src/HOL/List.thy
author oheimb
Mon Apr 12 19:54:32 2004 +0200 (2004-04-12)
changeset 14538 1d9d75a8efae
parent 14495 e2a1c31cf6d3
child 14565 c6dc17aab88a
permissions -rw-r--r--
removed o2l and fold_rel; moved postfix to Library/List_Prefix.thy
wenzelm@13462
     1
(*  Title:      HOL/List.thy
wenzelm@13462
     2
    ID:         $Id$
wenzelm@13462
     3
    Author:     Tobias Nipkow
wenzelm@13462
     4
    License:    GPL (GNU GENERAL PUBLIC LICENSE)
clasohm@923
     5
*)
clasohm@923
     6
wenzelm@13114
     7
header {* The datatype of finite lists *}
wenzelm@13122
     8
wenzelm@13122
     9
theory List = PreList:
clasohm@923
    10
wenzelm@13142
    11
datatype 'a list =
wenzelm@13366
    12
    Nil    ("[]")
wenzelm@13366
    13
  | Cons 'a  "'a list"    (infixr "#" 65)
clasohm@923
    14
clasohm@923
    15
consts
wenzelm@13366
    16
  "@" :: "'a list => 'a list => 'a list"    (infixr 65)
wenzelm@13366
    17
  filter:: "('a => bool) => 'a list => 'a list"
wenzelm@13366
    18
  concat:: "'a list list => 'a list"
wenzelm@13366
    19
  foldl :: "('b => 'a => 'b) => 'b => 'a list => 'b"
wenzelm@13366
    20
  foldr :: "('a => 'b => 'b) => 'a list => 'b => 'b"
wenzelm@13366
    21
  hd:: "'a list => 'a"
wenzelm@13366
    22
  tl:: "'a list => 'a list"
wenzelm@13366
    23
  last:: "'a list => 'a"
wenzelm@13366
    24
  butlast :: "'a list => 'a list"
wenzelm@13366
    25
  set :: "'a list => 'a set"
wenzelm@13366
    26
  list_all:: "('a => bool) => ('a list => bool)"
wenzelm@13366
    27
  list_all2 :: "('a => 'b => bool) => 'a list => 'b list => bool"
wenzelm@13366
    28
  map :: "('a=>'b) => ('a list => 'b list)"
wenzelm@13366
    29
  mem :: "'a => 'a list => bool"    (infixl 55)
wenzelm@13366
    30
  nth :: "'a list => nat => 'a"    (infixl "!" 100)
wenzelm@13366
    31
  list_update :: "'a list => nat => 'a => 'a list"
wenzelm@13366
    32
  take:: "nat => 'a list => 'a list"
wenzelm@13366
    33
  drop:: "nat => 'a list => 'a list"
wenzelm@13366
    34
  takeWhile :: "('a => bool) => 'a list => 'a list"
wenzelm@13366
    35
  dropWhile :: "('a => bool) => 'a list => 'a list"
wenzelm@13366
    36
  rev :: "'a list => 'a list"
wenzelm@13366
    37
  zip :: "'a list => 'b list => ('a * 'b) list"
wenzelm@13366
    38
  upt :: "nat => nat => nat list" ("(1[_../_'(])")
wenzelm@13366
    39
  remdups :: "'a list => 'a list"
wenzelm@13366
    40
  null:: "'a list => bool"
wenzelm@13366
    41
  "distinct":: "'a list => bool"
wenzelm@13366
    42
  replicate :: "nat => 'a => 'a list"
clasohm@923
    43
nipkow@13146
    44
nonterminals lupdbinds lupdbind
nipkow@5077
    45
clasohm@923
    46
syntax
wenzelm@13366
    47
  -- {* list Enumeration *}
wenzelm@13366
    48
  "@list" :: "args => 'a list"    ("[(_)]")
clasohm@923
    49
wenzelm@13366
    50
  -- {* Special syntax for filter *}
wenzelm@13366
    51
  "@filter" :: "[pttrn, 'a list, bool] => 'a list"    ("(1[_:_./ _])")
clasohm@923
    52
wenzelm@13366
    53
  -- {* list update *}
wenzelm@13366
    54
  "_lupdbind":: "['a, 'a] => lupdbind"    ("(2_ :=/ _)")
wenzelm@13366
    55
  "" :: "lupdbind => lupdbinds"    ("_")
wenzelm@13366
    56
  "_lupdbinds" :: "[lupdbind, lupdbinds] => lupdbinds"    ("_,/ _")
wenzelm@13366
    57
  "_LUpdate" :: "['a, lupdbinds] => 'a"    ("_/[(_)]" [900,0] 900)
nipkow@5077
    58
wenzelm@13366
    59
  upto:: "nat => nat => nat list"    ("(1[_../_])")
nipkow@5427
    60
clasohm@923
    61
translations
wenzelm@13366
    62
  "[x, xs]" == "x#[xs]"
wenzelm@13366
    63
  "[x]" == "x#[]"
wenzelm@13366
    64
  "[x:xs . P]"== "filter (%x. P) xs"
clasohm@923
    65
wenzelm@13366
    66
  "_LUpdate xs (_lupdbinds b bs)"== "_LUpdate (_LUpdate xs b) bs"
wenzelm@13366
    67
  "xs[i:=x]" == "list_update xs i x"
nipkow@5077
    68
wenzelm@13366
    69
  "[i..j]" == "[i..(Suc j)(]"
nipkow@5427
    70
nipkow@5427
    71
wenzelm@12114
    72
syntax (xsymbols)
wenzelm@13366
    73
  "@filter" :: "[pttrn, 'a list, bool] => 'a list"("(1[_\<in>_ ./ _])")
paulson@3342
    74
paulson@3342
    75
wenzelm@13142
    76
text {*
wenzelm@13366
    77
  Function @{text size} is overloaded for all datatypes.Users may
wenzelm@13366
    78
  refer to the list version as @{text length}. *}
wenzelm@13142
    79
wenzelm@13142
    80
syntax length :: "'a list => nat"
wenzelm@13142
    81
translations "length" => "size :: _ list => nat"
wenzelm@13114
    82
wenzelm@13142
    83
typed_print_translation {*
wenzelm@13366
    84
  let
wenzelm@13366
    85
    fun size_tr' _ (Type ("fun", (Type ("list", _) :: _))) [t] =
wenzelm@13366
    86
          Syntax.const "length" $ t
wenzelm@13366
    87
      | size_tr' _ _ _ = raise Match;
wenzelm@13366
    88
  in [("size", size_tr')] end
wenzelm@13114
    89
*}
paulson@3437
    90
berghofe@5183
    91
primrec
nipkow@13145
    92
"hd(x#xs) = x"
berghofe@5183
    93
primrec
nipkow@13145
    94
"tl([]) = []"
nipkow@13145
    95
"tl(x#xs) = xs"
berghofe@5183
    96
primrec
nipkow@13145
    97
"null([]) = True"
nipkow@13145
    98
"null(x#xs) = False"
paulson@8972
    99
primrec
nipkow@13145
   100
"last(x#xs) = (if xs=[] then x else last xs)"
berghofe@5183
   101
primrec
nipkow@13145
   102
"butlast []= []"
nipkow@13145
   103
"butlast(x#xs) = (if xs=[] then [] else x#butlast xs)"
berghofe@5183
   104
primrec
nipkow@13145
   105
"x mem [] = False"
nipkow@13145
   106
"x mem (y#ys) = (if y=x then True else x mem ys)"
oheimb@5518
   107
primrec
nipkow@13145
   108
"set [] = {}"
nipkow@13145
   109
"set (x#xs) = insert x (set xs)"
berghofe@5183
   110
primrec
nipkow@13145
   111
list_all_Nil:"list_all P [] = True"
nipkow@13145
   112
list_all_Cons: "list_all P (x#xs) = (P(x) \<and> list_all P xs)"
oheimb@5518
   113
primrec
nipkow@13145
   114
"map f [] = []"
nipkow@13145
   115
"map f (x#xs) = f(x)#map f xs"
berghofe@5183
   116
primrec
nipkow@13145
   117
append_Nil:"[]@ys = ys"
nipkow@13145
   118
append_Cons: "(x#xs)@ys = x#(xs@ys)"
berghofe@5183
   119
primrec
nipkow@13145
   120
"rev([]) = []"
nipkow@13145
   121
"rev(x#xs) = rev(xs) @ [x]"
berghofe@5183
   122
primrec
nipkow@13145
   123
"filter P [] = []"
nipkow@13145
   124
"filter P (x#xs) = (if P x then x#filter P xs else filter P xs)"
berghofe@5183
   125
primrec
nipkow@13145
   126
foldl_Nil:"foldl f a [] = a"
nipkow@13145
   127
foldl_Cons: "foldl f a (x#xs) = foldl f (f a x) xs"
berghofe@5183
   128
primrec
nipkow@13145
   129
"foldr f [] a = a"
nipkow@13145
   130
"foldr f (x#xs) a = f x (foldr f xs a)"
paulson@8000
   131
primrec
nipkow@13145
   132
"concat([]) = []"
nipkow@13145
   133
"concat(x#xs) = x @ concat(xs)"
berghofe@5183
   134
primrec
nipkow@13145
   135
drop_Nil:"drop n [] = []"
nipkow@13145
   136
drop_Cons: "drop n (x#xs) = (case n of 0 => x#xs | Suc(m) => drop m xs)"
nipkow@13145
   137
-- {* Warning: simpset does not contain this definition *}
nipkow@13145
   138
-- {* but separate theorems for @{text "n = 0"} and @{text "n = Suc k"} *}
berghofe@5183
   139
primrec
nipkow@13145
   140
take_Nil:"take n [] = []"
nipkow@13145
   141
take_Cons: "take n (x#xs) = (case n of 0 => [] | Suc(m) => x # take m xs)"
nipkow@13145
   142
-- {* Warning: simpset does not contain this definition *}
nipkow@13145
   143
-- {* but separate theorems for @{text "n = 0"} and @{text "n = Suc k"} *}
berghofe@5183
   144
primrec
nipkow@13145
   145
nth_Cons:"(x#xs)!n = (case n of 0 => x | (Suc k) => xs!k)"
nipkow@13145
   146
-- {* Warning: simpset does not contain this definition *}
nipkow@13145
   147
-- {* but separate theorems for @{text "n = 0"} and @{text "n = Suc k"} *}
wenzelm@13142
   148
primrec
nipkow@13145
   149
"[][i:=v] = []"
nipkow@13145
   150
"(x#xs)[i:=v] =
nipkow@13145
   151
(case i of 0 => v # xs
nipkow@13145
   152
| Suc j => x # xs[j:=v])"
berghofe@5183
   153
primrec
nipkow@13145
   154
"takeWhile P [] = []"
nipkow@13145
   155
"takeWhile P (x#xs) = (if P x then x#takeWhile P xs else [])"
berghofe@5183
   156
primrec
nipkow@13145
   157
"dropWhile P [] = []"
nipkow@13145
   158
"dropWhile P (x#xs) = (if P x then dropWhile P xs else x#xs)"
berghofe@5183
   159
primrec
nipkow@13145
   160
"zip xs [] = []"
nipkow@13145
   161
zip_Cons: "zip xs (y#ys) = (case xs of [] => [] | z#zs => (z,y)#zip zs ys)"
nipkow@13145
   162
-- {* Warning: simpset does not contain this definition *}
nipkow@13145
   163
-- {* but separate theorems for @{text "xs = []"} and @{text "xs = z # zs"} *}
nipkow@5427
   164
primrec
nipkow@13145
   165
upt_0: "[i..0(] = []"
nipkow@13145
   166
upt_Suc: "[i..(Suc j)(] = (if i <= j then [i..j(] @ [j] else [])"
berghofe@5183
   167
primrec
nipkow@13145
   168
"distinct [] = True"
nipkow@13145
   169
"distinct (x#xs) = (x ~: set xs \<and> distinct xs)"
berghofe@5183
   170
primrec
nipkow@13145
   171
"remdups [] = []"
nipkow@13145
   172
"remdups (x#xs) = (if x : set xs then remdups xs else x # remdups xs)"
berghofe@5183
   173
primrec
nipkow@13147
   174
replicate_0: "replicate 0 x = []"
nipkow@13145
   175
replicate_Suc: "replicate (Suc n) x = x # replicate n x"
nipkow@8115
   176
defs
wenzelm@13114
   177
 list_all2_def:
wenzelm@13142
   178
 "list_all2 P xs ys == length xs = length ys \<and> (\<forall>(x, y) \<in> set (zip xs ys). P x y)"
nipkow@8115
   179
paulson@3196
   180
wenzelm@13142
   181
subsection {* Lexicographic orderings on lists *}
nipkow@5281
   182
nipkow@5281
   183
consts
nipkow@13145
   184
lexn :: "('a * 'a)set => nat => ('a list * 'a list)set"
nipkow@5281
   185
primrec
nipkow@13145
   186
"lexn r 0 = {}"
nipkow@13145
   187
"lexn r (Suc n) =
nipkow@13145
   188
(prod_fun (%(x,xs). x#xs) (%(x,xs). x#xs) ` (r <*lex*> lexn r n)) Int
nipkow@13145
   189
{(xs,ys). length xs = Suc n \<and> length ys = Suc n}"
nipkow@5281
   190
nipkow@5281
   191
constdefs
nipkow@13145
   192
lex :: "('a \<times> 'a) set => ('a list \<times> 'a list) set"
nipkow@13145
   193
"lex r == \<Union>n. lexn r n"
nipkow@5281
   194
nipkow@13145
   195
lexico :: "('a \<times> 'a) set => ('a list \<times> 'a list) set"
nipkow@13145
   196
"lexico r == inv_image (less_than <*lex*> lex r) (%xs. (length xs, xs))"
paulson@9336
   197
nipkow@13145
   198
sublist :: "'a list => nat set => 'a list"
nipkow@13145
   199
"sublist xs A == map fst (filter (%p. snd p : A) (zip xs [0..size xs(]))"
nipkow@5281
   200
wenzelm@13114
   201
wenzelm@13142
   202
lemma not_Cons_self [simp]: "xs \<noteq> x # xs"
nipkow@13145
   203
by (induct xs) auto
wenzelm@13114
   204
wenzelm@13142
   205
lemmas not_Cons_self2 [simp] = not_Cons_self [symmetric]
wenzelm@13114
   206
wenzelm@13142
   207
lemma neq_Nil_conv: "(xs \<noteq> []) = (\<exists>y ys. xs = y # ys)"
nipkow@13145
   208
by (induct xs) auto
wenzelm@13114
   209
wenzelm@13142
   210
lemma length_induct:
nipkow@13145
   211
"(!!xs. \<forall>ys. length ys < length xs --> P ys ==> P xs) ==> P xs"
nipkow@13145
   212
by (rule measure_induct [of length]) rules
wenzelm@13114
   213
wenzelm@13114
   214
wenzelm@13142
   215
subsection {* @{text lists}: the list-forming operator over sets *}
wenzelm@13114
   216
wenzelm@13142
   217
consts lists :: "'a set => 'a list set"
wenzelm@13142
   218
inductive "lists A"
nipkow@13145
   219
intros
nipkow@13145
   220
Nil [intro!]: "[]: lists A"
nipkow@13145
   221
Cons [intro!]: "[| a: A;l: lists A|] ==> a#l : lists A"
wenzelm@13114
   222
wenzelm@13142
   223
inductive_cases listsE [elim!]: "x#l : lists A"
wenzelm@13114
   224
wenzelm@13366
   225
lemma lists_mono [mono]: "A \<subseteq> B ==> lists A \<subseteq> lists B"
nipkow@13145
   226
by (unfold lists.defs) (blast intro!: lfp_mono)
wenzelm@13114
   227
berghofe@13883
   228
lemma lists_IntI:
berghofe@13883
   229
  assumes l: "l: lists A" shows "l: lists B ==> l: lists (A Int B)" using l
berghofe@13883
   230
  by induct blast+
wenzelm@13142
   231
wenzelm@13142
   232
lemma lists_Int_eq [simp]: "lists (A \<inter> B) = lists A \<inter> lists B"
nipkow@13145
   233
apply (rule mono_Int [THEN equalityI])
nipkow@13145
   234
apply (simp add: mono_def lists_mono)
nipkow@13145
   235
apply (blast intro!: lists_IntI)
nipkow@13145
   236
done
wenzelm@13114
   237
wenzelm@13142
   238
lemma append_in_lists_conv [iff]:
nipkow@13145
   239
"(xs @ ys : lists A) = (xs : lists A \<and> ys : lists A)"
nipkow@13145
   240
by (induct xs) auto
wenzelm@13142
   241
wenzelm@13142
   242
wenzelm@13142
   243
subsection {* @{text length} *}
wenzelm@13114
   244
wenzelm@13142
   245
text {*
nipkow@13145
   246
Needs to come before @{text "@"} because of theorem @{text
nipkow@13145
   247
append_eq_append_conv}.
wenzelm@13142
   248
*}
wenzelm@13114
   249
wenzelm@13142
   250
lemma length_append [simp]: "length (xs @ ys) = length xs + length ys"
nipkow@13145
   251
by (induct xs) auto
wenzelm@13114
   252
wenzelm@13142
   253
lemma length_map [simp]: "length (map f xs) = length xs"
nipkow@13145
   254
by (induct xs) auto
wenzelm@13114
   255
wenzelm@13142
   256
lemma length_rev [simp]: "length (rev xs) = length xs"
nipkow@13145
   257
by (induct xs) auto
wenzelm@13114
   258
wenzelm@13142
   259
lemma length_tl [simp]: "length (tl xs) = length xs - 1"
nipkow@13145
   260
by (cases xs) auto
wenzelm@13114
   261
wenzelm@13142
   262
lemma length_0_conv [iff]: "(length xs = 0) = (xs = [])"
nipkow@13145
   263
by (induct xs) auto
wenzelm@13114
   264
wenzelm@13142
   265
lemma length_greater_0_conv [iff]: "(0 < length xs) = (xs \<noteq> [])"
nipkow@13145
   266
by (induct xs) auto
wenzelm@13114
   267
wenzelm@13114
   268
lemma length_Suc_conv:
nipkow@13145
   269
"(length xs = Suc n) = (\<exists>y ys. xs = y # ys \<and> length ys = n)"
nipkow@13145
   270
by (induct xs) auto
wenzelm@13142
   271
nipkow@14025
   272
lemma Suc_length_conv:
nipkow@14025
   273
"(Suc n = length xs) = (\<exists>y ys. xs = y # ys \<and> length ys = n)"
paulson@14208
   274
apply (induct xs, simp, simp)
nipkow@14025
   275
apply blast
nipkow@14025
   276
done
nipkow@14025
   277
oheimb@14099
   278
lemma impossible_Cons [rule_format]: 
oheimb@14099
   279
  "length xs <= length ys --> xs = x # ys = False"
paulson@14208
   280
apply (induct xs, auto)
oheimb@14099
   281
done
oheimb@14099
   282
nipkow@14247
   283
lemma list_induct2[consumes 1]: "\<And>ys.
nipkow@14247
   284
 \<lbrakk> length xs = length ys;
nipkow@14247
   285
   P [] [];
nipkow@14247
   286
   \<And>x xs y ys. \<lbrakk> length xs = length ys; P xs ys \<rbrakk> \<Longrightarrow> P (x#xs) (y#ys) \<rbrakk>
nipkow@14247
   287
 \<Longrightarrow> P xs ys"
nipkow@14247
   288
apply(induct xs)
nipkow@14247
   289
 apply simp
nipkow@14247
   290
apply(case_tac ys)
nipkow@14247
   291
 apply simp
nipkow@14247
   292
apply(simp)
nipkow@14247
   293
done
wenzelm@13114
   294
wenzelm@13142
   295
subsection {* @{text "@"} -- append *}
wenzelm@13114
   296
wenzelm@13142
   297
lemma append_assoc [simp]: "(xs @ ys) @ zs = xs @ (ys @ zs)"
nipkow@13145
   298
by (induct xs) auto
wenzelm@13114
   299
wenzelm@13142
   300
lemma append_Nil2 [simp]: "xs @ [] = xs"
nipkow@13145
   301
by (induct xs) auto
nipkow@3507
   302
wenzelm@13142
   303
lemma append_is_Nil_conv [iff]: "(xs @ ys = []) = (xs = [] \<and> ys = [])"
nipkow@13145
   304
by (induct xs) auto
wenzelm@13114
   305
wenzelm@13142
   306
lemma Nil_is_append_conv [iff]: "([] = xs @ ys) = (xs = [] \<and> ys = [])"
nipkow@13145
   307
by (induct xs) auto
wenzelm@13114
   308
wenzelm@13142
   309
lemma append_self_conv [iff]: "(xs @ ys = xs) = (ys = [])"
nipkow@13145
   310
by (induct xs) auto
wenzelm@13114
   311
wenzelm@13142
   312
lemma self_append_conv [iff]: "(xs = xs @ ys) = (ys = [])"
nipkow@13145
   313
by (induct xs) auto
wenzelm@13114
   314
berghofe@13883
   315
lemma append_eq_append_conv [simp]:
berghofe@13883
   316
 "!!ys. length xs = length ys \<or> length us = length vs
berghofe@13883
   317
 ==> (xs@us = ys@vs) = (xs=ys \<and> us=vs)"
berghofe@13883
   318
apply (induct xs)
paulson@14208
   319
 apply (case_tac ys, simp, force)
paulson@14208
   320
apply (case_tac ys, force, simp)
nipkow@13145
   321
done
wenzelm@13142
   322
nipkow@14495
   323
lemma append_eq_append_conv2: "!!ys zs ts.
nipkow@14495
   324
 (xs @ ys = zs @ ts) =
nipkow@14495
   325
 (EX us. xs = zs @ us & us @ ys = ts | xs @ us = zs & ys = us@ ts)"
nipkow@14495
   326
apply (induct xs)
nipkow@14495
   327
 apply fastsimp
nipkow@14495
   328
apply(case_tac zs)
nipkow@14495
   329
 apply simp
nipkow@14495
   330
apply fastsimp
nipkow@14495
   331
done
nipkow@14495
   332
wenzelm@13142
   333
lemma same_append_eq [iff]: "(xs @ ys = xs @ zs) = (ys = zs)"
nipkow@13145
   334
by simp
wenzelm@13142
   335
wenzelm@13142
   336
lemma append1_eq_conv [iff]: "(xs @ [x] = ys @ [y]) = (xs = ys \<and> x = y)"
nipkow@13145
   337
by simp
wenzelm@13114
   338
wenzelm@13142
   339
lemma append_same_eq [iff]: "(ys @ xs = zs @ xs) = (ys = zs)"
nipkow@13145
   340
by simp
wenzelm@13114
   341
wenzelm@13142
   342
lemma append_self_conv2 [iff]: "(xs @ ys = ys) = (xs = [])"
nipkow@13145
   343
using append_same_eq [of _ _ "[]"] by auto
nipkow@3507
   344
wenzelm@13142
   345
lemma self_append_conv2 [iff]: "(ys = xs @ ys) = (xs = [])"
nipkow@13145
   346
using append_same_eq [of "[]"] by auto
wenzelm@13114
   347
wenzelm@13142
   348
lemma hd_Cons_tl [simp]: "xs \<noteq> [] ==> hd xs # tl xs = xs"
nipkow@13145
   349
by (induct xs) auto
wenzelm@13114
   350
wenzelm@13142
   351
lemma hd_append: "hd (xs @ ys) = (if xs = [] then hd ys else hd xs)"
nipkow@13145
   352
by (induct xs) auto
wenzelm@13114
   353
wenzelm@13142
   354
lemma hd_append2 [simp]: "xs \<noteq> [] ==> hd (xs @ ys) = hd xs"
nipkow@13145
   355
by (simp add: hd_append split: list.split)
wenzelm@13114
   356
wenzelm@13142
   357
lemma tl_append: "tl (xs @ ys) = (case xs of [] => tl ys | z#zs => zs @ ys)"
nipkow@13145
   358
by (simp split: list.split)
wenzelm@13114
   359
wenzelm@13142
   360
lemma tl_append2 [simp]: "xs \<noteq> [] ==> tl (xs @ ys) = tl xs @ ys"
nipkow@13145
   361
by (simp add: tl_append split: list.split)
wenzelm@13114
   362
wenzelm@13114
   363
nipkow@14300
   364
lemma Cons_eq_append_conv: "x#xs = ys@zs =
nipkow@14300
   365
 (ys = [] & x#xs = zs | (EX ys'. x#ys' = ys & xs = ys'@zs))"
nipkow@14300
   366
by(cases ys) auto
nipkow@14300
   367
nipkow@14300
   368
wenzelm@13142
   369
text {* Trivial rules for solving @{text "@"}-equations automatically. *}
wenzelm@13114
   370
wenzelm@13114
   371
lemma eq_Nil_appendI: "xs = ys ==> xs = [] @ ys"
nipkow@13145
   372
by simp
wenzelm@13114
   373
wenzelm@13142
   374
lemma Cons_eq_appendI:
nipkow@13145
   375
"[| x # xs1 = ys; xs = xs1 @ zs |] ==> x # xs = ys @ zs"
nipkow@13145
   376
by (drule sym) simp
wenzelm@13114
   377
wenzelm@13142
   378
lemma append_eq_appendI:
nipkow@13145
   379
"[| xs @ xs1 = zs; ys = xs1 @ us |] ==> xs @ ys = zs @ us"
nipkow@13145
   380
by (drule sym) simp
wenzelm@13114
   381
wenzelm@13114
   382
wenzelm@13142
   383
text {*
nipkow@13145
   384
Simplification procedure for all list equalities.
nipkow@13145
   385
Currently only tries to rearrange @{text "@"} to see if
nipkow@13145
   386
- both lists end in a singleton list,
nipkow@13145
   387
- or both lists end in the same list.
wenzelm@13142
   388
*}
wenzelm@13142
   389
wenzelm@13142
   390
ML_setup {*
nipkow@3507
   391
local
nipkow@3507
   392
wenzelm@13122
   393
val append_assoc = thm "append_assoc";
wenzelm@13122
   394
val append_Nil = thm "append_Nil";
wenzelm@13122
   395
val append_Cons = thm "append_Cons";
wenzelm@13122
   396
val append1_eq_conv = thm "append1_eq_conv";
wenzelm@13122
   397
val append_same_eq = thm "append_same_eq";
wenzelm@13122
   398
wenzelm@13114
   399
fun last (cons as Const("List.list.Cons",_) $ _ $ xs) =
wenzelm@13462
   400
  (case xs of Const("List.list.Nil",_) => cons | _ => last xs)
wenzelm@13462
   401
  | last (Const("List.op @",_) $ _ $ ys) = last ys
wenzelm@13462
   402
  | last t = t;
wenzelm@13114
   403
wenzelm@13114
   404
fun list1 (Const("List.list.Cons",_) $ _ $ Const("List.list.Nil",_)) = true
wenzelm@13462
   405
  | list1 _ = false;
wenzelm@13114
   406
wenzelm@13114
   407
fun butlast ((cons as Const("List.list.Cons",_) $ x) $ xs) =
wenzelm@13462
   408
  (case xs of Const("List.list.Nil",_) => xs | _ => cons $ butlast xs)
wenzelm@13462
   409
  | butlast ((app as Const("List.op @",_) $ xs) $ ys) = app $ butlast ys
wenzelm@13462
   410
  | butlast xs = Const("List.list.Nil",fastype_of xs);
wenzelm@13114
   411
wenzelm@13114
   412
val rearr_tac =
wenzelm@13462
   413
  simp_tac (HOL_basic_ss addsimps [append_assoc, append_Nil, append_Cons]);
wenzelm@13114
   414
wenzelm@13114
   415
fun list_eq sg _ (F as (eq as Const(_,eqT)) $ lhs $ rhs) =
wenzelm@13462
   416
  let
wenzelm@13462
   417
    val lastl = last lhs and lastr = last rhs;
wenzelm@13462
   418
    fun rearr conv =
wenzelm@13462
   419
      let
wenzelm@13462
   420
        val lhs1 = butlast lhs and rhs1 = butlast rhs;
wenzelm@13462
   421
        val Type(_,listT::_) = eqT
wenzelm@13462
   422
        val appT = [listT,listT] ---> listT
wenzelm@13462
   423
        val app = Const("List.op @",appT)
wenzelm@13462
   424
        val F2 = eq $ (app$lhs1$lastl) $ (app$rhs1$lastr)
wenzelm@13480
   425
        val eq = HOLogic.mk_Trueprop (HOLogic.mk_eq (F,F2));
wenzelm@13480
   426
        val thm = Tactic.prove sg [] [] eq (K (rearr_tac 1));
wenzelm@13462
   427
      in Some ((conv RS (thm RS trans)) RS eq_reflection) end;
wenzelm@13114
   428
wenzelm@13462
   429
  in
wenzelm@13462
   430
    if list1 lastl andalso list1 lastr then rearr append1_eq_conv
wenzelm@13462
   431
    else if lastl aconv lastr then rearr append_same_eq
wenzelm@13462
   432
    else None
wenzelm@13462
   433
  end;
wenzelm@13462
   434
wenzelm@13114
   435
in
wenzelm@13462
   436
wenzelm@13462
   437
val list_eq_simproc =
wenzelm@13462
   438
  Simplifier.simproc (Theory.sign_of (the_context ())) "list_eq" ["(xs::'a list) = ys"] list_eq;
wenzelm@13462
   439
wenzelm@13114
   440
end;
wenzelm@13114
   441
wenzelm@13114
   442
Addsimprocs [list_eq_simproc];
wenzelm@13114
   443
*}
wenzelm@13114
   444
wenzelm@13114
   445
wenzelm@13142
   446
subsection {* @{text map} *}
wenzelm@13114
   447
wenzelm@13142
   448
lemma map_ext: "(!!x. x : set xs --> f x = g x) ==> map f xs = map g xs"
nipkow@13145
   449
by (induct xs) simp_all
wenzelm@13114
   450
wenzelm@13142
   451
lemma map_ident [simp]: "map (\<lambda>x. x) = (\<lambda>xs. xs)"
nipkow@13145
   452
by (rule ext, induct_tac xs) auto
wenzelm@13114
   453
wenzelm@13142
   454
lemma map_append [simp]: "map f (xs @ ys) = map f xs @ map f ys"
nipkow@13145
   455
by (induct xs) auto
wenzelm@13114
   456
wenzelm@13142
   457
lemma map_compose: "map (f o g) xs = map f (map g xs)"
nipkow@13145
   458
by (induct xs) (auto simp add: o_def)
wenzelm@13114
   459
wenzelm@13142
   460
lemma rev_map: "rev (map f xs) = map f (rev xs)"
nipkow@13145
   461
by (induct xs) auto
wenzelm@13114
   462
nipkow@13737
   463
lemma map_eq_conv[simp]: "(map f xs = map g xs) = (!x : set xs. f x = g x)"
nipkow@13737
   464
by (induct xs) auto
nipkow@13737
   465
wenzelm@13366
   466
lemma map_cong [recdef_cong]:
nipkow@13145
   467
"xs = ys ==> (!!x. x : set ys ==> f x = g x) ==> map f xs = map g ys"
nipkow@13145
   468
-- {* a congruence rule for @{text map} *}
nipkow@13737
   469
by simp
wenzelm@13114
   470
wenzelm@13142
   471
lemma map_is_Nil_conv [iff]: "(map f xs = []) = (xs = [])"
nipkow@13145
   472
by (cases xs) auto
wenzelm@13114
   473
wenzelm@13142
   474
lemma Nil_is_map_conv [iff]: "([] = map f xs) = (xs = [])"
nipkow@13145
   475
by (cases xs) auto
wenzelm@13114
   476
nipkow@14025
   477
lemma map_eq_Cons_conv[iff]:
nipkow@14025
   478
 "(map f xs = y#ys) = (\<exists>z zs. xs = z#zs \<and> f z = y \<and> map f zs = ys)"
nipkow@13145
   479
by (cases xs) auto
wenzelm@13114
   480
nipkow@14025
   481
lemma Cons_eq_map_conv[iff]:
nipkow@14025
   482
 "(x#xs = map f ys) = (\<exists>z zs. ys = z#zs \<and> x = f z \<and> xs = map f zs)"
nipkow@14025
   483
by (cases ys) auto
nipkow@14025
   484
nipkow@14111
   485
lemma ex_map_conv:
nipkow@14111
   486
  "(EX xs. ys = map f xs) = (ALL y : set ys. EX x. y = f x)"
nipkow@14111
   487
by(induct ys, auto)
nipkow@14111
   488
wenzelm@13114
   489
lemma map_injective:
nipkow@14338
   490
 "!!xs. map f xs = map f ys ==> inj f ==> xs = ys"
nipkow@14338
   491
by (induct ys) (auto dest!:injD)
wenzelm@13114
   492
nipkow@14339
   493
lemma inj_map_eq_map[simp]: "inj f \<Longrightarrow> (map f xs = map f ys) = (xs = ys)"
nipkow@14339
   494
by(blast dest:map_injective)
nipkow@14339
   495
wenzelm@13114
   496
lemma inj_mapI: "inj f ==> inj (map f)"
paulson@13585
   497
by (rules dest: map_injective injD intro: inj_onI)
wenzelm@13114
   498
wenzelm@13114
   499
lemma inj_mapD: "inj (map f) ==> inj f"
paulson@14208
   500
apply (unfold inj_on_def, clarify)
nipkow@13145
   501
apply (erule_tac x = "[x]" in ballE)
paulson@14208
   502
 apply (erule_tac x = "[y]" in ballE, simp, blast)
nipkow@13145
   503
apply blast
nipkow@13145
   504
done
wenzelm@13114
   505
nipkow@14339
   506
lemma inj_map[iff]: "inj (map f) = inj f"
nipkow@13145
   507
by (blast dest: inj_mapD intro: inj_mapI)
wenzelm@13114
   508
kleing@14343
   509
lemma map_idI: "(\<And>x. x \<in> set xs \<Longrightarrow> f x = x) \<Longrightarrow> map f xs = xs"
kleing@14343
   510
by (induct xs, auto)
wenzelm@13114
   511
nipkow@14402
   512
lemma map_fun_upd [simp]: "y \<notin> set xs \<Longrightarrow> map (f(y:=v)) xs = map f xs"
nipkow@14402
   513
by (induct xs) auto
nipkow@14402
   514
wenzelm@13142
   515
subsection {* @{text rev} *}
wenzelm@13114
   516
wenzelm@13142
   517
lemma rev_append [simp]: "rev (xs @ ys) = rev ys @ rev xs"
nipkow@13145
   518
by (induct xs) auto
wenzelm@13114
   519
wenzelm@13142
   520
lemma rev_rev_ident [simp]: "rev (rev xs) = xs"
nipkow@13145
   521
by (induct xs) auto
wenzelm@13114
   522
wenzelm@13142
   523
lemma rev_is_Nil_conv [iff]: "(rev xs = []) = (xs = [])"
nipkow@13145
   524
by (induct xs) auto
wenzelm@13114
   525
wenzelm@13142
   526
lemma Nil_is_rev_conv [iff]: "([] = rev xs) = (xs = [])"
nipkow@13145
   527
by (induct xs) auto
wenzelm@13114
   528
wenzelm@13142
   529
lemma rev_is_rev_conv [iff]: "!!ys. (rev xs = rev ys) = (xs = ys)"
paulson@14208
   530
apply (induct xs, force)
paulson@14208
   531
apply (case_tac ys, simp, force)
nipkow@13145
   532
done
wenzelm@13114
   533
wenzelm@13366
   534
lemma rev_induct [case_names Nil snoc]:
wenzelm@13366
   535
  "[| P []; !!x xs. P xs ==> P (xs @ [x]) |] ==> P xs"
nipkow@13145
   536
apply(subst rev_rev_ident[symmetric])
nipkow@13145
   537
apply(rule_tac list = "rev xs" in list.induct, simp_all)
nipkow@13145
   538
done
wenzelm@13114
   539
nipkow@13145
   540
ML {* val rev_induct_tac = induct_thm_tac (thm "rev_induct") *}-- "compatibility"
wenzelm@13114
   541
wenzelm@13366
   542
lemma rev_exhaust [case_names Nil snoc]:
wenzelm@13366
   543
  "(xs = [] ==> P) ==>(!!ys y. xs = ys @ [y] ==> P) ==> P"
nipkow@13145
   544
by (induct xs rule: rev_induct) auto
wenzelm@13114
   545
wenzelm@13366
   546
lemmas rev_cases = rev_exhaust
wenzelm@13366
   547
wenzelm@13114
   548
wenzelm@13142
   549
subsection {* @{text set} *}
wenzelm@13114
   550
wenzelm@13142
   551
lemma finite_set [iff]: "finite (set xs)"
nipkow@13145
   552
by (induct xs) auto
wenzelm@13114
   553
wenzelm@13142
   554
lemma set_append [simp]: "set (xs @ ys) = (set xs \<union> set ys)"
nipkow@13145
   555
by (induct xs) auto
wenzelm@13114
   556
oheimb@14099
   557
lemma hd_in_set: "l = x#xs \<Longrightarrow> x\<in>set l"
paulson@14208
   558
by (case_tac l, auto)
oheimb@14099
   559
wenzelm@13142
   560
lemma set_subset_Cons: "set xs \<subseteq> set (x # xs)"
nipkow@13145
   561
by auto
wenzelm@13114
   562
oheimb@14099
   563
lemma set_ConsD: "y \<in> set (x # xs) \<Longrightarrow> y=x \<or> y \<in> set xs" 
oheimb@14099
   564
by auto
oheimb@14099
   565
wenzelm@13142
   566
lemma set_empty [iff]: "(set xs = {}) = (xs = [])"
nipkow@13145
   567
by (induct xs) auto
wenzelm@13114
   568
wenzelm@13142
   569
lemma set_rev [simp]: "set (rev xs) = set xs"
nipkow@13145
   570
by (induct xs) auto
wenzelm@13114
   571
wenzelm@13142
   572
lemma set_map [simp]: "set (map f xs) = f`(set xs)"
nipkow@13145
   573
by (induct xs) auto
wenzelm@13114
   574
wenzelm@13142
   575
lemma set_filter [simp]: "set (filter P xs) = {x. x : set xs \<and> P x}"
nipkow@13145
   576
by (induct xs) auto
wenzelm@13114
   577
wenzelm@13142
   578
lemma set_upt [simp]: "set[i..j(] = {k. i \<le> k \<and> k < j}"
paulson@14208
   579
apply (induct j, simp_all)
paulson@14208
   580
apply (erule ssubst, auto)
nipkow@13145
   581
done
wenzelm@13114
   582
wenzelm@13142
   583
lemma in_set_conv_decomp: "(x : set xs) = (\<exists>ys zs. xs = ys @ x # zs)"
paulson@14208
   584
apply (induct xs, simp, simp)
nipkow@13145
   585
apply (rule iffI)
nipkow@13145
   586
 apply (blast intro: eq_Nil_appendI Cons_eq_appendI)
nipkow@13145
   587
apply (erule exE)+
paulson@14208
   588
apply (case_tac ys, auto)
nipkow@13145
   589
done
wenzelm@13142
   590
wenzelm@13142
   591
lemma in_lists_conv_set: "(xs : lists A) = (\<forall>x \<in> set xs. x : A)"
nipkow@13145
   592
-- {* eliminate @{text lists} in favour of @{text set} *}
nipkow@13145
   593
by (induct xs) auto
wenzelm@13142
   594
wenzelm@13142
   595
lemma in_listsD [dest!]: "xs \<in> lists A ==> \<forall>x\<in>set xs. x \<in> A"
nipkow@13145
   596
by (rule in_lists_conv_set [THEN iffD1])
wenzelm@13142
   597
wenzelm@13142
   598
lemma in_listsI [intro!]: "\<forall>x\<in>set xs. x \<in> A ==> xs \<in> lists A"
nipkow@13145
   599
by (rule in_lists_conv_set [THEN iffD2])
wenzelm@13114
   600
paulson@13508
   601
lemma finite_list: "finite A ==> EX l. set l = A"
paulson@13508
   602
apply (erule finite_induct, auto)
paulson@13508
   603
apply (rule_tac x="x#l" in exI, auto)
paulson@13508
   604
done
paulson@13508
   605
kleing@14388
   606
lemma card_length: "card (set xs) \<le> length xs"
kleing@14388
   607
by (induct xs) (auto simp add: card_insert_if)
wenzelm@13114
   608
wenzelm@13142
   609
subsection {* @{text mem} *}
wenzelm@13114
   610
wenzelm@13114
   611
lemma set_mem_eq: "(x mem xs) = (x : set xs)"
nipkow@13145
   612
by (induct xs) auto
wenzelm@13114
   613
wenzelm@13114
   614
wenzelm@13142
   615
subsection {* @{text list_all} *}
wenzelm@13114
   616
wenzelm@13142
   617
lemma list_all_conv: "list_all P xs = (\<forall>x \<in> set xs. P x)"
nipkow@13145
   618
by (induct xs) auto
wenzelm@13114
   619
wenzelm@13142
   620
lemma list_all_append [simp]:
nipkow@13145
   621
"list_all P (xs @ ys) = (list_all P xs \<and> list_all P ys)"
nipkow@13145
   622
by (induct xs) auto
wenzelm@13114
   623
wenzelm@13114
   624
wenzelm@13142
   625
subsection {* @{text filter} *}
wenzelm@13114
   626
wenzelm@13142
   627
lemma filter_append [simp]: "filter P (xs @ ys) = filter P xs @ filter P ys"
nipkow@13145
   628
by (induct xs) auto
wenzelm@13114
   629
wenzelm@13142
   630
lemma filter_filter [simp]: "filter P (filter Q xs) = filter (\<lambda>x. Q x \<and> P x) xs"
nipkow@13145
   631
by (induct xs) auto
wenzelm@13114
   632
wenzelm@13142
   633
lemma filter_True [simp]: "\<forall>x \<in> set xs. P x ==> filter P xs = xs"
nipkow@13145
   634
by (induct xs) auto
wenzelm@13114
   635
wenzelm@13142
   636
lemma filter_False [simp]: "\<forall>x \<in> set xs. \<not> P x ==> filter P xs = []"
nipkow@13145
   637
by (induct xs) auto
wenzelm@13114
   638
wenzelm@13142
   639
lemma length_filter [simp]: "length (filter P xs) \<le> length xs"
nipkow@13145
   640
by (induct xs) (auto simp add: le_SucI)
wenzelm@13114
   641
wenzelm@13142
   642
lemma filter_is_subset [simp]: "set (filter P xs) \<le> set xs"
nipkow@13145
   643
by auto
wenzelm@13114
   644
wenzelm@13114
   645
wenzelm@13142
   646
subsection {* @{text concat} *}
wenzelm@13114
   647
wenzelm@13142
   648
lemma concat_append [simp]: "concat (xs @ ys) = concat xs @ concat ys"
nipkow@13145
   649
by (induct xs) auto
wenzelm@13114
   650
wenzelm@13142
   651
lemma concat_eq_Nil_conv [iff]: "(concat xss = []) = (\<forall>xs \<in> set xss. xs = [])"
nipkow@13145
   652
by (induct xss) auto
wenzelm@13114
   653
wenzelm@13142
   654
lemma Nil_eq_concat_conv [iff]: "([] = concat xss) = (\<forall>xs \<in> set xss. xs = [])"
nipkow@13145
   655
by (induct xss) auto
wenzelm@13114
   656
wenzelm@13142
   657
lemma set_concat [simp]: "set (concat xs) = \<Union>(set ` set xs)"
nipkow@13145
   658
by (induct xs) auto
wenzelm@13114
   659
wenzelm@13142
   660
lemma map_concat: "map f (concat xs) = concat (map (map f) xs)"
nipkow@13145
   661
by (induct xs) auto
wenzelm@13114
   662
wenzelm@13142
   663
lemma filter_concat: "filter p (concat xs) = concat (map (filter p) xs)"
nipkow@13145
   664
by (induct xs) auto
wenzelm@13114
   665
wenzelm@13142
   666
lemma rev_concat: "rev (concat xs) = concat (map rev (rev xs))"
nipkow@13145
   667
by (induct xs) auto
wenzelm@13114
   668
wenzelm@13114
   669
wenzelm@13142
   670
subsection {* @{text nth} *}
wenzelm@13114
   671
wenzelm@13142
   672
lemma nth_Cons_0 [simp]: "(x # xs)!0 = x"
nipkow@13145
   673
by auto
wenzelm@13114
   674
wenzelm@13142
   675
lemma nth_Cons_Suc [simp]: "(x # xs)!(Suc n) = xs!n"
nipkow@13145
   676
by auto
wenzelm@13114
   677
wenzelm@13142
   678
declare nth.simps [simp del]
wenzelm@13114
   679
wenzelm@13114
   680
lemma nth_append:
nipkow@13145
   681
"!!n. (xs @ ys)!n = (if n < length xs then xs!n else ys!(n - length xs))"
paulson@14208
   682
apply (induct "xs", simp)
paulson@14208
   683
apply (case_tac n, auto)
nipkow@13145
   684
done
wenzelm@13114
   685
nipkow@14402
   686
lemma nth_append_length [simp]: "(xs @ x # ys) ! length xs = x"
nipkow@14402
   687
by (induct "xs") auto
nipkow@14402
   688
nipkow@14402
   689
lemma nth_append_length_plus[simp]: "(xs @ ys) ! (length xs + n) = ys ! n"
nipkow@14402
   690
by (induct "xs") auto
nipkow@14402
   691
wenzelm@13142
   692
lemma nth_map [simp]: "!!n. n < length xs ==> (map f xs)!n = f(xs!n)"
paulson@14208
   693
apply (induct xs, simp)
paulson@14208
   694
apply (case_tac n, auto)
nipkow@13145
   695
done
wenzelm@13114
   696
wenzelm@13142
   697
lemma set_conv_nth: "set xs = {xs!i | i. i < length xs}"
paulson@14208
   698
apply (induct_tac xs, simp, simp)
nipkow@13145
   699
apply safe
paulson@14208
   700
apply (rule_tac x = 0 in exI, simp)
paulson@14208
   701
 apply (rule_tac x = "Suc i" in exI, simp)
paulson@14208
   702
apply (case_tac i, simp)
nipkow@13145
   703
apply (rename_tac j)
paulson@14208
   704
apply (rule_tac x = j in exI, simp)
nipkow@13145
   705
done
wenzelm@13114
   706
nipkow@13145
   707
lemma list_ball_nth: "[| n < length xs; !x : set xs. P x|] ==> P(xs!n)"
nipkow@13145
   708
by (auto simp add: set_conv_nth)
wenzelm@13114
   709
wenzelm@13142
   710
lemma nth_mem [simp]: "n < length xs ==> xs!n : set xs"
nipkow@13145
   711
by (auto simp add: set_conv_nth)
wenzelm@13114
   712
wenzelm@13114
   713
lemma all_nth_imp_all_set:
nipkow@13145
   714
"[| !i < length xs. P(xs!i); x : set xs|] ==> P x"
nipkow@13145
   715
by (auto simp add: set_conv_nth)
wenzelm@13114
   716
wenzelm@13114
   717
lemma all_set_conv_all_nth:
nipkow@13145
   718
"(\<forall>x \<in> set xs. P x) = (\<forall>i. i < length xs --> P (xs ! i))"
nipkow@13145
   719
by (auto simp add: set_conv_nth)
wenzelm@13114
   720
wenzelm@13114
   721
wenzelm@13142
   722
subsection {* @{text list_update} *}
wenzelm@13114
   723
wenzelm@13142
   724
lemma length_list_update [simp]: "!!i. length(xs[i:=x]) = length xs"
nipkow@13145
   725
by (induct xs) (auto split: nat.split)
wenzelm@13114
   726
wenzelm@13114
   727
lemma nth_list_update:
nipkow@13145
   728
"!!i j. i < length xs==> (xs[i:=x])!j = (if i = j then x else xs!j)"
nipkow@13145
   729
by (induct xs) (auto simp add: nth_Cons split: nat.split)
wenzelm@13114
   730
wenzelm@13142
   731
lemma nth_list_update_eq [simp]: "i < length xs ==> (xs[i:=x])!i = x"
nipkow@13145
   732
by (simp add: nth_list_update)
wenzelm@13114
   733
wenzelm@13142
   734
lemma nth_list_update_neq [simp]: "!!i j. i \<noteq> j ==> xs[i:=x]!j = xs!j"
nipkow@13145
   735
by (induct xs) (auto simp add: nth_Cons split: nat.split)
wenzelm@13114
   736
wenzelm@13142
   737
lemma list_update_overwrite [simp]:
nipkow@13145
   738
"!!i. i < size xs ==> xs[i:=x, i:=y] = xs[i:=y]"
nipkow@13145
   739
by (induct xs) (auto split: nat.split)
wenzelm@13114
   740
nipkow@14402
   741
lemma list_update_id[simp]: "!!i. i < length xs ==> xs[i := xs!i] = xs"
paulson@14208
   742
apply (induct xs, simp)
nipkow@14187
   743
apply(simp split:nat.splits)
nipkow@14187
   744
done
nipkow@14187
   745
wenzelm@13114
   746
lemma list_update_same_conv:
nipkow@13145
   747
"!!i. i < length xs ==> (xs[i := x] = xs) = (xs!i = x)"
nipkow@13145
   748
by (induct xs) (auto split: nat.split)
wenzelm@13114
   749
nipkow@14187
   750
lemma list_update_append1:
nipkow@14187
   751
 "!!i. i < size xs \<Longrightarrow> (xs @ ys)[i:=x] = xs[i:=x] @ ys"
paulson@14208
   752
apply (induct xs, simp)
nipkow@14187
   753
apply(simp split:nat.split)
nipkow@14187
   754
done
nipkow@14187
   755
nipkow@14402
   756
lemma list_update_length [simp]:
nipkow@14402
   757
 "(xs @ x # ys)[length xs := y] = (xs @ y # ys)"
nipkow@14402
   758
by (induct xs, auto)
nipkow@14402
   759
wenzelm@13114
   760
lemma update_zip:
nipkow@13145
   761
"!!i xy xs. length xs = length ys ==>
nipkow@13145
   762
(zip xs ys)[i:=xy] = zip (xs[i:=fst xy]) (ys[i:=snd xy])"
nipkow@13145
   763
by (induct ys) (auto, case_tac xs, auto split: nat.split)
wenzelm@13114
   764
wenzelm@13114
   765
lemma set_update_subset_insert: "!!i. set(xs[i:=x]) <= insert x (set xs)"
nipkow@13145
   766
by (induct xs) (auto split: nat.split)
wenzelm@13114
   767
wenzelm@13114
   768
lemma set_update_subsetI: "[| set xs <= A; x:A |] ==> set(xs[i := x]) <= A"
nipkow@13145
   769
by (blast dest!: set_update_subset_insert [THEN subsetD])
wenzelm@13114
   770
wenzelm@13114
   771
wenzelm@13142
   772
subsection {* @{text last} and @{text butlast} *}
wenzelm@13114
   773
wenzelm@13142
   774
lemma last_snoc [simp]: "last (xs @ [x]) = x"
nipkow@13145
   775
by (induct xs) auto
wenzelm@13114
   776
wenzelm@13142
   777
lemma butlast_snoc [simp]: "butlast (xs @ [x]) = xs"
nipkow@13145
   778
by (induct xs) auto
wenzelm@13114
   779
nipkow@14302
   780
lemma last_ConsL: "xs = [] \<Longrightarrow> last(x#xs) = x"
nipkow@14302
   781
by(simp add:last.simps)
nipkow@14302
   782
nipkow@14302
   783
lemma last_ConsR: "xs \<noteq> [] \<Longrightarrow> last(x#xs) = last xs"
nipkow@14302
   784
by(simp add:last.simps)
nipkow@14302
   785
nipkow@14302
   786
lemma last_append: "last(xs @ ys) = (if ys = [] then last xs else last ys)"
nipkow@14302
   787
by (induct xs) (auto)
nipkow@14302
   788
nipkow@14302
   789
lemma last_appendL[simp]: "ys = [] \<Longrightarrow> last(xs @ ys) = last xs"
nipkow@14302
   790
by(simp add:last_append)
nipkow@14302
   791
nipkow@14302
   792
lemma last_appendR[simp]: "ys \<noteq> [] \<Longrightarrow> last(xs @ ys) = last ys"
nipkow@14302
   793
by(simp add:last_append)
nipkow@14302
   794
nipkow@14302
   795
nipkow@14302
   796
wenzelm@13142
   797
lemma length_butlast [simp]: "length (butlast xs) = length xs - 1"
nipkow@13145
   798
by (induct xs rule: rev_induct) auto
wenzelm@13114
   799
wenzelm@13114
   800
lemma butlast_append:
nipkow@13145
   801
"!!ys. butlast (xs @ ys) = (if ys = [] then butlast xs else xs @ butlast ys)"
nipkow@13145
   802
by (induct xs) auto
wenzelm@13114
   803
wenzelm@13142
   804
lemma append_butlast_last_id [simp]:
nipkow@13145
   805
"xs \<noteq> [] ==> butlast xs @ [last xs] = xs"
nipkow@13145
   806
by (induct xs) auto
wenzelm@13114
   807
wenzelm@13142
   808
lemma in_set_butlastD: "x : set (butlast xs) ==> x : set xs"
nipkow@13145
   809
by (induct xs) (auto split: split_if_asm)
wenzelm@13114
   810
wenzelm@13114
   811
lemma in_set_butlast_appendI:
nipkow@13145
   812
"x : set (butlast xs) | x : set (butlast ys) ==> x : set (butlast (xs @ ys))"
nipkow@13145
   813
by (auto dest: in_set_butlastD simp add: butlast_append)
wenzelm@13114
   814
wenzelm@13142
   815
wenzelm@13142
   816
subsection {* @{text take} and @{text drop} *}
wenzelm@13114
   817
wenzelm@13142
   818
lemma take_0 [simp]: "take 0 xs = []"
nipkow@13145
   819
by (induct xs) auto
wenzelm@13114
   820
wenzelm@13142
   821
lemma drop_0 [simp]: "drop 0 xs = xs"
nipkow@13145
   822
by (induct xs) auto
wenzelm@13114
   823
wenzelm@13142
   824
lemma take_Suc_Cons [simp]: "take (Suc n) (x # xs) = x # take n xs"
nipkow@13145
   825
by simp
wenzelm@13114
   826
wenzelm@13142
   827
lemma drop_Suc_Cons [simp]: "drop (Suc n) (x # xs) = drop n xs"
nipkow@13145
   828
by simp
wenzelm@13114
   829
wenzelm@13142
   830
declare take_Cons [simp del] and drop_Cons [simp del]
wenzelm@13114
   831
nipkow@14187
   832
lemma drop_Suc: "drop (Suc n) xs = drop n (tl xs)"
nipkow@14187
   833
by(cases xs, simp_all)
nipkow@14187
   834
nipkow@14187
   835
lemma drop_tl: "!!n. drop n (tl xs) = tl(drop n xs)"
nipkow@14187
   836
by(induct xs, simp_all add:drop_Cons drop_Suc split:nat.split)
nipkow@14187
   837
nipkow@14187
   838
lemma nth_via_drop: "!!n. drop n xs = y#ys \<Longrightarrow> xs!n = y"
paulson@14208
   839
apply (induct xs, simp)
nipkow@14187
   840
apply(simp add:drop_Cons nth_Cons split:nat.splits)
nipkow@14187
   841
done
nipkow@14187
   842
nipkow@13913
   843
lemma take_Suc_conv_app_nth:
nipkow@13913
   844
 "!!i. i < length xs \<Longrightarrow> take (Suc i) xs = take i xs @ [xs!i]"
paulson@14208
   845
apply (induct xs, simp)
paulson@14208
   846
apply (case_tac i, auto)
nipkow@13913
   847
done
nipkow@13913
   848
wenzelm@13142
   849
lemma length_take [simp]: "!!xs. length (take n xs) = min (length xs) n"
nipkow@13145
   850
by (induct n) (auto, case_tac xs, auto)
wenzelm@13114
   851
wenzelm@13142
   852
lemma length_drop [simp]: "!!xs. length (drop n xs) = (length xs - n)"
nipkow@13145
   853
by (induct n) (auto, case_tac xs, auto)
wenzelm@13114
   854
wenzelm@13142
   855
lemma take_all [simp]: "!!xs. length xs <= n ==> take n xs = xs"
nipkow@13145
   856
by (induct n) (auto, case_tac xs, auto)
wenzelm@13114
   857
wenzelm@13142
   858
lemma drop_all [simp]: "!!xs. length xs <= n ==> drop n xs = []"
nipkow@13145
   859
by (induct n) (auto, case_tac xs, auto)
wenzelm@13114
   860
wenzelm@13142
   861
lemma take_append [simp]:
nipkow@13145
   862
"!!xs. take n (xs @ ys) = (take n xs @ take (n - length xs) ys)"
nipkow@13145
   863
by (induct n) (auto, case_tac xs, auto)
wenzelm@13114
   864
wenzelm@13142
   865
lemma drop_append [simp]:
nipkow@13145
   866
"!!xs. drop n (xs @ ys) = drop n xs @ drop (n - length xs) ys"
nipkow@13145
   867
by (induct n) (auto, case_tac xs, auto)
wenzelm@13114
   868
wenzelm@13142
   869
lemma take_take [simp]: "!!xs n. take n (take m xs) = take (min n m) xs"
paulson@14208
   870
apply (induct m, auto)
paulson@14208
   871
apply (case_tac xs, auto)
paulson@14208
   872
apply (case_tac na, auto)
nipkow@13145
   873
done
wenzelm@13114
   874
wenzelm@13142
   875
lemma drop_drop [simp]: "!!xs. drop n (drop m xs) = drop (n + m) xs"
paulson@14208
   876
apply (induct m, auto)
paulson@14208
   877
apply (case_tac xs, auto)
nipkow@13145
   878
done
wenzelm@13114
   879
wenzelm@13114
   880
lemma take_drop: "!!xs n. take n (drop m xs) = drop m (take (n + m) xs)"
paulson@14208
   881
apply (induct m, auto)
paulson@14208
   882
apply (case_tac xs, auto)
nipkow@13145
   883
done
wenzelm@13114
   884
wenzelm@13142
   885
lemma append_take_drop_id [simp]: "!!xs. take n xs @ drop n xs = xs"
paulson@14208
   886
apply (induct n, auto)
paulson@14208
   887
apply (case_tac xs, auto)
nipkow@13145
   888
done
wenzelm@13114
   889
wenzelm@13114
   890
lemma take_map: "!!xs. take n (map f xs) = map f (take n xs)"
paulson@14208
   891
apply (induct n, auto)
paulson@14208
   892
apply (case_tac xs, auto)
nipkow@13145
   893
done
wenzelm@13114
   894
wenzelm@13142
   895
lemma drop_map: "!!xs. drop n (map f xs) = map f (drop n xs)"
paulson@14208
   896
apply (induct n, auto)
paulson@14208
   897
apply (case_tac xs, auto)
nipkow@13145
   898
done
wenzelm@13114
   899
wenzelm@13114
   900
lemma rev_take: "!!i. rev (take i xs) = drop (length xs - i) (rev xs)"
paulson@14208
   901
apply (induct xs, auto)
paulson@14208
   902
apply (case_tac i, auto)
nipkow@13145
   903
done
wenzelm@13114
   904
wenzelm@13114
   905
lemma rev_drop: "!!i. rev (drop i xs) = take (length xs - i) (rev xs)"
paulson@14208
   906
apply (induct xs, auto)
paulson@14208
   907
apply (case_tac i, auto)
nipkow@13145
   908
done
wenzelm@13114
   909
wenzelm@13142
   910
lemma nth_take [simp]: "!!n i. i < n ==> (take n xs)!i = xs!i"
paulson@14208
   911
apply (induct xs, auto)
paulson@14208
   912
apply (case_tac n, blast)
paulson@14208
   913
apply (case_tac i, auto)
nipkow@13145
   914
done
wenzelm@13114
   915
wenzelm@13142
   916
lemma nth_drop [simp]:
nipkow@13145
   917
"!!xs i. n + i <= length xs ==> (drop n xs)!i = xs!(n + i)"
paulson@14208
   918
apply (induct n, auto)
paulson@14208
   919
apply (case_tac xs, auto)
nipkow@13145
   920
done
nipkow@3507
   921
nipkow@14025
   922
lemma set_take_subset: "\<And>n. set(take n xs) \<subseteq> set xs"
nipkow@14025
   923
by(induct xs)(auto simp:take_Cons split:nat.split)
nipkow@14025
   924
nipkow@14025
   925
lemma set_drop_subset: "\<And>n. set(drop n xs) \<subseteq> set xs"
nipkow@14025
   926
by(induct xs)(auto simp:drop_Cons split:nat.split)
nipkow@14025
   927
nipkow@14187
   928
lemma in_set_takeD: "x : set(take n xs) \<Longrightarrow> x : set xs"
nipkow@14187
   929
using set_take_subset by fast
nipkow@14187
   930
nipkow@14187
   931
lemma in_set_dropD: "x : set(drop n xs) \<Longrightarrow> x : set xs"
nipkow@14187
   932
using set_drop_subset by fast
nipkow@14187
   933
wenzelm@13114
   934
lemma append_eq_conv_conj:
nipkow@13145
   935
"!!zs. (xs @ ys = zs) = (xs = take (length xs) zs \<and> ys = drop (length xs) zs)"
paulson@14208
   936
apply (induct xs, simp, clarsimp)
paulson@14208
   937
apply (case_tac zs, auto)
nipkow@13145
   938
done
wenzelm@13142
   939
paulson@14050
   940
lemma take_add [rule_format]: 
paulson@14050
   941
    "\<forall>i. i+j \<le> length(xs) --> take (i+j) xs = take i xs @ take j (drop i xs)"
paulson@14050
   942
apply (induct xs, auto) 
paulson@14050
   943
apply (case_tac i, simp_all) 
paulson@14050
   944
done
paulson@14050
   945
nipkow@14300
   946
lemma append_eq_append_conv_if:
nipkow@14300
   947
 "!! ys\<^isub>1. (xs\<^isub>1 @ xs\<^isub>2 = ys\<^isub>1 @ ys\<^isub>2) =
nipkow@14300
   948
  (if size xs\<^isub>1 \<le> size ys\<^isub>1
nipkow@14300
   949
   then xs\<^isub>1 = take (size xs\<^isub>1) ys\<^isub>1 \<and> xs\<^isub>2 = drop (size xs\<^isub>1) ys\<^isub>1 @ ys\<^isub>2
nipkow@14300
   950
   else take (size ys\<^isub>1) xs\<^isub>1 = ys\<^isub>1 \<and> drop (size ys\<^isub>1) xs\<^isub>1 @ xs\<^isub>2 = ys\<^isub>2)"
nipkow@14300
   951
apply(induct xs\<^isub>1)
nipkow@14300
   952
 apply simp
nipkow@14300
   953
apply(case_tac ys\<^isub>1)
nipkow@14300
   954
apply simp_all
nipkow@14300
   955
done
nipkow@14300
   956
wenzelm@13114
   957
wenzelm@13142
   958
subsection {* @{text takeWhile} and @{text dropWhile} *}
wenzelm@13114
   959
wenzelm@13142
   960
lemma takeWhile_dropWhile_id [simp]: "takeWhile P xs @ dropWhile P xs = xs"
nipkow@13145
   961
by (induct xs) auto
wenzelm@13114
   962
wenzelm@13142
   963
lemma takeWhile_append1 [simp]:
nipkow@13145
   964
"[| x:set xs; ~P(x)|] ==> takeWhile P (xs @ ys) = takeWhile P xs"
nipkow@13145
   965
by (induct xs) auto
wenzelm@13114
   966
wenzelm@13142
   967
lemma takeWhile_append2 [simp]:
nipkow@13145
   968
"(!!x. x : set xs ==> P x) ==> takeWhile P (xs @ ys) = xs @ takeWhile P ys"
nipkow@13145
   969
by (induct xs) auto
wenzelm@13114
   970
wenzelm@13142
   971
lemma takeWhile_tail: "\<not> P x ==> takeWhile P (xs @ (x#l)) = takeWhile P xs"
nipkow@13145
   972
by (induct xs) auto
wenzelm@13114
   973
wenzelm@13142
   974
lemma dropWhile_append1 [simp]:
nipkow@13145
   975
"[| x : set xs; ~P(x)|] ==> dropWhile P (xs @ ys) = (dropWhile P xs)@ys"
nipkow@13145
   976
by (induct xs) auto
wenzelm@13114
   977
wenzelm@13142
   978
lemma dropWhile_append2 [simp]:
nipkow@13145
   979
"(!!x. x:set xs ==> P(x)) ==> dropWhile P (xs @ ys) = dropWhile P ys"
nipkow@13145
   980
by (induct xs) auto
wenzelm@13114
   981
wenzelm@13142
   982
lemma set_take_whileD: "x : set (takeWhile P xs) ==> x : set xs \<and> P x"
nipkow@13145
   983
by (induct xs) (auto split: split_if_asm)
wenzelm@13114
   984
nipkow@13913
   985
lemma takeWhile_eq_all_conv[simp]:
nipkow@13913
   986
 "(takeWhile P xs = xs) = (\<forall>x \<in> set xs. P x)"
nipkow@13913
   987
by(induct xs, auto)
nipkow@13913
   988
nipkow@13913
   989
lemma dropWhile_eq_Nil_conv[simp]:
nipkow@13913
   990
 "(dropWhile P xs = []) = (\<forall>x \<in> set xs. P x)"
nipkow@13913
   991
by(induct xs, auto)
nipkow@13913
   992
nipkow@13913
   993
lemma dropWhile_eq_Cons_conv:
nipkow@13913
   994
 "(dropWhile P xs = y#ys) = (xs = takeWhile P xs @ y # ys & \<not> P y)"
nipkow@13913
   995
by(induct xs, auto)
nipkow@13913
   996
wenzelm@13114
   997
wenzelm@13142
   998
subsection {* @{text zip} *}
wenzelm@13114
   999
wenzelm@13142
  1000
lemma zip_Nil [simp]: "zip [] ys = []"
nipkow@13145
  1001
by (induct ys) auto
wenzelm@13114
  1002
wenzelm@13142
  1003
lemma zip_Cons_Cons [simp]: "zip (x # xs) (y # ys) = (x, y) # zip xs ys"
nipkow@13145
  1004
by simp
wenzelm@13114
  1005
wenzelm@13142
  1006
declare zip_Cons [simp del]
wenzelm@13114
  1007
wenzelm@13142
  1008
lemma length_zip [simp]:
nipkow@13145
  1009
"!!xs. length (zip xs ys) = min (length xs) (length ys)"
paulson@14208
  1010
apply (induct ys, simp)
paulson@14208
  1011
apply (case_tac xs, auto)
nipkow@13145
  1012
done
wenzelm@13114
  1013
wenzelm@13114
  1014
lemma zip_append1:
nipkow@13145
  1015
"!!xs. zip (xs @ ys) zs =
nipkow@13145
  1016
zip xs (take (length xs) zs) @ zip ys (drop (length xs) zs)"
paulson@14208
  1017
apply (induct zs, simp)
paulson@14208
  1018
apply (case_tac xs, simp_all)
nipkow@13145
  1019
done
wenzelm@13114
  1020
wenzelm@13114
  1021
lemma zip_append2:
nipkow@13145
  1022
"!!ys. zip xs (ys @ zs) =
nipkow@13145
  1023
zip (take (length ys) xs) ys @ zip (drop (length ys) xs) zs"
paulson@14208
  1024
apply (induct xs, simp)
paulson@14208
  1025
apply (case_tac ys, simp_all)
nipkow@13145
  1026
done
wenzelm@13114
  1027
wenzelm@13142
  1028
lemma zip_append [simp]:
wenzelm@13142
  1029
 "[| length xs = length us; length ys = length vs |] ==>
nipkow@13145
  1030
zip (xs@ys) (us@vs) = zip xs us @ zip ys vs"
nipkow@13145
  1031
by (simp add: zip_append1)
wenzelm@13114
  1032
wenzelm@13114
  1033
lemma zip_rev:
nipkow@14247
  1034
"length xs = length ys ==> zip (rev xs) (rev ys) = rev (zip xs ys)"
nipkow@14247
  1035
by (induct rule:list_induct2, simp_all)
wenzelm@13114
  1036
wenzelm@13142
  1037
lemma nth_zip [simp]:
nipkow@13145
  1038
"!!i xs. [| i < length xs; i < length ys|] ==> (zip xs ys)!i = (xs!i, ys!i)"
paulson@14208
  1039
apply (induct ys, simp)
nipkow@13145
  1040
apply (case_tac xs)
nipkow@13145
  1041
 apply (simp_all add: nth.simps split: nat.split)
nipkow@13145
  1042
done
wenzelm@13114
  1043
wenzelm@13114
  1044
lemma set_zip:
nipkow@13145
  1045
"set (zip xs ys) = {(xs!i, ys!i) | i. i < min (length xs) (length ys)}"
nipkow@13145
  1046
by (simp add: set_conv_nth cong: rev_conj_cong)
wenzelm@13114
  1047
wenzelm@13114
  1048
lemma zip_update:
nipkow@13145
  1049
"length xs = length ys ==> zip (xs[i:=x]) (ys[i:=y]) = (zip xs ys)[i:=(x,y)]"
nipkow@13145
  1050
by (rule sym, simp add: update_zip)
wenzelm@13114
  1051
wenzelm@13142
  1052
lemma zip_replicate [simp]:
nipkow@13145
  1053
"!!j. zip (replicate i x) (replicate j y) = replicate (min i j) (x,y)"
paulson@14208
  1054
apply (induct i, auto)
paulson@14208
  1055
apply (case_tac j, auto)
nipkow@13145
  1056
done
wenzelm@13114
  1057
wenzelm@13142
  1058
wenzelm@13142
  1059
subsection {* @{text list_all2} *}
wenzelm@13114
  1060
kleing@14316
  1061
lemma list_all2_lengthD [intro?]: 
kleing@14316
  1062
  "list_all2 P xs ys ==> length xs = length ys"
nipkow@13145
  1063
by (simp add: list_all2_def)
wenzelm@13114
  1064
wenzelm@13142
  1065
lemma list_all2_Nil [iff]: "list_all2 P [] ys = (ys = [])"
nipkow@13145
  1066
by (simp add: list_all2_def)
wenzelm@13114
  1067
wenzelm@13142
  1068
lemma list_all2_Nil2[iff]: "list_all2 P xs [] = (xs = [])"
nipkow@13145
  1069
by (simp add: list_all2_def)
wenzelm@13114
  1070
wenzelm@13142
  1071
lemma list_all2_Cons [iff]:
nipkow@13145
  1072
"list_all2 P (x # xs) (y # ys) = (P x y \<and> list_all2 P xs ys)"
nipkow@13145
  1073
by (auto simp add: list_all2_def)
wenzelm@13114
  1074
wenzelm@13114
  1075
lemma list_all2_Cons1:
nipkow@13145
  1076
"list_all2 P (x # xs) ys = (\<exists>z zs. ys = z # zs \<and> P x z \<and> list_all2 P xs zs)"
nipkow@13145
  1077
by (cases ys) auto
wenzelm@13114
  1078
wenzelm@13114
  1079
lemma list_all2_Cons2:
nipkow@13145
  1080
"list_all2 P xs (y # ys) = (\<exists>z zs. xs = z # zs \<and> P z y \<and> list_all2 P zs ys)"
nipkow@13145
  1081
by (cases xs) auto
wenzelm@13114
  1082
wenzelm@13142
  1083
lemma list_all2_rev [iff]:
nipkow@13145
  1084
"list_all2 P (rev xs) (rev ys) = list_all2 P xs ys"
nipkow@13145
  1085
by (simp add: list_all2_def zip_rev cong: conj_cong)
wenzelm@13114
  1086
kleing@13863
  1087
lemma list_all2_rev1:
kleing@13863
  1088
"list_all2 P (rev xs) ys = list_all2 P xs (rev ys)"
kleing@13863
  1089
by (subst list_all2_rev [symmetric]) simp
kleing@13863
  1090
wenzelm@13114
  1091
lemma list_all2_append1:
nipkow@13145
  1092
"list_all2 P (xs @ ys) zs =
nipkow@13145
  1093
(EX us vs. zs = us @ vs \<and> length us = length xs \<and> length vs = length ys \<and>
nipkow@13145
  1094
list_all2 P xs us \<and> list_all2 P ys vs)"
nipkow@13145
  1095
apply (simp add: list_all2_def zip_append1)
nipkow@13145
  1096
apply (rule iffI)
nipkow@13145
  1097
 apply (rule_tac x = "take (length xs) zs" in exI)
nipkow@13145
  1098
 apply (rule_tac x = "drop (length xs) zs" in exI)
paulson@14208
  1099
 apply (force split: nat_diff_split simp add: min_def, clarify)
nipkow@13145
  1100
apply (simp add: ball_Un)
nipkow@13145
  1101
done
wenzelm@13114
  1102
wenzelm@13114
  1103
lemma list_all2_append2:
nipkow@13145
  1104
"list_all2 P xs (ys @ zs) =
nipkow@13145
  1105
(EX us vs. xs = us @ vs \<and> length us = length ys \<and> length vs = length zs \<and>
nipkow@13145
  1106
list_all2 P us ys \<and> list_all2 P vs zs)"
nipkow@13145
  1107
apply (simp add: list_all2_def zip_append2)
nipkow@13145
  1108
apply (rule iffI)
nipkow@13145
  1109
 apply (rule_tac x = "take (length ys) xs" in exI)
nipkow@13145
  1110
 apply (rule_tac x = "drop (length ys) xs" in exI)
paulson@14208
  1111
 apply (force split: nat_diff_split simp add: min_def, clarify)
nipkow@13145
  1112
apply (simp add: ball_Un)
nipkow@13145
  1113
done
wenzelm@13114
  1114
kleing@13863
  1115
lemma list_all2_append:
nipkow@14247
  1116
  "length xs = length ys \<Longrightarrow>
nipkow@14247
  1117
  list_all2 P (xs@us) (ys@vs) = (list_all2 P xs ys \<and> list_all2 P us vs)"
nipkow@14247
  1118
by (induct rule:list_induct2, simp_all)
kleing@13863
  1119
kleing@13863
  1120
lemma list_all2_appendI [intro?, trans]:
kleing@13863
  1121
  "\<lbrakk> list_all2 P a b; list_all2 P c d \<rbrakk> \<Longrightarrow> list_all2 P (a@c) (b@d)"
kleing@13863
  1122
  by (simp add: list_all2_append list_all2_lengthD)
kleing@13863
  1123
wenzelm@13114
  1124
lemma list_all2_conv_all_nth:
nipkow@13145
  1125
"list_all2 P xs ys =
nipkow@13145
  1126
(length xs = length ys \<and> (\<forall>i < length xs. P (xs!i) (ys!i)))"
nipkow@13145
  1127
by (force simp add: list_all2_def set_zip)
wenzelm@13114
  1128
berghofe@13883
  1129
lemma list_all2_trans:
berghofe@13883
  1130
  assumes tr: "!!a b c. P1 a b ==> P2 b c ==> P3 a c"
berghofe@13883
  1131
  shows "!!bs cs. list_all2 P1 as bs ==> list_all2 P2 bs cs ==> list_all2 P3 as cs"
berghofe@13883
  1132
        (is "!!bs cs. PROP ?Q as bs cs")
berghofe@13883
  1133
proof (induct as)
berghofe@13883
  1134
  fix x xs bs assume I1: "!!bs cs. PROP ?Q xs bs cs"
berghofe@13883
  1135
  show "!!cs. PROP ?Q (x # xs) bs cs"
berghofe@13883
  1136
  proof (induct bs)
berghofe@13883
  1137
    fix y ys cs assume I2: "!!cs. PROP ?Q (x # xs) ys cs"
berghofe@13883
  1138
    show "PROP ?Q (x # xs) (y # ys) cs"
berghofe@13883
  1139
      by (induct cs) (auto intro: tr I1 I2)
berghofe@13883
  1140
  qed simp
berghofe@13883
  1141
qed simp
berghofe@13883
  1142
kleing@13863
  1143
lemma list_all2_all_nthI [intro?]:
kleing@13863
  1144
  "length a = length b \<Longrightarrow> (\<And>n. n < length a \<Longrightarrow> P (a!n) (b!n)) \<Longrightarrow> list_all2 P a b"
kleing@13863
  1145
  by (simp add: list_all2_conv_all_nth)
kleing@13863
  1146
paulson@14395
  1147
lemma list_all2I:
paulson@14395
  1148
  "\<forall>x \<in> set (zip a b). split P x \<Longrightarrow> length a = length b \<Longrightarrow> list_all2 P a b"
paulson@14395
  1149
  by (simp add: list_all2_def)
paulson@14395
  1150
kleing@14328
  1151
lemma list_all2_nthD:
kleing@13863
  1152
  "\<lbrakk> list_all2 P xs ys; p < size xs \<rbrakk> \<Longrightarrow> P (xs!p) (ys!p)"
kleing@13863
  1153
  by (simp add: list_all2_conv_all_nth)
kleing@13863
  1154
nipkow@14302
  1155
lemma list_all2_nthD2:
nipkow@14302
  1156
  "\<lbrakk>list_all2 P xs ys; p < size ys\<rbrakk> \<Longrightarrow> P (xs!p) (ys!p)"
nipkow@14302
  1157
  by (frule list_all2_lengthD) (auto intro: list_all2_nthD)
nipkow@14302
  1158
kleing@13863
  1159
lemma list_all2_map1: 
kleing@13863
  1160
  "list_all2 P (map f as) bs = list_all2 (\<lambda>x y. P (f x) y) as bs"
kleing@13863
  1161
  by (simp add: list_all2_conv_all_nth)
kleing@13863
  1162
kleing@13863
  1163
lemma list_all2_map2: 
kleing@13863
  1164
  "list_all2 P as (map f bs) = list_all2 (\<lambda>x y. P x (f y)) as bs"
kleing@13863
  1165
  by (auto simp add: list_all2_conv_all_nth)
kleing@13863
  1166
kleing@14316
  1167
lemma list_all2_refl [intro?]:
kleing@13863
  1168
  "(\<And>x. P x x) \<Longrightarrow> list_all2 P xs xs"
kleing@13863
  1169
  by (simp add: list_all2_conv_all_nth)
kleing@13863
  1170
kleing@13863
  1171
lemma list_all2_update_cong:
kleing@13863
  1172
  "\<lbrakk> i<size xs; list_all2 P xs ys; P x y \<rbrakk> \<Longrightarrow> list_all2 P (xs[i:=x]) (ys[i:=y])"
kleing@13863
  1173
  by (simp add: list_all2_conv_all_nth nth_list_update)
kleing@13863
  1174
kleing@13863
  1175
lemma list_all2_update_cong2:
kleing@13863
  1176
  "\<lbrakk>list_all2 P xs ys; P x y; i < length ys\<rbrakk> \<Longrightarrow> list_all2 P (xs[i:=x]) (ys[i:=y])"
kleing@13863
  1177
  by (simp add: list_all2_lengthD list_all2_update_cong)
kleing@13863
  1178
nipkow@14302
  1179
lemma list_all2_takeI [simp,intro?]:
nipkow@14302
  1180
  "\<And>n ys. list_all2 P xs ys \<Longrightarrow> list_all2 P (take n xs) (take n ys)"
nipkow@14302
  1181
  apply (induct xs)
nipkow@14302
  1182
   apply simp
nipkow@14302
  1183
  apply (clarsimp simp add: list_all2_Cons1)
nipkow@14302
  1184
  apply (case_tac n)
nipkow@14302
  1185
  apply auto
nipkow@14302
  1186
  done
nipkow@14302
  1187
nipkow@14302
  1188
lemma list_all2_dropI [simp,intro?]:
kleing@13863
  1189
  "\<And>n bs. list_all2 P as bs \<Longrightarrow> list_all2 P (drop n as) (drop n bs)"
paulson@14208
  1190
  apply (induct as, simp)
kleing@13863
  1191
  apply (clarsimp simp add: list_all2_Cons1)
paulson@14208
  1192
  apply (case_tac n, simp, simp)
kleing@13863
  1193
  done
kleing@13863
  1194
kleing@14327
  1195
lemma list_all2_mono [intro?]:
kleing@13863
  1196
  "\<And>y. list_all2 P x y \<Longrightarrow> (\<And>x y. P x y \<Longrightarrow> Q x y) \<Longrightarrow> list_all2 Q x y"
paulson@14208
  1197
  apply (induct x, simp)
paulson@14208
  1198
  apply (case_tac y, auto)
kleing@13863
  1199
  done
kleing@13863
  1200
wenzelm@13142
  1201
nipkow@14402
  1202
subsection {* @{text foldl} and @{text foldr} *}
wenzelm@13142
  1203
wenzelm@13142
  1204
lemma foldl_append [simp]:
nipkow@13145
  1205
"!!a. foldl f a (xs @ ys) = foldl f (foldl f a xs) ys"
nipkow@13145
  1206
by (induct xs) auto
wenzelm@13142
  1207
nipkow@14402
  1208
lemma foldr_append[simp]: "foldr f (xs @ ys) a = foldr f xs (foldr f ys a)"
nipkow@14402
  1209
by (induct xs) auto
nipkow@14402
  1210
nipkow@14402
  1211
lemma foldr_foldl: "foldr f xs a = foldl (%x y. f y x) a (rev xs)"
nipkow@14402
  1212
by (induct xs) auto
nipkow@14402
  1213
nipkow@14402
  1214
lemma foldl_foldr: "foldl f a xs = foldr (%x y. f y x) (rev xs) a"
nipkow@14402
  1215
by (simp add: foldr_foldl [of "%x y. f y x" "rev xs"])
nipkow@14402
  1216
wenzelm@13142
  1217
text {*
nipkow@13145
  1218
Note: @{text "n \<le> foldl (op +) n ns"} looks simpler, but is more
nipkow@13145
  1219
difficult to use because it requires an additional transitivity step.
wenzelm@13142
  1220
*}
wenzelm@13142
  1221
wenzelm@13142
  1222
lemma start_le_sum: "!!n::nat. m <= n ==> m <= foldl (op +) n ns"
nipkow@13145
  1223
by (induct ns) auto
wenzelm@13142
  1224
wenzelm@13142
  1225
lemma elem_le_sum: "!!n::nat. n : set ns ==> n <= foldl (op +) 0 ns"
nipkow@13145
  1226
by (force intro: start_le_sum simp add: in_set_conv_decomp)
wenzelm@13142
  1227
wenzelm@13142
  1228
lemma sum_eq_0_conv [iff]:
nipkow@13145
  1229
"!!m::nat. (foldl (op +) m ns = 0) = (m = 0 \<and> (\<forall>n \<in> set ns. n = 0))"
nipkow@13145
  1230
by (induct ns) auto
wenzelm@13114
  1231
wenzelm@13114
  1232
wenzelm@13142
  1233
subsection {* @{text upto} *}
wenzelm@13114
  1234
wenzelm@13142
  1235
lemma upt_rec: "[i..j(] = (if i<j then i#[Suc i..j(] else [])"
nipkow@13145
  1236
-- {* Does not terminate! *}
nipkow@13145
  1237
by (induct j) auto
wenzelm@13142
  1238
wenzelm@13142
  1239
lemma upt_conv_Nil [simp]: "j <= i ==> [i..j(] = []"
nipkow@13145
  1240
by (subst upt_rec) simp
wenzelm@13114
  1241
wenzelm@13142
  1242
lemma upt_Suc_append: "i <= j ==> [i..(Suc j)(] = [i..j(]@[j]"
nipkow@13145
  1243
-- {* Only needed if @{text upt_Suc} is deleted from the simpset. *}
nipkow@13145
  1244
by simp
wenzelm@13114
  1245
wenzelm@13142
  1246
lemma upt_conv_Cons: "i < j ==> [i..j(] = i # [Suc i..j(]"
nipkow@13145
  1247
apply(rule trans)
nipkow@13145
  1248
apply(subst upt_rec)
paulson@14208
  1249
 prefer 2 apply (rule refl, simp)
nipkow@13145
  1250
done
wenzelm@13114
  1251
wenzelm@13142
  1252
lemma upt_add_eq_append: "i<=j ==> [i..j+k(] = [i..j(]@[j..j+k(]"
nipkow@13145
  1253
-- {* LOOPS as a simprule, since @{text "j <= j"}. *}
nipkow@13145
  1254
by (induct k) auto
wenzelm@13114
  1255
wenzelm@13142
  1256
lemma length_upt [simp]: "length [i..j(] = j - i"
nipkow@13145
  1257
by (induct j) (auto simp add: Suc_diff_le)
wenzelm@13114
  1258
wenzelm@13142
  1259
lemma nth_upt [simp]: "i + k < j ==> [i..j(] ! k = i + k"
nipkow@13145
  1260
apply (induct j)
nipkow@13145
  1261
apply (auto simp add: less_Suc_eq nth_append split: nat_diff_split)
nipkow@13145
  1262
done
wenzelm@13114
  1263
wenzelm@13142
  1264
lemma take_upt [simp]: "!!i. i+m <= n ==> take m [i..n(] = [i..i+m(]"
paulson@14208
  1265
apply (induct m, simp)
nipkow@13145
  1266
apply (subst upt_rec)
nipkow@13145
  1267
apply (rule sym)
nipkow@13145
  1268
apply (subst upt_rec)
nipkow@13145
  1269
apply (simp del: upt.simps)
nipkow@13145
  1270
done
nipkow@3507
  1271
wenzelm@13114
  1272
lemma map_Suc_upt: "map Suc [m..n(] = [Suc m..n]"
nipkow@13145
  1273
by (induct n) auto
wenzelm@13114
  1274
wenzelm@13114
  1275
lemma nth_map_upt: "!!i. i < n-m ==> (map f [m..n(]) ! i = f(m+i)"
nipkow@13145
  1276
apply (induct n m rule: diff_induct)
nipkow@13145
  1277
prefer 3 apply (subst map_Suc_upt[symmetric])
nipkow@13145
  1278
apply (auto simp add: less_diff_conv nth_upt)
nipkow@13145
  1279
done
wenzelm@13114
  1280
berghofe@13883
  1281
lemma nth_take_lemma:
berghofe@13883
  1282
  "!!xs ys. k <= length xs ==> k <= length ys ==>
berghofe@13883
  1283
     (!!i. i < k --> xs!i = ys!i) ==> take k xs = take k ys"
berghofe@13883
  1284
apply (atomize, induct k)
paulson@14208
  1285
apply (simp_all add: less_Suc_eq_0_disj all_conj_distrib, clarify)
nipkow@13145
  1286
txt {* Both lists must be non-empty *}
paulson@14208
  1287
apply (case_tac xs, simp)
paulson@14208
  1288
apply (case_tac ys, clarify)
nipkow@13145
  1289
 apply (simp (no_asm_use))
nipkow@13145
  1290
apply clarify
nipkow@13145
  1291
txt {* prenexing's needed, not miniscoping *}
nipkow@13145
  1292
apply (simp (no_asm_use) add: all_simps [symmetric] del: all_simps)
nipkow@13145
  1293
apply blast
nipkow@13145
  1294
done
wenzelm@13114
  1295
wenzelm@13114
  1296
lemma nth_equalityI:
wenzelm@13114
  1297
 "[| length xs = length ys; ALL i < length xs. xs!i = ys!i |] ==> xs = ys"
nipkow@13145
  1298
apply (frule nth_take_lemma [OF le_refl eq_imp_le])
nipkow@13145
  1299
apply (simp_all add: take_all)
nipkow@13145
  1300
done
wenzelm@13142
  1301
kleing@13863
  1302
(* needs nth_equalityI *)
kleing@13863
  1303
lemma list_all2_antisym:
kleing@13863
  1304
  "\<lbrakk> (\<And>x y. \<lbrakk>P x y; Q y x\<rbrakk> \<Longrightarrow> x = y); list_all2 P xs ys; list_all2 Q ys xs \<rbrakk> 
kleing@13863
  1305
  \<Longrightarrow> xs = ys"
kleing@13863
  1306
  apply (simp add: list_all2_conv_all_nth) 
paulson@14208
  1307
  apply (rule nth_equalityI, blast, simp)
kleing@13863
  1308
  done
kleing@13863
  1309
wenzelm@13142
  1310
lemma take_equalityI: "(\<forall>i. take i xs = take i ys) ==> xs = ys"
nipkow@13145
  1311
-- {* The famous take-lemma. *}
nipkow@13145
  1312
apply (drule_tac x = "max (length xs) (length ys)" in spec)
nipkow@13145
  1313
apply (simp add: le_max_iff_disj take_all)
nipkow@13145
  1314
done
wenzelm@13142
  1315
wenzelm@13142
  1316
wenzelm@13142
  1317
subsection {* @{text "distinct"} and @{text remdups} *}
wenzelm@13142
  1318
wenzelm@13142
  1319
lemma distinct_append [simp]:
nipkow@13145
  1320
"distinct (xs @ ys) = (distinct xs \<and> distinct ys \<and> set xs \<inter> set ys = {})"
nipkow@13145
  1321
by (induct xs) auto
wenzelm@13142
  1322
wenzelm@13142
  1323
lemma set_remdups [simp]: "set (remdups xs) = set xs"
nipkow@13145
  1324
by (induct xs) (auto simp add: insert_absorb)
wenzelm@13142
  1325
wenzelm@13142
  1326
lemma distinct_remdups [iff]: "distinct (remdups xs)"
nipkow@13145
  1327
by (induct xs) auto
wenzelm@13142
  1328
wenzelm@13142
  1329
lemma distinct_filter [simp]: "distinct xs ==> distinct (filter P xs)"
nipkow@13145
  1330
by (induct xs) auto
wenzelm@13114
  1331
wenzelm@13142
  1332
text {*
nipkow@13145
  1333
It is best to avoid this indexed version of distinct, but sometimes
nipkow@13145
  1334
it is useful. *}
wenzelm@13142
  1335
lemma distinct_conv_nth:
nipkow@13145
  1336
"distinct xs = (\<forall>i j. i < size xs \<and> j < size xs \<and> i \<noteq> j --> xs!i \<noteq> xs!j)"
paulson@14208
  1337
apply (induct_tac xs, simp, simp)
paulson@14208
  1338
apply (rule iffI, clarsimp)
nipkow@13145
  1339
 apply (case_tac i)
paulson@14208
  1340
apply (case_tac j, simp)
nipkow@13145
  1341
apply (simp add: set_conv_nth)
nipkow@13145
  1342
 apply (case_tac j)
paulson@14208
  1343
apply (clarsimp simp add: set_conv_nth, simp)
nipkow@13145
  1344
apply (rule conjI)
nipkow@13145
  1345
 apply (clarsimp simp add: set_conv_nth)
nipkow@13145
  1346
 apply (erule_tac x = 0 in allE)
paulson@14208
  1347
 apply (erule_tac x = "Suc i" in allE, simp, clarsimp)
nipkow@13145
  1348
apply (erule_tac x = "Suc i" in allE)
paulson@14208
  1349
apply (erule_tac x = "Suc j" in allE, simp)
nipkow@13145
  1350
done
wenzelm@13114
  1351
kleing@14388
  1352
lemma distinct_card: "distinct xs \<Longrightarrow> card (set xs) = size xs"
kleing@14388
  1353
  by (induct xs) auto
kleing@14388
  1354
kleing@14388
  1355
lemma card_distinct: "card (set xs) = size xs \<Longrightarrow> distinct xs"
kleing@14388
  1356
proof (induct xs)
kleing@14388
  1357
  case Nil thus ?case by simp
kleing@14388
  1358
next
kleing@14388
  1359
  case (Cons x xs)
kleing@14388
  1360
  show ?case
kleing@14388
  1361
  proof (cases "x \<in> set xs")
kleing@14388
  1362
    case False with Cons show ?thesis by simp
kleing@14388
  1363
  next
kleing@14388
  1364
    case True with Cons.prems
kleing@14388
  1365
    have "card (set xs) = Suc (length xs)" 
kleing@14388
  1366
      by (simp add: card_insert_if split: split_if_asm)
kleing@14388
  1367
    moreover have "card (set xs) \<le> length xs" by (rule card_length)
kleing@14388
  1368
    ultimately have False by simp
kleing@14388
  1369
    thus ?thesis ..
kleing@14388
  1370
  qed
kleing@14388
  1371
qed
kleing@14388
  1372
wenzelm@13114
  1373
wenzelm@13142
  1374
subsection {* @{text replicate} *}
wenzelm@13114
  1375
wenzelm@13142
  1376
lemma length_replicate [simp]: "length (replicate n x) = n"
nipkow@13145
  1377
by (induct n) auto
nipkow@13124
  1378
wenzelm@13142
  1379
lemma map_replicate [simp]: "map f (replicate n x) = replicate n (f x)"
nipkow@13145
  1380
by (induct n) auto
wenzelm@13114
  1381
wenzelm@13114
  1382
lemma replicate_app_Cons_same:
nipkow@13145
  1383
"(replicate n x) @ (x # xs) = x # replicate n x @ xs"
nipkow@13145
  1384
by (induct n) auto
wenzelm@13114
  1385
wenzelm@13142
  1386
lemma rev_replicate [simp]: "rev (replicate n x) = replicate n x"
paulson@14208
  1387
apply (induct n, simp)
nipkow@13145
  1388
apply (simp add: replicate_app_Cons_same)
nipkow@13145
  1389
done
wenzelm@13114
  1390
wenzelm@13142
  1391
lemma replicate_add: "replicate (n + m) x = replicate n x @ replicate m x"
nipkow@13145
  1392
by (induct n) auto
wenzelm@13114
  1393
wenzelm@13142
  1394
lemma hd_replicate [simp]: "n \<noteq> 0 ==> hd (replicate n x) = x"
nipkow@13145
  1395
by (induct n) auto
wenzelm@13114
  1396
wenzelm@13142
  1397
lemma tl_replicate [simp]: "n \<noteq> 0 ==> tl (replicate n x) = replicate (n - 1) x"
nipkow@13145
  1398
by (induct n) auto
wenzelm@13114
  1399
wenzelm@13142
  1400
lemma last_replicate [simp]: "n \<noteq> 0 ==> last (replicate n x) = x"
nipkow@13145
  1401
by (atomize (full), induct n) auto
wenzelm@13114
  1402
wenzelm@13142
  1403
lemma nth_replicate[simp]: "!!i. i < n ==> (replicate n x)!i = x"
paulson@14208
  1404
apply (induct n, simp)
nipkow@13145
  1405
apply (simp add: nth_Cons split: nat.split)
nipkow@13145
  1406
done
wenzelm@13114
  1407
wenzelm@13142
  1408
lemma set_replicate_Suc: "set (replicate (Suc n) x) = {x}"
nipkow@13145
  1409
by (induct n) auto
wenzelm@13114
  1410
wenzelm@13142
  1411
lemma set_replicate [simp]: "n \<noteq> 0 ==> set (replicate n x) = {x}"
nipkow@13145
  1412
by (fast dest!: not0_implies_Suc intro!: set_replicate_Suc)
wenzelm@13114
  1413
wenzelm@13142
  1414
lemma set_replicate_conv_if: "set (replicate n x) = (if n = 0 then {} else {x})"
nipkow@13145
  1415
by auto
wenzelm@13114
  1416
wenzelm@13142
  1417
lemma in_set_replicateD: "x : set (replicate n y) ==> x = y"
nipkow@13145
  1418
by (simp add: set_replicate_conv_if split: split_if_asm)
wenzelm@13114
  1419
wenzelm@13114
  1420
oheimb@14099
  1421
subsection {* Lexicographic orderings on lists *}
nipkow@3507
  1422
wenzelm@13142
  1423
lemma wf_lexn: "wf r ==> wf (lexn r n)"
paulson@14208
  1424
apply (induct_tac n, simp, simp)
nipkow@13145
  1425
apply(rule wf_subset)
nipkow@13145
  1426
 prefer 2 apply (rule Int_lower1)
nipkow@13145
  1427
apply(rule wf_prod_fun_image)
paulson@14208
  1428
 prefer 2 apply (rule inj_onI, auto)
nipkow@13145
  1429
done
wenzelm@13114
  1430
wenzelm@13114
  1431
lemma lexn_length:
nipkow@13145
  1432
"!!xs ys. (xs, ys) : lexn r n ==> length xs = n \<and> length ys = n"
nipkow@13145
  1433
by (induct n) auto
wenzelm@13114
  1434
wenzelm@13142
  1435
lemma wf_lex [intro!]: "wf r ==> wf (lex r)"
nipkow@13145
  1436
apply (unfold lex_def)
nipkow@13145
  1437
apply (rule wf_UN)
paulson@14208
  1438
apply (blast intro: wf_lexn, clarify)
nipkow@13145
  1439
apply (rename_tac m n)
nipkow@13145
  1440
apply (subgoal_tac "m \<noteq> n")
nipkow@13145
  1441
 prefer 2 apply blast
nipkow@13145
  1442
apply (blast dest: lexn_length not_sym)
nipkow@13145
  1443
done
wenzelm@13114
  1444
wenzelm@13114
  1445
lemma lexn_conv:
nipkow@13145
  1446
"lexn r n =
nipkow@13145
  1447
{(xs,ys). length xs = n \<and> length ys = n \<and>
nipkow@13145
  1448
(\<exists>xys x y xs' ys'. xs= xys @ x#xs' \<and> ys= xys @ y # ys' \<and> (x, y):r)}"
paulson@14208
  1449
apply (induct_tac n, simp, blast)
paulson@14208
  1450
apply (simp add: image_Collect lex_prod_def, safe, blast)
paulson@14208
  1451
 apply (rule_tac x = "ab # xys" in exI, simp)
paulson@14208
  1452
apply (case_tac xys, simp_all, blast)
nipkow@13145
  1453
done
wenzelm@13114
  1454
wenzelm@13114
  1455
lemma lex_conv:
nipkow@13145
  1456
"lex r =
nipkow@13145
  1457
{(xs,ys). length xs = length ys \<and>
nipkow@13145
  1458
(\<exists>xys x y xs' ys'. xs = xys @ x # xs' \<and> ys = xys @ y # ys' \<and> (x, y):r)}"
nipkow@13145
  1459
by (force simp add: lex_def lexn_conv)
wenzelm@13114
  1460
wenzelm@13142
  1461
lemma wf_lexico [intro!]: "wf r ==> wf (lexico r)"
nipkow@13145
  1462
by (unfold lexico_def) blast
wenzelm@13114
  1463
wenzelm@13114
  1464
lemma lexico_conv:
nipkow@13145
  1465
"lexico r = {(xs,ys). length xs < length ys |
nipkow@13145
  1466
length xs = length ys \<and> (xs, ys) : lex r}"
nipkow@13145
  1467
by (simp add: lexico_def diag_def lex_prod_def measure_def inv_image_def)
wenzelm@13114
  1468
wenzelm@13142
  1469
lemma Nil_notin_lex [iff]: "([], ys) \<notin> lex r"
nipkow@13145
  1470
by (simp add: lex_conv)
wenzelm@13114
  1471
wenzelm@13142
  1472
lemma Nil2_notin_lex [iff]: "(xs, []) \<notin> lex r"
nipkow@13145
  1473
by (simp add:lex_conv)
wenzelm@13114
  1474
wenzelm@13142
  1475
lemma Cons_in_lex [iff]:
nipkow@13145
  1476
"((x # xs, y # ys) : lex r) =
nipkow@13145
  1477
((x, y) : r \<and> length xs = length ys | x = y \<and> (xs, ys) : lex r)"
nipkow@13145
  1478
apply (simp add: lex_conv)
nipkow@13145
  1479
apply (rule iffI)
paulson@14208
  1480
 prefer 2 apply (blast intro: Cons_eq_appendI, clarify)
paulson@14208
  1481
apply (case_tac xys, simp, simp)
nipkow@13145
  1482
apply blast
nipkow@13145
  1483
done
wenzelm@13114
  1484
wenzelm@13114
  1485
wenzelm@13142
  1486
subsection {* @{text sublist} --- a generalization of @{text nth} to sets *}
wenzelm@13114
  1487
wenzelm@13142
  1488
lemma sublist_empty [simp]: "sublist xs {} = []"
nipkow@13145
  1489
by (auto simp add: sublist_def)
wenzelm@13114
  1490
wenzelm@13142
  1491
lemma sublist_nil [simp]: "sublist [] A = []"
nipkow@13145
  1492
by (auto simp add: sublist_def)
wenzelm@13114
  1493
wenzelm@13114
  1494
lemma sublist_shift_lemma:
nipkow@13145
  1495
"map fst [p:zip xs [i..i + length xs(] . snd p : A] =
nipkow@13145
  1496
map fst [p:zip xs [0..length xs(] . snd p + i : A]"
nipkow@13145
  1497
by (induct xs rule: rev_induct) (simp_all add: add_commute)
wenzelm@13114
  1498
wenzelm@13114
  1499
lemma sublist_append:
nipkow@13145
  1500
"sublist (l @ l') A = sublist l A @ sublist l' {j. j + length l : A}"
nipkow@13145
  1501
apply (unfold sublist_def)
paulson@14208
  1502
apply (induct l' rule: rev_induct, simp)
nipkow@13145
  1503
apply (simp add: upt_add_eq_append[of 0] zip_append sublist_shift_lemma)
nipkow@13145
  1504
apply (simp add: add_commute)
nipkow@13145
  1505
done
wenzelm@13114
  1506
wenzelm@13114
  1507
lemma sublist_Cons:
nipkow@13145
  1508
"sublist (x # l) A = (if 0:A then [x] else []) @ sublist l {j. Suc j : A}"
nipkow@13145
  1509
apply (induct l rule: rev_induct)
nipkow@13145
  1510
 apply (simp add: sublist_def)
nipkow@13145
  1511
apply (simp del: append_Cons add: append_Cons[symmetric] sublist_append)
nipkow@13145
  1512
done
wenzelm@13114
  1513
wenzelm@13142
  1514
lemma sublist_singleton [simp]: "sublist [x] A = (if 0 : A then [x] else [])"
nipkow@13145
  1515
by (simp add: sublist_Cons)
wenzelm@13114
  1516
wenzelm@13142
  1517
lemma sublist_upt_eq_take [simp]: "sublist l {..n(} = take n l"
paulson@14208
  1518
apply (induct l rule: rev_induct, simp)
nipkow@13145
  1519
apply (simp split: nat_diff_split add: sublist_append)
nipkow@13145
  1520
done
wenzelm@13114
  1521
wenzelm@13114
  1522
wenzelm@13142
  1523
lemma take_Cons':
nipkow@13145
  1524
"take n (x # xs) = (if n = 0 then [] else x # take (n - 1) xs)"
nipkow@13145
  1525
by (cases n) simp_all
wenzelm@13114
  1526
wenzelm@13142
  1527
lemma drop_Cons':
nipkow@13145
  1528
"drop n (x # xs) = (if n = 0 then x # xs else drop (n - 1) xs)"
nipkow@13145
  1529
by (cases n) simp_all
wenzelm@13114
  1530
wenzelm@13142
  1531
lemma nth_Cons': "(x # xs)!n = (if n = 0 then x else xs!(n - 1))"
nipkow@13145
  1532
by (cases n) simp_all
wenzelm@13142
  1533
nipkow@13145
  1534
lemmas [simp] = take_Cons'[of "number_of v",standard]
nipkow@13145
  1535
                drop_Cons'[of "number_of v",standard]
nipkow@13145
  1536
                nth_Cons'[of _ _ "number_of v",standard]
nipkow@3507
  1537
wenzelm@13462
  1538
kleing@14388
  1539
lemma distinct_card: "distinct xs \<Longrightarrow> card (set xs) = size xs"
kleing@14388
  1540
  by (induct xs) auto
kleing@14388
  1541
kleing@14388
  1542
lemma card_length: "card (set xs) \<le> length xs"
kleing@14388
  1543
  by (induct xs) (auto simp add: card_insert_if)
kleing@14388
  1544
kleing@14388
  1545
lemma "card (set xs) = size xs \<Longrightarrow> distinct xs"
kleing@14388
  1546
proof (induct xs)
kleing@14388
  1547
  case Nil thus ?case by simp
kleing@14388
  1548
next
kleing@14388
  1549
  case (Cons x xs)
kleing@14388
  1550
  show ?case
kleing@14388
  1551
  proof (cases "x \<in> set xs")
kleing@14388
  1552
    case False with Cons show ?thesis by simp
kleing@14388
  1553
  next
kleing@14388
  1554
    case True with Cons.prems
kleing@14388
  1555
    have "card (set xs) = Suc (length xs)" 
kleing@14388
  1556
      by (simp add: card_insert_if split: split_if_asm)
kleing@14388
  1557
    moreover have "card (set xs) \<le> length xs" by (rule card_length)
kleing@14388
  1558
    ultimately have False by simp
kleing@14388
  1559
    thus ?thesis ..
kleing@14388
  1560
  qed
kleing@14388
  1561
qed
kleing@14388
  1562
wenzelm@13366
  1563
subsection {* Characters and strings *}
wenzelm@13366
  1564
wenzelm@13366
  1565
datatype nibble =
wenzelm@13366
  1566
    Nibble0 | Nibble1 | Nibble2 | Nibble3 | Nibble4 | Nibble5 | Nibble6 | Nibble7
wenzelm@13366
  1567
  | Nibble8 | Nibble9 | NibbleA | NibbleB | NibbleC | NibbleD | NibbleE | NibbleF
wenzelm@13366
  1568
wenzelm@13366
  1569
datatype char = Char nibble nibble
wenzelm@13366
  1570
  -- "Note: canonical order of character encoding coincides with standard term ordering"
wenzelm@13366
  1571
wenzelm@13366
  1572
types string = "char list"
wenzelm@13366
  1573
wenzelm@13366
  1574
syntax
wenzelm@13366
  1575
  "_Char" :: "xstr => char"    ("CHR _")
wenzelm@13366
  1576
  "_String" :: "xstr => string"    ("_")
wenzelm@13366
  1577
wenzelm@13366
  1578
parse_ast_translation {*
wenzelm@13366
  1579
  let
wenzelm@13366
  1580
    val constants = Syntax.Appl o map Syntax.Constant;
wenzelm@13366
  1581
wenzelm@13366
  1582
    fun mk_nib n = "Nibble" ^ chr (n + (if n <= 9 then ord "0" else ord "A" - 10));
wenzelm@13366
  1583
    fun mk_char c =
wenzelm@13366
  1584
      if Symbol.is_ascii c andalso Symbol.is_printable c then
wenzelm@13366
  1585
        constants ["Char", mk_nib (ord c div 16), mk_nib (ord c mod 16)]
wenzelm@13366
  1586
      else error ("Printable ASCII character expected: " ^ quote c);
wenzelm@13366
  1587
wenzelm@13366
  1588
    fun mk_string [] = Syntax.Constant "Nil"
wenzelm@13366
  1589
      | mk_string (c :: cs) = Syntax.Appl [Syntax.Constant "Cons", mk_char c, mk_string cs];
wenzelm@13366
  1590
wenzelm@13366
  1591
    fun char_ast_tr [Syntax.Variable xstr] =
wenzelm@13366
  1592
        (case Syntax.explode_xstr xstr of
wenzelm@13366
  1593
          [c] => mk_char c
wenzelm@13366
  1594
        | _ => error ("Single character expected: " ^ xstr))
wenzelm@13366
  1595
      | char_ast_tr asts = raise AST ("char_ast_tr", asts);
wenzelm@13366
  1596
wenzelm@13366
  1597
    fun string_ast_tr [Syntax.Variable xstr] =
wenzelm@13366
  1598
        (case Syntax.explode_xstr xstr of
wenzelm@13366
  1599
          [] => constants [Syntax.constrainC, "Nil", "string"]
wenzelm@13366
  1600
        | cs => mk_string cs)
wenzelm@13366
  1601
      | string_ast_tr asts = raise AST ("string_tr", asts);
wenzelm@13366
  1602
  in [("_Char", char_ast_tr), ("_String", string_ast_tr)] end;
wenzelm@13366
  1603
*}
wenzelm@13366
  1604
wenzelm@13366
  1605
print_ast_translation {*
wenzelm@13366
  1606
  let
wenzelm@13366
  1607
    fun dest_nib (Syntax.Constant c) =
wenzelm@13366
  1608
        (case explode c of
wenzelm@13366
  1609
          ["N", "i", "b", "b", "l", "e", h] =>
wenzelm@13366
  1610
            if "0" <= h andalso h <= "9" then ord h - ord "0"
wenzelm@13366
  1611
            else if "A" <= h andalso h <= "F" then ord h - ord "A" + 10
wenzelm@13366
  1612
            else raise Match
wenzelm@13366
  1613
        | _ => raise Match)
wenzelm@13366
  1614
      | dest_nib _ = raise Match;
wenzelm@13366
  1615
wenzelm@13366
  1616
    fun dest_chr c1 c2 =
wenzelm@13366
  1617
      let val c = chr (dest_nib c1 * 16 + dest_nib c2)
wenzelm@13366
  1618
      in if Symbol.is_printable c then c else raise Match end;
wenzelm@13366
  1619
wenzelm@13366
  1620
    fun dest_char (Syntax.Appl [Syntax.Constant "Char", c1, c2]) = dest_chr c1 c2
wenzelm@13366
  1621
      | dest_char _ = raise Match;
wenzelm@13366
  1622
wenzelm@13366
  1623
    fun xstr cs = Syntax.Appl [Syntax.Constant "_xstr", Syntax.Variable (Syntax.implode_xstr cs)];
wenzelm@13366
  1624
wenzelm@13366
  1625
    fun char_ast_tr' [c1, c2] = Syntax.Appl [Syntax.Constant "_Char", xstr [dest_chr c1 c2]]
wenzelm@13366
  1626
      | char_ast_tr' _ = raise Match;
wenzelm@13366
  1627
wenzelm@13366
  1628
    fun list_ast_tr' [args] = Syntax.Appl [Syntax.Constant "_String",
wenzelm@13366
  1629
            xstr (map dest_char (Syntax.unfold_ast "_args" args))]
wenzelm@13366
  1630
      | list_ast_tr' ts = raise Match;
wenzelm@13366
  1631
  in [("Char", char_ast_tr'), ("@list", list_ast_tr')] end;
wenzelm@13366
  1632
*}
wenzelm@13366
  1633
wenzelm@13122
  1634
end