author  wenzelm 
Mon, 04 Jan 2016 21:49:06 +0100  
changeset 62053  1c8252d07e32 
parent 61166  5976fe402824 
child 62343  24106dc44def 
permissions  rwrr 
51115
7dbd6832a689
consolidation of library theories on product orders
haftmann
parents:
50573
diff
changeset

1 
(* Title: HOL/Library/Product_Order.thy 
44006  2 
Author: Brian Huffman 
3 
*) 

4 

60500  5 
section \<open>Pointwise order on product types\<close> 
44006  6 

51115
7dbd6832a689
consolidation of library theories on product orders
haftmann
parents:
50573
diff
changeset

7 
theory Product_Order 
54776
db890d9fc5c2
ordered_euclidean_space compatible with more standard pointwise ordering on products; conditionally complete lattice with product order
immler
parents:
52729
diff
changeset

8 
imports Product_plus Conditionally_Complete_Lattices 
44006  9 
begin 
10 

60500  11 
subsection \<open>Pointwise ordering\<close> 
44006  12 

13 
instantiation prod :: (ord, ord) ord 

14 
begin 

15 

16 
definition 

17 
"x \<le> y \<longleftrightarrow> fst x \<le> fst y \<and> snd x \<le> snd y" 

18 

19 
definition 

20 
"(x::'a \<times> 'b) < y \<longleftrightarrow> x \<le> y \<and> \<not> y \<le> x" 

21 

22 
instance .. 

23 

24 
end 

25 

26 
lemma fst_mono: "x \<le> y \<Longrightarrow> fst x \<le> fst y" 

27 
unfolding less_eq_prod_def by simp 

28 

29 
lemma snd_mono: "x \<le> y \<Longrightarrow> snd x \<le> snd y" 

30 
unfolding less_eq_prod_def by simp 

31 

32 
lemma Pair_mono: "x \<le> x' \<Longrightarrow> y \<le> y' \<Longrightarrow> (x, y) \<le> (x', y')" 

33 
unfolding less_eq_prod_def by simp 

34 

35 
lemma Pair_le [simp]: "(a, b) \<le> (c, d) \<longleftrightarrow> a \<le> c \<and> b \<le> d" 

36 
unfolding less_eq_prod_def by simp 

37 

38 
instance prod :: (preorder, preorder) preorder 

39 
proof 

40 
fix x y z :: "'a \<times> 'b" 

41 
show "x < y \<longleftrightarrow> x \<le> y \<and> \<not> y \<le> x" 

42 
by (rule less_prod_def) 

43 
show "x \<le> x" 

44 
unfolding less_eq_prod_def 

45 
by fast 

46 
assume "x \<le> y" and "y \<le> z" thus "x \<le> z" 

47 
unfolding less_eq_prod_def 

48 
by (fast elim: order_trans) 

49 
qed 

50 

51 
instance prod :: (order, order) order 

60679  52 
by standard auto 
44006  53 

54 

60500  55 
subsection \<open>Binary infimum and supremum\<close> 
44006  56 

54776
db890d9fc5c2
ordered_euclidean_space compatible with more standard pointwise ordering on products; conditionally complete lattice with product order
immler
parents:
52729
diff
changeset

57 
instantiation prod :: (inf, inf) inf 
44006  58 
begin 
59 

60679  60 
definition "inf x y = (inf (fst x) (fst y), inf (snd x) (snd y))" 
44006  61 

62 
lemma inf_Pair_Pair [simp]: "inf (a, b) (c, d) = (inf a c, inf b d)" 

63 
unfolding inf_prod_def by simp 

64 

65 
lemma fst_inf [simp]: "fst (inf x y) = inf (fst x) (fst y)" 

66 
unfolding inf_prod_def by simp 

67 

68 
lemma snd_inf [simp]: "snd (inf x y) = inf (snd x) (snd y)" 

69 
unfolding inf_prod_def by simp 

70 

60679  71 
instance .. 
72 

54776
db890d9fc5c2
ordered_euclidean_space compatible with more standard pointwise ordering on products; conditionally complete lattice with product order
immler
parents:
52729
diff
changeset

73 
end 
db890d9fc5c2
ordered_euclidean_space compatible with more standard pointwise ordering on products; conditionally complete lattice with product order
immler
parents:
52729
diff
changeset

74 

db890d9fc5c2
ordered_euclidean_space compatible with more standard pointwise ordering on products; conditionally complete lattice with product order
immler
parents:
52729
diff
changeset

75 
instance prod :: (semilattice_inf, semilattice_inf) semilattice_inf 
60679  76 
by standard auto 
44006  77 

78 

54776
db890d9fc5c2
ordered_euclidean_space compatible with more standard pointwise ordering on products; conditionally complete lattice with product order
immler
parents:
52729
diff
changeset

79 
instantiation prod :: (sup, sup) sup 
44006  80 
begin 
81 

82 
definition 

83 
"sup x y = (sup (fst x) (fst y), sup (snd x) (snd y))" 

84 

85 
lemma sup_Pair_Pair [simp]: "sup (a, b) (c, d) = (sup a c, sup b d)" 

86 
unfolding sup_prod_def by simp 

87 

88 
lemma fst_sup [simp]: "fst (sup x y) = sup (fst x) (fst y)" 

89 
unfolding sup_prod_def by simp 

90 

91 
lemma snd_sup [simp]: "snd (sup x y) = sup (snd x) (snd y)" 

92 
unfolding sup_prod_def by simp 

93 

60679  94 
instance .. 
95 

54776
db890d9fc5c2
ordered_euclidean_space compatible with more standard pointwise ordering on products; conditionally complete lattice with product order
immler
parents:
52729
diff
changeset

96 
end 
db890d9fc5c2
ordered_euclidean_space compatible with more standard pointwise ordering on products; conditionally complete lattice with product order
immler
parents:
52729
diff
changeset

97 

db890d9fc5c2
ordered_euclidean_space compatible with more standard pointwise ordering on products; conditionally complete lattice with product order
immler
parents:
52729
diff
changeset

98 
instance prod :: (semilattice_sup, semilattice_sup) semilattice_sup 
60679  99 
by standard auto 
44006  100 

101 
instance prod :: (lattice, lattice) lattice .. 

102 

103 
instance prod :: (distrib_lattice, distrib_lattice) distrib_lattice 

60679  104 
by standard (auto simp add: sup_inf_distrib1) 
44006  105 

106 

60500  107 
subsection \<open>Top and bottom elements\<close> 
44006  108 

109 
instantiation prod :: (top, top) top 

110 
begin 

111 

112 
definition 

113 
"top = (top, top)" 

114 

52729
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
haftmann
parents:
51542
diff
changeset

115 
instance .. 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
haftmann
parents:
51542
diff
changeset

116 

412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
haftmann
parents:
51542
diff
changeset

117 
end 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
haftmann
parents:
51542
diff
changeset

118 

44006  119 
lemma fst_top [simp]: "fst top = top" 
120 
unfolding top_prod_def by simp 

121 

122 
lemma snd_top [simp]: "snd top = top" 

123 
unfolding top_prod_def by simp 

124 

125 
lemma Pair_top_top: "(top, top) = top" 

126 
unfolding top_prod_def by simp 

127 

52729
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
haftmann
parents:
51542
diff
changeset

128 
instance prod :: (order_top, order_top) order_top 
60679  129 
by standard (auto simp add: top_prod_def) 
44006  130 

131 
instantiation prod :: (bot, bot) bot 

132 
begin 

133 

134 
definition 

135 
"bot = (bot, bot)" 

136 

52729
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
haftmann
parents:
51542
diff
changeset

137 
instance .. 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
haftmann
parents:
51542
diff
changeset

138 

412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
haftmann
parents:
51542
diff
changeset

139 
end 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
haftmann
parents:
51542
diff
changeset

140 

44006  141 
lemma fst_bot [simp]: "fst bot = bot" 
142 
unfolding bot_prod_def by simp 

143 

144 
lemma snd_bot [simp]: "snd bot = bot" 

145 
unfolding bot_prod_def by simp 

146 

147 
lemma Pair_bot_bot: "(bot, bot) = bot" 

148 
unfolding bot_prod_def by simp 

149 

52729
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
haftmann
parents:
51542
diff
changeset

150 
instance prod :: (order_bot, order_bot) order_bot 
60679  151 
by standard (auto simp add: bot_prod_def) 
44006  152 

153 
instance prod :: (bounded_lattice, bounded_lattice) bounded_lattice .. 

154 

155 
instance prod :: (boolean_algebra, boolean_algebra) boolean_algebra 

62053  156 
by standard (auto simp add: prod_eqI diff_eq) 
44006  157 

158 

60500  159 
subsection \<open>Complete lattice operations\<close> 
44006  160 

54776
db890d9fc5c2
ordered_euclidean_space compatible with more standard pointwise ordering on products; conditionally complete lattice with product order
immler
parents:
52729
diff
changeset

161 
instantiation prod :: (Inf, Inf) Inf 
db890d9fc5c2
ordered_euclidean_space compatible with more standard pointwise ordering on products; conditionally complete lattice with product order
immler
parents:
52729
diff
changeset

162 
begin 
db890d9fc5c2
ordered_euclidean_space compatible with more standard pointwise ordering on products; conditionally complete lattice with product order
immler
parents:
52729
diff
changeset

163 

60679  164 
definition "Inf A = (INF x:A. fst x, INF x:A. snd x)" 
54776
db890d9fc5c2
ordered_euclidean_space compatible with more standard pointwise ordering on products; conditionally complete lattice with product order
immler
parents:
52729
diff
changeset

165 

60679  166 
instance .. 
167 

54776
db890d9fc5c2
ordered_euclidean_space compatible with more standard pointwise ordering on products; conditionally complete lattice with product order
immler
parents:
52729
diff
changeset

168 
end 
db890d9fc5c2
ordered_euclidean_space compatible with more standard pointwise ordering on products; conditionally complete lattice with product order
immler
parents:
52729
diff
changeset

169 

db890d9fc5c2
ordered_euclidean_space compatible with more standard pointwise ordering on products; conditionally complete lattice with product order
immler
parents:
52729
diff
changeset

170 
instantiation prod :: (Sup, Sup) Sup 
44006  171 
begin 
172 

60679  173 
definition "Sup A = (SUP x:A. fst x, SUP x:A. snd x)" 
44006  174 

60679  175 
instance .. 
176 

54776
db890d9fc5c2
ordered_euclidean_space compatible with more standard pointwise ordering on products; conditionally complete lattice with product order
immler
parents:
52729
diff
changeset

177 
end 
44006  178 

54776
db890d9fc5c2
ordered_euclidean_space compatible with more standard pointwise ordering on products; conditionally complete lattice with product order
immler
parents:
52729
diff
changeset

179 
instance prod :: (conditionally_complete_lattice, conditionally_complete_lattice) 
db890d9fc5c2
ordered_euclidean_space compatible with more standard pointwise ordering on products; conditionally complete lattice with product order
immler
parents:
52729
diff
changeset

180 
conditionally_complete_lattice 
60679  181 
by standard (force simp: less_eq_prod_def Inf_prod_def Sup_prod_def bdd_below_def bdd_above_def 
62053  182 
INF_def SUP_def simp del: Inf_image_eq Sup_image_eq 
183 
intro!: cInf_lower cSup_upper cInf_greatest cSup_least)+ 

54776
db890d9fc5c2
ordered_euclidean_space compatible with more standard pointwise ordering on products; conditionally complete lattice with product order
immler
parents:
52729
diff
changeset

184 

db890d9fc5c2
ordered_euclidean_space compatible with more standard pointwise ordering on products; conditionally complete lattice with product order
immler
parents:
52729
diff
changeset

185 
instance prod :: (complete_lattice, complete_lattice) complete_lattice 
60679  186 
by standard (simp_all add: less_eq_prod_def Inf_prod_def Sup_prod_def 
52729
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
haftmann
parents:
51542
diff
changeset

187 
INF_lower SUP_upper le_INF_iff SUP_le_iff bot_prod_def top_prod_def) 
44006  188 

189 
lemma fst_Sup: "fst (Sup A) = (SUP x:A. fst x)" 

190 
unfolding Sup_prod_def by simp 

191 

192 
lemma snd_Sup: "snd (Sup A) = (SUP x:A. snd x)" 

193 
unfolding Sup_prod_def by simp 

194 

195 
lemma fst_Inf: "fst (Inf A) = (INF x:A. fst x)" 

196 
unfolding Inf_prod_def by simp 

197 

198 
lemma snd_Inf: "snd (Inf A) = (INF x:A. snd x)" 

199 
unfolding Inf_prod_def by simp 

200 

201 
lemma fst_SUP: "fst (SUP x:A. f x) = (SUP x:A. fst (f x))" 

56166  202 
using fst_Sup [of "f ` A", symmetric] by (simp add: comp_def) 
44006  203 

204 
lemma snd_SUP: "snd (SUP x:A. f x) = (SUP x:A. snd (f x))" 

56166  205 
using snd_Sup [of "f ` A", symmetric] by (simp add: comp_def) 
44006  206 

207 
lemma fst_INF: "fst (INF x:A. f x) = (INF x:A. fst (f x))" 

56166  208 
using fst_Inf [of "f ` A", symmetric] by (simp add: comp_def) 
44006  209 

210 
lemma snd_INF: "snd (INF x:A. f x) = (INF x:A. snd (f x))" 

56166  211 
using snd_Inf [of "f ` A", symmetric] by (simp add: comp_def) 
44006  212 

213 
lemma SUP_Pair: "(SUP x:A. (f x, g x)) = (SUP x:A. f x, SUP x:A. g x)" 

56166  214 
unfolding SUP_def Sup_prod_def by (simp add: comp_def) 
44006  215 

216 
lemma INF_Pair: "(INF x:A. (f x, g x)) = (INF x:A. f x, INF x:A. g x)" 

56166  217 
unfolding INF_def Inf_prod_def by (simp add: comp_def) 
44006  218 

50535  219 

60500  220 
text \<open>Alternative formulations for set infima and suprema over the product 
221 
of two complete lattices:\<close> 

50535  222 

56212
3253aaf73a01
consolidated theorem names containing INFI and SUPR: have INF and SUP instead uniformly
haftmann
parents:
56166
diff
changeset

223 
lemma INF_prod_alt_def: 
56218
1c3f1f2431f9
elongated INFI and SUPR, to reduced risk of confusing theorems names in the future while still being consistent with INTER and UNION
haftmann
parents:
56212
diff
changeset

224 
"INFIMUM A f = (INFIMUM A (fst o f), INFIMUM A (snd o f))" 
56166  225 
unfolding INF_def Inf_prod_def by simp 
50535  226 

56212
3253aaf73a01
consolidated theorem names containing INFI and SUPR: have INF and SUP instead uniformly
haftmann
parents:
56166
diff
changeset

227 
lemma SUP_prod_alt_def: 
56218
1c3f1f2431f9
elongated INFI and SUPR, to reduced risk of confusing theorems names in the future while still being consistent with INTER and UNION
haftmann
parents:
56212
diff
changeset

228 
"SUPREMUM A f = (SUPREMUM A (fst o f), SUPREMUM A (snd o f))" 
56166  229 
unfolding SUP_def Sup_prod_def by simp 
50535  230 

231 

60500  232 
subsection \<open>Complete distributive lattices\<close> 
50535  233 

50573  234 
(* Contribution: Alessandro Coglio *) 
50535  235 

60679  236 
instance prod :: (complete_distrib_lattice, complete_distrib_lattice) complete_distrib_lattice 
61166
5976fe402824
renamed method "goals" to "goal_cases" to emphasize its meaning;
wenzelm
parents:
60679
diff
changeset

237 
proof (standard, goal_cases) 
60580  238 
case 1 
239 
then show ?case 

56212
3253aaf73a01
consolidated theorem names containing INFI and SUPR: have INF and SUP instead uniformly
haftmann
parents:
56166
diff
changeset

240 
by (auto simp: sup_prod_def Inf_prod_def INF_prod_alt_def sup_Inf sup_INF comp_def) 
50535  241 
next 
60580  242 
case 2 
243 
then show ?case 

56212
3253aaf73a01
consolidated theorem names containing INFI and SUPR: have INF and SUP instead uniformly
haftmann
parents:
56166
diff
changeset

244 
by (auto simp: inf_prod_def Sup_prod_def SUP_prod_alt_def inf_Sup inf_SUP comp_def) 
50535  245 
qed 
246 

51115
7dbd6832a689
consolidation of library theories on product orders
haftmann
parents:
50573
diff
changeset

247 
end 
50535  248 