src/HOL/BNF_Examples/Stream.thy
author blanchet
Mon Jan 20 18:24:56 2014 +0100 (2014-01-20)
changeset 55076 1e73e090a514
parent 55075 b3d0a02a756d
child 55804 341fbb9bdda1
permissions -rw-r--r--
compile
blanchet@55075
     1
(*  Title:      HOL/BNF_Examples/Stream.thy
traytel@50518
     2
    Author:     Dmitriy Traytel, TU Muenchen
traytel@50518
     3
    Author:     Andrei Popescu, TU Muenchen
blanchet@51778
     4
    Copyright   2012, 2013
traytel@50518
     5
traytel@50518
     6
Infinite streams.
traytel@50518
     7
*)
traytel@50518
     8
traytel@50518
     9
header {* Infinite Streams *}
traytel@50518
    10
traytel@50518
    11
theory Stream
blanchet@55076
    12
imports "~~/src/HOL/Library/Nat_Bijection"
traytel@50518
    13
begin
traytel@50518
    14
blanchet@51804
    15
codatatype (sset: 'a) stream (map: smap rel: stream_all2) =
traytel@54720
    16
  SCons (shd: 'a) (stl: "'a stream") (infixr "##" 65)
traytel@51409
    17
traytel@51462
    18
(*for code generation only*)
traytel@51462
    19
definition smember :: "'a \<Rightarrow> 'a stream \<Rightarrow> bool" where
traytel@51772
    20
  [code_abbrev]: "smember x s \<longleftrightarrow> x \<in> sset s"
traytel@51462
    21
traytel@54720
    22
lemma smember_code[code, simp]: "smember x (y ## s) = (if x = y then True else smember x s)"
traytel@51462
    23
  unfolding smember_def by auto
traytel@51462
    24
traytel@51462
    25
hide_const (open) smember
traytel@51462
    26
traytel@50518
    27
(* TODO: Provide by the package*)
traytel@51772
    28
theorem sset_induct:
traytel@51772
    29
  "\<lbrakk>\<And>s. P (shd s) s; \<And>s y. \<lbrakk>y \<in> sset (stl s); P y (stl s)\<rbrakk> \<Longrightarrow> P y s\<rbrakk> \<Longrightarrow>
traytel@51772
    30
    \<forall>y \<in> sset s. P y s"
blanchet@52991
    31
  apply (rule stream.dtor_set_induct)
blanchet@52991
    32
  apply (auto simp add: shd_def stl_def fsts_def snds_def split_beta)
traytel@54720
    33
  apply (metis SCons_def fst_conv stream.case stream.dtor_ctor stream.exhaust)
traytel@54720
    34
  by (metis SCons_def sndI stl_def stream.collapse stream.dtor_ctor)
traytel@51141
    35
traytel@51772
    36
lemma smap_simps[simp]:
traytel@51772
    37
  "shd (smap f s) = f (shd s)" "stl (smap f s) = smap f (stl s)"
blanchet@52991
    38
  by (case_tac [!] s) auto
traytel@51141
    39
traytel@51772
    40
theorem shd_sset: "shd s \<in> sset s"
blanchet@52991
    41
  by (case_tac s) auto
traytel@50518
    42
traytel@51772
    43
theorem stl_sset: "y \<in> sset (stl s) \<Longrightarrow> y \<in> sset s"
blanchet@52991
    44
  by (case_tac s) auto
traytel@50518
    45
traytel@50518
    46
(* only for the non-mutual case: *)
traytel@51772
    47
theorem sset_induct1[consumes 1, case_names shd stl, induct set: "sset"]:
traytel@51772
    48
  assumes "y \<in> sset s" and "\<And>s. P (shd s) s"
traytel@51772
    49
  and "\<And>s y. \<lbrakk>y \<in> sset (stl s); P y (stl s)\<rbrakk> \<Longrightarrow> P y s"
traytel@50518
    50
  shows "P y s"
traytel@51772
    51
  using assms sset_induct by blast
traytel@50518
    52
(* end TODO *)
traytel@50518
    53
traytel@50518
    54
traytel@50518
    55
subsection {* prepend list to stream *}
traytel@50518
    56
traytel@50518
    57
primrec shift :: "'a list \<Rightarrow> 'a stream \<Rightarrow> 'a stream" (infixr "@-" 65) where
traytel@50518
    58
  "shift [] s = s"
traytel@51023
    59
| "shift (x # xs) s = x ## shift xs s"
traytel@50518
    60
traytel@51772
    61
lemma smap_shift[simp]: "smap f (xs @- s) = map f xs @- smap f s"
traytel@51353
    62
  by (induct xs) auto
traytel@51353
    63
traytel@50518
    64
lemma shift_append[simp]: "(xs @ ys) @- s = xs @- ys @- s"
traytel@51141
    65
  by (induct xs) auto
traytel@50518
    66
traytel@50518
    67
lemma shift_simps[simp]:
traytel@50518
    68
   "shd (xs @- s) = (if xs = [] then shd s else hd xs)"
traytel@50518
    69
   "stl (xs @- s) = (if xs = [] then stl s else tl xs @- s)"
traytel@51141
    70
  by (induct xs) auto
traytel@50518
    71
traytel@51772
    72
lemma sset_shift[simp]: "sset (xs @- s) = set xs \<union> sset s"
traytel@51141
    73
  by (induct xs) auto
traytel@50518
    74
traytel@51352
    75
lemma shift_left_inj[simp]: "xs @- s1 = xs @- s2 \<longleftrightarrow> s1 = s2"
traytel@51352
    76
  by (induct xs) auto
traytel@51352
    77
traytel@50518
    78
hoelzl@54469
    79
subsection {* set of streams with elements in some fixed set *}
traytel@50518
    80
traytel@50518
    81
coinductive_set
hoelzl@54469
    82
  streams :: "'a set \<Rightarrow> 'a stream set"
traytel@50518
    83
  for A :: "'a set"
traytel@50518
    84
where
traytel@51023
    85
  Stream[intro!, simp, no_atp]: "\<lbrakk>a \<in> A; s \<in> streams A\<rbrakk> \<Longrightarrow> a ## s \<in> streams A"
traytel@50518
    86
traytel@50518
    87
lemma shift_streams: "\<lbrakk>w \<in> lists A; s \<in> streams A\<rbrakk> \<Longrightarrow> w @- s \<in> streams A"
traytel@51141
    88
  by (induct w) auto
traytel@50518
    89
hoelzl@54469
    90
lemma streams_Stream: "x ## s \<in> streams A \<longleftrightarrow> x \<in> A \<and> s \<in> streams A"
hoelzl@54469
    91
  by (auto elim: streams.cases)
hoelzl@54469
    92
hoelzl@54469
    93
lemma streams_stl: "s \<in> streams A \<Longrightarrow> stl s \<in> streams A"
hoelzl@54469
    94
  by (cases s) (auto simp: streams_Stream)
hoelzl@54469
    95
hoelzl@54469
    96
lemma streams_shd: "s \<in> streams A \<Longrightarrow> shd s \<in> A"
hoelzl@54469
    97
  by (cases s) (auto simp: streams_Stream)
hoelzl@54469
    98
traytel@51772
    99
lemma sset_streams:
traytel@51772
   100
  assumes "sset s \<subseteq> A"
traytel@50518
   101
  shows "s \<in> streams A"
traytel@54027
   102
using assms proof (coinduction arbitrary: s)
traytel@54027
   103
  case streams then show ?case by (cases s) simp
traytel@50518
   104
qed
traytel@50518
   105
hoelzl@54469
   106
lemma streams_sset:
hoelzl@54469
   107
  assumes "s \<in> streams A"
hoelzl@54469
   108
  shows "sset s \<subseteq> A"
hoelzl@54469
   109
proof
hoelzl@54469
   110
  fix x assume "x \<in> sset s" from this `s \<in> streams A` show "x \<in> A"
hoelzl@54469
   111
    by (induct s) (auto intro: streams_shd streams_stl)
hoelzl@54469
   112
qed
hoelzl@54469
   113
hoelzl@54469
   114
lemma streams_iff_sset: "s \<in> streams A \<longleftrightarrow> sset s \<subseteq> A"
hoelzl@54469
   115
  by (metis sset_streams streams_sset)
hoelzl@54469
   116
hoelzl@54469
   117
lemma streams_mono:  "s \<in> streams A \<Longrightarrow> A \<subseteq> B \<Longrightarrow> s \<in> streams B"
hoelzl@54469
   118
  unfolding streams_iff_sset by auto
hoelzl@54469
   119
hoelzl@54469
   120
lemma smap_streams: "s \<in> streams A \<Longrightarrow> (\<And>x. x \<in> A \<Longrightarrow> f x \<in> B) \<Longrightarrow> smap f s \<in> streams B"
hoelzl@54469
   121
  unfolding streams_iff_sset stream.set_map by auto
hoelzl@54469
   122
hoelzl@54469
   123
lemma streams_empty: "streams {} = {}"
hoelzl@54469
   124
  by (auto elim: streams.cases)
hoelzl@54469
   125
hoelzl@54469
   126
lemma streams_UNIV[simp]: "streams UNIV = UNIV"
hoelzl@54469
   127
  by (auto simp: streams_iff_sset)
traytel@50518
   128
traytel@51141
   129
subsection {* nth, take, drop for streams *}
traytel@51141
   130
traytel@51141
   131
primrec snth :: "'a stream \<Rightarrow> nat \<Rightarrow> 'a" (infixl "!!" 100) where
traytel@51141
   132
  "s !! 0 = shd s"
traytel@51141
   133
| "s !! Suc n = stl s !! n"
traytel@51141
   134
traytel@51772
   135
lemma snth_smap[simp]: "smap f s !! n = f (s !! n)"
traytel@51141
   136
  by (induct n arbitrary: s) auto
traytel@51141
   137
traytel@51141
   138
lemma shift_snth_less[simp]: "p < length xs \<Longrightarrow> (xs @- s) !! p = xs ! p"
traytel@51141
   139
  by (induct p arbitrary: xs) (auto simp: hd_conv_nth nth_tl)
traytel@51141
   140
traytel@51141
   141
lemma shift_snth_ge[simp]: "p \<ge> length xs \<Longrightarrow> (xs @- s) !! p = s !! (p - length xs)"
traytel@51141
   142
  by (induct p arbitrary: xs) (auto simp: Suc_diff_eq_diff_pred)
traytel@51141
   143
traytel@51772
   144
lemma snth_sset[simp]: "s !! n \<in> sset s"
traytel@51772
   145
  by (induct n arbitrary: s) (auto intro: shd_sset stl_sset)
traytel@51141
   146
traytel@51772
   147
lemma sset_range: "sset s = range (snth s)"
traytel@51141
   148
proof (intro equalityI subsetI)
traytel@51772
   149
  fix x assume "x \<in> sset s"
traytel@51141
   150
  thus "x \<in> range (snth s)"
traytel@51141
   151
  proof (induct s)
traytel@51141
   152
    case (stl s x)
traytel@51141
   153
    then obtain n where "x = stl s !! n" by auto
traytel@51141
   154
    thus ?case by (auto intro: range_eqI[of _ _ "Suc n"])
traytel@51141
   155
  qed (auto intro: range_eqI[of _ _ 0])
traytel@51141
   156
qed auto
traytel@50518
   157
traytel@50518
   158
primrec stake :: "nat \<Rightarrow> 'a stream \<Rightarrow> 'a list" where
traytel@50518
   159
  "stake 0 s = []"
traytel@50518
   160
| "stake (Suc n) s = shd s # stake n (stl s)"
traytel@50518
   161
traytel@51141
   162
lemma length_stake[simp]: "length (stake n s) = n"
traytel@51141
   163
  by (induct n arbitrary: s) auto
traytel@51141
   164
traytel@51772
   165
lemma stake_smap[simp]: "stake n (smap f s) = map f (stake n s)"
traytel@51141
   166
  by (induct n arbitrary: s) auto
traytel@51141
   167
traytel@50518
   168
primrec sdrop :: "nat \<Rightarrow> 'a stream \<Rightarrow> 'a stream" where
traytel@50518
   169
  "sdrop 0 s = s"
traytel@50518
   170
| "sdrop (Suc n) s = sdrop n (stl s)"
traytel@50518
   171
traytel@51141
   172
lemma sdrop_simps[simp]:
traytel@51141
   173
  "shd (sdrop n s) = s !! n" "stl (sdrop n s) = sdrop (Suc n) s"
traytel@51141
   174
  by (induct n arbitrary: s)  auto
traytel@51141
   175
traytel@51772
   176
lemma sdrop_smap[simp]: "sdrop n (smap f s) = smap f (sdrop n s)"
traytel@51141
   177
  by (induct n arbitrary: s) auto
traytel@50518
   178
traytel@51352
   179
lemma sdrop_stl: "sdrop n (stl s) = stl (sdrop n s)"
traytel@51352
   180
  by (induct n) auto
traytel@51352
   181
traytel@50518
   182
lemma stake_sdrop: "stake n s @- sdrop n s = s"
traytel@51141
   183
  by (induct n arbitrary: s) auto
traytel@51141
   184
traytel@51141
   185
lemma id_stake_snth_sdrop:
traytel@51141
   186
  "s = stake i s @- s !! i ## sdrop (Suc i) s"
traytel@51141
   187
  by (subst stake_sdrop[symmetric, of _ i]) (metis sdrop_simps stream.collapse)
traytel@50518
   188
traytel@51772
   189
lemma smap_alt: "smap f s = s' \<longleftrightarrow> (\<forall>n. f (s !! n) = s' !! n)" (is "?L = ?R")
traytel@51141
   190
proof
traytel@51141
   191
  assume ?R
traytel@54027
   192
  then have "\<And>n. smap f (sdrop n s) = sdrop n s'"
traytel@54027
   193
    by coinduction (auto intro: exI[of _ 0] simp del: sdrop.simps(2))
traytel@54027
   194
  then show ?L using sdrop.simps(1) by metis
traytel@51141
   195
qed auto
traytel@51141
   196
traytel@51141
   197
lemma stake_invert_Nil[iff]: "stake n s = [] \<longleftrightarrow> n = 0"
traytel@51141
   198
  by (induct n) auto
traytel@50518
   199
traytel@50518
   200
lemma sdrop_shift: "\<lbrakk>s = w @- s'; length w = n\<rbrakk> \<Longrightarrow> sdrop n s = s'"
traytel@51141
   201
  by (induct n arbitrary: w s) auto
traytel@50518
   202
traytel@50518
   203
lemma stake_shift: "\<lbrakk>s = w @- s'; length w = n\<rbrakk> \<Longrightarrow> stake n s = w"
traytel@51141
   204
  by (induct n arbitrary: w s) auto
traytel@50518
   205
traytel@50518
   206
lemma stake_add[simp]: "stake m s @ stake n (sdrop m s) = stake (m + n) s"
traytel@51141
   207
  by (induct m arbitrary: s) auto
traytel@50518
   208
traytel@50518
   209
lemma sdrop_add[simp]: "sdrop n (sdrop m s) = sdrop (m + n) s"
traytel@51141
   210
  by (induct m arbitrary: s) auto
traytel@51141
   211
traytel@51430
   212
partial_function (tailrec) sdrop_while :: "('a \<Rightarrow> bool) \<Rightarrow> 'a stream \<Rightarrow> 'a stream" where 
traytel@51430
   213
  "sdrop_while P s = (if P (shd s) then sdrop_while P (stl s) else s)"
traytel@51430
   214
traytel@54720
   215
lemma sdrop_while_SCons[code]:
traytel@54720
   216
  "sdrop_while P (a ## s) = (if P a then sdrop_while P s else a ## s)"
traytel@51430
   217
  by (subst sdrop_while.simps) simp
traytel@51430
   218
traytel@51430
   219
lemma sdrop_while_sdrop_LEAST:
traytel@51430
   220
  assumes "\<exists>n. P (s !! n)"
traytel@51430
   221
  shows "sdrop_while (Not o P) s = sdrop (LEAST n. P (s !! n)) s"
traytel@51430
   222
proof -
traytel@51430
   223
  from assms obtain m where "P (s !! m)" "\<And>n. P (s !! n) \<Longrightarrow> m \<le> n"
traytel@51430
   224
    and *: "(LEAST n. P (s !! n)) = m" by atomize_elim (auto intro: LeastI Least_le)
traytel@51430
   225
  thus ?thesis unfolding *
traytel@51430
   226
  proof (induct m arbitrary: s)
traytel@51430
   227
    case (Suc m)
traytel@51430
   228
    hence "sdrop_while (Not \<circ> P) (stl s) = sdrop m (stl s)"
traytel@51430
   229
      by (metis (full_types) not_less_eq_eq snth.simps(2))
traytel@51430
   230
    moreover from Suc(3) have "\<not> (P (s !! 0))" by blast
traytel@51430
   231
    ultimately show ?case by (subst sdrop_while.simps) simp
traytel@51430
   232
  qed (metis comp_apply sdrop.simps(1) sdrop_while.simps snth.simps(1))
traytel@51430
   233
qed
traytel@51430
   234
traytel@54027
   235
primcorec sfilter where
traytel@54027
   236
  "shd (sfilter P s) = shd (sdrop_while (Not o P) s)"
traytel@54027
   237
| "stl (sfilter P s) = sfilter P (stl (sdrop_while (Not o P) s))"
traytel@52905
   238
traytel@52905
   239
lemma sfilter_Stream: "sfilter P (x ## s) = (if P x then x ## sfilter P s else sfilter P s)"
traytel@52905
   240
proof (cases "P x")
traytel@54720
   241
  case True thus ?thesis by (subst sfilter.ctr) (simp add: sdrop_while_SCons)
traytel@52905
   242
next
traytel@54720
   243
  case False thus ?thesis by (subst (1 2) sfilter.ctr) (simp add: sdrop_while_SCons)
traytel@52905
   244
qed
traytel@52905
   245
traytel@51141
   246
traytel@51141
   247
subsection {* unary predicates lifted to streams *}
traytel@51141
   248
traytel@51141
   249
definition "stream_all P s = (\<forall>p. P (s !! p))"
traytel@51141
   250
traytel@51772
   251
lemma stream_all_iff[iff]: "stream_all P s \<longleftrightarrow> Ball (sset s) P"
traytel@51772
   252
  unfolding stream_all_def sset_range by auto
traytel@51141
   253
traytel@51141
   254
lemma stream_all_shift[simp]: "stream_all P (xs @- s) = (list_all P xs \<and> stream_all P s)"
traytel@51141
   255
  unfolding stream_all_iff list_all_iff by auto
traytel@51141
   256
hoelzl@54469
   257
lemma stream_all_Stream: "stream_all P (x ## X) \<longleftrightarrow> P x \<and> stream_all P X"
hoelzl@54469
   258
  by simp
hoelzl@54469
   259
traytel@51141
   260
traytel@51141
   261
subsection {* recurring stream out of a list *}
traytel@51141
   262
traytel@54027
   263
primcorec cycle :: "'a list \<Rightarrow> 'a stream" where
traytel@54027
   264
  "shd (cycle xs) = hd xs"
traytel@54027
   265
| "stl (cycle xs) = cycle (tl xs @ [hd xs])"
traytel@54720
   266
traytel@51141
   267
lemma cycle_decomp: "u \<noteq> [] \<Longrightarrow> cycle u = u @- cycle u"
traytel@54027
   268
proof (coinduction arbitrary: u)
traytel@54027
   269
  case Eq_stream then show ?case using stream.collapse[of "cycle u"]
traytel@54027
   270
    by (auto intro!: exI[of _ "tl u @ [hd u]"])
traytel@54027
   271
qed
traytel@51141
   272
traytel@51409
   273
lemma cycle_Cons[code]: "cycle (x # xs) = x ## cycle (xs @ [x])"
traytel@54027
   274
  by (subst cycle.ctr) simp
traytel@50518
   275
traytel@50518
   276
lemma cycle_rotated: "\<lbrakk>v \<noteq> []; cycle u = v @- s\<rbrakk> \<Longrightarrow> cycle (tl u @ [hd u]) = tl v @- s"
traytel@51141
   277
  by (auto dest: arg_cong[of _ _ stl])
traytel@50518
   278
traytel@50518
   279
lemma stake_append: "stake n (u @- s) = take (min (length u) n) u @ stake (n - length u) s"
traytel@50518
   280
proof (induct n arbitrary: u)
traytel@50518
   281
  case (Suc n) thus ?case by (cases u) auto
traytel@50518
   282
qed auto
traytel@50518
   283
traytel@50518
   284
lemma stake_cycle_le[simp]:
traytel@50518
   285
  assumes "u \<noteq> []" "n < length u"
traytel@50518
   286
  shows "stake n (cycle u) = take n u"
traytel@50518
   287
using min_absorb2[OF less_imp_le_nat[OF assms(2)]]
traytel@51141
   288
  by (subst cycle_decomp[OF assms(1)], subst stake_append) auto
traytel@50518
   289
traytel@50518
   290
lemma stake_cycle_eq[simp]: "u \<noteq> [] \<Longrightarrow> stake (length u) (cycle u) = u"
traytel@51141
   291
  by (metis cycle_decomp stake_shift)
traytel@50518
   292
traytel@50518
   293
lemma sdrop_cycle_eq[simp]: "u \<noteq> [] \<Longrightarrow> sdrop (length u) (cycle u) = cycle u"
traytel@51141
   294
  by (metis cycle_decomp sdrop_shift)
traytel@50518
   295
traytel@50518
   296
lemma stake_cycle_eq_mod_0[simp]: "\<lbrakk>u \<noteq> []; n mod length u = 0\<rbrakk> \<Longrightarrow>
traytel@50518
   297
   stake n (cycle u) = concat (replicate (n div length u) u)"
traytel@51141
   298
  by (induct "n div length u" arbitrary: n u) (auto simp: stake_add[symmetric])
traytel@50518
   299
traytel@50518
   300
lemma sdrop_cycle_eq_mod_0[simp]: "\<lbrakk>u \<noteq> []; n mod length u = 0\<rbrakk> \<Longrightarrow>
traytel@50518
   301
   sdrop n (cycle u) = cycle u"
traytel@51141
   302
  by (induct "n div length u" arbitrary: n u) (auto simp: sdrop_add[symmetric])
traytel@50518
   303
traytel@50518
   304
lemma stake_cycle: "u \<noteq> [] \<Longrightarrow>
traytel@50518
   305
   stake n (cycle u) = concat (replicate (n div length u) u) @ take (n mod length u) u"
traytel@51141
   306
  by (subst mod_div_equality[of n "length u", symmetric], unfold stake_add[symmetric]) auto
traytel@50518
   307
traytel@50518
   308
lemma sdrop_cycle: "u \<noteq> [] \<Longrightarrow> sdrop n (cycle u) = cycle (rotate (n mod length u) u)"
traytel@51141
   309
  by (induct n arbitrary: u) (auto simp: rotate1_rotate_swap rotate1_hd_tl rotate_conv_mod[symmetric])
traytel@51141
   310
traytel@51141
   311
hoelzl@54497
   312
subsection {* iterated application of a function *}
hoelzl@54497
   313
hoelzl@54497
   314
primcorec siterate where
hoelzl@54497
   315
  "shd (siterate f x) = x"
hoelzl@54497
   316
| "stl (siterate f x) = siterate f (f x)"
hoelzl@54497
   317
hoelzl@54497
   318
lemma stake_Suc: "stake (Suc n) s = stake n s @ [s !! n]"
hoelzl@54497
   319
  by (induct n arbitrary: s) auto
hoelzl@54497
   320
hoelzl@54497
   321
lemma snth_siterate[simp]: "siterate f x !! n = (f^^n) x"
hoelzl@54497
   322
  by (induct n arbitrary: x) (auto simp: funpow_swap1)
hoelzl@54497
   323
hoelzl@54497
   324
lemma sdrop_siterate[simp]: "sdrop n (siterate f x) = siterate f ((f^^n) x)"
hoelzl@54497
   325
  by (induct n arbitrary: x) (auto simp: funpow_swap1)
hoelzl@54497
   326
hoelzl@54497
   327
lemma stake_siterate[simp]: "stake n (siterate f x) = map (\<lambda>n. (f^^n) x) [0 ..< n]"
hoelzl@54497
   328
  by (induct n arbitrary: x) (auto simp del: stake.simps(2) simp: stake_Suc)
hoelzl@54497
   329
hoelzl@54497
   330
lemma sset_siterate: "sset (siterate f x) = {(f^^n) x | n. True}"
hoelzl@54497
   331
  by (auto simp: sset_range)
hoelzl@54497
   332
hoelzl@54497
   333
lemma smap_siterate: "smap f (siterate f x) = siterate f (f x)"
hoelzl@54497
   334
  by (coinduction arbitrary: x) auto
hoelzl@54497
   335
hoelzl@54497
   336
traytel@51141
   337
subsection {* stream repeating a single element *}
traytel@51141
   338
hoelzl@54497
   339
abbreviation "sconst \<equiv> siterate id"
traytel@51141
   340
hoelzl@54497
   341
lemma shift_replicate_sconst[simp]: "replicate n x @- sconst x = sconst x"
hoelzl@54497
   342
  by (subst (3) stake_sdrop[symmetric]) (simp add: map_replicate_trivial)
traytel@51141
   343
hoelzl@54497
   344
lemma stream_all_same[simp]: "sset (sconst x) = {x}"
hoelzl@54497
   345
  by (simp add: sset_siterate)
traytel@51141
   346
hoelzl@54497
   347
lemma same_cycle: "sconst x = cycle [x]"
hoelzl@54497
   348
  by coinduction auto
traytel@51141
   349
hoelzl@54497
   350
lemma smap_sconst: "smap f (sconst x) = sconst (f x)"
hoelzl@54497
   351
  by coinduction auto
traytel@51141
   352
hoelzl@54497
   353
lemma sconst_streams: "x \<in> A \<Longrightarrow> sconst x \<in> streams A"
hoelzl@54497
   354
  by (simp add: streams_iff_sset)
traytel@51141
   355
traytel@51141
   356
traytel@51141
   357
subsection {* stream of natural numbers *}
traytel@51141
   358
hoelzl@54497
   359
abbreviation "fromN \<equiv> siterate Suc"
hoelzl@54469
   360
traytel@51141
   361
abbreviation "nats \<equiv> fromN 0"
traytel@51141
   362
hoelzl@54497
   363
lemma sset_fromN[simp]: "sset (fromN n) = {n ..}"
traytel@54720
   364
  by (auto simp add: sset_siterate le_iff_add)
hoelzl@54497
   365
traytel@51141
   366
traytel@51462
   367
subsection {* flatten a stream of lists *}
traytel@51462
   368
traytel@54027
   369
primcorec flat where
traytel@51462
   370
  "shd (flat ws) = hd (shd ws)"
traytel@54027
   371
| "stl (flat ws) = flat (if tl (shd ws) = [] then stl ws else tl (shd ws) ## stl ws)"
traytel@51462
   372
traytel@51462
   373
lemma flat_Cons[simp, code]: "flat ((x # xs) ## ws) = x ## flat (if xs = [] then ws else xs ## ws)"
traytel@54027
   374
  by (subst flat.ctr) simp
traytel@51462
   375
traytel@51462
   376
lemma flat_Stream[simp]: "xs \<noteq> [] \<Longrightarrow> flat (xs ## ws) = xs @- flat ws"
traytel@51462
   377
  by (induct xs) auto
traytel@51462
   378
traytel@51462
   379
lemma flat_unfold: "shd ws \<noteq> [] \<Longrightarrow> flat ws = shd ws @- flat (stl ws)"
traytel@51462
   380
  by (cases ws) auto
traytel@51462
   381
traytel@51772
   382
lemma flat_snth: "\<forall>xs \<in> sset s. xs \<noteq> [] \<Longrightarrow> flat s !! n = (if n < length (shd s) then 
traytel@51462
   383
  shd s ! n else flat (stl s) !! (n - length (shd s)))"
traytel@51772
   384
  by (metis flat_unfold not_less shd_sset shift_snth_ge shift_snth_less)
traytel@51462
   385
traytel@51772
   386
lemma sset_flat[simp]: "\<forall>xs \<in> sset s. xs \<noteq> [] \<Longrightarrow> 
traytel@51772
   387
  sset (flat s) = (\<Union>xs \<in> sset s. set xs)" (is "?P \<Longrightarrow> ?L = ?R")
traytel@51462
   388
proof safe
traytel@51462
   389
  fix x assume ?P "x : ?L"
traytel@51772
   390
  then obtain m where "x = flat s !! m" by (metis image_iff sset_range)
traytel@51462
   391
  with `?P` obtain n m' where "x = s !! n ! m'" "m' < length (s !! n)"
traytel@51462
   392
  proof (atomize_elim, induct m arbitrary: s rule: less_induct)
traytel@51462
   393
    case (less y)
traytel@51462
   394
    thus ?case
traytel@51462
   395
    proof (cases "y < length (shd s)")
traytel@51462
   396
      case True thus ?thesis by (metis flat_snth less(2,3) snth.simps(1))
traytel@51462
   397
    next
traytel@51462
   398
      case False
traytel@51462
   399
      hence "x = flat (stl s) !! (y - length (shd s))" by (metis less(2,3) flat_snth)
traytel@51462
   400
      moreover
wenzelm@53374
   401
      { from less(2) have *: "length (shd s) > 0" by (cases s) simp_all
wenzelm@53374
   402
        with False have "y > 0" by (cases y) simp_all
wenzelm@53374
   403
        with * have "y - length (shd s) < y" by simp
traytel@51462
   404
      }
traytel@51772
   405
      moreover have "\<forall>xs \<in> sset (stl s). xs \<noteq> []" using less(2) by (cases s) auto
traytel@51462
   406
      ultimately have "\<exists>n m'. x = stl s !! n ! m' \<and> m' < length (stl s !! n)" by (intro less(1)) auto
traytel@51462
   407
      thus ?thesis by (metis snth.simps(2))
traytel@51462
   408
    qed
traytel@51462
   409
  qed
traytel@51772
   410
  thus "x \<in> ?R" by (auto simp: sset_range dest!: nth_mem)
traytel@51462
   411
next
traytel@51772
   412
  fix x xs assume "xs \<in> sset s" ?P "x \<in> set xs" thus "x \<in> ?L"
traytel@51772
   413
    by (induct rule: sset_induct1)
traytel@51772
   414
      (metis UnI1 flat_unfold shift.simps(1) sset_shift,
traytel@51772
   415
       metis UnI2 flat_unfold shd_sset stl_sset sset_shift)
traytel@51462
   416
qed
traytel@51462
   417
traytel@51462
   418
traytel@51462
   419
subsection {* merge a stream of streams *}
traytel@51462
   420
traytel@51462
   421
definition smerge :: "'a stream stream \<Rightarrow> 'a stream" where
traytel@51772
   422
  "smerge ss = flat (smap (\<lambda>n. map (\<lambda>s. s !! n) (stake (Suc n) ss) @ stake n (ss !! n)) nats)"
traytel@51462
   423
traytel@51462
   424
lemma stake_nth[simp]: "m < n \<Longrightarrow> stake n s ! m = s !! m"
traytel@51462
   425
  by (induct n arbitrary: s m) (auto simp: nth_Cons', metis Suc_pred snth.simps(2))
traytel@51462
   426
traytel@51772
   427
lemma snth_sset_smerge: "ss !! n !! m \<in> sset (smerge ss)"
traytel@51462
   428
proof (cases "n \<le> m")
traytel@51462
   429
  case False thus ?thesis unfolding smerge_def
traytel@51772
   430
    by (subst sset_flat)
blanchet@53290
   431
      (auto simp: stream.set_map in_set_conv_nth simp del: stake.simps
traytel@51462
   432
        intro!: exI[of _ n, OF disjI2] exI[of _ m, OF mp])
traytel@51462
   433
next
traytel@51462
   434
  case True thus ?thesis unfolding smerge_def
traytel@51772
   435
    by (subst sset_flat)
blanchet@53290
   436
      (auto simp: stream.set_map in_set_conv_nth image_iff simp del: stake.simps snth.simps
traytel@51462
   437
        intro!: exI[of _ m, OF disjI1] bexI[of _ "ss !! n"] exI[of _ n, OF mp])
traytel@51462
   438
qed
traytel@51462
   439
traytel@51772
   440
lemma sset_smerge: "sset (smerge ss) = UNION (sset ss) sset"
traytel@51462
   441
proof safe
traytel@51772
   442
  fix x assume "x \<in> sset (smerge ss)"
traytel@51772
   443
  thus "x \<in> UNION (sset ss) sset"
traytel@51772
   444
    unfolding smerge_def by (subst (asm) sset_flat)
blanchet@53290
   445
      (auto simp: stream.set_map in_set_conv_nth sset_range simp del: stake.simps, fast+)
traytel@51462
   446
next
traytel@51772
   447
  fix s x assume "s \<in> sset ss" "x \<in> sset s"
traytel@51772
   448
  thus "x \<in> sset (smerge ss)" using snth_sset_smerge by (auto simp: sset_range)
traytel@51462
   449
qed
traytel@51462
   450
traytel@51462
   451
traytel@51462
   452
subsection {* product of two streams *}
traytel@51462
   453
traytel@51462
   454
definition sproduct :: "'a stream \<Rightarrow> 'b stream \<Rightarrow> ('a \<times> 'b) stream" where
traytel@51772
   455
  "sproduct s1 s2 = smerge (smap (\<lambda>x. smap (Pair x) s2) s1)"
traytel@51462
   456
traytel@51772
   457
lemma sset_sproduct: "sset (sproduct s1 s2) = sset s1 \<times> sset s2"
blanchet@53290
   458
  unfolding sproduct_def sset_smerge by (auto simp: stream.set_map)
traytel@51462
   459
traytel@51462
   460
traytel@51462
   461
subsection {* interleave two streams *}
traytel@51462
   462
traytel@54027
   463
primcorec sinterleave where
traytel@54027
   464
  "shd (sinterleave s1 s2) = shd s1"
traytel@54027
   465
| "stl (sinterleave s1 s2) = sinterleave s2 (stl s1)"
traytel@51462
   466
traytel@51462
   467
lemma sinterleave_code[code]:
traytel@51462
   468
  "sinterleave (x ## s1) s2 = x ## sinterleave s2 s1"
traytel@54027
   469
  by (subst sinterleave.ctr) simp
traytel@51462
   470
traytel@51462
   471
lemma sinterleave_snth[simp]:
traytel@51462
   472
  "even n \<Longrightarrow> sinterleave s1 s2 !! n = s1 !! (n div 2)"
traytel@51462
   473
   "odd n \<Longrightarrow> sinterleave s1 s2 !! n = s2 !! (n div 2)"
traytel@51462
   474
  by (induct n arbitrary: s1 s2)
traytel@51462
   475
    (auto dest: even_nat_Suc_div_2 odd_nat_plus_one_div_two[folded nat_2])
traytel@51462
   476
traytel@51772
   477
lemma sset_sinterleave: "sset (sinterleave s1 s2) = sset s1 \<union> sset s2"
traytel@51462
   478
proof (intro equalityI subsetI)
traytel@51772
   479
  fix x assume "x \<in> sset (sinterleave s1 s2)"
traytel@51772
   480
  then obtain n where "x = sinterleave s1 s2 !! n" unfolding sset_range by blast
traytel@51772
   481
  thus "x \<in> sset s1 \<union> sset s2" by (cases "even n") auto
traytel@51462
   482
next
traytel@51772
   483
  fix x assume "x \<in> sset s1 \<union> sset s2"
traytel@51772
   484
  thus "x \<in> sset (sinterleave s1 s2)"
traytel@51462
   485
  proof
traytel@51772
   486
    assume "x \<in> sset s1"
traytel@51772
   487
    then obtain n where "x = s1 !! n" unfolding sset_range by blast
traytel@51462
   488
    hence "sinterleave s1 s2 !! (2 * n) = x" by simp
traytel@51772
   489
    thus ?thesis unfolding sset_range by blast
traytel@51462
   490
  next
traytel@51772
   491
    assume "x \<in> sset s2"
traytel@51772
   492
    then obtain n where "x = s2 !! n" unfolding sset_range by blast
traytel@51462
   493
    hence "sinterleave s1 s2 !! (2 * n + 1) = x" by simp
traytel@51772
   494
    thus ?thesis unfolding sset_range by blast
traytel@51462
   495
  qed
traytel@51462
   496
qed
traytel@51462
   497
traytel@51462
   498
traytel@51141
   499
subsection {* zip *}
traytel@51141
   500
traytel@54027
   501
primcorec szip where
traytel@54027
   502
  "shd (szip s1 s2) = (shd s1, shd s2)"
traytel@54027
   503
| "stl (szip s1 s2) = szip (stl s1) (stl s2)"
traytel@51141
   504
traytel@54720
   505
lemma szip_unfold[code]: "szip (a ## s1) (b ## s2) = (a, b) ## (szip s1 s2)"
traytel@54027
   506
  by (subst szip.ctr) simp
traytel@51409
   507
traytel@51141
   508
lemma snth_szip[simp]: "szip s1 s2 !! n = (s1 !! n, s2 !! n)"
traytel@51141
   509
  by (induct n arbitrary: s1 s2) auto
traytel@51141
   510
traytel@51141
   511
traytel@51141
   512
subsection {* zip via function *}
traytel@51141
   513
traytel@54027
   514
primcorec smap2 where
traytel@51772
   515
  "shd (smap2 f s1 s2) = f (shd s1) (shd s2)"
traytel@54027
   516
| "stl (smap2 f s1 s2) = smap2 f (stl s1) (stl s2)"
traytel@51141
   517
traytel@51772
   518
lemma smap2_unfold[code]:
traytel@54720
   519
  "smap2 f (a ## s1) (b ## s2) = f a b ## (smap2 f s1 s2)"
traytel@54027
   520
  by (subst smap2.ctr) simp
traytel@51409
   521
traytel@51772
   522
lemma smap2_szip:
traytel@51772
   523
  "smap2 f s1 s2 = smap (split f) (szip s1 s2)"
traytel@54027
   524
  by (coinduction arbitrary: s1 s2) auto
traytel@50518
   525
traytel@50518
   526
end