suc y ==> x = y"
berghofe@13449
    98
  by (rule inj_Suc [THEN injD])
berghofe@13449
    99
berghofe@13449
   100
lemma Suc_Suc_eq [iff]: "(Suc m = Suc n) = (m = n)"
paulson@15413
   101
  by (rule inj_Suc [THEN inj_eq])
berghofe@13449
   102
paulson@14267
   103
lemma nat_not_singleton: "(\<forall>x. x = (0::nat)) = False"
berghofe@13449
   104
  by auto
berghofe@13449
   105
haftmann@21411
   106
text {* size of a datatype value *}
wenzelm@21243
   107
haftmann@21411
   108
class size =
haftmann@21411
   109
  fixes size :: "'a \<Rightarrow> nat"
wenzelm@21243
   110
berghofe@13449
   111
text {* @{typ nat} is a datatype *}
wenzelm@9436
   112
berghofe@5188
   113
rep_datatype nat
berghofe@13449
   114
  distinct  Suc_not_Zero Zero_not_Suc
berghofe@13449
   115
  inject    Suc_Suc_eq
haftmann@21411
   116
  induction nat_induct
haftmann@21411
   117
haftmann@21411
   118
declare nat.induct [case_names 0 Suc, induct type: nat]
haftmann@21411
   119
declare nat.exhaust [case_names 0 Suc, cases type: nat]
berghofe@13449
   120
paulson@14267
   121
lemma n_not_Suc_n: "n \<noteq> Suc n"
berghofe@13449
   122
  by (induct n) simp_all
berghofe@13449
   123
paulson@14267
   124
lemma Suc_n_not_n: "Suc t \<noteq> t"
berghofe@13449
   125
  by (rule not_sym, rule n_not_Suc_n)
berghofe@13449
   126
berghofe@13449
   127
text {* A special form of induction for reasoning
berghofe@13449
   128
  about @{term "m < n"} and @{term "m - n"} *}
berghofe@13449
   129
berghofe@13449
   130
theorem diff_induct: "(!!x. P x 0) ==> (!!y. P 0 (Suc y)) ==>
berghofe@13449
   131
    (!!x y. P x y ==> P (Suc x) (Suc y)) ==> P m n"
paulson@14208
   132
  apply (rule_tac x = m in spec)
paulson@15251
   133
  apply (induct n)
berghofe@13449
   134
  prefer 2
berghofe@13449
   135
  apply (rule allI)
nipkow@17589
   136
  apply (induct_tac x, iprover+)
berghofe@13449
   137
  done
berghofe@13449
   138
berghofe@13449
   139
subsection {* Basic properties of "less than" *}
berghofe@13449
   140
berghofe@13449
   141
lemma wf_pred_nat: "wf pred_nat"
paulson@14208
   142
  apply (unfold wf_def pred_nat_def, clarify)
paulson@14208
   143
  apply (induct_tac x, blast+)
berghofe@13449
   144
  done
berghofe@13449
   145
berghofe@13449
   146
lemma wf_less: "wf {(x, y::nat). x < y}"
berghofe@13449
   147
  apply (unfold less_def)
paulson@14208
   148
  apply (rule wf_pred_nat [THEN wf_trancl, THEN wf_subset], blast)
berghofe@13449
   149
  done
berghofe@13449
   150
berghofe@13449
   151
lemma less_eq: "((m, n) : pred_nat^+) = (m < n)"
berghofe@13449
   152
  apply (unfold less_def)
berghofe@13449
   153
  apply (rule refl)
berghofe@13449
   154
  done
berghofe@13449
   155
berghofe@13449
   156
subsubsection {* Introduction properties *}
berghofe@13449
   157
berghofe@13449
   158
lemma less_trans: "i < j ==> j < k ==> i < (k::nat)"
berghofe@13449
   159
  apply (unfold less_def)
paulson@14208
   160
  apply (rule trans_trancl [THEN transD], assumption+)
berghofe@13449
   161
  done
berghofe@13449
   162
berghofe@13449
   163
lemma lessI [iff]: "n < Suc n"
berghofe@13449
   164
  apply (unfold less_def pred_nat_def)
berghofe@13449
   165
  apply (simp add: r_into_trancl)
berghofe@13449
   166
  done
berghofe@13449
   167
berghofe@13449
   168
lemma less_SucI: "i < j ==> i < Suc j"
paulson@14208
   169
  apply (rule less_trans, assumption)
berghofe@13449
   170
  apply (rule lessI)
berghofe@13449
   171
  done
berghofe@13449
   172
berghofe@13449
   173
lemma zero_less_Suc [iff]: "0 < Suc n"
berghofe@13449
   174
  apply (induct n)
berghofe@13449
   175
  apply (rule lessI)
berghofe@13449
   176
  apply (erule less_trans)
berghofe@13449
   177
  apply (rule lessI)
berghofe@13449
   178
  done
berghofe@13449
   179
berghofe@13449
   180
subsubsection {* Elimination properties *}
berghofe@13449
   181
berghofe@13449
   182
lemma less_not_sym: "n < m ==> ~ m < (n::nat)"
berghofe@13449
   183
  apply (unfold less_def)
berghofe@13449
   184
  apply (blast intro: wf_pred_nat wf_trancl [THEN wf_asym])
berghofe@13449
   185
  done
berghofe@13449
   186
berghofe@13449
   187
lemma less_asym:
berghofe@13449
   188
  assumes h1: "(n::nat) < m" and h2: "~ P ==> m < n" shows P
berghofe@13449
   189
  apply (rule contrapos_np)
berghofe@13449
   190
  apply (rule less_not_sym)
berghofe@13449
   191
  apply (rule h1)
berghofe@13449
   192
  apply (erule h2)
berghofe@13449
   193
  done
berghofe@13449
   194
berghofe@13449
   195
lemma less_not_refl: "~ n < (n::nat)"
berghofe@13449
   196
  apply (unfold less_def)
berghofe@13449
   197
  apply (rule wf_pred_nat [THEN wf_trancl, THEN wf_not_refl])
berghofe@13449
   198
  done
berghofe@13449
   199
berghofe@13449
   200
lemma less_irrefl [elim!]: "(n::nat) < n ==> R"
berghofe@13449
   201
  by (rule notE, rule less_not_refl)
berghofe@13449
   202
paulson@14267
   203
lemma less_not_refl2: "n < m ==> m \<noteq> (n::nat)" by blast
berghofe@13449
   204
paulson@14267
   205
lemma less_not_refl3: "(s::nat) < t ==> s \<noteq> t"
berghofe@13449
   206
  by (rule not_sym, rule less_not_refl2)
berghofe@13449
   207
berghofe@13449
   208
lemma lessE:
berghofe@13449
   209
  assumes major: "i < k"
berghofe@13449
   210
  and p1: "k = Suc i ==> P" and p2: "!!j. i < j ==> k = Suc j ==> P"
berghofe@13449
   211
  shows P
paulson@14208
   212
  apply (rule major [unfolded less_def pred_nat_def, THEN tranclE], simp_all)
berghofe@13449
   213
  apply (erule p1)
berghofe@13449
   214
  apply (rule p2)
paulson@14208
   215
  apply (simp add: less_def pred_nat_def, assumption)
berghofe@13449
   216
  done
berghofe@13449
   217
berghofe@13449
   218
lemma not_less0 [iff]: "~ n < (0::nat)"
berghofe@13449
   219
  by (blast elim: lessE)
berghofe@13449
   220
berghofe@13449
   221
lemma less_zeroE: "(n::nat) < 0 ==> R"
berghofe@13449
   222
  by (rule notE, rule not_less0)
berghofe@13449
   223
berghofe@13449
   224
lemma less_SucE: assumes major: "m < Suc n"
berghofe@13449
   225
  and less: "m < n ==> P" and eq: "m = n ==> P" shows P
berghofe@13449
   226
  apply (rule major [THEN lessE])
paulson@14208
   227
  apply (rule eq, blast)
paulson@14208
   228
  apply (rule less, blast)
berghofe@13449
   229
  done
berghofe@13449
   230
berghofe@13449
   231
lemma less_Suc_eq: "(m < Suc n) = (m < n | m = n)"
berghofe@13449
   232
  by (blast elim!: less_SucE intro: less_trans)
berghofe@13449
   233
berghofe@13449
   234
lemma less_one [iff]: "(n < (1::nat)) = (n = 0)"
berghofe@13449
   235
  by (simp add: less_Suc_eq)
berghofe@13449
   236
berghofe@13449
   237
lemma less_Suc0 [iff]: "(n < Suc 0) = (n = 0)"
berghofe@13449
   238
  by (simp add: less_Suc_eq)
berghofe@13449
   239
berghofe@13449
   240
lemma Suc_mono: "m < n ==> Suc m < Suc n"
berghofe@13449
   241
  by (induct n) (fast elim: less_trans lessE)+
berghofe@13449
   242
berghofe@13449
   243
text {* "Less than" is a linear ordering *}
berghofe@13449
   244
lemma less_linear: "m < n | m = n | n < (m::nat)"
paulson@15251
   245
  apply (induct m)
paulson@15251
   246
  apply (induct n)
berghofe@13449
   247
  apply (rule refl [THEN disjI1, THEN disjI2])
berghofe@13449
   248
  apply (rule zero_less_Suc [THEN disjI1])
berghofe@13449
   249
  apply (blast intro: Suc_mono less_SucI elim: lessE)
berghofe@13449
   250
  done
berghofe@13449
   251
nipkow@14302
   252
text {* "Less than" is antisymmetric, sort of *}
nipkow@14302
   253
lemma less_antisym: "\<lbrakk> \<not> n < m; n < Suc m \<rbrakk> \<Longrightarrow> m = n"
nipkow@14302
   254
apply(simp only:less_Suc_eq)
nipkow@14302
   255
apply blast
nipkow@14302
   256
done
nipkow@14302
   257
paulson@14267
   258
lemma nat_neq_iff: "((m::nat) \<noteq> n) = (m < n | n < m)"
berghofe@13449
   259
  using less_linear by blast
berghofe@13449
   260
berghofe@13449
   261
lemma nat_less_cases: assumes major: "(m::nat) < n ==> P n m"
berghofe@13449
   262
  and eqCase: "m = n ==> P n m" and lessCase: "n<m ==> P n m"
berghofe@13449
   263
  shows "P n m"
berghofe@13449
   264
  apply (rule less_linear [THEN disjE])
berghofe@13449
   265
  apply (erule_tac [2] disjE)
berghofe@13449
   266
  apply (erule lessCase)
berghofe@13449
   267
  apply (erule sym [THEN eqCase])
berghofe@13449
   268
  apply (erule major)
berghofe@13449
   269
  done
berghofe@13449
   270
berghofe@13449
   271
berghofe@13449
   272
subsubsection {* Inductive (?) properties *}
berghofe@13449
   273
paulson@14267
   274
lemma Suc_lessI: "m < n ==> Suc m \<noteq> n ==> Suc m < n"
berghofe@13449
   275
  apply (simp add: nat_neq_iff)
berghofe@13449
   276
  apply (blast elim!: less_irrefl less_SucE elim: less_asym)
berghofe@13449
   277
  done
berghofe@13449
   278
berghofe@13449
   279
lemma Suc_lessD: "Suc m < n ==> m < n"
berghofe@13449
   280
  apply (induct n)
berghofe@13449
   281
  apply (fast intro!: lessI [THEN less_SucI] elim: less_trans lessE)+
berghofe@13449
   282
  done
berghofe@13449
   283
berghofe@13449
   284
lemma Suc_lessE: assumes major: "Suc i < k"
berghofe@13449
   285
  and minor: "!!j. i < j ==> k = Suc j ==> P" shows P
berghofe@13449
   286
  apply (rule major [THEN lessE])
berghofe@13449
   287
  apply (erule lessI [THEN minor])
paulson@14208
   288
  apply (erule Suc_lessD [THEN minor], assumption)
berghofe@13449
   289
  done
berghofe@13449
   290
berghofe@13449
   291
lemma Suc_less_SucD: "Suc m < Suc n ==> m < n"
berghofe@13449
   292
  by (blast elim: lessE dest: Suc_lessD)
wenzelm@4104
   293
berghofe@16635
   294
lemma Suc_less_eq [iff, code]: "(Suc m < Suc n) = (m < n)"
berghofe@13449
   295
  apply (rule iffI)
berghofe@13449
   296
  apply (erule Suc_less_SucD)
berghofe@13449
   297
  apply (erule Suc_mono)
berghofe@13449
   298
  done
berghofe@13449
   299
berghofe@13449
   300
lemma less_trans_Suc:
berghofe@13449
   301
  assumes le: "i < j" shows "j < k ==> Suc i < k"
paulson@14208
   302
  apply (induct k, simp_all)
berghofe@13449
   303
  apply (insert le)
berghofe@13449
   304
  apply (simp add: less_Suc_eq)
berghofe@13449
   305
  apply (blast dest: Suc_lessD)
berghofe@13449
   306
  done
berghofe@13449
   307
berghofe@16635
   308
lemma [code]: "((n::nat) < 0) = False" by simp
berghofe@16635
   309
lemma [code]: "(0 < Suc n) = True" by simp
berghofe@16635
   310
berghofe@13449
   311
text {* Can be used with @{text less_Suc_eq} to get @{term "n = m | n < m"} *}
berghofe@13449
   312
lemma not_less_eq: "(~ m < n) = (n < Suc m)"
paulson@14208
   313
by (rule_tac m = m and n = n in diff_induct, simp_all)
berghofe@13449
   314
berghofe@13449
   315
text {* Complete induction, aka course-of-values induction *}
berghofe@13449
   316
lemma nat_less_induct:
paulson@14267
   317
  assumes prem: "!!n. \<forall>m::nat. m < n --> P m ==> P n" shows "P n"
berghofe@13449
   318
  apply (rule_tac a=n in wf_induct)
berghofe@13449
   319
  apply (rule wf_pred_nat [THEN wf_trancl])
berghofe@13449
   320
  apply (rule prem)
paulson@14208
   321
  apply (unfold less_def, assumption)
berghofe@13449
   322
  done
berghofe@13449
   323
paulson@14131
   324
lemmas less_induct = nat_less_induct [rule_format, case_names less]
paulson@14131
   325
wenzelm@21243
   326
paulson@14131
   327
subsection {* Properties of "less than or equal" *}
berghofe@13449
   328
berghofe@13449
   329
text {* Was @{text le_eq_less_Suc}, but this orientation is more useful *}
paulson@14267
   330
lemma less_Suc_eq_le: "(m < Suc n) = (m \<le> n)"
berghofe@13449
   331
  by (unfold le_def, rule not_less_eq [symmetric])
berghofe@13449
   332
paulson@14267
   333
lemma le_imp_less_Suc: "m \<le> n ==> m < Suc n"
berghofe@13449
   334
  by (rule less_Suc_eq_le [THEN iffD2])
berghofe@13449
   335
paulson@14267
   336
lemma le0 [iff]: "(0::nat) \<le> n"
berghofe@13449
   337
  by (unfold le_def, rule not_less0)
berghofe@13449
   338
paulson@14267
   339
lemma Suc_n_not_le_n: "~ Suc n \<le> n"
berghofe@13449
   340
  by (simp add: le_def)
berghofe@13449
   341
paulson@14267
   342
lemma le_0_eq [iff]: "((i::nat) \<le> 0) = (i = 0)"
berghofe@13449
   343
  by (induct i) (simp_all add: le_def)
berghofe@13449
   344
paulson@14267
   345
lemma le_Suc_eq: "(m \<le> Suc n) = (m \<le> n | m = Suc n)"
berghofe@13449
   346
  by (simp del: less_Suc_eq_le add: less_Suc_eq_le [symmetric] less_Suc_eq)
berghofe@13449
   347
paulson@14267
   348
lemma le_SucE: "m \<le> Suc n ==> (m \<le> n ==> R) ==> (m = Suc n ==> R) ==> R"
nipkow@17589
   349
  by (drule le_Suc_eq [THEN iffD1], iprover+)
berghofe@13449
   350
paulson@14267
   351
lemma Suc_leI: "m < n ==> Suc(m) \<le> n"
berghofe@13449
   352
  apply (simp add: le_def less_Suc_eq)
berghofe@13449
   353
  apply (blast elim!: less_irrefl less_asym)
berghofe@13449
   354
  done -- {* formerly called lessD *}
berghofe@13449
   355
paulson@14267
   356
lemma Suc_leD: "Suc(m) \<le> n ==> m \<le> n"
berghofe@13449
   357
  by (simp add: le_def less_Suc_eq)
berghofe@13449
   358
berghofe@13449
   359
text {* Stronger version of @{text Suc_leD} *}
paulson@14267
   360
lemma Suc_le_lessD: "Suc m \<le> n ==> m < n"
berghofe@13449
   361
  apply (simp add: le_def less_Suc_eq)
berghofe@13449
   362
  using less_linear
berghofe@13449
   363
  apply blast
berghofe@13449
   364
  done
berghofe@13449
   365
paulson@14267
   366
lemma Suc_le_eq: "(Suc m \<le> n) = (m < n)"
berghofe@13449
   367
  by (blast intro: Suc_leI Suc_le_lessD)
berghofe@13449
   368
paulson@14267
   369
lemma le_SucI: "m \<le> n ==> m \<le> Suc n"
berghofe@13449
   370
  by (unfold le_def) (blast dest: Suc_lessD)
berghofe@13449
   371
paulson@14267
   372
lemma less_imp_le: "m < n ==> m \<le> (n::nat)"
berghofe@13449
   373
  by (unfold le_def) (blast elim: less_asym)
berghofe@13449
   374
paulson@14267
   375
text {* For instance, @{text "(Suc m < Suc n) = (Suc m \<le> n) = (m < n)"} *}
berghofe@13449
   376
lemmas le_simps = less_imp_le less_Suc_eq_le Suc_le_eq
berghofe@13449
   377
berghofe@13449
   378
paulson@14267
   379
text {* Equivalence of @{term "m \<le> n"} and @{term "m < n | m = n"} *}
berghofe@13449
   380
paulson@14267
   381
lemma le_imp_less_or_eq: "m \<le> n ==> m < n | m = (n::nat)"
berghofe@13449
   382
  apply (unfold le_def)
berghofe@13449
   383
  using less_linear
berghofe@13449
   384
  apply (blast elim: less_irrefl less_asym)
berghofe@13449
   385
  done
berghofe@13449
   386
paulson@14267
   387
lemma less_or_eq_imp_le: "m < n | m = n ==> m \<le> (n::nat)"
berghofe@13449
   388
  apply (unfold le_def)
berghofe@13449
   389
  using less_linear
berghofe@13449
   390
  apply (blast elim!: less_irrefl elim: less_asym)
berghofe@13449
   391
  done
berghofe@13449
   392
paulson@14267
   393
lemma le_eq_less_or_eq: "(m \<le> (n::nat)) = (m < n | m=n)"
nipkow@17589
   394
  by (iprover intro: less_or_eq_imp_le le_imp_less_or_eq)
berghofe@13449
   395
berghofe@13449
   396
text {* Useful with @{text Blast}. *}
paulson@14267
   397
lemma eq_imp_le: "(m::nat) = n ==> m \<le> n"
berghofe@13449
   398
  by (rule less_or_eq_imp_le, rule disjI2)
berghofe@13449
   399
paulson@14267
   400
lemma le_refl: "n \<le> (n::nat)"
berghofe@13449
   401
  by (simp add: le_eq_less_or_eq)
berghofe@13449
   402
paulson@14267
   403
lemma le_less_trans: "[| i \<le> j; j < k |] ==> i < (k::nat)"
berghofe@13449
   404
  by (blast dest!: le_imp_less_or_eq intro: less_trans)
berghofe@13449
   405
paulson@14267
   406
lemma less_le_trans: "[| i < j; j \<le> k |] ==> i < (k::nat)"
berghofe@13449
   407
  by (blast dest!: le_imp_less_or_eq intro: less_trans)
berghofe@13449
   408
paulson@14267
   409
lemma le_trans: "[| i \<le> j; j \<le> k |] ==> i \<le> (k::nat)"
berghofe@13449
   410
  by (blast dest!: le_imp_less_or_eq intro: less_or_eq_imp_le less_trans)
berghofe@13449
   411
paulson@14267
   412
lemma le_anti_sym: "[| m \<le> n; n \<le> m |] ==> m = (n::nat)"
berghofe@13449
   413
  by (blast dest!: le_imp_less_or_eq elim!: less_irrefl elim: less_asym)
berghofe@13449
   414
paulson@14267
   415
lemma Suc_le_mono [iff]: "(Suc n \<le> Suc m) = (n \<le> m)"
berghofe@13449
   416
  by (simp add: le_simps)
berghofe@13449
   417
berghofe@13449
   418
text {* Axiom @{text order_less_le} of class @{text order}: *}
paulson@14267
   419
lemma nat_less_le: "((m::nat) < n) = (m \<le> n & m \<noteq> n)"
berghofe@13449
   420
  by (simp add: le_def nat_neq_iff) (blast elim!: less_asym)
berghofe@13449
   421
paulson@14267
   422
lemma le_neq_implies_less: "(m::nat) \<le> n ==> m \<noteq> n ==> m < n"
berghofe@13449
   423
  by (rule iffD2, rule nat_less_le, rule conjI)
berghofe@13449
   424
berghofe@13449
   425
text {* Axiom @{text linorder_linear} of class @{text linorder}: *}
paulson@14267
   426
lemma nat_le_linear: "(m::nat) \<le> n | n \<le> m"
berghofe@13449
   427
  apply (simp add: le_eq_less_or_eq)
berghofe@13449
   428
  using less_linear
berghofe@13449
   429
  apply blast
berghofe@13449
   430
  done
berghofe@13449
   431
paulson@14341
   432
text {* Type {@typ nat} is a wellfounded linear order *}
paulson@14341
   433
wenzelm@14691
   434
instance nat :: "{order, linorder, wellorder}"
wenzelm@14691
   435
  by intro_classes
wenzelm@14691
   436
    (assumption |
wenzelm@14691
   437
      rule le_refl le_trans le_anti_sym nat_less_le nat_le_linear wf_less)+
paulson@14341
   438
nipkow@15921
   439
lemmas linorder_neqE_nat = linorder_neqE[where 'a = nat]
nipkow@15921
   440
berghofe@13449
   441
lemma not_less_less_Suc_eq: "~ n < m ==> (n < Suc m) = (n = m)"
berghofe@13449
   442
  by (blast elim!: less_SucE)
berghofe@13449
   443
berghofe@13449
   444
text {*
berghofe@13449
   445
  Rewrite @{term "n < Suc m"} to @{term "n = m"}
paulson@14267
   446
  if @{term "~ n < m"} or @{term "m \<le> n"} hold.
berghofe@13449
   447
  Not suitable as default simprules because they often lead to looping
berghofe@13449
   448
*}
paulson@14267
   449
lemma le_less_Suc_eq: "m \<le> n ==> (n < Suc m) = (n = m)"
berghofe@13449
   450
  by (rule not_less_less_Suc_eq, rule leD)
berghofe@13449
   451
berghofe@13449
   452
lemmas not_less_simps = not_less_less_Suc_eq le_less_Suc_eq
berghofe@13449
   453
berghofe@13449
   454
berghofe@13449
   455
text {*
berghofe@13449
   456
  Re-orientation of the equations @{text "0 = x"} and @{text "1 = x"}. 
berghofe@13449
   457
  No longer added as simprules (they loop) 
berghofe@13449
   458
  but via @{text reorient_simproc} in Bin
berghofe@13449
   459
*}
berghofe@13449
   460
berghofe@13449
   461
text {* Polymorphic, not just for @{typ nat} *}
berghofe@13449
   462
lemma zero_reorient: "(0 = x) = (x = 0)"
berghofe@13449
   463
  by auto
berghofe@13449
   464
berghofe@13449
   465
lemma one_reorient: "(1 = x) = (x = 1)"
berghofe@13449
   466
  by auto
berghofe@13449
   467
wenzelm@21243
   468
berghofe@13449
   469
subsection {* Arithmetic operators *}
oheimb@1660
   470
haftmann@21411
   471
class power =
haftmann@21411
   472
  fixes power :: "'a \<Rightarrow> nat \<Rightarrow> 'a"            (infixr "\<^loc>^" 80)
wenzelm@9436
   473
berghofe@13449
   474
text {* arithmetic operators @{text "+ -"} and @{text "*"} *}
berghofe@13449
   475
haftmann@21456
   476
instance nat :: "{plus, minus, times}" ..
wenzelm@9436
   477
berghofe@13449
   478
primrec
berghofe@13449
   479
  add_0:    "0 + n = n"
berghofe@13449
   480
  add_Suc:  "Suc m + n = Suc (m + n)"
berghofe@13449
   481
berghofe@13449
   482
primrec
berghofe@13449
   483
  diff_0:   "m - 0 = m"
berghofe@13449
   484
  diff_Suc: "m - Suc n = (case m - n of 0 => 0 | Suc k => k)"
wenzelm@9436
   485
wenzelm@9436
   486
primrec
berghofe@13449
   487
  mult_0:   "0 * n = 0"
berghofe@13449
   488
  mult_Suc: "Suc m * n = n + (m * n)"
berghofe@13449
   489
paulson@14341
   490
text {* These two rules ease the use of primitive recursion. 
paulson@14341
   491
NOTE USE OF @{text "=="} *}
berghofe@13449
   492
lemma def_nat_rec_0: "(!!n. f n == nat_rec c h n) ==> f 0 = c"
berghofe@13449
   493
  by simp
berghofe@13449
   494
berghofe@13449
   495
lemma def_nat_rec_Suc: "(!!n. f n == nat_rec c h n) ==> f (Suc n) = h n (f n)"
berghofe@13449
   496
  by simp
berghofe@13449
   497
paulson@14267
   498
lemma not0_implies_Suc: "n \<noteq> 0 ==> \<exists>m. n = Suc m"
berghofe@13449
   499
  by (case_tac n) simp_all
berghofe@13449
   500
paulson@14267
   501
lemma gr_implies_not0: "!!n::nat. m<n ==> n \<noteq> 0"
berghofe@13449
   502
  by (case_tac n) simp_all
berghofe@13449
   503
paulson@14267
   504
lemma neq0_conv [iff]: "!!n::nat. (n \<noteq> 0) = (0 < n)"
berghofe@13449
   505
  by (case_tac n) simp_all
berghofe@13449
   506
berghofe@13449
   507
text {* This theorem is useful with @{text blast} *}
berghofe@13449
   508
lemma gr0I: "((n::nat) = 0 ==> False) ==> 0 < n"
nipkow@17589
   509
  by (rule iffD1, rule neq0_conv, iprover)
berghofe@13449
   510
paulson@14267
   511
lemma gr0_conv_Suc: "(0 < n) = (\<exists>m. n = Suc m)"
berghofe@13449
   512
  by (fast intro: not0_implies_Suc)
berghofe@13449
   513
berghofe@13449
   514
lemma not_gr0 [iff]: "!!n::nat. (~ (0 < n)) = (n = 0)"
berghofe@13449
   515
  apply (rule iffI)
paulson@14208
   516
  apply (rule ccontr, simp_all)
berghofe@13449
   517
  done
berghofe@13449
   518
paulson@14267
   519
lemma Suc_le_D: "(Suc n \<le> m') ==> (? m. m' = Suc m)"
berghofe@13449
   520
  by (induct m') simp_all
berghofe@13449
   521
berghofe@13449
   522
text {* Useful in certain inductive arguments *}
paulson@14267
   523
lemma less_Suc_eq_0_disj: "(m < Suc n) = (m = 0 | (\<exists>j. m = Suc j & j < n))"
berghofe@13449
   524
  by (case_tac m) simp_all
berghofe@13449
   525
paulson@14341
   526
lemma nat_induct2: "[|P 0; P (Suc 0); !!k. P k ==> P (Suc (Suc k))|] ==> P n"
berghofe@13449
   527
  apply (rule nat_less_induct)
berghofe@13449
   528
  apply (case_tac n)
berghofe@13449
   529
  apply (case_tac [2] nat)
berghofe@13449
   530
  apply (blast intro: less_trans)+
berghofe@13449
   531
  done
berghofe@13449
   532
wenzelm@21243
   533
paulson@15341
   534
subsection {* @{text LEAST} theorems for type @{typ nat}*}
berghofe@13449
   535
paulson@14267
   536
lemma Least_Suc:
paulson@14267
   537
     "[| P n; ~ P 0 |] ==> (LEAST n. P n) = Suc (LEAST m. P(Suc m))"
paulson@14208
   538
  apply (case_tac "n", auto)
berghofe@13449
   539
  apply (frule LeastI)
berghofe@13449
   540
  apply (drule_tac P = "%x. P (Suc x) " in LeastI)
paulson@14267
   541
  apply (subgoal_tac " (LEAST x. P x) \<le> Suc (LEAST x. P (Suc x))")
berghofe@13449
   542
  apply (erule_tac [2] Least_le)
paulson@14208
   543
  apply (case_tac "LEAST x. P x", auto)
berghofe@13449
   544
  apply (drule_tac P = "%x. P (Suc x) " in Least_le)
berghofe@13449
   545
  apply (blast intro: order_antisym)
berghofe@13449
   546
  done
berghofe@13449
   547
paulson@14267
   548
lemma Least_Suc2:
paulson@14267
   549
     "[|P n; Q m; ~P 0; !k. P (Suc k) = Q k|] ==> Least P = Suc (Least Q)"
paulson@14267
   550
  by (erule (1) Least_Suc [THEN ssubst], simp)
berghofe@13449
   551
berghofe@13449
   552
berghofe@13449
   553
subsection {* @{term min} and @{term max} *}
berghofe@13449
   554
berghofe@13449
   555
lemma min_0L [simp]: "min 0 n = (0::nat)"
berghofe@13449
   556
  by (rule min_leastL) simp
berghofe@13449
   557
berghofe@13449
   558
lemma min_0R [simp]: "min n 0 = (0::nat)"
berghofe@13449
   559
  by (rule min_leastR) simp
berghofe@13449
   560
berghofe@13449
   561
lemma min_Suc_Suc [simp]: "min (Suc m) (Suc n) = Suc (min m n)"
berghofe@13449
   562
  by (simp add: min_of_mono)
berghofe@13449
   563
berghofe@13449
   564
lemma max_0L [simp]: "max 0 n = (n::nat)"
berghofe@13449
   565
  by (rule max_leastL) simp
berghofe@13449
   566
berghofe@13449
   567
lemma max_0R [simp]: "max n 0 = (n::nat)"
berghofe@13449
   568
  by (rule max_leastR) simp
berghofe@13449
   569
berghofe@13449
   570
lemma max_Suc_Suc [simp]: "max (Suc m) (Suc n) = Suc(max m n)"
berghofe@13449
   571
  by (simp add: max_of_mono)
berghofe@13449
   572
berghofe@13449
   573
berghofe@13449
   574
subsection {* Basic rewrite rules for the arithmetic operators *}
berghofe@13449
   575
berghofe@13449
   576
text {* Difference *}
berghofe@13449
   577
berghofe@14193
   578
lemma diff_0_eq_0 [simp, code]: "0 - n = (0::nat)"
paulson@15251
   579
  by (induct n) simp_all
berghofe@13449
   580
berghofe@14193
   581
lemma diff_Suc_Suc [simp, code]: "Suc(m) - Suc(n) = m - n"
paulson@15251
   582
  by (induct n) simp_all
berghofe@13449
   583
berghofe@13449
   584
berghofe@13449
   585
text {*
berghofe@13449
   586
  Could be (and is, below) generalized in various ways
berghofe@13449
   587
  However, none of the generalizations are currently in the simpset,
berghofe@13449
   588
  and I dread to think what happens if I put them in
berghofe@13449
   589
*}
berghofe@13449
   590
lemma Suc_pred [simp]: "0 < n ==> Suc (n - Suc 0) = n"
berghofe@13449
   591
  by (simp split add: nat.split)
berghofe@13449
   592
berghofe@14193
   593
declare diff_Suc [simp del, code del]
berghofe@13449
   594
berghofe@13449
   595
berghofe@13449
   596
subsection {* Addition *}
berghofe@13449
   597
berghofe@13449
   598
lemma add_0_right [simp]: "m + 0 = (m::nat)"
berghofe@13449
   599
  by (induct m) simp_all
berghofe@13449
   600
berghofe@13449
   601
lemma add_Suc_right [simp]: "m + Suc n = Suc (m + n)"
berghofe@13449
   602
  by (induct m) simp_all
berghofe@13449
   603
haftmann@19890
   604
lemma add_Suc_shift [code]: "Suc m + n = m + Suc n"
haftmann@19890
   605
  by simp
berghofe@14193
   606
berghofe@13449
   607
berghofe@13449
   608
text {* Associative law for addition *}
paulson@14267
   609
lemma nat_add_assoc: "(m + n) + k = m + ((n + k)::nat)"
berghofe@13449
   610
  by (induct m) simp_all
berghofe@13449
   611
berghofe@13449
   612
text {* Commutative law for addition *}
paulson@14267
   613
lemma nat_add_commute: "m + n = n + (m::nat)"
berghofe@13449
   614
  by (induct m) simp_all
berghofe@13449
   615
paulson@14267
   616
lemma nat_add_left_commute: "x + (y + z) = y + ((x + z)::nat)"
berghofe@13449
   617
  apply (rule mk_left_commute [of "op +"])
paulson@14267
   618
  apply (rule nat_add_assoc)
paulson@14267
   619
  apply (rule nat_add_commute)
berghofe@13449
   620
  done
berghofe@13449
   621
paulson@14331
   622
lemma nat_add_left_cancel [simp]: "(k + m = k + n) = (m = (n::nat))"
berghofe@13449
   623
  by (induct k) simp_all
berghofe@13449
   624
paulson@14331
   625
lemma nat_add_right_cancel [simp]: "(m + k = n + k) = (m=(n::nat))"
berghofe@13449
   626
  by (induct k) simp_all
berghofe@13449
   627
paulson@14331
   628
lemma nat_add_left_cancel_le [simp]: "(k + m \<le> k + n) = (m\<le>(n::nat))"
berghofe@13449
   629
  by (induct k) simp_all
berghofe@13449
   630
paulson@14331
   631
lemma nat_add_left_cancel_less [simp]: "(k + m < k + n) = (m<(n::nat))"
berghofe@13449
   632
  by (induct k) simp_all
berghofe@13449
   633
berghofe@13449
   634
text {* Reasoning about @{text "m + 0 = 0"}, etc. *}
berghofe@13449
   635
berghofe@13449
   636
lemma add_is_0 [iff]: "!!m::nat. (m + n = 0) = (m = 0 & n = 0)"
berghofe@13449
   637
  by (case_tac m) simp_all
berghofe@13449
   638
berghofe@13449
   639
lemma add_is_1: "(m+n= Suc 0) = (m= Suc 0 & n=0 | m=0 & n= Suc 0)"
berghofe@13449
   640
  by (case_tac m) simp_all
berghofe@13449
   641
berghofe@13449
   642
lemma one_is_add: "(Suc 0 = m + n) = (m = Suc 0 & n = 0 | m = 0 & n = Suc 0)"
berghofe@13449
   643
  by (rule trans, rule eq_commute, rule add_is_1)
berghofe@13449
   644
berghofe@13449
   645
lemma add_gr_0 [iff]: "!!m::nat. (0 < m + n) = (0 < m | 0 < n)"
berghofe@13449
   646
  by (simp del: neq0_conv add: neq0_conv [symmetric])
berghofe@13449
   647
berghofe@13449
   648
lemma add_eq_self_zero: "!!m::nat. m + n = m ==> n = 0"
berghofe@13449
   649
  apply (drule add_0_right [THEN ssubst])
paulson@14267
   650
  apply (simp add: nat_add_assoc del: add_0_right)
berghofe@13449
   651
  done
berghofe@13449
   652
paulson@14267
   653
nipkow@16733
   654
lemma inj_on_add_nat[simp]: "inj_on (%n::nat. n+k) N"
nipkow@16733
   655
apply(induct k)
nipkow@16733
   656
 apply simp
nipkow@16733
   657
apply(drule comp_inj_on[OF _ inj_Suc])
nipkow@16733
   658
apply (simp add:o_def)
nipkow@16733
   659
done
nipkow@16733
   660
nipkow@16733
   661
paulson@14267
   662
subsection {* Multiplication *}
paulson@14267
   663
paulson@14267
   664
text {* right annihilation in product *}
paulson@14267
   665
lemma mult_0_right [simp]: "(m::nat) * 0 = 0"
paulson@14267
   666
  by (induct m) simp_all
paulson@14267
   667
paulson@14267
   668
text {* right successor law for multiplication *}
paulson@14267
   669
lemma mult_Suc_right [simp]: "m * Suc n = m + (m * n)"
paulson@14267
   670
  by (induct m) (simp_all add: nat_add_left_commute)
paulson@14267
   671
paulson@14267
   672
text {* Commutative law for multiplication *}
paulson@14267
   673
lemma nat_mult_commute: "m * n = n * (m::nat)"
paulson@14267
   674
  by (induct m) simp_all
paulson@14267
   675
paulson@14267
   676
text {* addition distributes over multiplication *}
paulson@14267
   677
lemma add_mult_distrib: "(m + n) * k = (m * k) + ((n * k)::nat)"
paulson@14267
   678
  by (induct m) (simp_all add: nat_add_assoc nat_add_left_commute)
paulson@14267
   679
paulson@14267
   680
lemma add_mult_distrib2: "k * (m + n) = (k * m) + ((k * n)::nat)"
paulson@14267
   681
  by (induct m) (simp_all add: nat_add_assoc)
paulson@14267
   682
paulson@14267
   683
text {* Associative law for multiplication *}
paulson@14267
   684
lemma nat_mult_assoc: "(m * n) * k = m * ((n * k)::nat)"
paulson@14267
   685
  by (induct m) (simp_all add: add_mult_distrib)
paulson@14267
   686
paulson@14267
   687
nipkow@14740
   688
text{*The naturals form a @{text comm_semiring_1_cancel}*}
obua@14738
   689
instance nat :: comm_semiring_1_cancel
paulson@14267
   690
proof
paulson@14267
   691
  fix i j k :: nat
paulson@14267
   692
  show "(i + j) + k = i + (j + k)" by (rule nat_add_assoc)
paulson@14267
   693
  show "i + j = j + i" by (rule nat_add_commute)
paulson@14267
   694
  show "0 + i = i" by simp
paulson@14267
   695
  show "(i * j) * k = i * (j * k)" by (rule nat_mult_assoc)
paulson@14267
   696
  show "i * j = j * i" by (rule nat_mult_commute)
paulson@14267
   697
  show "1 * i = i" by simp
paulson@14267
   698
  show "(i + j) * k = i * k + j * k" by (simp add: add_mult_distrib)
paulson@14267
   699
  show "0 \<noteq> (1::nat)" by simp
paulson@14341
   700
  assume "k+i = k+j" thus "i=j" by simp
paulson@14341
   701
qed
paulson@14341
   702
paulson@14341
   703
lemma mult_is_0 [simp]: "((m::nat) * n = 0) = (m=0 | n=0)"
paulson@15251
   704
  apply (induct m)
paulson@14341
   705
  apply (induct_tac [2] n, simp_all)
paulson@14341
   706
  done
paulson@14341
   707
wenzelm@21243
   708
paulson@14341
   709
subsection {* Monotonicity of Addition *}
paulson@14341
   710
paulson@14341
   711
text {* strict, in 1st argument *}
paulson@14341
   712
lemma add_less_mono1: "i < j ==> i + k < j + (k::nat)"
paulson@14341
   713
  by (induct k) simp_all
paulson@14341
   714
paulson@14341
   715
text {* strict, in both arguments *}
paulson@14341
   716
lemma add_less_mono: "[|i < j; k < l|] ==> i + k < j + (l::nat)"
paulson@14341
   717
  apply (rule add_less_mono1 [THEN less_trans], assumption+)
paulson@15251
   718
  apply (induct j, simp_all)
paulson@14341
   719
  done
paulson@14341
   720
paulson@14341
   721
text {* Deleted @{text less_natE}; use @{text "less_imp_Suc_add RS exE"} *}
paulson@14341
   722
lemma less_imp_Suc_add: "m < n ==> (\<exists>k. n = Suc (m + k))"
paulson@14341
   723
  apply (induct n)
paulson@14341
   724
  apply (simp_all add: order_le_less)
paulson@14341
   725
  apply (blast elim!: less_SucE 
paulson@14341
   726
               intro!: add_0_right [symmetric] add_Suc_right [symmetric])
paulson@14341
   727
  done
paulson@14341
   728
paulson@14341
   729
text {* strict, in 1st argument; proof is by induction on @{text "k > 0"} *}
paulson@14341
   730
lemma mult_less_mono2: "(i::nat) < j ==> 0 < k ==> k * i < k * j"
paulson@14341
   731
  apply (erule_tac m1 = 0 in less_imp_Suc_add [THEN exE], simp)
paulson@14341
   732
  apply (induct_tac x) 
paulson@14341
   733
  apply (simp_all add: add_less_mono)
paulson@14341
   734
  done
paulson@14341
   735
paulson@14341
   736
nipkow@14740
   737
text{*The naturals form an ordered @{text comm_semiring_1_cancel}*}
obua@14738
   738
instance nat :: ordered_semidom
paulson@14341
   739
proof
paulson@14341
   740
  fix i j k :: nat
paulson@14348
   741
  show "0 < (1::nat)" by simp
paulson@14267
   742
  show "i \<le> j ==> k + i \<le> k + j" by simp
paulson@14267
   743
  show "i < j ==> 0 < k ==> k * i < k * j" by (simp add: mult_less_mono2)
paulson@14267
   744
qed
paulson@14267
   745
paulson@14267
   746
lemma nat_mult_1: "(1::nat) * n = n"
paulson@14267
   747
  by simp
paulson@14267
   748
paulson@14267
   749
lemma nat_mult_1_right: "n * (1::nat) = n"
paulson@14267
   750
  by simp
paulson@14267
   751
paulson@14267
   752
paulson@14267
   753
subsection {* Additional theorems about "less than" *}
paulson@14267
   754
paulson@19870
   755
text{*An induction rule for estabilishing binary relations*}
paulson@19870
   756
lemma less_Suc_induct: 
paulson@19870
   757
  assumes less:  "i < j"
paulson@19870
   758
     and  step:  "!!i. P i (Suc i)"
paulson@19870
   759
     and  trans: "!!i j k. P i j ==> P j k ==> P i k"
paulson@19870
   760
  shows "P i j"
paulson@19870
   761
proof -
paulson@19870
   762
  from less obtain k where j: "j = Suc(i+k)" by (auto dest: less_imp_Suc_add) 
paulson@19870
   763
  have "P i (Suc(i+k))"
paulson@19870
   764
  proof (induct k)
paulson@19870
   765
    case 0 
paulson@19870
   766
    show ?case by (simp add: step) 
paulson@19870
   767
  next
paulson@19870
   768
    case (Suc k)
paulson@19870
   769
    thus ?case by (auto intro: prems)
paulson@19870
   770
  qed
paulson@19870
   771
  thus "P i j" by (simp add: j) 
paulson@19870
   772
qed
paulson@19870
   773
paulson@19870
   774
paulson@14267
   775
text {* A [clumsy] way of lifting @{text "<"}
paulson@14267
   776
  monotonicity to @{text "\<le>"} monotonicity *}
paulson@14267
   777
lemma less_mono_imp_le_mono:
paulson@14267
   778
  assumes lt_mono: "!!i j::nat. i < j ==> f i < f j"
paulson@14267
   779
  and le: "i \<le> j" shows "f i \<le> ((f j)::nat)" using le
paulson@14267
   780
  apply (simp add: order_le_less)
paulson@14267
   781
  apply (blast intro!: lt_mono)
paulson@14267
   782
  done
paulson@14267
   783
paulson@14267
   784
text {* non-strict, in 1st argument *}
paulson@14267
   785
lemma add_le_mono1: "i \<le> j ==> i + k \<le> j + (k::nat)"
paulson@14267
   786
  by (rule add_right_mono)
paulson@14267
   787
paulson@14267
   788
text {* non-strict, in both arguments *}
paulson@14267
   789
lemma add_le_mono: "[| i \<le> j;  k \<le> l |] ==> i + k \<le> j + (l::nat)"
paulson@14267
   790
  by (rule add_mono)
paulson@14267
   791
paulson@14267
   792
lemma le_add2: "n \<le> ((m + n)::nat)"
paulson@14341
   793
  by (insert add_right_mono [of 0 m n], simp) 
berghofe@13449
   794
paulson@14267
   795
lemma le_add1: "n \<le> ((n + m)::nat)"
paulson@14341
   796
  by (simp add: add_commute, rule le_add2)
berghofe@13449
   797
berghofe@13449
   798
lemma less_add_Suc1: "i < Suc (i + m)"
berghofe@13449
   799
  by (rule le_less_trans, rule le_add1, rule lessI)
berghofe@13449
   800
berghofe@13449
   801
lemma less_add_Suc2: "i < Suc (m + i)"
berghofe@13449
   802
  by (rule le_less_trans, rule le_add2, rule lessI)
berghofe@13449
   803
paulson@14267
   804
lemma less_iff_Suc_add: "(m < n) = (\<exists>k. n = Suc (m + k))"
nipkow@17589
   805
  by (iprover intro!: less_add_Suc1 less_imp_Suc_add)
berghofe@13449
   806
paulson@14267
   807
lemma trans_le_add1: "(i::nat) \<le> j ==> i \<le> j + m"
berghofe@13449
   808
  by (rule le_trans, assumption, rule le_add1)
berghofe@13449
   809
paulson@14267
   810
lemma trans_le_add2: "(i::nat) \<le> j ==> i \<le> m + j"
berghofe@13449
   811
  by (rule le_trans, assumption, rule le_add2)
berghofe@13449
   812
berghofe@13449
   813
lemma trans_less_add1: "(i::nat) < j ==> i < j + m"
berghofe@13449
   814
  by (rule less_le_trans, assumption, rule le_add1)
berghofe@13449
   815
berghofe@13449
   816
lemma trans_less_add2: "(i::nat) < j ==> i < m + j"
berghofe@13449
   817
  by (rule less_le_trans, assumption, rule le_add2)
berghofe@13449
   818
berghofe@13449
   819
lemma add_lessD1: "i + j < (k::nat) ==> i < k"
paulson@14341
   820
  apply (rule le_less_trans [of _ "i+j"]) 
paulson@14341
   821
  apply (simp_all add: le_add1)
berghofe@13449
   822
  done
berghofe@13449
   823
berghofe@13449
   824
lemma not_add_less1 [iff]: "~ (i + j < (i::nat))"
berghofe@13449
   825
  apply (rule notI)
berghofe@13449
   826
  apply (erule add_lessD1 [THEN less_irrefl])
berghofe@13449
   827
  done
berghofe@13449
   828
berghofe@13449
   829
lemma not_add_less2 [iff]: "~ (j + i < (i::nat))"
berghofe@13449
   830
  by (simp add: add_commute not_add_less1)
berghofe@13449
   831
paulson@14267
   832
lemma add_leD1: "m + k \<le> n ==> m \<le> (n::nat)"
paulson@14341
   833
  apply (rule order_trans [of _ "m+k"]) 
paulson@14341
   834
  apply (simp_all add: le_add1)
paulson@14341
   835
  done
berghofe@13449
   836
paulson@14267
   837
lemma add_leD2: "m + k \<le> n ==> k \<le> (n::nat)"
berghofe@13449
   838
  apply (simp add: add_commute)
berghofe@13449
   839
  apply (erule add_leD1)
berghofe@13449
   840
  done
berghofe@13449
   841
paulson@14267
   842
lemma add_leE: "(m::nat) + k \<le> n ==> (m \<le> n ==> k \<le> n ==> R) ==> R"
berghofe@13449
   843
  by (blast dest: add_leD1 add_leD2)
berghofe@13449
   844
berghofe@13449
   845
text {* needs @{text "!!k"} for @{text add_ac} to work *}
berghofe@13449
   846
lemma less_add_eq_less: "!!k::nat. k < l ==> m + l = k + n ==> m < n"
berghofe@13449
   847
  by (force simp del: add_Suc_right
berghofe@13449
   848
    simp add: less_iff_Suc_add add_Suc_right [symmetric] add_ac)
berghofe@13449
   849
berghofe@13449
   850
berghofe@13449
   851
subsection {* Difference *}
berghofe@13449
   852
berghofe@13449
   853
lemma diff_self_eq_0 [simp]: "(m::nat) - m = 0"
berghofe@13449
   854
  by (induct m) simp_all
berghofe@13449
   855
berghofe@13449
   856
text {* Addition is the inverse of subtraction:
paulson@14267
   857
  if @{term "n \<le> m"} then @{term "n + (m - n) = m"}. *}
berghofe@13449
   858
lemma add_diff_inverse: "~  m < n ==> n + (m - n) = (m::nat)"
berghofe@13449
   859
  by (induct m n rule: diff_induct) simp_all
berghofe@13449
   860
paulson@14267
   861
lemma le_add_diff_inverse [simp]: "n \<le> m ==> n + (m - n) = (m::nat)"
paulson@16796
   862
  by (simp add: add_diff_inverse linorder_not_less)
berghofe@13449
   863
paulson@14267
   864
lemma le_add_diff_inverse2 [simp]: "n \<le> m ==> (m - n) + n = (m::nat)"
berghofe@13449
   865
  by (simp add: le_add_diff_inverse add_commute)
berghofe@13449
   866
berghofe@13449
   867
berghofe@13449
   868
subsection {* More results about difference *}
berghofe@13449
   869
paulson@14267
   870
lemma Suc_diff_le: "n \<le> m ==> Suc m - n = Suc (m - n)"
berghofe@13449
   871
  by (induct m n rule: diff_induct) simp_all
berghofe@13449
   872
berghofe@13449
   873
lemma diff_less_Suc: "m - n < Suc m"
berghofe@13449
   874
  apply (induct m n rule: diff_induct)
berghofe@13449
   875
  apply (erule_tac [3] less_SucE)
berghofe@13449
   876
  apply (simp_all add: less_Suc_eq)
berghofe@13449
   877
  done
berghofe@13449
   878
paulson@14267
   879
lemma diff_le_self [simp]: "m - n \<le> (m::nat)"
berghofe@13449
   880
  by (induct m n rule: diff_induct) (simp_all add: le_SucI)
berghofe@13449
   881
berghofe@13449
   882
lemma less_imp_diff_less: "(j::nat) < k ==> j - n < k"
berghofe@13449
   883
  by (rule le_less_trans, rule diff_le_self)
berghofe@13449
   884
berghofe@13449
   885
lemma diff_diff_left: "(i::nat) - j - k = i - (j + k)"
berghofe@13449
   886
  by (induct i j rule: diff_induct) simp_all
berghofe@13449
   887
berghofe@13449
   888
lemma Suc_diff_diff [simp]: "(Suc m - n) - Suc k = m - n - k"
berghofe@13449
   889
  by (simp add: diff_diff_left)
berghofe@13449
   890
berghofe@13449
   891
lemma diff_Suc_less [simp]: "0<n ==> n - Suc i < n"
paulson@14208
   892
  apply (case_tac "n", safe)
berghofe@13449
   893
  apply (simp add: le_simps)
berghofe@13449
   894
  done
berghofe@13449
   895
berghofe@13449
   896
text {* This and the next few suggested by Florian Kammueller *}
berghofe@13449
   897
lemma diff_commute: "(i::nat) - j - k = i - k - j"
berghofe@13449
   898
  by (simp add: diff_diff_left add_commute)
berghofe@13449
   899
paulson@14267
   900
lemma diff_add_assoc: "k \<le> (j::nat) ==> (i + j) - k = i + (j - k)"
berghofe@13449
   901
  by (induct j k rule: diff_induct) simp_all
berghofe@13449
   902
paulson@14267
   903
lemma diff_add_assoc2: "k \<le> (j::nat) ==> (j + i) - k = (j - k) + i"
berghofe@13449
   904
  by (simp add: add_commute diff_add_assoc)
berghofe@13449
   905
berghofe@13449
   906
lemma diff_add_inverse: "(n + m) - n = (m::nat)"
berghofe@13449
   907
  by (induct n) simp_all
berghofe@13449
   908
berghofe@13449
   909
lemma diff_add_inverse2: "(m + n) - n = (m::nat)"
berghofe@13449
   910
  by (simp add: diff_add_assoc)
berghofe@13449
   911
paulson@14267
   912
lemma le_imp_diff_is_add: "i \<le> (j::nat) ==> (j - i = k) = (j = k + i)"
berghofe@13449
   913
  apply safe
berghofe@13449
   914
  apply (simp_all add: diff_add_inverse2)
berghofe@13449
   915
  done
berghofe@13449
   916
paulson@14267
   917
lemma diff_is_0_eq [simp]: "((m::nat) - n = 0) = (m \<le> n)"
berghofe@13449
   918
  by (induct m n rule: diff_induct) simp_all
berghofe@13449
   919
paulson@14267
   920
lemma diff_is_0_eq' [simp]: "m \<le> n ==> (m::nat) - n = 0"
berghofe@13449
   921
  by (rule iffD2, rule diff_is_0_eq)
berghofe@13449
   922
berghofe@13449
   923
lemma zero_less_diff [simp]: "(0 < n - (m::nat)) = (m < n)"
berghofe@13449
   924
  by (induct m n rule: diff_induct) simp_all
berghofe@13449
   925
paulson@14267
   926
lemma less_imp_add_positive: "i < j  ==> \<exists>k::nat. 0 < k & i + k = j"
berghofe@13449
   927
  apply (rule_tac x = "j - i" in exI)
berghofe@13449
   928
  apply (simp (no_asm_simp) add: add_diff_inverse less_not_sym)
berghofe@13449
   929
  done
wenzelm@9436
   930
berghofe@13449
   931
lemma zero_induct_lemma: "P k ==> (!!n. P (Suc n) ==> P n) ==> P (k - i)"
berghofe@13449
   932
  apply (induct k i rule: diff_induct)
berghofe@13449
   933
  apply (simp_all (no_asm))
nipkow@17589
   934
  apply iprover
berghofe@13449
   935
  done
berghofe@13449
   936
berghofe@13449
   937
lemma zero_induct: "P k ==> (!!n. P (Suc n) ==> P n) ==> P 0"
berghofe@13449
   938
  apply (rule diff_self_eq_0 [THEN subst])
nipkow@17589
   939
  apply (rule zero_induct_lemma, iprover+)
berghofe@13449
   940
  done
berghofe@13449
   941
berghofe@13449
   942
lemma diff_cancel: "(k + m) - (k + n) = m - (n::nat)"
berghofe@13449
   943
  by (induct k) simp_all
berghofe@13449
   944
berghofe@13449
   945
lemma diff_cancel2: "(m + k) - (n + k) = m - (n::nat)"
berghofe@13449
   946
  by (simp add: diff_cancel add_commute)
berghofe@13449
   947
berghofe@13449
   948
lemma diff_add_0: "n - (n + m) = (0::nat)"
berghofe@13449
   949
  by (induct n) simp_all
berghofe@13449
   950
berghofe@13449
   951
berghofe@13449
   952
text {* Difference distributes over multiplication *}
berghofe@13449
   953
berghofe@13449
   954
lemma diff_mult_distrib: "((m::nat) - n) * k = (m * k) - (n * k)"
berghofe@13449
   955
  by (induct m n rule: diff_induct) (simp_all add: diff_cancel)
berghofe@13449
   956
berghofe@13449
   957
lemma diff_mult_distrib2: "k * ((m::nat) - n) = (k * m) - (k * n)"
berghofe@13449
   958
  by (simp add: diff_mult_distrib mult_commute [of k])
berghofe@13449
   959
  -- {* NOT added as rewrites, since sometimes they are used from right-to-left *}
berghofe@13449
   960
berghofe@13449
   961
lemmas nat_distrib =
berghofe@13449
   962
  add_mult_distrib add_mult_distrib2 diff_mult_distrib diff_mult_distrib2
berghofe@13449
   963
berghofe@13449
   964
berghofe@13449
   965
subsection {* Monotonicity of Multiplication *}
berghofe@13449
   966
paulson@14267
   967
lemma mult_le_mono1: "i \<le> (j::nat) ==> i * k \<le> j * k"
paulson@14341
   968
  by (simp add: mult_right_mono) 
berghofe@13449
   969
paulson@14267
   970
lemma mult_le_mono2: "i \<le> (j::nat) ==> k * i \<le> k * j"
paulson@14341
   971
  by (simp add: mult_left_mono) 
berghofe@13449
   972
paulson@14267
   973
text {* @{text "\<le>"} monotonicity, BOTH arguments *}
paulson@14267
   974
lemma mult_le_mono: "i \<le> (j::nat) ==> k \<le> l ==> i * k \<le> j * l"
paulson@14341
   975
  by (simp add: mult_mono) 
berghofe@13449
   976
berghofe@13449
   977
lemma mult_less_mono1: "(i::nat) < j ==> 0 < k ==> i * k < j * k"
paulson@14341
   978
  by (simp add: mult_strict_right_mono) 
berghofe@13449
   979
paulson@14266
   980
text{*Differs from the standard @{text zero_less_mult_iff} in that
paulson@14266
   981
      there are no negative numbers.*}
paulson@14266
   982
lemma nat_0_less_mult_iff [simp]: "(0 < (m::nat) * n) = (0 < m & 0 < n)"
berghofe@13449
   983
  apply (induct m)
paulson@14208
   984
  apply (case_tac [2] n, simp_all)
berghofe@13449
   985
  done
berghofe@13449
   986
paulson@14267
   987
lemma one_le_mult_iff [simp]: "(Suc 0 \<le> m * n) = (1 \<le> m & 1 \<le> n)"
berghofe@13449
   988
  apply (induct m)
paulson@14208
   989
  apply (case_tac [2] n, simp_all)
berghofe@13449
   990
  done
berghofe@13449
   991
berghofe@13449
   992
lemma mult_eq_1_iff [simp]: "(m * n = Suc 0) = (m = 1 & n = 1)"
paulson@15251
   993
  apply (induct m, simp)
paulson@15251
   994
  apply (induct n, simp, fastsimp)
berghofe@13449
   995
  done
berghofe@13449
   996
berghofe@13449
   997
lemma one_eq_mult_iff [simp]: "(Suc 0 = m * n) = (m = 1 & n = 1)"
berghofe@13449
   998
  apply (rule trans)
paulson@14208
   999
  apply (rule_tac [2] mult_eq_1_iff, fastsimp)
berghofe@13449
  1000
  done
berghofe@13449
  1001
paulson@14341
  1002
lemma mult_less_cancel2 [simp]: "((m::nat) * k < n * k) = (0 < k & m < n)"
berghofe@13449
  1003
  apply (safe intro!: mult_less_mono1)
paulson@14208
  1004
  apply (case_tac k, auto)
berghofe@13449
  1005
  apply (simp del: le_0_eq add: linorder_not_le [symmetric])
berghofe@13449
  1006
  apply (blast intro: mult_le_mono1)
berghofe@13449
  1007
  done
berghofe@13449
  1008
berghofe@13449
  1009
lemma mult_less_cancel1 [simp]: "(k * (m::nat) < k * n) = (0 < k & m < n)"
paulson@14341
  1010
  by (simp add: mult_commute [of k])
berghofe@13449
  1011
paulson@14267
  1012
lemma mult_le_cancel1 [simp]: "(k * (m::nat) \<le> k * n) = (0 < k --> m \<le> n)"
paulson@14208
  1013
by (simp add: linorder_not_less [symmetric], auto)
berghofe@13449
  1014
paulson@14267
  1015
lemma mult_le_cancel2 [simp]: "((m::nat) * k \<le> n * k) = (0 < k --> m \<le> n)"
paulson@14208
  1016
by (simp add: linorder_not_less [symmetric], auto)
berghofe@13449
  1017
paulson@14341
  1018
lemma mult_cancel2 [simp]: "(m * k = n * k) = (m = n | (k = (0::nat)))"
paulson@14208
  1019
  apply (cut_tac less_linear, safe, auto)
berghofe@13449
  1020
  apply (drule mult_less_mono1, assumption, simp)+
berghofe@13449
  1021
  done
berghofe@13449
  1022
berghofe@13449
  1023
lemma mult_cancel1 [simp]: "(k * m = k * n) = (m = n | (k = (0::nat)))"
paulson@14341
  1024
  by (simp add: mult_commute [of k])
berghofe@13449
  1025
berghofe@13449
  1026
lemma Suc_mult_less_cancel1: "(Suc k * m < Suc k * n) = (m < n)"
berghofe@13449
  1027
  by (subst mult_less_cancel1) simp
berghofe@13449
  1028
paulson@14267
  1029
lemma Suc_mult_le_cancel1: "(Suc k * m \<le> Suc k * n) = (m \<le> n)"
berghofe@13449
  1030
  by (subst mult_le_cancel1) simp
berghofe@13449
  1031
berghofe@13449
  1032
lemma Suc_mult_cancel1: "(Suc k * m = Suc k * n) = (m = n)"
berghofe@13449
  1033
  by (subst mult_cancel1) simp
berghofe@13449
  1034
berghofe@13449
  1035
text {* Lemma for @{text gcd} *}
berghofe@13449
  1036
lemma mult_eq_self_implies_10: "(m::nat) = m * n ==> n = 1 | m = 0"
berghofe@13449
  1037
  apply (drule sym)
berghofe@13449
  1038
  apply (rule disjCI)
berghofe@13449
  1039
  apply (rule nat_less_cases, erule_tac [2] _)
berghofe@13449
  1040
  apply (fastsimp elim!: less_SucE)
berghofe@13449
  1041
  apply (fastsimp dest: mult_less_mono2)
berghofe@13449
  1042
  done
wenzelm@9436
  1043
haftmann@20588
  1044
haftmann@18702
  1045
subsection {* Code generator setup *}
haftmann@18702
  1046
haftmann@20355
  1047
lemma one_is_suc_zero [code inline]:
haftmann@20355
  1048
  "1 = Suc 0"
haftmann@20355
  1049
  by simp
haftmann@20355
  1050
haftmann@20588
  1051
instance nat :: eq ..
haftmann@20588
  1052
haftmann@20588
  1053
lemma [code func]:
haftmann@21456
  1054
  "(0\<Colon>nat) = 0 \<longleftrightarrow> True" by auto
haftmann@20588
  1055
haftmann@20588
  1056
lemma [code func]:
haftmann@21456
  1057
  "Suc n = Suc m \<longleftrightarrow> n = m" by auto
haftmann@20588
  1058
haftmann@20588
  1059
lemma [code func]:
haftmann@21456
  1060
  "Suc n = 0 \<longleftrightarrow> False" by auto
haftmann@20588
  1061
haftmann@20588
  1062
lemma [code func]:
haftmann@21456
  1063
  "0 = Suc m \<longleftrightarrow> False" by auto
haftmann@20588
  1064
wenzelm@21243
  1065
wenzelm@21243
  1066
subsection {* Further Arithmetic Facts Concerning the Natural Numbers *}
wenzelm@21243
  1067
wenzelm@21243
  1068
use "arith_data.ML"
wenzelm@21243
  1069
setup arith_setup
wenzelm@21243
  1070
wenzelm@21243
  1071
text{*The following proofs may rely on the arithmetic proof procedures.*}
wenzelm@21243
  1072
wenzelm@21243
  1073
lemma le_iff_add: "(m::nat) \<le> n = (\<exists>k. n = m + k)"
wenzelm@21243
  1074
  by (auto simp: le_eq_less_or_eq dest: less_imp_Suc_add)
wenzelm@21243
  1075
wenzelm@21243
  1076
lemma pred_nat_trancl_eq_le: "((m, n) : pred_nat^*) = (m \<le> n)"
wenzelm@21243
  1077
by (simp add: less_eq reflcl_trancl [symmetric]
wenzelm@21243
  1078
            del: reflcl_trancl, arith)
wenzelm@21243
  1079
wenzelm@21243
  1080
lemma nat_diff_split:
wenzelm@21243
  1081
    "P(a - b::nat) = ((a<b --> P 0) & (ALL d. a = b + d --> P d))"
wenzelm@21243
  1082
    -- {* elimination of @{text -} on @{text nat} *}
wenzelm@21243
  1083
  by (cases "a<b" rule: case_split)
wenzelm@21243
  1084
     (auto simp add: diff_is_0_eq [THEN iffD2])
wenzelm@21243
  1085
wenzelm@21243
  1086
lemma nat_diff_split_asm:
wenzelm@21243
  1087
    "P(a - b::nat) = (~ (a < b & ~ P 0 | (EX d. a = b + d & ~ P d)))"
wenzelm@21243
  1088
    -- {* elimination of @{text -} on @{text nat} in assumptions *}
wenzelm@21243
  1089
  by (simp split: nat_diff_split)
wenzelm@21243
  1090
wenzelm@21243
  1091
lemmas [arith_split] = nat_diff_split split_min split_max
wenzelm@21243
  1092
wenzelm@21243
  1093
wenzelm@21243
  1094
wenzelm@21243
  1095
lemma le_square: "m \<le> m * (m::nat)"
wenzelm@21243
  1096
  by (induct m) auto
wenzelm@21243
  1097
wenzelm@21243
  1098
lemma le_cube: "(m::nat) \<le> m * (m * m)"
wenzelm@21243
  1099
  by (induct m) auto
wenzelm@21243
  1100
wenzelm@21243
  1101
wenzelm@21243
  1102
text{*Subtraction laws, mostly by Clemens Ballarin*}
wenzelm@21243
  1103
wenzelm@21243
  1104
lemma diff_less_mono: "[| a < (b::nat); c \<le> a |] ==> a-c < b-c"
wenzelm@21243
  1105
by arith
wenzelm@21243
  1106
wenzelm@21243
  1107
lemma less_diff_conv: "(i < j-k) = (i+k < (j::nat))"
wenzelm@21243
  1108
by arith
wenzelm@21243
  1109
wenzelm@21243
  1110
lemma le_diff_conv: "(j-k \<le> (i::nat)) = (j \<le> i+k)"
wenzelm@21243
  1111
by arith
wenzelm@21243
  1112
wenzelm@21243
  1113
lemma le_diff_conv2: "k \<le> j ==> (i \<le> j-k) = (i+k \<le> (j::nat))"
wenzelm@21243
  1114
by arith
wenzelm@21243
  1115
wenzelm@21243
  1116
lemma diff_diff_cancel [simp]: "i \<le> (n::nat) ==> n - (n - i) = i"
wenzelm@21243
  1117
by arith
wenzelm@21243
  1118
wenzelm@21243
  1119
lemma le_add_diff: "k \<le> (n::nat) ==> m \<le> n + m - k"
wenzelm@21243
  1120
by arith
wenzelm@21243
  1121
wenzelm@21243
  1122
(*Replaces the previous diff_less and le_diff_less, which had the stronger
wenzelm@21243
  1123
  second premise n\<le>m*)
wenzelm@21243
  1124
lemma diff_less[simp]: "!!m::nat. [| 0<n; 0<m |] ==> m - n < m"
wenzelm@21243
  1125
by arith
wenzelm@21243
  1126
wenzelm@21243
  1127
wenzelm@21243
  1128
(** Simplification of relational expressions involving subtraction **)
wenzelm@21243
  1129
wenzelm@21243
  1130
lemma diff_diff_eq: "[| k \<le> m;  k \<le> (n::nat) |] ==> ((m-k) - (n-k)) = (m-n)"
wenzelm@21243
  1131
by (simp split add: nat_diff_split)
wenzelm@21243
  1132
wenzelm@21243
  1133
lemma eq_diff_iff: "[| k \<le> m;  k \<le> (n::nat) |] ==> (m-k = n-k) = (m=n)"
wenzelm@21243
  1134
by (auto split add: nat_diff_split)
wenzelm@21243
  1135
wenzelm@21243
  1136
lemma less_diff_iff: "[| k \<le> m;  k \<le> (n::nat) |] ==> (m-k < n-k) = (m<n)"
wenzelm@21243
  1137
by (auto split add: nat_diff_split)
wenzelm@21243
  1138
wenzelm@21243
  1139
lemma le_diff_iff: "[| k \<le> m;  k \<le> (n::nat) |] ==> (m-k \<le> n-k) = (m\<le>n)"
wenzelm@21243
  1140
by (auto split add: nat_diff_split)
wenzelm@21243
  1141
wenzelm@21243
  1142
wenzelm@21243
  1143
text{*(Anti)Monotonicity of subtraction -- by Stephan Merz*}
wenzelm@21243
  1144
wenzelm@21243
  1145
(* Monotonicity of subtraction in first argument *)
wenzelm@21243
  1146
lemma diff_le_mono: "m \<le> (n::nat) ==> (m-l) \<le> (n-l)"
wenzelm@21243
  1147
by (simp split add: nat_diff_split)
wenzelm@21243
  1148
wenzelm@21243
  1149
lemma diff_le_mono2: "m \<le> (n::nat) ==> (l-n) \<le> (l-m)"
wenzelm@21243
  1150
by (simp split add: nat_diff_split)
wenzelm@21243
  1151
wenzelm@21243
  1152
lemma diff_less_mono2: "[| m < (n::nat); m<l |] ==> (l-n) < (l-m)"
wenzelm@21243
  1153
by (simp split add: nat_diff_split)
wenzelm@21243
  1154
wenzelm@21243
  1155
lemma diffs0_imp_equal: "!!m::nat. [| m-n = 0; n-m = 0 |] ==>  m=n"
wenzelm@21243
  1156
by (simp split add: nat_diff_split)
wenzelm@21243
  1157
wenzelm@21243
  1158
text{*Lemmas for ex/Factorization*}
wenzelm@21243
  1159
wenzelm@21243
  1160
lemma one_less_mult: "[| Suc 0 < n; Suc 0 < m |] ==> Suc 0 < m*n"
wenzelm@21243
  1161
by (case_tac "m", auto)
wenzelm@21243
  1162
wenzelm@21243
  1163
lemma n_less_m_mult_n: "[| Suc 0 < n; Suc 0 < m |] ==> n<m*n"
wenzelm@21243
  1164
by (case_tac "m", auto)
wenzelm@21243
  1165
wenzelm@21243
  1166
lemma n_less_n_mult_m: "[| Suc 0 < n; Suc 0 < m |] ==> n<n*m"
wenzelm@21243
  1167
by (case_tac "m", auto)
wenzelm@21243
  1168
wenzelm@21243
  1169
wenzelm@21243
  1170
text{*Rewriting to pull differences out*}
wenzelm@21243
  1171
wenzelm@21243
  1172
lemma diff_diff_right [simp]: "k\<le>j --> i - (j - k) = i + (k::nat) - j"
wenzelm@21243
  1173
by arith
wenzelm@21243
  1174
wenzelm@21243
  1175
lemma diff_Suc_diff_eq1 [simp]: "k \<le> j ==> m - Suc (j - k) = m + k - Suc j"
wenzelm@21243
  1176
by arith
wenzelm@21243
  1177
wenzelm@21243
  1178
lemma diff_Suc_diff_eq2 [simp]: "k \<le> j ==> Suc (j - k) - m = Suc j - (k + m)"
wenzelm@21243
  1179
by arith
wenzelm@21243
  1180
wenzelm@21243
  1181
(*The others are
wenzelm@21243
  1182
      i - j - k = i - (j + k),
wenzelm@21243
  1183
      k \<le> j ==> j - k + i = j + i - k,
wenzelm@21243
  1184
      k \<le> j ==> i + (j - k) = i + j - k *)
wenzelm@21243
  1185
lemmas add_diff_assoc = diff_add_assoc [symmetric]
wenzelm@21243
  1186
lemmas add_diff_assoc2 = diff_add_assoc2[symmetric]
wenzelm@21243
  1187
declare diff_diff_left [simp]  add_diff_assoc [simp]  add_diff_assoc2[simp]
wenzelm@21243
  1188
wenzelm@21243
  1189
text{*At present we prove no analogue of @{text not_less_Least} or @{text
wenzelm@21243
  1190
Least_Suc}, since there appears to be no need.*}
wenzelm@21243
  1191
wenzelm@21243
  1192
ML
wenzelm@21243
  1193
{*
wenzelm@21243
  1194
val pred_nat_trancl_eq_le = thm "pred_nat_trancl_eq_le";
wenzelm@21243
  1195
val nat_diff_split = thm "nat_diff_split";
wenzelm@21243
  1196
val nat_diff_split_asm = thm "nat_diff_split_asm";
wenzelm@21243
  1197
val le_square = thm "le_square";
wenzelm@21243
  1198
val le_cube = thm "le_cube";
wenzelm@21243
  1199
val diff_less_mono = thm "diff_less_mono";
wenzelm@21243
  1200
val less_diff_conv = thm "less_diff_conv";
wenzelm@21243
  1201
val le_diff_conv = thm "le_diff_conv";
wenzelm@21243
  1202
val le_diff_conv2 = thm "le_diff_conv2";
wenzelm@21243
  1203
val diff_diff_cancel = thm "diff_diff_cancel";
wenzelm@21243
  1204
val le_add_diff = thm "le_add_diff";
wenzelm@21243
  1205
val diff_less = thm "diff_less";
wenzelm@21243
  1206
val diff_diff_eq = thm "diff_diff_eq";
wenzelm@21243
  1207
val eq_diff_iff = thm "eq_diff_iff";
wenzelm@21243
  1208
val less_diff_iff = thm "less_diff_iff";
wenzelm@21243
  1209
val le_diff_iff = thm "le_diff_iff";
wenzelm@21243
  1210
val diff_le_mono = thm "diff_le_mono";
wenzelm@21243
  1211
val diff_le_mono2 = thm "diff_le_mono2";
wenzelm@21243
  1212
val diff_less_mono2 = thm "diff_less_mono2";
wenzelm@21243
  1213
val diffs0_imp_equal = thm "diffs0_imp_equal";
wenzelm@21243
  1214
val one_less_mult = thm "one_less_mult";
wenzelm@21243
  1215
val n_less_m_mult_n = thm "n_less_m_mult_n";
wenzelm@21243
  1216
val n_less_n_mult_m = thm "n_less_n_mult_m";
wenzelm@21243
  1217
val diff_diff_right = thm "diff_diff_right";
wenzelm@21243
  1218
val diff_Suc_diff_eq1 = thm "diff_Suc_diff_eq1";
wenzelm@21243
  1219
val diff_Suc_diff_eq2 = thm "diff_Suc_diff_eq2";
wenzelm@21243
  1220
*}
wenzelm@21243
  1221
wenzelm@21243
  1222
subsection{*Embedding of the Naturals into any @{text
wenzelm@21243
  1223
semiring_1_cancel}: @{term of_nat}*}
wenzelm@21243
  1224
wenzelm@21243
  1225
consts of_nat :: "nat => 'a::semiring_1_cancel"
wenzelm@21243
  1226
wenzelm@21243
  1227
primrec
wenzelm@21243
  1228
  of_nat_0:   "of_nat 0 = 0"
wenzelm@21243
  1229
  of_nat_Suc: "of_nat (Suc m) = of_nat m + 1"
wenzelm@21243
  1230
wenzelm@21243
  1231
lemma of_nat_1 [simp]: "of_nat 1 = 1"
wenzelm@21243
  1232
by simp
wenzelm@21243
  1233
wenzelm@21243
  1234
lemma of_nat_add [simp]: "of_nat (m+n) = of_nat m + of_nat n"
wenzelm@21243
  1235
apply (induct m)
wenzelm@21243
  1236
apply (simp_all add: add_ac)
wenzelm@21243
  1237
done
wenzelm@21243
  1238
wenzelm@21243
  1239
lemma of_nat_mult [simp]: "of_nat (m*n) = of_nat m * of_nat n"
wenzelm@21243
  1240
apply (induct m)
wenzelm@21243
  1241
apply (simp_all add: add_ac left_distrib)
wenzelm@21243
  1242
done
wenzelm@21243
  1243
wenzelm@21243
  1244
lemma zero_le_imp_of_nat: "0 \<le> (of_nat m::'a::ordered_semidom)"
wenzelm@21243
  1245
apply (induct m, simp_all)
wenzelm@21243
  1246
apply (erule order_trans)
wenzelm@21243
  1247
apply (rule less_add_one [THEN order_less_imp_le])
wenzelm@21243
  1248
done
wenzelm@21243
  1249
wenzelm@21243
  1250
lemma less_imp_of_nat_less:
wenzelm@21243
  1251
     "m < n ==> of_nat m < (of_nat n::'a::ordered_semidom)"
wenzelm@21243
  1252
apply (induct m n rule: diff_induct, simp_all)
wenzelm@21243
  1253
apply (insert add_le_less_mono [OF zero_le_imp_of_nat zero_less_one], force)
wenzelm@21243
  1254
done
wenzelm@21243
  1255
wenzelm@21243
  1256
lemma of_nat_less_imp_less:
wenzelm@21243
  1257
     "of_nat m < (of_nat n::'a::ordered_semidom) ==> m < n"
wenzelm@21243
  1258
apply (induct m n rule: diff_induct, simp_all)
wenzelm@21243
  1259
apply (insert zero_le_imp_of_nat)
wenzelm@21243
  1260
apply (force simp add: linorder_not_less [symmetric])
wenzelm@21243
  1261
done
wenzelm@21243
  1262
wenzelm@21243
  1263
lemma of_nat_less_iff [simp]:
wenzelm@21243
  1264
     "(of_nat m < (of_nat n::'a::ordered_semidom)) = (m<n)"
wenzelm@21243
  1265
by (blast intro: of_nat_less_imp_less less_imp_of_nat_less)
wenzelm@21243
  1266
wenzelm@21243
  1267
text{*Special cases where either operand is zero*}
wenzelm@21243
  1268
lemmas of_nat_0_less_iff = of_nat_less_iff [of 0, simplified]
wenzelm@21243
  1269
lemmas of_nat_less_0_iff = of_nat_less_iff [of _ 0, simplified]
wenzelm@21243
  1270
declare of_nat_0_less_iff [simp]
wenzelm@21243
  1271
declare of_nat_less_0_iff [simp]
wenzelm@21243
  1272
wenzelm@21243
  1273
lemma of_nat_le_iff [simp]:
wenzelm@21243
  1274
     "(of_nat m \<le> (of_nat n::'a::ordered_semidom)) = (m \<le> n)"
wenzelm@21243
  1275
by (simp add: linorder_not_less [symmetric])
wenzelm@21243
  1276
wenzelm@21243
  1277
text{*Special cases where either operand is zero*}
wenzelm@21243
  1278
lemmas of_nat_0_le_iff = of_nat_le_iff [of 0, simplified]
wenzelm@21243
  1279
lemmas of_nat_le_0_iff = of_nat_le_iff [of _ 0, simplified]
wenzelm@21243
  1280
declare of_nat_0_le_iff [simp]
wenzelm@21243
  1281
declare of_nat_le_0_iff [simp]
wenzelm@21243
  1282
wenzelm@21243
  1283
text{*The ordering on the @{text semiring_1_cancel} is necessary
wenzelm@21243
  1284
to exclude the possibility of a finite field, which indeed wraps back to
wenzelm@21243
  1285
zero.*}
wenzelm@21243
  1286
lemma of_nat_eq_iff [simp]:
wenzelm@21243
  1287
     "(of_nat m = (of_nat n::'a::ordered_semidom)) = (m = n)"
wenzelm@21243
  1288
by (simp add: order_eq_iff)
wenzelm@21243
  1289
wenzelm@21243
  1290
text{*Special cases where either operand is zero*}
wenzelm@21243
  1291
lemmas of_nat_0_eq_iff = of_nat_eq_iff [of 0, simplified]
wenzelm@21243
  1292
lemmas of_nat_eq_0_iff = of_nat_eq_iff [of _ 0, simplified]
wenzelm@21243
  1293
declare of_nat_0_eq_iff [simp]
wenzelm@21243
  1294
declare of_nat_eq_0_iff [simp]
wenzelm@21243
  1295
wenzelm@21243
  1296
lemma of_nat_diff [simp]:
wenzelm@21243
  1297
     "n \<le> m ==> of_nat (m - n) = of_nat m - (of_nat n :: 'a::ring_1)"
wenzelm@21243
  1298
by (simp del: of_nat_add
wenzelm@21243
  1299
	 add: compare_rls of_nat_add [symmetric] split add: nat_diff_split)
wenzelm@21243
  1300
clasohm@923
  1301
end