src/HOL/Decision_Procs/Reflected_Multivariate_Polynomial.thy
author wenzelm
Mon Jul 15 11:29:19 2013 +0200 (2013-07-15)
changeset 52658 1e7896c7f781
parent 50282 fe4d4bb9f4c2
child 52803 bcaa5bbf7e6b
permissions -rw-r--r--
tuned specifications and proofs;
chaieb@33154
     1
(*  Title:      HOL/Decision_Procs/Reflected_Multivariate_Polynomial.thy
chaieb@33154
     2
    Author:     Amine Chaieb
chaieb@33154
     3
*)
chaieb@33154
     4
haftmann@35046
     5
header {* Implementation and verification of multivariate polynomials *}
chaieb@33154
     6
chaieb@33154
     7
theory Reflected_Multivariate_Polynomial
wenzelm@41413
     8
imports Complex_Main "~~/src/HOL/Library/Abstract_Rat" Polynomial_List
chaieb@33154
     9
begin
chaieb@33154
    10
chaieb@33154
    11
subsection{* Datatype of polynomial expressions *} 
chaieb@33154
    12
chaieb@33154
    13
datatype poly = C Num| Bound nat| Add poly poly|Sub poly poly
chaieb@33154
    14
  | Mul poly poly| Neg poly| Pw poly nat| CN poly nat poly
chaieb@33154
    15
wenzelm@35054
    16
abbreviation poly_0 :: "poly" ("0\<^sub>p") where "0\<^sub>p \<equiv> C (0\<^sub>N)"
wenzelm@50282
    17
abbreviation poly_p :: "int \<Rightarrow> poly" ("'((_)')\<^sub>p") where "(i)\<^sub>p \<equiv> C (i)\<^sub>N"
chaieb@33154
    18
wenzelm@52658
    19
chaieb@33154
    20
subsection{* Boundedness, substitution and all that *}
wenzelm@52658
    21
wenzelm@52658
    22
primrec polysize:: "poly \<Rightarrow> nat"
wenzelm@52658
    23
where
chaieb@33154
    24
  "polysize (C c) = 1"
haftmann@39246
    25
| "polysize (Bound n) = 1"
haftmann@39246
    26
| "polysize (Neg p) = 1 + polysize p"
haftmann@39246
    27
| "polysize (Add p q) = 1 + polysize p + polysize q"
haftmann@39246
    28
| "polysize (Sub p q) = 1 + polysize p + polysize q"
haftmann@39246
    29
| "polysize (Mul p q) = 1 + polysize p + polysize q"
haftmann@39246
    30
| "polysize (Pw p n) = 1 + polysize p"
haftmann@39246
    31
| "polysize (CN c n p) = 4 + polysize c + polysize p"
chaieb@33154
    32
wenzelm@52658
    33
primrec polybound0:: "poly \<Rightarrow> bool" -- {* a poly is INDEPENDENT of Bound 0 *}
wenzelm@52658
    34
where
chaieb@33154
    35
  "polybound0 (C c) = True"
haftmann@39246
    36
| "polybound0 (Bound n) = (n>0)"
haftmann@39246
    37
| "polybound0 (Neg a) = polybound0 a"
haftmann@39246
    38
| "polybound0 (Add a b) = (polybound0 a \<and> polybound0 b)"
haftmann@39246
    39
| "polybound0 (Sub a b) = (polybound0 a \<and> polybound0 b)" 
haftmann@39246
    40
| "polybound0 (Mul a b) = (polybound0 a \<and> polybound0 b)"
haftmann@39246
    41
| "polybound0 (Pw p n) = (polybound0 p)"
haftmann@39246
    42
| "polybound0 (CN c n p) = (n \<noteq> 0 \<and> polybound0 c \<and> polybound0 p)"
haftmann@39246
    43
wenzelm@52658
    44
primrec polysubst0:: "poly \<Rightarrow> poly \<Rightarrow> poly" -- {* substitute a poly into a poly for Bound 0 *}
wenzelm@52658
    45
where
chaieb@33154
    46
  "polysubst0 t (C c) = (C c)"
haftmann@39246
    47
| "polysubst0 t (Bound n) = (if n=0 then t else Bound n)"
haftmann@39246
    48
| "polysubst0 t (Neg a) = Neg (polysubst0 t a)"
haftmann@39246
    49
| "polysubst0 t (Add a b) = Add (polysubst0 t a) (polysubst0 t b)"
haftmann@39246
    50
| "polysubst0 t (Sub a b) = Sub (polysubst0 t a) (polysubst0 t b)" 
haftmann@39246
    51
| "polysubst0 t (Mul a b) = Mul (polysubst0 t a) (polysubst0 t b)"
haftmann@39246
    52
| "polysubst0 t (Pw p n) = Pw (polysubst0 t p) n"
haftmann@39246
    53
| "polysubst0 t (CN c n p) = (if n=0 then Add (polysubst0 t c) (Mul t (polysubst0 t p))
chaieb@33154
    54
                             else CN (polysubst0 t c) n (polysubst0 t p))"
chaieb@33154
    55
krauss@41808
    56
fun decrpoly:: "poly \<Rightarrow> poly" 
krauss@41808
    57
where
chaieb@33154
    58
  "decrpoly (Bound n) = Bound (n - 1)"
krauss@41808
    59
| "decrpoly (Neg a) = Neg (decrpoly a)"
krauss@41808
    60
| "decrpoly (Add a b) = Add (decrpoly a) (decrpoly b)"
krauss@41808
    61
| "decrpoly (Sub a b) = Sub (decrpoly a) (decrpoly b)"
krauss@41808
    62
| "decrpoly (Mul a b) = Mul (decrpoly a) (decrpoly b)"
krauss@41808
    63
| "decrpoly (Pw p n) = Pw (decrpoly p) n"
krauss@41808
    64
| "decrpoly (CN c n p) = CN (decrpoly c) (n - 1) (decrpoly p)"
krauss@41808
    65
| "decrpoly a = a"
chaieb@33154
    66
wenzelm@52658
    67
chaieb@33154
    68
subsection{* Degrees and heads and coefficients *}
chaieb@33154
    69
krauss@41808
    70
fun degree:: "poly \<Rightarrow> nat"
krauss@41808
    71
where
chaieb@33154
    72
  "degree (CN c 0 p) = 1 + degree p"
krauss@41808
    73
| "degree p = 0"
chaieb@33154
    74
krauss@41808
    75
fun head:: "poly \<Rightarrow> poly"
krauss@41808
    76
where
chaieb@33154
    77
  "head (CN c 0 p) = head p"
krauss@41808
    78
| "head p = p"
krauss@41808
    79
krauss@41808
    80
(* More general notions of degree and head *)
krauss@41808
    81
fun degreen:: "poly \<Rightarrow> nat \<Rightarrow> nat"
krauss@41808
    82
where
chaieb@33154
    83
  "degreen (CN c n p) = (\<lambda>m. if n=m then 1 + degreen p n else 0)"
krauss@41808
    84
 |"degreen p = (\<lambda>m. 0)"
chaieb@33154
    85
krauss@41808
    86
fun headn:: "poly \<Rightarrow> nat \<Rightarrow> poly"
krauss@41808
    87
where
krauss@41808
    88
  "headn (CN c n p) = (\<lambda>m. if n \<le> m then headn p m else CN c n p)"
krauss@41808
    89
| "headn p = (\<lambda>m. p)"
chaieb@33154
    90
krauss@41808
    91
fun coefficients:: "poly \<Rightarrow> poly list"
krauss@41808
    92
where
krauss@41808
    93
  "coefficients (CN c 0 p) = c#(coefficients p)"
krauss@41808
    94
| "coefficients p = [p]"
chaieb@33154
    95
krauss@41808
    96
fun isconstant:: "poly \<Rightarrow> bool"
krauss@41808
    97
where
krauss@41808
    98
  "isconstant (CN c 0 p) = False"
krauss@41808
    99
| "isconstant p = True"
chaieb@33154
   100
krauss@41808
   101
fun behead:: "poly \<Rightarrow> poly"
krauss@41808
   102
where
krauss@41808
   103
  "behead (CN c 0 p) = (let p' = behead p in if p' = 0\<^sub>p then c else CN c 0 p')"
krauss@41808
   104
| "behead p = 0\<^sub>p"
krauss@41808
   105
krauss@41808
   106
fun headconst:: "poly \<Rightarrow> Num"
krauss@41808
   107
where
chaieb@33154
   108
  "headconst (CN c n p) = headconst p"
krauss@41808
   109
| "headconst (C n) = n"
chaieb@33154
   110
wenzelm@52658
   111
chaieb@33154
   112
subsection{* Operations for normalization *}
krauss@41812
   113
krauss@41812
   114
declare if_cong[fundef_cong del]
krauss@41812
   115
declare let_cong[fundef_cong del]
krauss@41812
   116
krauss@41812
   117
fun polyadd :: "poly \<Rightarrow> poly \<Rightarrow> poly" (infixl "+\<^sub>p" 60)
krauss@41812
   118
where
krauss@41812
   119
  "polyadd (C c) (C c') = C (c+\<^sub>Nc')"
krauss@41812
   120
|  "polyadd (C c) (CN c' n' p') = CN (polyadd (C c) c') n' p'"
krauss@41812
   121
| "polyadd (CN c n p) (C c') = CN (polyadd c (C c')) n p"
krauss@41812
   122
| "polyadd (CN c n p) (CN c' n' p') =
krauss@41812
   123
    (if n < n' then CN (polyadd c (CN c' n' p')) n p
krauss@41812
   124
     else if n'<n then CN (polyadd (CN c n p) c') n' p'
krauss@41812
   125
     else (let cc' = polyadd c c' ; 
krauss@41812
   126
               pp' = polyadd p p'
chaieb@33154
   127
           in (if pp' = 0\<^sub>p then cc' else CN cc' n pp')))"
krauss@41812
   128
| "polyadd a b = Add a b"
krauss@41812
   129
chaieb@33154
   130
krauss@41808
   131
fun polyneg :: "poly \<Rightarrow> poly" ("~\<^sub>p")
krauss@41808
   132
where
chaieb@33154
   133
  "polyneg (C c) = C (~\<^sub>N c)"
krauss@41808
   134
| "polyneg (CN c n p) = CN (polyneg c) n (polyneg p)"
krauss@41808
   135
| "polyneg a = Neg a"
chaieb@33154
   136
krauss@41814
   137
definition polysub :: "poly \<Rightarrow> poly \<Rightarrow> poly" (infixl "-\<^sub>p" 60)
wenzelm@52658
   138
  where "p -\<^sub>p q = polyadd p (polyneg q)"
krauss@41813
   139
krauss@41813
   140
fun polymul :: "poly \<Rightarrow> poly \<Rightarrow> poly" (infixl "*\<^sub>p" 60)
krauss@41813
   141
where
krauss@41813
   142
  "polymul (C c) (C c') = C (c*\<^sub>Nc')"
krauss@41813
   143
| "polymul (C c) (CN c' n' p') = 
krauss@41813
   144
      (if c = 0\<^sub>N then 0\<^sub>p else CN (polymul (C c) c') n' (polymul (C c) p'))"
krauss@41813
   145
| "polymul (CN c n p) (C c') = 
krauss@41813
   146
      (if c' = 0\<^sub>N  then 0\<^sub>p else CN (polymul c (C c')) n (polymul p (C c')))"
krauss@41813
   147
| "polymul (CN c n p) (CN c' n' p') = 
krauss@41813
   148
  (if n<n' then CN (polymul c (CN c' n' p')) n (polymul p (CN c' n' p'))
chaieb@33154
   149
  else if n' < n 
krauss@41813
   150
  then CN (polymul (CN c n p) c') n' (polymul (CN c n p) p')
krauss@41813
   151
  else polyadd (polymul (CN c n p) c') (CN 0\<^sub>p n' (polymul (CN c n p) p')))"
krauss@41813
   152
| "polymul a b = Mul a b"
krauss@41808
   153
krauss@41812
   154
declare if_cong[fundef_cong]
krauss@41812
   155
declare let_cong[fundef_cong]
krauss@41812
   156
krauss@41808
   157
fun polypow :: "nat \<Rightarrow> poly \<Rightarrow> poly"
krauss@41808
   158
where
wenzelm@50282
   159
  "polypow 0 = (\<lambda>p. (1)\<^sub>p)"
krauss@41813
   160
| "polypow n = (\<lambda>p. let q = polypow (n div 2) p ; d = polymul q q in 
krauss@41813
   161
                    if even n then d else polymul p d)"
chaieb@33154
   162
wenzelm@35054
   163
abbreviation poly_pow :: "poly \<Rightarrow> nat \<Rightarrow> poly" (infixl "^\<^sub>p" 60)
wenzelm@35054
   164
  where "a ^\<^sub>p k \<equiv> polypow k a"
chaieb@33154
   165
krauss@41808
   166
function polynate :: "poly \<Rightarrow> poly"
krauss@41808
   167
where
wenzelm@50282
   168
  "polynate (Bound n) = CN 0\<^sub>p n (1)\<^sub>p"
krauss@41808
   169
| "polynate (Add p q) = (polynate p +\<^sub>p polynate q)"
krauss@41808
   170
| "polynate (Sub p q) = (polynate p -\<^sub>p polynate q)"
krauss@41808
   171
| "polynate (Mul p q) = (polynate p *\<^sub>p polynate q)"
krauss@41808
   172
| "polynate (Neg p) = (~\<^sub>p (polynate p))"
krauss@41808
   173
| "polynate (Pw p n) = ((polynate p) ^\<^sub>p n)"
krauss@41808
   174
| "polynate (CN c n p) = polynate (Add c (Mul (Bound n) p))"
krauss@41808
   175
| "polynate (C c) = C (normNum c)"
krauss@41808
   176
by pat_completeness auto
krauss@41808
   177
termination by (relation "measure polysize") auto
chaieb@33154
   178
wenzelm@52658
   179
fun poly_cmul :: "Num \<Rightarrow> poly \<Rightarrow> poly"
wenzelm@52658
   180
where
chaieb@33154
   181
  "poly_cmul y (C x) = C (y *\<^sub>N x)"
chaieb@33154
   182
| "poly_cmul y (CN c n p) = CN (poly_cmul y c) n (poly_cmul y p)"
chaieb@33154
   183
| "poly_cmul y p = C y *\<^sub>p p"
chaieb@33154
   184
haftmann@35416
   185
definition monic :: "poly \<Rightarrow> (poly \<times> bool)" where
chaieb@33154
   186
  "monic p \<equiv> (let h = headconst p in if h = 0\<^sub>N then (p,False) else ((C (Ninv h)) *\<^sub>p p, 0>\<^sub>N h))"
chaieb@33154
   187
wenzelm@52658
   188
chaieb@33154
   189
subsection{* Pseudo-division *}
chaieb@33154
   190
wenzelm@52658
   191
definition shift1 :: "poly \<Rightarrow> poly"
wenzelm@52658
   192
  where "shift1 p \<equiv> CN 0\<^sub>p 0 p"
chaieb@33154
   193
wenzelm@52658
   194
abbreviation funpow :: "nat \<Rightarrow> ('a \<Rightarrow> 'a) \<Rightarrow> ('a \<Rightarrow> 'a)"
wenzelm@52658
   195
  where "funpow \<equiv> compow"
haftmann@39246
   196
krauss@41403
   197
partial_function (tailrec) polydivide_aux :: "poly \<Rightarrow> nat \<Rightarrow> poly \<Rightarrow> nat \<Rightarrow> poly \<Rightarrow> nat \<times> poly"
wenzelm@52658
   198
where
krauss@41403
   199
  "polydivide_aux a n p k s = 
wenzelm@52658
   200
    (if s = 0\<^sub>p then (k,s)
wenzelm@52658
   201
    else (let b = head s; m = degree s in
wenzelm@52658
   202
    (if m < n then (k,s) else 
wenzelm@52658
   203
    (let p'= funpow (m - n) shift1 p in 
wenzelm@52658
   204
    (if a = b then polydivide_aux a n p k (s -\<^sub>p p') 
wenzelm@52658
   205
    else polydivide_aux a n p (Suc k) ((a *\<^sub>p s) -\<^sub>p (b *\<^sub>p p')))))))"
chaieb@33154
   206
wenzelm@52658
   207
definition polydivide :: "poly \<Rightarrow> poly \<Rightarrow> (nat \<times> poly)"
wenzelm@52658
   208
  where "polydivide s p \<equiv> polydivide_aux (head p) (degree p) p 0 s"
chaieb@33154
   209
wenzelm@52658
   210
fun poly_deriv_aux :: "nat \<Rightarrow> poly \<Rightarrow> poly"
wenzelm@52658
   211
where
chaieb@33154
   212
  "poly_deriv_aux n (CN c 0 p) = CN (poly_cmul ((int n)\<^sub>N) c) 0 (poly_deriv_aux (n + 1) p)"
chaieb@33154
   213
| "poly_deriv_aux n p = poly_cmul ((int n)\<^sub>N) p"
chaieb@33154
   214
wenzelm@52658
   215
fun poly_deriv :: "poly \<Rightarrow> poly"
wenzelm@52658
   216
where
chaieb@33154
   217
  "poly_deriv (CN c 0 p) = poly_deriv_aux 1 p"
chaieb@33154
   218
| "poly_deriv p = 0\<^sub>p"
chaieb@33154
   219
wenzelm@52658
   220
chaieb@33154
   221
subsection{* Semantics of the polynomial representation *}
chaieb@33154
   222
haftmann@39246
   223
primrec Ipoly :: "'a list \<Rightarrow> poly \<Rightarrow> 'a::{field_char_0, field_inverse_zero, power}" where
chaieb@33154
   224
  "Ipoly bs (C c) = INum c"
haftmann@39246
   225
| "Ipoly bs (Bound n) = bs!n"
haftmann@39246
   226
| "Ipoly bs (Neg a) = - Ipoly bs a"
haftmann@39246
   227
| "Ipoly bs (Add a b) = Ipoly bs a + Ipoly bs b"
haftmann@39246
   228
| "Ipoly bs (Sub a b) = Ipoly bs a - Ipoly bs b"
haftmann@39246
   229
| "Ipoly bs (Mul a b) = Ipoly bs a * Ipoly bs b"
haftmann@39246
   230
| "Ipoly bs (Pw t n) = (Ipoly bs t) ^ n"
haftmann@39246
   231
| "Ipoly bs (CN c n p) = (Ipoly bs c) + (bs!n)*(Ipoly bs p)"
haftmann@39246
   232
wenzelm@35054
   233
abbreviation
haftmann@36409
   234
  Ipoly_syntax :: "poly \<Rightarrow> 'a list \<Rightarrow>'a::{field_char_0, field_inverse_zero, power}" ("\<lparr>_\<rparr>\<^sub>p\<^bsup>_\<^esup>")
wenzelm@35054
   235
  where "\<lparr>p\<rparr>\<^sub>p\<^bsup>bs\<^esup> \<equiv> Ipoly bs p"
chaieb@33154
   236
chaieb@33154
   237
lemma Ipoly_CInt: "Ipoly bs (C (i,1)) = of_int i" 
chaieb@33154
   238
  by (simp add: INum_def)
chaieb@33154
   239
lemma Ipoly_CRat: "Ipoly bs (C (i, j)) = of_int i / of_int j" 
chaieb@33154
   240
  by (simp  add: INum_def)
chaieb@33154
   241
chaieb@33154
   242
lemmas RIpoly_eqs = Ipoly.simps(2-7) Ipoly_CInt Ipoly_CRat
chaieb@33154
   243
wenzelm@52658
   244
chaieb@33154
   245
subsection {* Normal form and normalization *}
chaieb@33154
   246
krauss@41808
   247
fun isnpolyh:: "poly \<Rightarrow> nat \<Rightarrow> bool"
krauss@41808
   248
where
chaieb@33154
   249
  "isnpolyh (C c) = (\<lambda>k. isnormNum c)"
krauss@41808
   250
| "isnpolyh (CN c n p) = (\<lambda>k. n \<ge> k \<and> (isnpolyh c (Suc n)) \<and> (isnpolyh p n) \<and> (p \<noteq> 0\<^sub>p))"
krauss@41808
   251
| "isnpolyh p = (\<lambda>k. False)"
chaieb@33154
   252
chaieb@33154
   253
lemma isnpolyh_mono: "\<lbrakk>n' \<le> n ; isnpolyh p n\<rbrakk> \<Longrightarrow> isnpolyh p n'"
wenzelm@52658
   254
  by (induct p rule: isnpolyh.induct) auto
chaieb@33154
   255
wenzelm@52658
   256
definition isnpoly :: "poly \<Rightarrow> bool"
wenzelm@52658
   257
  where "isnpoly p \<equiv> isnpolyh p 0"
chaieb@33154
   258
chaieb@33154
   259
text{* polyadd preserves normal forms *}
chaieb@33154
   260
chaieb@33154
   261
lemma polyadd_normh: "\<lbrakk>isnpolyh p n0 ; isnpolyh q n1\<rbrakk> 
krauss@41812
   262
      \<Longrightarrow> isnpolyh (polyadd p q) (min n0 n1)"
chaieb@33154
   263
proof(induct p q arbitrary: n0 n1 rule: polyadd.induct)
krauss@41812
   264
  case (2 ab c' n' p' n0 n1)
krauss@41815
   265
  from 2 have  th1: "isnpolyh (C ab) (Suc n')" by simp 
wenzelm@41807
   266
  from 2(3) have th2: "isnpolyh c' (Suc n')"  and nplen1: "n' \<ge> n1" by simp_all
chaieb@33154
   267
  with isnpolyh_mono have cp: "isnpolyh c' (Suc n')" by simp
krauss@41815
   268
  with 2(1)[OF th1 th2] have th3:"isnpolyh (C ab +\<^sub>p c') (Suc n')" by simp
chaieb@33154
   269
  from nplen1 have n01len1: "min n0 n1 \<le> n'" by simp 
wenzelm@41807
   270
  thus ?case using 2 th3 by simp
chaieb@33154
   271
next
krauss@41812
   272
  case (3 c' n' p' ab n1 n0)
krauss@41815
   273
  from 3 have  th1: "isnpolyh (C ab) (Suc n')" by simp 
wenzelm@41807
   274
  from 3(2) have th2: "isnpolyh c' (Suc n')"  and nplen1: "n' \<ge> n1" by simp_all
chaieb@33154
   275
  with isnpolyh_mono have cp: "isnpolyh c' (Suc n')" by simp
krauss@41815
   276
  with 3(1)[OF th2 th1] have th3:"isnpolyh (c' +\<^sub>p C ab) (Suc n')" by simp
chaieb@33154
   277
  from nplen1 have n01len1: "min n0 n1 \<le> n'" by simp 
wenzelm@41807
   278
  thus ?case using 3 th3 by simp
chaieb@33154
   279
next
chaieb@33154
   280
  case (4 c n p c' n' p' n0 n1)
chaieb@33154
   281
  hence nc: "isnpolyh c (Suc n)" and np: "isnpolyh p n" by simp_all
wenzelm@41807
   282
  from 4 have nc': "isnpolyh c' (Suc n')" and np': "isnpolyh p' n'" by simp_all 
wenzelm@41807
   283
  from 4 have ngen0: "n \<ge> n0" by simp
wenzelm@41807
   284
  from 4 have n'gen1: "n' \<ge> n1" by simp 
chaieb@33154
   285
  have "n < n' \<or> n' < n \<or> n = n'" by auto
krauss@41763
   286
  moreover {assume eq: "n = n'"
krauss@41812
   287
    with "4.hyps"(3)[OF nc nc'] 
chaieb@33154
   288
    have ncc':"isnpolyh (c +\<^sub>p c') (Suc n)" by auto
chaieb@33154
   289
    hence ncc'n01: "isnpolyh (c +\<^sub>p c') (min n0 n1)"
chaieb@33154
   290
      using isnpolyh_mono[where n'="min n0 n1" and n="Suc n"] ngen0 n'gen1 by auto
krauss@41812
   291
    from eq "4.hyps"(4)[OF np np'] have npp': "isnpolyh (p +\<^sub>p p') n" by simp
chaieb@33154
   292
    have minle: "min n0 n1 \<le> n'" using ngen0 n'gen1 eq by simp
krauss@41815
   293
    from minle npp' ncc'n01 4 eq ngen0 n'gen1 ncc' have ?case by (simp add: Let_def)}
chaieb@33154
   294
  moreover {assume lt: "n < n'"
chaieb@33154
   295
    have "min n0 n1 \<le> n0" by simp
krauss@41815
   296
    with 4 lt have th1:"min n0 n1 \<le> n" by auto 
wenzelm@41807
   297
    from 4 have th21: "isnpolyh c (Suc n)" by simp
wenzelm@41807
   298
    from 4 have th22: "isnpolyh (CN c' n' p') n'" by simp
chaieb@33154
   299
    from lt have th23: "min (Suc n) n' = Suc n" by arith
krauss@41812
   300
    from "4.hyps"(1)[OF th21 th22]
krauss@41812
   301
    have "isnpolyh (polyadd c (CN c' n' p')) (Suc n)" using th23 by simp
krauss@41815
   302
    with 4 lt th1 have ?case by simp } 
chaieb@33154
   303
  moreover {assume gt: "n' < n" hence gt': "n' < n \<and> \<not> n < n'" by simp
chaieb@33154
   304
    have "min n0 n1 \<le> n1"  by simp
krauss@41815
   305
    with 4 gt have th1:"min n0 n1 \<le> n'" by auto
wenzelm@41807
   306
    from 4 have th21: "isnpolyh c' (Suc n')" by simp_all
wenzelm@41807
   307
    from 4 have th22: "isnpolyh (CN c n p) n" by simp
chaieb@33154
   308
    from gt have th23: "min n (Suc n') = Suc n'" by arith
krauss@41812
   309
    from "4.hyps"(2)[OF th22 th21]
krauss@41812
   310
    have "isnpolyh (polyadd (CN c n p) c') (Suc n')" using th23 by simp
wenzelm@41807
   311
    with 4 gt th1 have ?case by simp}
chaieb@33154
   312
      ultimately show ?case by blast
chaieb@33154
   313
qed auto
chaieb@33154
   314
krauss@41812
   315
lemma polyadd[simp]: "Ipoly bs (polyadd p q) = Ipoly bs p + Ipoly bs q"
wenzelm@52658
   316
  by (induct p q rule: polyadd.induct)
wenzelm@52658
   317
    (auto simp add: Let_def field_simps distrib_left[symmetric] simp del: distrib_left)
chaieb@33154
   318
krauss@41812
   319
lemma polyadd_norm: "\<lbrakk> isnpoly p ; isnpoly q\<rbrakk> \<Longrightarrow> isnpoly (polyadd p q)"
chaieb@33154
   320
  using polyadd_normh[of "p" "0" "q" "0"] isnpoly_def by simp
chaieb@33154
   321
krauss@41404
   322
text{* The degree of addition and other general lemmas needed for the normal form of polymul *}
chaieb@33154
   323
chaieb@33154
   324
lemma polyadd_different_degreen: 
chaieb@33154
   325
  "\<lbrakk>isnpolyh p n0 ; isnpolyh q n1; degreen p m \<noteq> degreen q m ; m \<le> min n0 n1\<rbrakk> \<Longrightarrow> 
krauss@41812
   326
  degreen (polyadd p q) m = max (degreen p m) (degreen q m)"
chaieb@33154
   327
proof (induct p q arbitrary: m n0 n1 rule: polyadd.induct)
chaieb@33154
   328
  case (4 c n p c' n' p' m n0 n1)
krauss@41763
   329
  have "n' = n \<or> n < n' \<or> n' < n" by arith
krauss@41763
   330
  thus ?case
krauss@41763
   331
  proof (elim disjE)
krauss@41763
   332
    assume [simp]: "n' = n"
krauss@41812
   333
    from 4(4)[of n n m] 4(3)[of "Suc n" "Suc n" m] 4(5-7)
krauss@41763
   334
    show ?thesis by (auto simp: Let_def)
krauss@41763
   335
  next
krauss@41763
   336
    assume "n < n'"
krauss@41763
   337
    with 4 show ?thesis by auto
krauss@41763
   338
  next
krauss@41763
   339
    assume "n' < n"
krauss@41763
   340
    with 4 show ?thesis by auto
krauss@41763
   341
  qed
krauss@41763
   342
qed auto
chaieb@33154
   343
chaieb@33154
   344
lemma headnz[simp]: "\<lbrakk>isnpolyh p n ; p \<noteq> 0\<^sub>p\<rbrakk> \<Longrightarrow> headn p m \<noteq> 0\<^sub>p"
wenzelm@52658
   345
  by (induct p arbitrary: n rule: headn.induct) auto
chaieb@33154
   346
lemma degree_isnpolyh_Suc[simp]: "isnpolyh p (Suc n) \<Longrightarrow> degree p = 0"
wenzelm@52658
   347
  by (induct p arbitrary: n rule: degree.induct) auto
chaieb@33154
   348
lemma degreen_0[simp]: "isnpolyh p n \<Longrightarrow> m < n \<Longrightarrow> degreen p m = 0"
wenzelm@52658
   349
  by (induct p arbitrary: n rule: degreen.induct) auto
chaieb@33154
   350
chaieb@33154
   351
lemma degree_isnpolyh_Suc': "n > 0 \<Longrightarrow> isnpolyh p n \<Longrightarrow> degree p = 0"
wenzelm@52658
   352
  by (induct p arbitrary: n rule: degree.induct) auto
chaieb@33154
   353
chaieb@33154
   354
lemma degree_npolyhCN[simp]: "isnpolyh (CN c n p) n0 \<Longrightarrow> degree c = 0"
chaieb@33154
   355
  using degree_isnpolyh_Suc by auto
chaieb@33154
   356
lemma degreen_npolyhCN[simp]: "isnpolyh (CN c n p) n0 \<Longrightarrow> degreen c n = 0"
chaieb@33154
   357
  using degreen_0 by auto
chaieb@33154
   358
chaieb@33154
   359
chaieb@33154
   360
lemma degreen_polyadd:
chaieb@33154
   361
  assumes np: "isnpolyh p n0" and nq: "isnpolyh q n1" and m: "m \<le> max n0 n1"
chaieb@33154
   362
  shows "degreen (p +\<^sub>p q) m \<le> max (degreen p m) (degreen q m)"
chaieb@33154
   363
  using np nq m
chaieb@33154
   364
proof (induct p q arbitrary: n0 n1 m rule: polyadd.induct)
wenzelm@52658
   365
  case (2 c c' n' p' n0 n1) thus ?case  by (cases n') simp_all
chaieb@33154
   366
next
wenzelm@52658
   367
  case (3 c n p c' n0 n1) thus ?case by (cases n) auto
chaieb@33154
   368
next
chaieb@33154
   369
  case (4 c n p c' n' p' n0 n1 m) 
krauss@41763
   370
  have "n' = n \<or> n < n' \<or> n' < n" by arith
krauss@41763
   371
  thus ?case
krauss@41763
   372
  proof (elim disjE)
krauss@41763
   373
    assume [simp]: "n' = n"
krauss@41812
   374
    from 4(4)[of n n m] 4(3)[of "Suc n" "Suc n" m] 4(5-7)
krauss@41763
   375
    show ?thesis by (auto simp: Let_def)
krauss@41763
   376
  qed simp_all
chaieb@33154
   377
qed auto
chaieb@33154
   378
krauss@41812
   379
lemma polyadd_eq_const_degreen: "\<lbrakk> isnpolyh p n0 ; isnpolyh q n1 ; polyadd p q = C c\<rbrakk> 
chaieb@33154
   380
  \<Longrightarrow> degreen p m = degreen q m"
chaieb@33154
   381
proof (induct p q arbitrary: m n0 n1 c rule: polyadd.induct)
chaieb@33154
   382
  case (4 c n p c' n' p' m n0 n1 x) 
wenzelm@41807
   383
  {assume nn': "n' < n" hence ?case using 4 by simp}
chaieb@33154
   384
  moreover 
chaieb@33154
   385
  {assume nn':"\<not> n' < n" hence "n < n' \<or> n = n'" by arith
wenzelm@41807
   386
    moreover {assume "n < n'" with 4 have ?case by simp }
wenzelm@41807
   387
    moreover {assume eq: "n = n'" hence ?case using 4 
krauss@41763
   388
        apply (cases "p +\<^sub>p p' = 0\<^sub>p")
krauss@41763
   389
        apply (auto simp add: Let_def)
wenzelm@52658
   390
        apply blast
wenzelm@52658
   391
        done
krauss@41763
   392
      }
chaieb@33154
   393
    ultimately have ?case by blast}
chaieb@33154
   394
  ultimately show ?case by blast
chaieb@33154
   395
qed simp_all
chaieb@33154
   396
chaieb@33154
   397
lemma polymul_properties:
haftmann@36409
   398
  assumes "SORT_CONSTRAINT('a::{field_char_0, field_inverse_zero})"
wenzelm@52658
   399
    and np: "isnpolyh p n0"
wenzelm@52658
   400
    and nq: "isnpolyh q n1"
wenzelm@52658
   401
    and m: "m \<le> min n0 n1"
chaieb@33154
   402
  shows "isnpolyh (p *\<^sub>p q) (min n0 n1)" 
wenzelm@52658
   403
    and "(p *\<^sub>p q = 0\<^sub>p) = (p = 0\<^sub>p \<or> q = 0\<^sub>p)" 
wenzelm@52658
   404
    and "degreen (p *\<^sub>p q) m = (if (p = 0\<^sub>p \<or> q = 0\<^sub>p) then 0 else degreen p m + degreen q m)"
chaieb@33154
   405
  using np nq m
wenzelm@52658
   406
proof (induct p q arbitrary: n0 n1 m rule: polymul.induct)
krauss@41813
   407
  case (2 c c' n' p') 
chaieb@33154
   408
  { case (1 n0 n1) 
krauss@41813
   409
    with "2.hyps"(4-6)[of n' n' n']
krauss@41813
   410
      and "2.hyps"(1-3)[of "Suc n'" "Suc n'" n']
krauss@41811
   411
    show ?case by (auto simp add: min_def)
chaieb@33154
   412
  next
chaieb@33154
   413
    case (2 n0 n1) thus ?case by auto 
chaieb@33154
   414
  next
chaieb@33154
   415
    case (3 n0 n1) thus ?case  using "2.hyps" by auto } 
chaieb@33154
   416
next
krauss@41813
   417
  case (3 c n p c')
krauss@41811
   418
  { case (1 n0 n1) 
krauss@41813
   419
    with "3.hyps"(4-6)[of n n n]
krauss@41813
   420
      "3.hyps"(1-3)[of "Suc n" "Suc n" n]
krauss@41811
   421
    show ?case by (auto simp add: min_def)
chaieb@33154
   422
  next
krauss@41811
   423
    case (2 n0 n1) thus ?case by auto
chaieb@33154
   424
  next
chaieb@33154
   425
    case (3 n0 n1) thus ?case  using "3.hyps" by auto } 
chaieb@33154
   426
next
chaieb@33154
   427
  case (4 c n p c' n' p')
chaieb@33154
   428
  let ?cnp = "CN c n p" let ?cnp' = "CN c' n' p'"
krauss@41811
   429
    {
krauss@41811
   430
      case (1 n0 n1)
chaieb@33154
   431
      hence cnp: "isnpolyh ?cnp n" and cnp': "isnpolyh ?cnp' n'"
wenzelm@33268
   432
        and np: "isnpolyh p n" and nc: "isnpolyh c (Suc n)" 
wenzelm@33268
   433
        and np': "isnpolyh p' n'" and nc': "isnpolyh c' (Suc n')"
wenzelm@33268
   434
        and nn0: "n \<ge> n0" and nn1:"n' \<ge> n1"
wenzelm@33268
   435
        by simp_all
krauss@41811
   436
      { assume "n < n'"
krauss@41813
   437
        with "4.hyps"(4-5)[OF np cnp', of n]
krauss@41813
   438
          "4.hyps"(1)[OF nc cnp', of n] nn0 cnp
krauss@41811
   439
        have ?case by (simp add: min_def)
krauss@41811
   440
      } moreover {
krauss@41811
   441
        assume "n' < n"
krauss@41813
   442
        with "4.hyps"(16-17)[OF cnp np', of "n'"]
krauss@41813
   443
          "4.hyps"(13)[OF cnp nc', of "Suc n'"] nn1 cnp'
krauss@41811
   444
        have ?case
wenzelm@52658
   445
          by (cases "Suc n' = n") (simp_all add: min_def)
krauss@41811
   446
      } moreover {
krauss@41811
   447
        assume "n' = n"
krauss@41813
   448
        with "4.hyps"(16-17)[OF cnp np', of n]
krauss@41813
   449
          "4.hyps"(13)[OF cnp nc', of n] cnp cnp' nn1 nn0
krauss@41811
   450
        have ?case
krauss@41811
   451
          apply (auto intro!: polyadd_normh)
krauss@41811
   452
          apply (simp_all add: min_def isnpolyh_mono[OF nn0])
krauss@41811
   453
          done
krauss@41811
   454
      }
krauss@41811
   455
      ultimately show ?case by arith
krauss@41811
   456
    next
krauss@41811
   457
      fix n0 n1 m
chaieb@33154
   458
      assume np: "isnpolyh ?cnp n0" and np':"isnpolyh ?cnp' n1"
chaieb@33154
   459
      and m: "m \<le> min n0 n1"
chaieb@33154
   460
      let ?d = "degreen (?cnp *\<^sub>p ?cnp') m"
chaieb@33154
   461
      let ?d1 = "degreen ?cnp m"
chaieb@33154
   462
      let ?d2 = "degreen ?cnp' m"
chaieb@33154
   463
      let ?eq = "?d = (if ?cnp = 0\<^sub>p \<or> ?cnp' = 0\<^sub>p then 0  else ?d1 + ?d2)"
chaieb@33154
   464
      have "n'<n \<or> n < n' \<or> n' = n" by auto
chaieb@33154
   465
      moreover 
chaieb@33154
   466
      {assume "n' < n \<or> n < n'"
krauss@41813
   467
        with "4.hyps"(3,6,18) np np' m 
krauss@41811
   468
        have ?eq by auto }
chaieb@33154
   469
      moreover
krauss@41811
   470
      {assume nn': "n' = n" hence nn:"\<not> n' < n \<and> \<not> n < n'" by arith
krauss@41813
   471
        from "4.hyps"(16,18)[of n n' n]
krauss@41813
   472
          "4.hyps"(13,14)[of n "Suc n'" n]
wenzelm@33268
   473
          np np' nn'
wenzelm@33268
   474
        have norm: "isnpolyh ?cnp n" "isnpolyh c' (Suc n)" "isnpolyh (?cnp *\<^sub>p c') n"
wenzelm@33268
   475
          "isnpolyh p' n" "isnpolyh (?cnp *\<^sub>p p') n" "isnpolyh (CN 0\<^sub>p n (CN c n p *\<^sub>p p')) n"
wenzelm@33268
   476
          "(?cnp *\<^sub>p c' = 0\<^sub>p) = (c' = 0\<^sub>p)" 
wenzelm@33268
   477
          "?cnp *\<^sub>p p' \<noteq> 0\<^sub>p" by (auto simp add: min_def)
wenzelm@33268
   478
        {assume mn: "m = n" 
krauss@41813
   479
          from "4.hyps"(17,18)[OF norm(1,4), of n]
krauss@41813
   480
            "4.hyps"(13,15)[OF norm(1,2), of n] norm nn' mn
wenzelm@33268
   481
          have degs:  "degreen (?cnp *\<^sub>p c') n = 
wenzelm@33268
   482
            (if c'=0\<^sub>p then 0 else ?d1 + degreen c' n)"
wenzelm@33268
   483
            "degreen (?cnp *\<^sub>p p') n = ?d1  + degreen p' n" by (simp_all add: min_def)
wenzelm@33268
   484
          from degs norm
wenzelm@33268
   485
          have th1: "degreen(?cnp *\<^sub>p c') n < degreen (CN 0\<^sub>p n (?cnp *\<^sub>p p')) n" by simp
wenzelm@33268
   486
          hence neq: "degreen (?cnp *\<^sub>p c') n \<noteq> degreen (CN 0\<^sub>p n (?cnp *\<^sub>p p')) n"
wenzelm@33268
   487
            by simp
wenzelm@33268
   488
          have nmin: "n \<le> min n n" by (simp add: min_def)
wenzelm@33268
   489
          from polyadd_different_degreen[OF norm(3,6) neq nmin] th1
wenzelm@33268
   490
          have deg: "degreen (CN c n p *\<^sub>p c' +\<^sub>p CN 0\<^sub>p n (CN c n p *\<^sub>p p')) n = degreen (CN 0\<^sub>p n (CN c n p *\<^sub>p p')) n" by simp 
krauss@41813
   491
          from "4.hyps"(16-18)[OF norm(1,4), of n]
krauss@41813
   492
            "4.hyps"(13-15)[OF norm(1,2), of n]
wenzelm@33268
   493
            mn norm m nn' deg
wenzelm@33268
   494
          have ?eq by simp}
wenzelm@33268
   495
        moreover
wenzelm@33268
   496
        {assume mn: "m \<noteq> n" hence mn': "m < n" using m np by auto
wenzelm@33268
   497
          from nn' m np have max1: "m \<le> max n n"  by simp 
wenzelm@33268
   498
          hence min1: "m \<le> min n n" by simp     
wenzelm@33268
   499
          hence min2: "m \<le> min n (Suc n)" by simp
krauss@41813
   500
          from "4.hyps"(16-18)[OF norm(1,4) min1]
krauss@41813
   501
            "4.hyps"(13-15)[OF norm(1,2) min2]
krauss@41811
   502
            degreen_polyadd[OF norm(3,6) max1]
chaieb@33154
   503
krauss@41811
   504
          have "degreen (?cnp *\<^sub>p c' +\<^sub>p CN 0\<^sub>p n (?cnp *\<^sub>p p')) m 
krauss@41811
   505
            \<le> max (degreen (?cnp *\<^sub>p c') m) (degreen (CN 0\<^sub>p n (?cnp *\<^sub>p p')) m)"
krauss@41811
   506
            using mn nn' np np' by simp
krauss@41813
   507
          with "4.hyps"(16-18)[OF norm(1,4) min1]
krauss@41813
   508
            "4.hyps"(13-15)[OF norm(1,2) min2]
krauss@41811
   509
            degreen_0[OF norm(3) mn']
krauss@41811
   510
          have ?eq using nn' mn np np' by clarsimp}
wenzelm@33268
   511
        ultimately have ?eq by blast}
chaieb@33154
   512
      ultimately show ?eq by blast}
chaieb@33154
   513
    { case (2 n0 n1)
chaieb@33154
   514
      hence np: "isnpolyh ?cnp n0" and np': "isnpolyh ?cnp' n1" 
wenzelm@33268
   515
        and m: "m \<le> min n0 n1" by simp_all
chaieb@33154
   516
      hence mn: "m \<le> n" by simp
chaieb@33154
   517
      let ?c0p = "CN 0\<^sub>p n (?cnp *\<^sub>p p')"
chaieb@33154
   518
      {assume C: "?cnp *\<^sub>p c' +\<^sub>p ?c0p = 0\<^sub>p" "n' = n"
wenzelm@33268
   519
        hence nn: "\<not>n' < n \<and> \<not> n<n'" by simp
krauss@41813
   520
        from "4.hyps"(16-18) [of n n n]
krauss@41813
   521
          "4.hyps"(13-15)[of n "Suc n" n]
wenzelm@33268
   522
          np np' C(2) mn
wenzelm@33268
   523
        have norm: "isnpolyh ?cnp n" "isnpolyh c' (Suc n)" "isnpolyh (?cnp *\<^sub>p c') n"
wenzelm@33268
   524
          "isnpolyh p' n" "isnpolyh (?cnp *\<^sub>p p') n" "isnpolyh (CN 0\<^sub>p n (CN c n p *\<^sub>p p')) n"
wenzelm@33268
   525
          "(?cnp *\<^sub>p c' = 0\<^sub>p) = (c' = 0\<^sub>p)" 
wenzelm@33268
   526
          "?cnp *\<^sub>p p' \<noteq> 0\<^sub>p" 
wenzelm@33268
   527
          "degreen (?cnp *\<^sub>p c') n = (if c'=0\<^sub>p then 0 else degreen ?cnp n + degreen c' n)"
wenzelm@33268
   528
            "degreen (?cnp *\<^sub>p p') n = degreen ?cnp n + degreen p' n"
wenzelm@33268
   529
          by (simp_all add: min_def)
wenzelm@33268
   530
            
wenzelm@33268
   531
          from norm have cn: "isnpolyh (CN 0\<^sub>p n (CN c n p *\<^sub>p p')) n" by simp
wenzelm@33268
   532
          have degneq: "degreen (?cnp *\<^sub>p c') n < degreen (CN 0\<^sub>p n (?cnp *\<^sub>p p')) n" 
wenzelm@33268
   533
            using norm by simp
wenzelm@33268
   534
        from polyadd_eq_const_degreen[OF norm(3) cn C(1), where m="n"]  degneq
wenzelm@33268
   535
        have "False" by simp }
chaieb@33154
   536
      thus ?case using "4.hyps" by clarsimp}
chaieb@33154
   537
qed auto
chaieb@33154
   538
chaieb@33154
   539
lemma polymul[simp]: "Ipoly bs (p *\<^sub>p q) = (Ipoly bs p) * (Ipoly bs q)"
wenzelm@52658
   540
  by (induct p q rule: polymul.induct) (auto simp add: field_simps)
chaieb@33154
   541
chaieb@33154
   542
lemma polymul_normh: 
wenzelm@52658
   543
  assumes "SORT_CONSTRAINT('a::{field_char_0, field_inverse_zero})"
chaieb@33154
   544
  shows "\<lbrakk>isnpolyh p n0 ; isnpolyh q n1\<rbrakk> \<Longrightarrow> isnpolyh (p *\<^sub>p q) (min n0 n1)"
chaieb@33154
   545
  using polymul_properties(1)  by blast
wenzelm@52658
   546
chaieb@33154
   547
lemma polymul_eq0_iff: 
haftmann@36409
   548
  assumes "SORT_CONSTRAINT('a::{field_char_0, field_inverse_zero})"
chaieb@33154
   549
  shows "\<lbrakk> isnpolyh p n0 ; isnpolyh q n1\<rbrakk> \<Longrightarrow> (p *\<^sub>p q = 0\<^sub>p) = (p = 0\<^sub>p \<or> q = 0\<^sub>p) "
chaieb@33154
   550
  using polymul_properties(2)  by blast
wenzelm@52658
   551
wenzelm@52658
   552
lemma polymul_degreen:  (* FIXME duplicate? *)
haftmann@36409
   553
  assumes "SORT_CONSTRAINT('a::{field_char_0, field_inverse_zero})"
wenzelm@52658
   554
  shows "\<lbrakk> isnpolyh p n0 ; isnpolyh q n1 ; m \<le> min n0 n1\<rbrakk> \<Longrightarrow>
wenzelm@52658
   555
    degreen (p *\<^sub>p q) m = (if (p = 0\<^sub>p \<or> q = 0\<^sub>p) then 0 else degreen p m + degreen q m)"
chaieb@33154
   556
  using polymul_properties(3) by blast
wenzelm@52658
   557
chaieb@33154
   558
lemma polymul_norm:   
haftmann@36409
   559
  assumes "SORT_CONSTRAINT('a::{field_char_0, field_inverse_zero})"
krauss@41813
   560
  shows "\<lbrakk> isnpoly p; isnpoly q\<rbrakk> \<Longrightarrow> isnpoly (polymul p q)"
chaieb@33154
   561
  using polymul_normh[of "p" "0" "q" "0"] isnpoly_def by simp
chaieb@33154
   562
chaieb@33154
   563
lemma headconst_zero: "isnpolyh p n0 \<Longrightarrow> headconst p = 0\<^sub>N \<longleftrightarrow> p = 0\<^sub>p"
wenzelm@52658
   564
  by (induct p arbitrary: n0 rule: headconst.induct) auto
chaieb@33154
   565
chaieb@33154
   566
lemma headconst_isnormNum: "isnpolyh p n0 \<Longrightarrow> isnormNum (headconst p)"
wenzelm@52658
   567
  by (induct p arbitrary: n0) auto
chaieb@33154
   568
wenzelm@52658
   569
lemma monic_eqI:
wenzelm@52658
   570
  assumes np: "isnpolyh p n0" 
wenzelm@52658
   571
  shows "INum (headconst p) * Ipoly bs (fst (monic p)) =
wenzelm@52658
   572
    (Ipoly bs p ::'a::{field_char_0, field_inverse_zero, power})"
chaieb@33154
   573
  unfolding monic_def Let_def
wenzelm@52658
   574
proof (cases "headconst p = 0\<^sub>N", simp_all add: headconst_zero[OF np])
chaieb@33154
   575
  let ?h = "headconst p"
chaieb@33154
   576
  assume pz: "p \<noteq> 0\<^sub>p"
chaieb@33154
   577
  {assume hz: "INum ?h = (0::'a)"
chaieb@33154
   578
    from headconst_isnormNum[OF np] have norm: "isnormNum ?h" "isnormNum 0\<^sub>N" by simp_all
chaieb@33154
   579
    from isnormNum_unique[where ?'a = 'a, OF norm] hz have "?h = 0\<^sub>N" by simp
chaieb@33154
   580
    with headconst_zero[OF np] have "p =0\<^sub>p" by blast with pz have "False" by blast}
chaieb@33154
   581
  thus "INum (headconst p) = (0::'a) \<longrightarrow> \<lparr>p\<rparr>\<^sub>p\<^bsup>bs\<^esup> = 0" by blast
chaieb@33154
   582
qed
chaieb@33154
   583
chaieb@33154
   584
krauss@41404
   585
text{* polyneg is a negation and preserves normal forms *}
chaieb@33154
   586
chaieb@33154
   587
lemma polyneg[simp]: "Ipoly bs (polyneg p) = - Ipoly bs p"
wenzelm@52658
   588
  by (induct p rule: polyneg.induct) auto
chaieb@33154
   589
chaieb@33154
   590
lemma polyneg0: "isnpolyh p n \<Longrightarrow> ((~\<^sub>p p) = 0\<^sub>p) = (p = 0\<^sub>p)"
wenzelm@52658
   591
  by (induct p arbitrary: n rule: polyneg.induct) (auto simp add: Nneg_def)
chaieb@33154
   592
lemma polyneg_polyneg: "isnpolyh p n0 \<Longrightarrow> ~\<^sub>p (~\<^sub>p p) = p"
wenzelm@52658
   593
  by (induct p arbitrary: n0 rule: polyneg.induct) auto
chaieb@33154
   594
lemma polyneg_normh: "\<And>n. isnpolyh p n \<Longrightarrow> isnpolyh (polyneg p) n "
wenzelm@52658
   595
  by (induct p rule: polyneg.induct) (auto simp add: polyneg0)
chaieb@33154
   596
chaieb@33154
   597
lemma polyneg_norm: "isnpoly p \<Longrightarrow> isnpoly (polyneg p)"
chaieb@33154
   598
  using isnpoly_def polyneg_normh by simp
chaieb@33154
   599
chaieb@33154
   600
krauss@41404
   601
text{* polysub is a substraction and preserves normal forms *}
krauss@41404
   602
krauss@41814
   603
lemma polysub[simp]: "Ipoly bs (polysub p q) = (Ipoly bs p) - (Ipoly bs q)"
wenzelm@52658
   604
  by (simp add: polysub_def)
krauss@41814
   605
lemma polysub_normh: "\<And> n0 n1. \<lbrakk> isnpolyh p n0 ; isnpolyh q n1\<rbrakk> \<Longrightarrow> isnpolyh (polysub p q) (min n0 n1)"
wenzelm@52658
   606
  by (simp add: polysub_def polyneg_normh polyadd_normh)
chaieb@33154
   607
krauss@41814
   608
lemma polysub_norm: "\<lbrakk> isnpoly p; isnpoly q\<rbrakk> \<Longrightarrow> isnpoly (polysub p q)"
chaieb@33154
   609
  using polyadd_norm polyneg_norm by (simp add: polysub_def) 
wenzelm@52658
   610
lemma polysub_same_0[simp]:
wenzelm@52658
   611
  assumes "SORT_CONSTRAINT('a::{field_char_0, field_inverse_zero})"
krauss@41814
   612
  shows "isnpolyh p n0 \<Longrightarrow> polysub p p = 0\<^sub>p"
wenzelm@52658
   613
  unfolding polysub_def split_def fst_conv snd_conv
wenzelm@52658
   614
  by (induct p arbitrary: n0) (auto simp add: Let_def Nsub0[simplified Nsub_def])
chaieb@33154
   615
chaieb@33154
   616
lemma polysub_0: 
haftmann@36409
   617
  assumes "SORT_CONSTRAINT('a::{field_char_0, field_inverse_zero})"
chaieb@33154
   618
  shows "\<lbrakk> isnpolyh p n0 ; isnpolyh q n1\<rbrakk> \<Longrightarrow> (p -\<^sub>p q = 0\<^sub>p) = (p = q)"
chaieb@33154
   619
  unfolding polysub_def split_def fst_conv snd_conv
krauss@41763
   620
  by (induct p q arbitrary: n0 n1 rule:polyadd.induct)
wenzelm@52658
   621
    (auto simp: Nsub0[simplified Nsub_def] Let_def)
chaieb@33154
   622
chaieb@33154
   623
text{* polypow is a power function and preserves normal forms *}
krauss@41404
   624
haftmann@36409
   625
lemma polypow[simp]: "Ipoly bs (polypow n p) = ((Ipoly bs p :: 'a::{field_char_0, field_inverse_zero})) ^ n"
wenzelm@52658
   626
proof (induct n rule: polypow.induct)
wenzelm@52658
   627
  case 1
wenzelm@52658
   628
  thus ?case by simp
chaieb@33154
   629
next
chaieb@33154
   630
  case (2 n)
chaieb@33154
   631
  let ?q = "polypow ((Suc n) div 2) p"
krauss@41813
   632
  let ?d = "polymul ?q ?q"
chaieb@33154
   633
  have "odd (Suc n) \<or> even (Suc n)" by simp
chaieb@33154
   634
  moreover 
chaieb@33154
   635
  {assume odd: "odd (Suc n)"
wenzelm@52658
   636
    have th: "(Suc (Suc (Suc (0\<Colon>nat)) * (Suc n div Suc (Suc (0\<Colon>nat))))) = Suc n div 2 + Suc n div 2 + 1"
wenzelm@52658
   637
      by arith
krauss@41813
   638
    from odd have "Ipoly bs (p ^\<^sub>p Suc n) = Ipoly bs (polymul p ?d)" by (simp add: Let_def)
chaieb@33154
   639
    also have "\<dots> = (Ipoly bs p) * (Ipoly bs p)^(Suc n div 2)*(Ipoly bs p)^(Suc n div 2)"
chaieb@33154
   640
      using "2.hyps" by simp
chaieb@33154
   641
    also have "\<dots> = (Ipoly bs p) ^ (Suc n div 2 + Suc n div 2 + 1)"
wenzelm@52658
   642
      by (simp only: power_add power_one_right) simp
chaieb@33154
   643
    also have "\<dots> = (Ipoly bs p) ^ (Suc (Suc (Suc (0\<Colon>nat)) * (Suc n div Suc (Suc (0\<Colon>nat)))))"
chaieb@33154
   644
      by (simp only: th)
chaieb@33154
   645
    finally have ?case 
chaieb@33154
   646
    using odd_nat_div_two_times_two_plus_one[OF odd, symmetric] by simp  }
chaieb@33154
   647
  moreover 
chaieb@33154
   648
  {assume even: "even (Suc n)"
wenzelm@52658
   649
    have th: "(Suc (Suc (0\<Colon>nat))) * (Suc n div Suc (Suc (0\<Colon>nat))) = Suc n div 2 + Suc n div 2"
wenzelm@52658
   650
      by arith
chaieb@33154
   651
    from even have "Ipoly bs (p ^\<^sub>p Suc n) = Ipoly bs ?d" by (simp add: Let_def)
chaieb@33154
   652
    also have "\<dots> = (Ipoly bs p) ^ (Suc n div 2 + Suc n div 2)"
chaieb@33154
   653
      using "2.hyps" apply (simp only: power_add) by simp
chaieb@33154
   654
    finally have ?case using even_nat_div_two_times_two[OF even] by (simp only: th)}
chaieb@33154
   655
  ultimately show ?case by blast
chaieb@33154
   656
qed
chaieb@33154
   657
chaieb@33154
   658
lemma polypow_normh: 
wenzelm@52658
   659
  assumes "SORT_CONSTRAINT('a::{field_char_0, field_inverse_zero})"
chaieb@33154
   660
  shows "isnpolyh p n \<Longrightarrow> isnpolyh (polypow k p) n"
chaieb@33154
   661
proof (induct k arbitrary: n rule: polypow.induct)
chaieb@33154
   662
  case (2 k n)
chaieb@33154
   663
  let ?q = "polypow (Suc k div 2) p"
krauss@41813
   664
  let ?d = "polymul ?q ?q"
wenzelm@41807
   665
  from 2 have th1:"isnpolyh ?q n" and th2: "isnpolyh p n" by blast+
chaieb@33154
   666
  from polymul_normh[OF th1 th1] have dn: "isnpolyh ?d n" by simp
krauss@41813
   667
  from polymul_normh[OF th2 dn] have on: "isnpolyh (polymul p ?d) n" by simp
chaieb@33154
   668
  from dn on show ?case by (simp add: Let_def)
chaieb@33154
   669
qed auto 
chaieb@33154
   670
chaieb@33154
   671
lemma polypow_norm:   
haftmann@36409
   672
  assumes "SORT_CONSTRAINT('a::{field_char_0, field_inverse_zero})"
chaieb@33154
   673
  shows "isnpoly p \<Longrightarrow> isnpoly (polypow k p)"
chaieb@33154
   674
  by (simp add: polypow_normh isnpoly_def)
chaieb@33154
   675
krauss@41404
   676
text{* Finally the whole normalization *}
chaieb@33154
   677
wenzelm@52658
   678
lemma polynate [simp]:
wenzelm@52658
   679
  "Ipoly bs (polynate p) = (Ipoly bs p :: 'a ::{field_char_0, field_inverse_zero})"
wenzelm@52658
   680
  by (induct p rule:polynate.induct) auto
chaieb@33154
   681
chaieb@33154
   682
lemma polynate_norm[simp]: 
haftmann@36409
   683
  assumes "SORT_CONSTRAINT('a::{field_char_0, field_inverse_zero})"
chaieb@33154
   684
  shows "isnpoly (polynate p)"
wenzelm@52658
   685
  by (induct p rule: polynate.induct)
wenzelm@52658
   686
     (simp_all add: polyadd_norm polymul_norm polysub_norm polyneg_norm polypow_norm,
wenzelm@52658
   687
      simp_all add: isnpoly_def)
chaieb@33154
   688
chaieb@33154
   689
text{* shift1 *}
chaieb@33154
   690
chaieb@33154
   691
chaieb@33154
   692
lemma shift1: "Ipoly bs (shift1 p) = Ipoly bs (Mul (Bound 0) p)"
wenzelm@52658
   693
  by (simp add: shift1_def)
chaieb@33154
   694
chaieb@33154
   695
lemma shift1_isnpoly: 
wenzelm@52658
   696
  assumes pn: "isnpoly p"
wenzelm@52658
   697
    and pnz: "p \<noteq> 0\<^sub>p"
wenzelm@52658
   698
  shows "isnpoly (shift1 p) "
wenzelm@52658
   699
  using pn pnz by (simp add: shift1_def isnpoly_def)
chaieb@33154
   700
chaieb@33154
   701
lemma shift1_nz[simp]:"shift1 p \<noteq> 0\<^sub>p"
chaieb@33154
   702
  by (simp add: shift1_def)
chaieb@33154
   703
lemma funpow_shift1_isnpoly: 
chaieb@33154
   704
  "\<lbrakk> isnpoly p ; p \<noteq> 0\<^sub>p\<rbrakk> \<Longrightarrow> isnpoly (funpow n shift1 p)"
haftmann@39246
   705
  by (induct n arbitrary: p) (auto simp add: shift1_isnpoly funpow_swap1)
chaieb@33154
   706
chaieb@33154
   707
lemma funpow_isnpolyh: 
wenzelm@52658
   708
  assumes f: "\<And> p. isnpolyh p n \<Longrightarrow> isnpolyh (f p) n"
wenzelm@52658
   709
    and np: "isnpolyh p n"
chaieb@33154
   710
  shows "isnpolyh (funpow k f p) n"
wenzelm@52658
   711
  using f np by (induct k arbitrary: p) auto
chaieb@33154
   712
wenzelm@52658
   713
lemma funpow_shift1:
wenzelm@52658
   714
  "(Ipoly bs (funpow n shift1 p) :: 'a :: {field_char_0, field_inverse_zero}) =
wenzelm@52658
   715
    Ipoly bs (Mul (Pw (Bound 0) n) p)"
wenzelm@52658
   716
  by (induct n arbitrary: p) (simp_all add: shift1_isnpoly shift1)
chaieb@33154
   717
chaieb@33154
   718
lemma shift1_isnpolyh: "isnpolyh p n0 \<Longrightarrow> p\<noteq> 0\<^sub>p \<Longrightarrow> isnpolyh (shift1 p) 0"
chaieb@33154
   719
  using isnpolyh_mono[where n="n0" and n'="0" and p="p"] by (simp add: shift1_def)
chaieb@33154
   720
chaieb@33154
   721
lemma funpow_shift1_1: 
wenzelm@52658
   722
  "(Ipoly bs (funpow n shift1 p) :: 'a :: {field_char_0, field_inverse_zero}) =
wenzelm@52658
   723
    Ipoly bs (funpow n shift1 (1)\<^sub>p *\<^sub>p p)"
chaieb@33154
   724
  by (simp add: funpow_shift1)
chaieb@33154
   725
chaieb@33154
   726
lemma poly_cmul[simp]: "Ipoly bs (poly_cmul c p) = Ipoly bs (Mul (C c) p)"
wenzelm@45129
   727
  by (induct p rule: poly_cmul.induct) (auto simp add: field_simps)
chaieb@33154
   728
chaieb@33154
   729
lemma behead:
chaieb@33154
   730
  assumes np: "isnpolyh p n"
wenzelm@52658
   731
  shows "Ipoly bs (Add (Mul (head p) (Pw (Bound 0) (degree p))) (behead p)) =
wenzelm@52658
   732
    (Ipoly bs p :: 'a :: {field_char_0, field_inverse_zero})"
chaieb@33154
   733
  using np
chaieb@33154
   734
proof (induct p arbitrary: n rule: behead.induct)
chaieb@33154
   735
  case (1 c p n) hence pn: "isnpolyh p n" by simp
wenzelm@41807
   736
  from 1(1)[OF pn] 
chaieb@33154
   737
  have th:"Ipoly bs (Add (Mul (head p) (Pw (Bound 0) (degree p))) (behead p)) = Ipoly bs p" . 
wenzelm@52658
   738
  then show ?case using "1.hyps"
wenzelm@52658
   739
    apply (simp add: Let_def,cases "behead p = 0\<^sub>p")
wenzelm@52658
   740
    apply (simp_all add: th[symmetric] field_simps)
wenzelm@52658
   741
    done
chaieb@33154
   742
qed (auto simp add: Let_def)
chaieb@33154
   743
chaieb@33154
   744
lemma behead_isnpolyh:
wenzelm@52658
   745
  assumes np: "isnpolyh p n"
wenzelm@52658
   746
  shows "isnpolyh (behead p) n"
wenzelm@52658
   747
  using np by (induct p rule: behead.induct) (auto simp add: Let_def isnpolyh_mono)
wenzelm@52658
   748
chaieb@33154
   749
krauss@41404
   750
subsection{* Miscellaneous lemmas about indexes, decrementation, substitution  etc ... *}
wenzelm@52658
   751
chaieb@33154
   752
lemma isnpolyh_polybound0: "isnpolyh p (Suc n) \<Longrightarrow> polybound0 p"
wenzelm@52658
   753
proof (induct p arbitrary: n rule: poly.induct, auto)
chaieb@33154
   754
  case (goal1 c n p n')
chaieb@33154
   755
  hence "n = Suc (n - 1)" by simp
chaieb@33154
   756
  hence "isnpolyh p (Suc (n - 1))"  using `isnpolyh p n` by simp
wenzelm@41807
   757
  with goal1(2) show ?case by simp
chaieb@33154
   758
qed
chaieb@33154
   759
chaieb@33154
   760
lemma isconstant_polybound0: "isnpolyh p n0 \<Longrightarrow> isconstant p \<longleftrightarrow> polybound0 p"
wenzelm@52658
   761
  by (induct p arbitrary: n0 rule: isconstant.induct) (auto simp add: isnpolyh_polybound0)
chaieb@33154
   762
wenzelm@52658
   763
lemma decrpoly_zero[simp]: "decrpoly p = 0\<^sub>p \<longleftrightarrow> p = 0\<^sub>p"
wenzelm@52658
   764
  by (induct p) auto
chaieb@33154
   765
chaieb@33154
   766
lemma decrpoly_normh: "isnpolyh p n0 \<Longrightarrow> polybound0 p \<Longrightarrow> isnpolyh (decrpoly p) (n0 - 1)"
wenzelm@52658
   767
  apply (induct p arbitrary: n0)
wenzelm@52658
   768
  apply auto
chaieb@33154
   769
  apply (atomize)
chaieb@33154
   770
  apply (erule_tac x = "Suc nat" in allE)
chaieb@33154
   771
  apply auto
chaieb@33154
   772
  done
chaieb@33154
   773
chaieb@33154
   774
lemma head_polybound0: "isnpolyh p n0 \<Longrightarrow> polybound0 (head p)"
wenzelm@52658
   775
  by (induct p  arbitrary: n0 rule: head.induct) (auto intro: isnpolyh_polybound0)
chaieb@33154
   776
chaieb@33154
   777
lemma polybound0_I:
chaieb@33154
   778
  assumes nb: "polybound0 a"
chaieb@33154
   779
  shows "Ipoly (b#bs) a = Ipoly (b'#bs) a"
wenzelm@52658
   780
  using nb
wenzelm@52658
   781
  by (induct a rule: poly.induct) auto 
wenzelm@52658
   782
wenzelm@52658
   783
lemma polysubst0_I: "Ipoly (b#bs) (polysubst0 a t) = Ipoly ((Ipoly (b#bs) a)#bs) t"
chaieb@33154
   784
  by (induct t) simp_all
chaieb@33154
   785
chaieb@33154
   786
lemma polysubst0_I':
chaieb@33154
   787
  assumes nb: "polybound0 a"
chaieb@33154
   788
  shows "Ipoly (b#bs) (polysubst0 a t) = Ipoly ((Ipoly (b'#bs) a)#bs) t"
chaieb@33154
   789
  by (induct t) (simp_all add: polybound0_I[OF nb, where b="b" and b'="b'"])
chaieb@33154
   790
wenzelm@52658
   791
lemma decrpoly:
wenzelm@52658
   792
  assumes nb: "polybound0 t"
chaieb@33154
   793
  shows "Ipoly (x#bs) t = Ipoly bs (decrpoly t)"
wenzelm@52658
   794
  using nb by (induct t rule: decrpoly.induct) simp_all
chaieb@33154
   795
wenzelm@52658
   796
lemma polysubst0_polybound0:
wenzelm@52658
   797
  assumes nb: "polybound0 t"
chaieb@33154
   798
  shows "polybound0 (polysubst0 t a)"
wenzelm@52658
   799
  using nb by (induct a rule: poly.induct) auto
chaieb@33154
   800
chaieb@33154
   801
lemma degree0_polybound0: "isnpolyh p n \<Longrightarrow> degree p = 0 \<Longrightarrow> polybound0 p"
wenzelm@52658
   802
  by (induct p arbitrary: n rule: degree.induct) (auto simp add: isnpolyh_polybound0)
chaieb@33154
   803
haftmann@39246
   804
primrec maxindex :: "poly \<Rightarrow> nat" where
chaieb@33154
   805
  "maxindex (Bound n) = n + 1"
chaieb@33154
   806
| "maxindex (CN c n p) = max  (n + 1) (max (maxindex c) (maxindex p))"
chaieb@33154
   807
| "maxindex (Add p q) = max (maxindex p) (maxindex q)"
chaieb@33154
   808
| "maxindex (Sub p q) = max (maxindex p) (maxindex q)"
chaieb@33154
   809
| "maxindex (Mul p q) = max (maxindex p) (maxindex q)"
chaieb@33154
   810
| "maxindex (Neg p) = maxindex p"
chaieb@33154
   811
| "maxindex (Pw p n) = maxindex p"
chaieb@33154
   812
| "maxindex (C x) = 0"
chaieb@33154
   813
wenzelm@52658
   814
definition wf_bs :: "'a list \<Rightarrow> poly \<Rightarrow> bool"
wenzelm@52658
   815
  where "wf_bs bs p = (length bs \<ge> maxindex p)"
chaieb@33154
   816
chaieb@33154
   817
lemma wf_bs_coefficients: "wf_bs bs p \<Longrightarrow> \<forall> c \<in> set (coefficients p). wf_bs bs c"
wenzelm@52658
   818
proof (induct p rule: coefficients.induct)
chaieb@33154
   819
  case (1 c p) 
chaieb@33154
   820
  show ?case 
chaieb@33154
   821
  proof
chaieb@33154
   822
    fix x assume xc: "x \<in> set (coefficients (CN c 0 p))"
chaieb@33154
   823
    hence "x = c \<or> x \<in> set (coefficients p)" by simp
chaieb@33154
   824
    moreover 
chaieb@33154
   825
    {assume "x = c" hence "wf_bs bs x" using "1.prems"  unfolding wf_bs_def by simp}
chaieb@33154
   826
    moreover 
chaieb@33154
   827
    {assume H: "x \<in> set (coefficients p)" 
chaieb@33154
   828
      from "1.prems" have "wf_bs bs p" unfolding wf_bs_def by simp
chaieb@33154
   829
      with "1.hyps" H have "wf_bs bs x" by blast }
chaieb@33154
   830
    ultimately  show "wf_bs bs x" by blast
chaieb@33154
   831
  qed
chaieb@33154
   832
qed simp_all
chaieb@33154
   833
chaieb@33154
   834
lemma maxindex_coefficients: " \<forall>c\<in> set (coefficients p). maxindex c \<le> maxindex p"
wenzelm@52658
   835
  by (induct p rule: coefficients.induct) auto
chaieb@33154
   836
chaieb@33154
   837
lemma wf_bs_I: "wf_bs bs p ==> Ipoly (bs@bs') p = Ipoly bs p"
wenzelm@52658
   838
  unfolding wf_bs_def by (induct p) (auto simp add: nth_append)
chaieb@33154
   839
wenzelm@52658
   840
lemma take_maxindex_wf:
wenzelm@52658
   841
  assumes wf: "wf_bs bs p" 
chaieb@33154
   842
  shows "Ipoly (take (maxindex p) bs) p = Ipoly bs p"
chaieb@33154
   843
proof-
chaieb@33154
   844
  let ?ip = "maxindex p"
chaieb@33154
   845
  let ?tbs = "take ?ip bs"
chaieb@33154
   846
  from wf have "length ?tbs = ?ip" unfolding wf_bs_def by simp
chaieb@33154
   847
  hence wf': "wf_bs ?tbs p" unfolding wf_bs_def by  simp
chaieb@33154
   848
  have eq: "bs = ?tbs @ (drop ?ip bs)" by simp
chaieb@33154
   849
  from wf_bs_I[OF wf', of "drop ?ip bs"] show ?thesis using eq by simp
chaieb@33154
   850
qed
chaieb@33154
   851
chaieb@33154
   852
lemma decr_maxindex: "polybound0 p \<Longrightarrow> maxindex (decrpoly p) = maxindex p - 1"
wenzelm@52658
   853
  by (induct p) auto
chaieb@33154
   854
chaieb@33154
   855
lemma wf_bs_insensitive: "length bs = length bs' \<Longrightarrow> wf_bs bs p = wf_bs bs' p"
chaieb@33154
   856
  unfolding wf_bs_def by simp
chaieb@33154
   857
chaieb@33154
   858
lemma wf_bs_insensitive': "wf_bs (x#bs) p = wf_bs (y#bs) p"
chaieb@33154
   859
  unfolding wf_bs_def by simp
chaieb@33154
   860
chaieb@33154
   861
chaieb@33154
   862
chaieb@33154
   863
lemma wf_bs_coefficients': "\<forall>c \<in> set (coefficients p). wf_bs bs c \<Longrightarrow> wf_bs (x#bs) p"
wenzelm@52658
   864
  by (induct p rule: coefficients.induct) (auto simp add: wf_bs_def)
chaieb@33154
   865
lemma coefficients_Nil[simp]: "coefficients p \<noteq> []"
wenzelm@52658
   866
  by (induct p rule: coefficients.induct) simp_all
chaieb@33154
   867
chaieb@33154
   868
chaieb@33154
   869
lemma coefficients_head: "last (coefficients p) = head p"
wenzelm@52658
   870
  by (induct p rule: coefficients.induct) auto
chaieb@33154
   871
chaieb@33154
   872
lemma wf_bs_decrpoly: "wf_bs bs (decrpoly p) \<Longrightarrow> wf_bs (x#bs) p"
wenzelm@52658
   873
  unfolding wf_bs_def by (induct p rule: decrpoly.induct) auto
chaieb@33154
   874
chaieb@33154
   875
lemma length_le_list_ex: "length xs \<le> n \<Longrightarrow> \<exists> ys. length (xs @ ys) = n"
chaieb@33154
   876
  apply (rule exI[where x="replicate (n - length xs) z"])
wenzelm@52658
   877
  apply simp
wenzelm@52658
   878
  done
wenzelm@52658
   879
chaieb@33154
   880
lemma isnpolyh_Suc_const:"isnpolyh p (Suc n) \<Longrightarrow> isconstant p"
wenzelm@52658
   881
  apply (cases p)
wenzelm@52658
   882
  apply auto
wenzelm@52658
   883
  apply (case_tac "nat")
wenzelm@52658
   884
  apply simp_all
wenzelm@52658
   885
  done
chaieb@33154
   886
chaieb@33154
   887
lemma wf_bs_polyadd: "wf_bs bs p \<and> wf_bs bs q \<longrightarrow> wf_bs bs (p +\<^sub>p q)"
chaieb@33154
   888
  unfolding wf_bs_def 
chaieb@33154
   889
  apply (induct p q rule: polyadd.induct)
chaieb@33154
   890
  apply (auto simp add: Let_def)
chaieb@33154
   891
  done
chaieb@33154
   892
chaieb@33154
   893
lemma wf_bs_polyul: "wf_bs bs p \<Longrightarrow> wf_bs bs q \<Longrightarrow> wf_bs bs (p *\<^sub>p q)"
krauss@41811
   894
  unfolding wf_bs_def 
chaieb@33154
   895
  apply (induct p q arbitrary: bs rule: polymul.induct) 
chaieb@33154
   896
  apply (simp_all add: wf_bs_polyadd)
chaieb@33154
   897
  apply clarsimp
chaieb@33154
   898
  apply (rule wf_bs_polyadd[unfolded wf_bs_def, rule_format])
chaieb@33154
   899
  apply auto
chaieb@33154
   900
  done
chaieb@33154
   901
chaieb@33154
   902
lemma wf_bs_polyneg: "wf_bs bs p \<Longrightarrow> wf_bs bs (~\<^sub>p p)"
wenzelm@52658
   903
  unfolding wf_bs_def by (induct p rule: polyneg.induct) auto
chaieb@33154
   904
chaieb@33154
   905
lemma wf_bs_polysub: "wf_bs bs p \<Longrightarrow> wf_bs bs q \<Longrightarrow> wf_bs bs (p -\<^sub>p q)"
chaieb@33154
   906
  unfolding polysub_def split_def fst_conv snd_conv using wf_bs_polyadd wf_bs_polyneg by blast
chaieb@33154
   907
wenzelm@52658
   908
chaieb@33154
   909
subsection{* Canonicity of polynomial representation, see lemma isnpolyh_unique*}
chaieb@33154
   910
chaieb@33154
   911
definition "polypoly bs p = map (Ipoly bs) (coefficients p)"
chaieb@33154
   912
definition "polypoly' bs p = map ((Ipoly bs o decrpoly)) (coefficients p)"
chaieb@33154
   913
definition "poly_nate bs p = map ((Ipoly bs o decrpoly)) (coefficients (polynate p))"
chaieb@33154
   914
chaieb@33154
   915
lemma coefficients_normh: "isnpolyh p n0 \<Longrightarrow> \<forall> q \<in> set (coefficients p). isnpolyh q n0"
chaieb@33154
   916
proof (induct p arbitrary: n0 rule: coefficients.induct)
chaieb@33154
   917
  case (1 c p n0)
chaieb@33154
   918
  have cp: "isnpolyh (CN c 0 p) n0" by fact
chaieb@33154
   919
  hence norm: "isnpolyh c 0" "isnpolyh p 0" "p \<noteq> 0\<^sub>p" "n0 = 0"
chaieb@33154
   920
    by (auto simp add: isnpolyh_mono[where n'=0])
chaieb@33154
   921
  from "1.hyps"[OF norm(2)] norm(1) norm(4)  show ?case by simp 
chaieb@33154
   922
qed auto
chaieb@33154
   923
chaieb@33154
   924
lemma coefficients_isconst:
chaieb@33154
   925
  "isnpolyh p n \<Longrightarrow> \<forall>q\<in>set (coefficients p). isconstant q"
wenzelm@52658
   926
  by (induct p arbitrary: n rule: coefficients.induct) 
wenzelm@52658
   927
    (auto simp add: isnpolyh_Suc_const)
chaieb@33154
   928
chaieb@33154
   929
lemma polypoly_polypoly':
chaieb@33154
   930
  assumes np: "isnpolyh p n0"
chaieb@33154
   931
  shows "polypoly (x#bs) p = polypoly' bs p"
chaieb@33154
   932
proof-
chaieb@33154
   933
  let ?cf = "set (coefficients p)"
chaieb@33154
   934
  from coefficients_normh[OF np] have cn_norm: "\<forall> q\<in> ?cf. isnpolyh q n0" .
chaieb@33154
   935
  {fix q assume q: "q \<in> ?cf"
chaieb@33154
   936
    from q cn_norm have th: "isnpolyh q n0" by blast
chaieb@33154
   937
    from coefficients_isconst[OF np] q have "isconstant q" by blast
chaieb@33154
   938
    with isconstant_polybound0[OF th] have "polybound0 q" by blast}
chaieb@33154
   939
  hence "\<forall>q \<in> ?cf. polybound0 q" ..
chaieb@33154
   940
  hence "\<forall>q \<in> ?cf. Ipoly (x#bs) q = Ipoly bs (decrpoly q)"
chaieb@33154
   941
    using polybound0_I[where b=x and bs=bs and b'=y] decrpoly[where x=x and bs=bs]
chaieb@33154
   942
    by auto
chaieb@33154
   943
  
chaieb@33154
   944
  thus ?thesis unfolding polypoly_def polypoly'_def by simp 
chaieb@33154
   945
qed
chaieb@33154
   946
chaieb@33154
   947
lemma polypoly_poly:
wenzelm@52658
   948
  assumes np: "isnpolyh p n0"
wenzelm@52658
   949
  shows "Ipoly (x#bs) p = poly (polypoly (x#bs) p) x"
chaieb@33154
   950
  using np 
wenzelm@52658
   951
  by (induct p arbitrary: n0 bs rule: coefficients.induct) (auto simp add: polypoly_def)
chaieb@33154
   952
chaieb@33154
   953
lemma polypoly'_poly: 
wenzelm@52658
   954
  assumes np: "isnpolyh p n0"
wenzelm@52658
   955
  shows "\<lparr>p\<rparr>\<^sub>p\<^bsup>x # bs\<^esup> = poly (polypoly' bs p) x"
chaieb@33154
   956
  using polypoly_poly[OF np, simplified polypoly_polypoly'[OF np]] .
chaieb@33154
   957
chaieb@33154
   958
chaieb@33154
   959
lemma polypoly_poly_polybound0:
chaieb@33154
   960
  assumes np: "isnpolyh p n0" and nb: "polybound0 p"
chaieb@33154
   961
  shows "polypoly bs p = [Ipoly bs p]"
chaieb@33154
   962
  using np nb unfolding polypoly_def 
wenzelm@52658
   963
  apply (cases p)
wenzelm@52658
   964
  apply auto
wenzelm@52658
   965
  apply (case_tac nat)
wenzelm@52658
   966
  apply auto
wenzelm@52658
   967
  done
chaieb@33154
   968
chaieb@33154
   969
lemma head_isnpolyh: "isnpolyh p n0 \<Longrightarrow> isnpolyh (head p) n0" 
wenzelm@52658
   970
  by (induct p rule: head.induct) auto
chaieb@33154
   971
chaieb@33154
   972
lemma headn_nz[simp]: "isnpolyh p n0 \<Longrightarrow> (headn p m = 0\<^sub>p) = (p = 0\<^sub>p)"
wenzelm@52658
   973
  by (cases p) auto
chaieb@33154
   974
chaieb@33154
   975
lemma head_eq_headn0: "head p = headn p 0"
wenzelm@52658
   976
  by (induct p rule: head.induct) simp_all
chaieb@33154
   977
chaieb@33154
   978
lemma head_nz[simp]: "isnpolyh p n0 \<Longrightarrow> (head p = 0\<^sub>p) = (p = 0\<^sub>p)"
chaieb@33154
   979
  by (simp add: head_eq_headn0)
chaieb@33154
   980
chaieb@33154
   981
lemma isnpolyh_zero_iff: 
wenzelm@52658
   982
  assumes nq: "isnpolyh p n0"
wenzelm@52658
   983
    and eq :"\<forall>bs. wf_bs bs p \<longrightarrow> \<lparr>p\<rparr>\<^sub>p\<^bsup>bs\<^esup> = (0::'a::{field_char_0, field_inverse_zero, power})"
chaieb@33154
   984
  shows "p = 0\<^sub>p"
wenzelm@52658
   985
  using nq eq
berghofe@34915
   986
proof (induct "maxindex p" arbitrary: p n0 rule: less_induct)
berghofe@34915
   987
  case less
berghofe@34915
   988
  note np = `isnpolyh p n0` and zp = `\<forall>bs. wf_bs bs p \<longrightarrow> \<lparr>p\<rparr>\<^sub>p\<^bsup>bs\<^esup> = (0::'a)`
berghofe@34915
   989
  {assume nz: "maxindex p = 0"
wenzelm@52658
   990
    then obtain c where "p = C c" using np by (cases p) auto
chaieb@33154
   991
    with zp np have "p = 0\<^sub>p" unfolding wf_bs_def by simp}
chaieb@33154
   992
  moreover
berghofe@34915
   993
  {assume nz: "maxindex p \<noteq> 0"
chaieb@33154
   994
    let ?h = "head p"
chaieb@33154
   995
    let ?hd = "decrpoly ?h"
chaieb@33154
   996
    let ?ihd = "maxindex ?hd"
chaieb@33154
   997
    from head_isnpolyh[OF np] head_polybound0[OF np] have h:"isnpolyh ?h n0" "polybound0 ?h" 
chaieb@33154
   998
      by simp_all
chaieb@33154
   999
    hence nhd: "isnpolyh ?hd (n0 - 1)" using decrpoly_normh by blast
chaieb@33154
  1000
    
chaieb@33154
  1001
    from maxindex_coefficients[of p] coefficients_head[of p, symmetric]
berghofe@34915
  1002
    have mihn: "maxindex ?h \<le> maxindex p" by auto
berghofe@34915
  1003
    with decr_maxindex[OF h(2)] nz  have ihd_lt_n: "?ihd < maxindex p" by auto
chaieb@33154
  1004
    {fix bs:: "'a list"  assume bs: "wf_bs bs ?hd"
chaieb@33154
  1005
      let ?ts = "take ?ihd bs"
chaieb@33154
  1006
      let ?rs = "drop ?ihd bs"
chaieb@33154
  1007
      have ts: "wf_bs ?ts ?hd" using bs unfolding wf_bs_def by simp
chaieb@33154
  1008
      have bs_ts_eq: "?ts@ ?rs = bs" by simp
chaieb@33154
  1009
      from wf_bs_decrpoly[OF ts] have tsh: " \<forall>x. wf_bs (x#?ts) ?h" by simp
berghofe@34915
  1010
      from ihd_lt_n have "ALL x. length (x#?ts) \<le> maxindex p" by simp
berghofe@34915
  1011
      with length_le_list_ex obtain xs where xs:"length ((x#?ts) @ xs) = maxindex p" by blast
berghofe@34915
  1012
      hence "\<forall> x. wf_bs ((x#?ts) @ xs) p" unfolding wf_bs_def by simp
chaieb@33154
  1013
      with zp have "\<forall> x. Ipoly ((x#?ts) @ xs) p = 0" by blast
chaieb@33154
  1014
      hence "\<forall> x. Ipoly (x#(?ts @ xs)) p = 0" by simp
chaieb@33154
  1015
      with polypoly_poly[OF np, where ?'a = 'a] polypoly_polypoly'[OF np, where ?'a = 'a]
chaieb@33154
  1016
      have "\<forall>x. poly (polypoly' (?ts @ xs) p) x = poly [] x"  by simp
wenzelm@52658
  1017
      hence "poly (polypoly' (?ts @ xs) p) = poly []" by auto
chaieb@33154
  1018
      hence "\<forall> c \<in> set (coefficients p). Ipoly (?ts @ xs) (decrpoly c) = 0"
wenzelm@33268
  1019
        using poly_zero[where ?'a='a] by (simp add: polypoly'_def list_all_iff)
chaieb@33154
  1020
      with coefficients_head[of p, symmetric]
chaieb@33154
  1021
      have th0: "Ipoly (?ts @ xs) ?hd = 0" by simp
chaieb@33154
  1022
      from bs have wf'': "wf_bs ?ts ?hd" unfolding wf_bs_def by simp
chaieb@33154
  1023
      with th0 wf_bs_I[of ?ts ?hd xs] have "Ipoly ?ts ?hd = 0" by simp
chaieb@33154
  1024
      with wf'' wf_bs_I[of ?ts ?hd ?rs] bs_ts_eq have "\<lparr>?hd\<rparr>\<^sub>p\<^bsup>bs\<^esup> = 0" by simp }
chaieb@33154
  1025
    then have hdz: "\<forall>bs. wf_bs bs ?hd \<longrightarrow> \<lparr>?hd\<rparr>\<^sub>p\<^bsup>bs\<^esup> = (0::'a)" by blast
chaieb@33154
  1026
    
berghofe@34915
  1027
    from less(1)[OF ihd_lt_n nhd] hdz have "?hd = 0\<^sub>p" by blast
chaieb@33154
  1028
    hence "?h = 0\<^sub>p" by simp
chaieb@33154
  1029
    with head_nz[OF np] have "p = 0\<^sub>p" by simp}
chaieb@33154
  1030
  ultimately show "p = 0\<^sub>p" by blast
chaieb@33154
  1031
qed
chaieb@33154
  1032
chaieb@33154
  1033
lemma isnpolyh_unique:  
wenzelm@52658
  1034
  assumes np:"isnpolyh p n0"
wenzelm@52658
  1035
    and nq: "isnpolyh q n1"
haftmann@36409
  1036
  shows "(\<forall>bs. \<lparr>p\<rparr>\<^sub>p\<^bsup>bs\<^esup> = (\<lparr>q\<rparr>\<^sub>p\<^bsup>bs\<^esup> :: 'a::{field_char_0, field_inverse_zero, power})) \<longleftrightarrow>  p = q"
chaieb@33154
  1037
proof(auto)
chaieb@33154
  1038
  assume H: "\<forall>bs. (\<lparr>p\<rparr>\<^sub>p\<^bsup>bs\<^esup> ::'a)= \<lparr>q\<rparr>\<^sub>p\<^bsup>bs\<^esup>"
chaieb@33154
  1039
  hence "\<forall>bs.\<lparr>p -\<^sub>p q\<rparr>\<^sub>p\<^bsup>bs\<^esup>= (0::'a)" by simp
chaieb@33154
  1040
  hence "\<forall>bs. wf_bs bs (p -\<^sub>p q) \<longrightarrow> \<lparr>p -\<^sub>p q\<rparr>\<^sub>p\<^bsup>bs\<^esup> = (0::'a)" 
chaieb@33154
  1041
    using wf_bs_polysub[where p=p and q=q] by auto
chaieb@33154
  1042
  with isnpolyh_zero_iff[OF polysub_normh[OF np nq]] polysub_0[OF np nq]
chaieb@33154
  1043
  show "p = q" by blast
chaieb@33154
  1044
qed
chaieb@33154
  1045
chaieb@33154
  1046
krauss@41404
  1047
text{* consequences of unicity on the algorithms for polynomial normalization *}
chaieb@33154
  1048
wenzelm@52658
  1049
lemma polyadd_commute:
wenzelm@52658
  1050
  assumes "SORT_CONSTRAINT('a::{field_char_0, field_inverse_zero})"
wenzelm@52658
  1051
    and np: "isnpolyh p n0"
wenzelm@52658
  1052
    and nq: "isnpolyh q n1"
wenzelm@52658
  1053
  shows "p +\<^sub>p q = q +\<^sub>p p"
chaieb@33154
  1054
  using isnpolyh_unique[OF polyadd_normh[OF np nq] polyadd_normh[OF nq np]] by simp
chaieb@33154
  1055
chaieb@33154
  1056
lemma zero_normh: "isnpolyh 0\<^sub>p n" by simp
wenzelm@50282
  1057
lemma one_normh: "isnpolyh (1)\<^sub>p n" by simp
wenzelm@52658
  1058
chaieb@33154
  1059
lemma polyadd_0[simp]: 
haftmann@36409
  1060
  assumes "SORT_CONSTRAINT('a::{field_char_0, field_inverse_zero})"
wenzelm@52658
  1061
    and np: "isnpolyh p n0"
wenzelm@52658
  1062
  shows "p +\<^sub>p 0\<^sub>p = p" and "0\<^sub>p +\<^sub>p p = p"
chaieb@33154
  1063
  using isnpolyh_unique[OF polyadd_normh[OF np zero_normh] np] 
chaieb@33154
  1064
    isnpolyh_unique[OF polyadd_normh[OF zero_normh np] np] by simp_all
chaieb@33154
  1065
chaieb@33154
  1066
lemma polymul_1[simp]: 
wenzelm@52658
  1067
  assumes "SORT_CONSTRAINT('a::{field_char_0, field_inverse_zero})"
wenzelm@52658
  1068
    and np: "isnpolyh p n0"
wenzelm@52658
  1069
  shows "p *\<^sub>p (1)\<^sub>p = p" and "(1)\<^sub>p *\<^sub>p p = p"
chaieb@33154
  1070
  using isnpolyh_unique[OF polymul_normh[OF np one_normh] np] 
chaieb@33154
  1071
    isnpolyh_unique[OF polymul_normh[OF one_normh np] np] by simp_all
wenzelm@52658
  1072
chaieb@33154
  1073
lemma polymul_0[simp]: 
haftmann@36409
  1074
  assumes "SORT_CONSTRAINT('a::{field_char_0, field_inverse_zero})"
wenzelm@52658
  1075
    and np: "isnpolyh p n0"
wenzelm@52658
  1076
  shows "p *\<^sub>p 0\<^sub>p = 0\<^sub>p" and "0\<^sub>p *\<^sub>p p = 0\<^sub>p"
chaieb@33154
  1077
  using isnpolyh_unique[OF polymul_normh[OF np zero_normh] zero_normh] 
chaieb@33154
  1078
    isnpolyh_unique[OF polymul_normh[OF zero_normh np] zero_normh] by simp_all
chaieb@33154
  1079
chaieb@33154
  1080
lemma polymul_commute: 
wenzelm@52658
  1081
  assumes "SORT_CONSTRAINT('a::{field_char_0, field_inverse_zero})"
wenzelm@52658
  1082
    and np:"isnpolyh p n0"
wenzelm@52658
  1083
    and nq: "isnpolyh q n1"
chaieb@33154
  1084
  shows "p *\<^sub>p q = q *\<^sub>p p"
wenzelm@52658
  1085
  using isnpolyh_unique[OF polymul_normh[OF np nq] polymul_normh[OF nq np], where ?'a = "'a\<Colon>{field_char_0, field_inverse_zero, power}"]
wenzelm@52658
  1086
  by simp
chaieb@33154
  1087
wenzelm@52658
  1088
declare polyneg_polyneg [simp]
chaieb@33154
  1089
  
wenzelm@52658
  1090
lemma isnpolyh_polynate_id [simp]: 
haftmann@36409
  1091
  assumes "SORT_CONSTRAINT('a::{field_char_0, field_inverse_zero})"
wenzelm@52658
  1092
    and np:"isnpolyh p n0"
wenzelm@52658
  1093
  shows "polynate p = p"
wenzelm@52658
  1094
  using isnpolyh_unique[where ?'a= "'a::{field_char_0, field_inverse_zero}", OF polynate_norm[of p, unfolded isnpoly_def] np] polynate[where ?'a = "'a::{field_char_0, field_inverse_zero}"]
wenzelm@52658
  1095
  by simp
chaieb@33154
  1096
chaieb@33154
  1097
lemma polynate_idempotent[simp]: 
wenzelm@52658
  1098
  assumes "SORT_CONSTRAINT('a::{field_char_0, field_inverse_zero})"
chaieb@33154
  1099
  shows "polynate (polynate p) = polynate p"
chaieb@33154
  1100
  using isnpolyh_polynate_id[OF polynate_norm[of p, unfolded isnpoly_def]] .
chaieb@33154
  1101
chaieb@33154
  1102
lemma poly_nate_polypoly': "poly_nate bs p = polypoly' bs (polynate p)"
chaieb@33154
  1103
  unfolding poly_nate_def polypoly'_def ..
wenzelm@52658
  1104
wenzelm@52658
  1105
lemma poly_nate_poly:
wenzelm@52658
  1106
  "poly (poly_nate bs p) = (\<lambda>x:: 'a ::{field_char_0, field_inverse_zero}. \<lparr>p\<rparr>\<^sub>p\<^bsup>x # bs\<^esup>)"
chaieb@33154
  1107
  using polypoly'_poly[OF polynate_norm[unfolded isnpoly_def], symmetric, of bs p]
wenzelm@52658
  1108
  unfolding poly_nate_polypoly' by auto
wenzelm@52658
  1109
chaieb@33154
  1110
chaieb@33154
  1111
subsection{* heads, degrees and all that *}
wenzelm@52658
  1112
chaieb@33154
  1113
lemma degree_eq_degreen0: "degree p = degreen p 0"
wenzelm@52658
  1114
  by (induct p rule: degree.induct) simp_all
chaieb@33154
  1115
wenzelm@52658
  1116
lemma degree_polyneg:
wenzelm@52658
  1117
  assumes n: "isnpolyh p n"
chaieb@33154
  1118
  shows "degree (polyneg p) = degree p"
wenzelm@52658
  1119
  apply (induct p arbitrary: n rule: polyneg.induct)
wenzelm@52658
  1120
  using n apply simp_all
wenzelm@52658
  1121
  apply (case_tac na)
wenzelm@52658
  1122
  apply auto
wenzelm@52658
  1123
  done
chaieb@33154
  1124
chaieb@33154
  1125
lemma degree_polyadd:
chaieb@33154
  1126
  assumes np: "isnpolyh p n0" and nq: "isnpolyh q n1"
chaieb@33154
  1127
  shows "degree (p +\<^sub>p q) \<le> max (degree p) (degree q)"
wenzelm@52658
  1128
  using degreen_polyadd[OF np nq, where m= "0"] degree_eq_degreen0 by simp
chaieb@33154
  1129
chaieb@33154
  1130
wenzelm@52658
  1131
lemma degree_polysub:
wenzelm@52658
  1132
  assumes np: "isnpolyh p n0"
wenzelm@52658
  1133
    and nq: "isnpolyh q n1"
chaieb@33154
  1134
  shows "degree (p -\<^sub>p q) \<le> max (degree p) (degree q)"
chaieb@33154
  1135
proof-
chaieb@33154
  1136
  from nq have nq': "isnpolyh (~\<^sub>p q) n1" using polyneg_normh by simp
chaieb@33154
  1137
  from degree_polyadd[OF np nq'] show ?thesis by (simp add: polysub_def degree_polyneg[OF nq])
chaieb@33154
  1138
qed
chaieb@33154
  1139
chaieb@33154
  1140
lemma degree_polysub_samehead: 
haftmann@36409
  1141
  assumes "SORT_CONSTRAINT('a::{field_char_0, field_inverse_zero})"
wenzelm@52658
  1142
    and np: "isnpolyh p n0" and nq: "isnpolyh q n1" and h: "head p = head q" 
wenzelm@52658
  1143
    and d: "degree p = degree q"
chaieb@33154
  1144
  shows "degree (p -\<^sub>p q) < degree p \<or> (p -\<^sub>p q = 0\<^sub>p)"
wenzelm@52658
  1145
  unfolding polysub_def split_def fst_conv snd_conv
wenzelm@52658
  1146
  using np nq h d
wenzelm@52658
  1147
proof (induct p q rule: polyadd.induct)
wenzelm@52658
  1148
  case (1 c c')
wenzelm@52658
  1149
  thus ?case by (simp add: Nsub_def Nsub0[simplified Nsub_def]) 
chaieb@33154
  1150
next
krauss@41812
  1151
  case (2 c c' n' p') 
krauss@41815
  1152
  from 2 have "degree (C c) = degree (CN c' n' p')" by simp
wenzelm@52658
  1153
  hence nz:"n' > 0" by (cases n') auto
wenzelm@52658
  1154
  hence "head (CN c' n' p') = CN c' n' p'" by (cases n') auto
wenzelm@41807
  1155
  with 2 show ?case by simp
chaieb@33154
  1156
next
krauss@41812
  1157
  case (3 c n p c') 
krauss@41815
  1158
  hence "degree (C c') = degree (CN c n p)" by simp
wenzelm@52658
  1159
  hence nz:"n > 0" by (cases n) auto
wenzelm@52658
  1160
  hence "head (CN c n p) = CN c n p" by (cases n) auto
wenzelm@41807
  1161
  with 3 show ?case by simp
chaieb@33154
  1162
next
chaieb@33154
  1163
  case (4 c n p c' n' p')
chaieb@33154
  1164
  hence H: "isnpolyh (CN c n p) n0" "isnpolyh (CN c' n' p') n1" 
chaieb@33154
  1165
    "head (CN c n p) = head (CN c' n' p')" "degree (CN c n p) = degree (CN c' n' p')" by simp+
chaieb@33154
  1166
  hence degc: "degree c = 0" and degc': "degree c' = 0" by simp_all  
chaieb@33154
  1167
  hence degnc: "degree (~\<^sub>p c) = 0" and degnc': "degree (~\<^sub>p c') = 0" 
chaieb@33154
  1168
    using H(1-2) degree_polyneg by auto
chaieb@33154
  1169
  from H have cnh: "isnpolyh c (Suc n)" and c'nh: "isnpolyh c' (Suc n')"  by simp+
chaieb@33154
  1170
  from degree_polysub[OF cnh c'nh, simplified polysub_def] degc degc' have degcmc': "degree (c +\<^sub>p  ~\<^sub>pc') = 0"  by simp
chaieb@33154
  1171
  from H have pnh: "isnpolyh p n" and p'nh: "isnpolyh p' n'" by auto
chaieb@33154
  1172
  have "n = n' \<or> n < n' \<or> n > n'" by arith
chaieb@33154
  1173
  moreover
chaieb@33154
  1174
  {assume nn': "n = n'"
chaieb@33154
  1175
    have "n = 0 \<or> n >0" by arith
wenzelm@41807
  1176
    moreover {assume nz: "n = 0" hence ?case using 4 nn' by (auto simp add: Let_def degcmc')}
chaieb@33154
  1177
    moreover {assume nz: "n > 0"
chaieb@33154
  1178
      with nn' H(3) have  cc':"c = c'" and pp': "p = p'" by (cases n, auto)+
wenzelm@52658
  1179
      hence ?case
wenzelm@52658
  1180
        using polysub_same_0[OF p'nh, simplified polysub_def split_def fst_conv snd_conv] polysub_same_0[OF c'nh, simplified polysub_def]
wenzelm@52658
  1181
        using nn' 4 by (simp add: Let_def)}
chaieb@33154
  1182
    ultimately have ?case by blast}
chaieb@33154
  1183
  moreover
chaieb@33154
  1184
  {assume nn': "n < n'" hence n'p: "n' > 0" by simp 
wenzelm@52658
  1185
    hence headcnp':"head (CN c' n' p') = CN c' n' p'"  by (cases n') simp_all
wenzelm@52658
  1186
    have degcnp': "degree (CN c' n' p') = 0" and degcnpeq: "degree (CN c n p) = degree (CN c' n' p')"
wenzelm@52658
  1187
      using 4 nn' by (cases n', simp_all)
wenzelm@52658
  1188
    hence "n > 0" by (cases n) simp_all
wenzelm@52658
  1189
    hence headcnp: "head (CN c n p) = CN c n p" by (cases n) auto
chaieb@33154
  1190
    from H(3) headcnp headcnp' nn' have ?case by auto}
chaieb@33154
  1191
  moreover
chaieb@33154
  1192
  {assume nn': "n > n'"  hence np: "n > 0" by simp 
wenzelm@52658
  1193
    hence headcnp:"head (CN c n p) = CN c n p"  by (cases n) simp_all
wenzelm@41807
  1194
    from 4 have degcnpeq: "degree (CN c' n' p') = degree (CN c n p)" by simp
wenzelm@52658
  1195
    from np have degcnp: "degree (CN c n p) = 0" by (cases n) simp_all
wenzelm@52658
  1196
    with degcnpeq have "n' > 0" by (cases n') simp_all
wenzelm@52658
  1197
    hence headcnp': "head (CN c' n' p') = CN c' n' p'" by (cases n') auto
chaieb@33154
  1198
    from H(3) headcnp headcnp' nn' have ?case by auto}
chaieb@33154
  1199
  ultimately show ?case  by blast
krauss@41812
  1200
qed auto
chaieb@33154
  1201
 
chaieb@33154
  1202
lemma shift1_head : "isnpolyh p n0 \<Longrightarrow> head (shift1 p) = head p"
wenzelm@52658
  1203
  by (induct p arbitrary: n0 rule: head.induct) (simp_all add: shift1_def)
chaieb@33154
  1204
chaieb@33154
  1205
lemma funpow_shift1_head: "isnpolyh p n0 \<Longrightarrow> p\<noteq> 0\<^sub>p \<Longrightarrow> head (funpow k shift1 p) = head p"
wenzelm@52658
  1206
proof (induct k arbitrary: n0 p)
wenzelm@52658
  1207
  case 0
wenzelm@52658
  1208
  thus ?case by auto
wenzelm@52658
  1209
next
wenzelm@52658
  1210
  case (Suc k n0 p)
wenzelm@52658
  1211
  hence "isnpolyh (shift1 p) 0" by (simp add: shift1_isnpolyh)
wenzelm@41807
  1212
  with Suc have "head (funpow k shift1 (shift1 p)) = head (shift1 p)"
chaieb@33154
  1213
    and "head (shift1 p) = head p" by (simp_all add: shift1_head) 
haftmann@39246
  1214
  thus ?case by (simp add: funpow_swap1)
wenzelm@52658
  1215
qed
chaieb@33154
  1216
chaieb@33154
  1217
lemma shift1_degree: "degree (shift1 p) = 1 + degree p"
chaieb@33154
  1218
  by (simp add: shift1_def)
chaieb@33154
  1219
lemma funpow_shift1_degree: "degree (funpow k shift1 p) = k + degree p "
wenzelm@46991
  1220
  by (induct k arbitrary: p) (auto simp add: shift1_degree)
chaieb@33154
  1221
chaieb@33154
  1222
lemma funpow_shift1_nz: "p \<noteq> 0\<^sub>p \<Longrightarrow> funpow n shift1 p \<noteq> 0\<^sub>p"
wenzelm@52658
  1223
  by (induct n arbitrary: p) simp_all
chaieb@33154
  1224
chaieb@33154
  1225
lemma head_isnpolyh_Suc[simp]: "isnpolyh p (Suc n) \<Longrightarrow> head p = p"
wenzelm@52658
  1226
  by (induct p arbitrary: n rule: degree.induct) auto
chaieb@33154
  1227
lemma headn_0[simp]: "isnpolyh p n \<Longrightarrow> m < n \<Longrightarrow> headn p m = p"
wenzelm@52658
  1228
  by (induct p arbitrary: n rule: degreen.induct) auto
chaieb@33154
  1229
lemma head_isnpolyh_Suc': "n > 0 \<Longrightarrow> isnpolyh p n \<Longrightarrow> head p = p"
wenzelm@52658
  1230
  by (induct p arbitrary: n rule: degree.induct) auto
chaieb@33154
  1231
lemma head_head[simp]: "isnpolyh p n0 \<Longrightarrow> head (head p) = head p"
wenzelm@52658
  1232
  by (induct p rule: head.induct) auto
chaieb@33154
  1233
chaieb@33154
  1234
lemma polyadd_eq_const_degree: 
wenzelm@52658
  1235
  "isnpolyh p n0 \<Longrightarrow> isnpolyh q n1 \<Longrightarrow> polyadd p q = C c \<Longrightarrow> degree p = degree q"
chaieb@33154
  1236
  using polyadd_eq_const_degreen degree_eq_degreen0 by simp
chaieb@33154
  1237
wenzelm@52658
  1238
lemma polyadd_head:
wenzelm@52658
  1239
  assumes np: "isnpolyh p n0"
wenzelm@52658
  1240
    and nq: "isnpolyh q n1"
wenzelm@52658
  1241
    and deg: "degree p \<noteq> degree q"
chaieb@33154
  1242
  shows "head (p +\<^sub>p q) = (if degree p < degree q then head q else head p)"
wenzelm@52658
  1243
  using np nq deg
wenzelm@52658
  1244
  apply (induct p q arbitrary: n0 n1 rule: polyadd.induct)
wenzelm@52658
  1245
  using np
wenzelm@52658
  1246
  apply simp_all
wenzelm@52658
  1247
  apply (case_tac n', simp, simp)
wenzelm@52658
  1248
  apply (case_tac n, simp, simp)
wenzelm@52658
  1249
  apply (case_tac n, case_tac n', simp add: Let_def)
wenzelm@52658
  1250
  apply (case_tac "pa +\<^sub>p p' = 0\<^sub>p")
wenzelm@52658
  1251
  apply (auto simp add: polyadd_eq_const_degree)
wenzelm@52658
  1252
  apply (metis head_nz)
wenzelm@52658
  1253
  apply (metis head_nz)
wenzelm@52658
  1254
  apply (metis degree.simps(9) gr0_conv_Suc head.simps(1) less_Suc0 not_less_eq)
wenzelm@52658
  1255
  apply (metis degree.simps(9) gr0_conv_Suc nat_less_le order_le_less_trans)
wenzelm@52658
  1256
  done
chaieb@33154
  1257
chaieb@33154
  1258
lemma polymul_head_polyeq: 
wenzelm@52658
  1259
  assumes "SORT_CONSTRAINT('a::{field_char_0, field_inverse_zero})"
chaieb@33154
  1260
  shows "\<lbrakk>isnpolyh p n0; isnpolyh q n1 ; p \<noteq> 0\<^sub>p ; q \<noteq> 0\<^sub>p \<rbrakk> \<Longrightarrow> head (p *\<^sub>p q) = head p *\<^sub>p head q"
chaieb@33154
  1261
proof (induct p q arbitrary: n0 n1 rule: polymul.induct)
krauss@41813
  1262
  case (2 c c' n' p' n0 n1)
krauss@41813
  1263
  hence "isnpolyh (head (CN c' n' p')) n1" "isnormNum c"  by (simp_all add: head_isnpolyh)
wenzelm@52658
  1264
  thus ?case using 2 by (cases n') auto
chaieb@33154
  1265
next 
krauss@41813
  1266
  case (3 c n p c' n0 n1) 
krauss@41813
  1267
  hence "isnpolyh (head (CN c n p)) n0" "isnormNum c'"  by (simp_all add: head_isnpolyh)
wenzelm@52658
  1268
  thus ?case using 3 by (cases n) auto
chaieb@33154
  1269
next
chaieb@33154
  1270
  case (4 c n p c' n' p' n0 n1)
chaieb@33154
  1271
  hence norm: "isnpolyh p n" "isnpolyh c (Suc n)" "isnpolyh p' n'" "isnpolyh c' (Suc n')"
chaieb@33154
  1272
    "isnpolyh (CN c n p) n" "isnpolyh (CN c' n' p') n'"
chaieb@33154
  1273
    by simp_all
chaieb@33154
  1274
  have "n < n' \<or> n' < n \<or> n = n'" by arith
chaieb@33154
  1275
  moreover 
chaieb@33154
  1276
  {assume nn': "n < n'" hence ?case 
wenzelm@52658
  1277
      using norm "4.hyps"(2)[OF norm(1,6)] "4.hyps"(1)[OF norm(2,6)]
wenzelm@52658
  1278
      apply simp
wenzelm@52658
  1279
      apply (cases n)
wenzelm@52658
  1280
      apply simp
wenzelm@52658
  1281
      apply (cases n')
wenzelm@52658
  1282
      apply simp_all
wenzelm@52658
  1283
      done }
chaieb@33154
  1284
  moreover {assume nn': "n'< n"
wenzelm@52658
  1285
    hence ?case
wenzelm@52658
  1286
      using norm "4.hyps"(6) [OF norm(5,3)] "4.hyps"(5)[OF norm(5,4)] 
wenzelm@52658
  1287
      apply simp
wenzelm@52658
  1288
      apply (cases n')
wenzelm@52658
  1289
      apply simp
wenzelm@52658
  1290
      apply (cases n)
wenzelm@52658
  1291
      apply auto
wenzelm@52658
  1292
      done }
chaieb@33154
  1293
  moreover {assume nn': "n' = n"
chaieb@33154
  1294
    from nn' polymul_normh[OF norm(5,4)] 
chaieb@33154
  1295
    have ncnpc':"isnpolyh (CN c n p *\<^sub>p c') n" by (simp add: min_def)
chaieb@33154
  1296
    from nn' polymul_normh[OF norm(5,3)] norm 
chaieb@33154
  1297
    have ncnpp':"isnpolyh (CN c n p *\<^sub>p p') n" by simp
chaieb@33154
  1298
    from nn' ncnpp' polymul_eq0_iff[OF norm(5,3)] norm(6)
chaieb@33154
  1299
    have ncnpp0':"isnpolyh (CN 0\<^sub>p n (CN c n p *\<^sub>p p')) n" by simp 
chaieb@33154
  1300
    from polyadd_normh[OF ncnpc' ncnpp0'] 
chaieb@33154
  1301
    have nth: "isnpolyh ((CN c n p *\<^sub>p c') +\<^sub>p (CN 0\<^sub>p n (CN c n p *\<^sub>p p'))) n" 
chaieb@33154
  1302
      by (simp add: min_def)
chaieb@33154
  1303
    {assume np: "n > 0"
chaieb@33154
  1304
      with nn' head_isnpolyh_Suc'[OF np nth]
wenzelm@33268
  1305
        head_isnpolyh_Suc'[OF np norm(5)] head_isnpolyh_Suc'[OF np norm(6)[simplified nn']]
chaieb@33154
  1306
      have ?case by simp}
chaieb@33154
  1307
    moreover
chaieb@33154
  1308
    {moreover assume nz: "n = 0"
chaieb@33154
  1309
      from polymul_degreen[OF norm(5,4), where m="0"]
wenzelm@33268
  1310
        polymul_degreen[OF norm(5,3), where m="0"] nn' nz degree_eq_degreen0
chaieb@33154
  1311
      norm(5,6) degree_npolyhCN[OF norm(6)]
chaieb@33154
  1312
    have dth:"degree (CN c 0 p *\<^sub>p c') < degree (CN 0\<^sub>p 0 (CN c 0 p *\<^sub>p p'))" by simp
chaieb@33154
  1313
    hence dth':"degree (CN c 0 p *\<^sub>p c') \<noteq> degree (CN 0\<^sub>p 0 (CN c 0 p *\<^sub>p p'))" by simp
chaieb@33154
  1314
    from polyadd_head[OF ncnpc'[simplified nz] ncnpp0'[simplified nz] dth'] dth
krauss@41813
  1315
    have ?case   using norm "4.hyps"(6)[OF norm(5,3)]
krauss@41813
  1316
        "4.hyps"(5)[OF norm(5,4)] nn' nz by simp }
chaieb@33154
  1317
    ultimately have ?case by (cases n) auto} 
chaieb@33154
  1318
  ultimately show ?case by blast
chaieb@33154
  1319
qed simp_all
chaieb@33154
  1320
chaieb@33154
  1321
lemma degree_coefficients: "degree p = length (coefficients p) - 1"
wenzelm@52658
  1322
  by (induct p rule: degree.induct) auto
chaieb@33154
  1323
chaieb@33154
  1324
lemma degree_head[simp]: "degree (head p) = 0"
wenzelm@52658
  1325
  by (induct p rule: head.induct) auto
chaieb@33154
  1326
krauss@41812
  1327
lemma degree_CN: "isnpolyh p n \<Longrightarrow> degree (CN c n p) \<le> 1 + degree p"
wenzelm@52658
  1328
  by (cases n) simp_all
chaieb@33154
  1329
lemma degree_CN': "isnpolyh p n \<Longrightarrow> degree (CN c n p) \<ge>  degree p"
wenzelm@52658
  1330
  by (cases n) simp_all
chaieb@33154
  1331
wenzelm@52658
  1332
lemma polyadd_different_degree:
wenzelm@52658
  1333
  "\<lbrakk>isnpolyh p n0 ; isnpolyh q n1; degree p \<noteq> degree q\<rbrakk> \<Longrightarrow>
wenzelm@52658
  1334
    degree (polyadd p q) = max (degree p) (degree q)"
chaieb@33154
  1335
  using polyadd_different_degreen degree_eq_degreen0 by simp
chaieb@33154
  1336
chaieb@33154
  1337
lemma degreen_polyneg: "isnpolyh p n0 \<Longrightarrow> degreen (~\<^sub>p p) m = degreen p m"
wenzelm@52658
  1338
  by (induct p arbitrary: n0 rule: polyneg.induct) auto
chaieb@33154
  1339
chaieb@33154
  1340
lemma degree_polymul:
haftmann@36409
  1341
  assumes "SORT_CONSTRAINT('a::{field_char_0, field_inverse_zero})"
wenzelm@52658
  1342
    and np: "isnpolyh p n0"
wenzelm@52658
  1343
    and nq: "isnpolyh q n1"
chaieb@33154
  1344
  shows "degree (p *\<^sub>p q) \<le> degree p + degree q"
chaieb@33154
  1345
  using polymul_degreen[OF np nq, where m="0"]  degree_eq_degreen0 by simp
chaieb@33154
  1346
chaieb@33154
  1347
lemma polyneg_degree: "isnpolyh p n \<Longrightarrow> degree (polyneg p) = degree p"
wenzelm@52658
  1348
  by (induct p arbitrary: n rule: degree.induct) auto
chaieb@33154
  1349
chaieb@33154
  1350
lemma polyneg_head: "isnpolyh p n \<Longrightarrow> head(polyneg p) = polyneg (head p)"
wenzelm@52658
  1351
  by (induct p arbitrary: n rule: degree.induct) auto
wenzelm@52658
  1352
chaieb@33154
  1353
chaieb@33154
  1354
subsection {* Correctness of polynomial pseudo division *}
chaieb@33154
  1355
chaieb@33154
  1356
lemma polydivide_aux_properties:
haftmann@36409
  1357
  assumes "SORT_CONSTRAINT('a::{field_char_0, field_inverse_zero})"
wenzelm@52658
  1358
    and np: "isnpolyh p n0"
wenzelm@52658
  1359
    and ns: "isnpolyh s n1"
wenzelm@52658
  1360
    and ap: "head p = a"
wenzelm@52658
  1361
    and ndp: "degree p = n" and pnz: "p \<noteq> 0\<^sub>p"
krauss@41403
  1362
  shows "(polydivide_aux a n p k s = (k',r) \<longrightarrow> (k' \<ge> k) \<and> (degree r = 0 \<or> degree r < degree p) 
chaieb@33154
  1363
          \<and> (\<exists>nr. isnpolyh r nr) \<and> (\<exists>q n1. isnpolyh q n1 \<and> ((polypow (k' - k) a) *\<^sub>p s = p *\<^sub>p q +\<^sub>p r)))"
chaieb@33154
  1364
  using ns
wenzelm@52658
  1365
proof (induct "degree s" arbitrary: s k k' r n1 rule: less_induct)
berghofe@34915
  1366
  case less
chaieb@33154
  1367
  let ?qths = "\<exists>q n1. isnpolyh q n1 \<and> (a ^\<^sub>p (k' - k) *\<^sub>p s = p *\<^sub>p q +\<^sub>p r)"
krauss@41403
  1368
  let ?ths = "polydivide_aux a n p k s = (k', r) \<longrightarrow>  k \<le> k' \<and> (degree r = 0 \<or> degree r < degree p) 
chaieb@33154
  1369
    \<and> (\<exists>nr. isnpolyh r nr) \<and> ?qths"
chaieb@33154
  1370
  let ?b = "head s"
berghofe@34915
  1371
  let ?p' = "funpow (degree s - n) shift1 p"
wenzelm@50282
  1372
  let ?xdn = "funpow (degree s - n) shift1 (1)\<^sub>p"
chaieb@33154
  1373
  let ?akk' = "a ^\<^sub>p (k' - k)"
berghofe@34915
  1374
  note ns = `isnpolyh s n1`
chaieb@33154
  1375
  from np have np0: "isnpolyh p 0" 
chaieb@33154
  1376
    using isnpolyh_mono[where n="n0" and n'="0" and p="p"]  by simp
berghofe@34915
  1377
  have np': "isnpolyh ?p' 0" using funpow_shift1_isnpoly[OF np0[simplified isnpoly_def[symmetric]] pnz, where n="degree s - n"] isnpoly_def by simp
chaieb@33154
  1378
  have headp': "head ?p' = head p" using funpow_shift1_head[OF np pnz] by simp
wenzelm@50282
  1379
  from funpow_shift1_isnpoly[where p="(1)\<^sub>p"] have nxdn: "isnpolyh ?xdn 0" by (simp add: isnpoly_def)
chaieb@33154
  1380
  from polypow_normh [OF head_isnpolyh[OF np0], where k="k' - k"] ap 
chaieb@33154
  1381
  have nakk':"isnpolyh ?akk' 0" by blast
wenzelm@52658
  1382
  { assume sz: "s = 0\<^sub>p"
wenzelm@52658
  1383
    hence ?ths using np polydivide_aux.simps
wenzelm@52658
  1384
      apply clarsimp
wenzelm@52658
  1385
      apply (rule exI[where x="0\<^sub>p"])
wenzelm@52658
  1386
      apply simp
wenzelm@52658
  1387
      done }
chaieb@33154
  1388
  moreover
chaieb@33154
  1389
  {assume sz: "s \<noteq> 0\<^sub>p"
berghofe@34915
  1390
    {assume dn: "degree s < n"
wenzelm@52658
  1391
      hence "?ths" using ns ndp np polydivide_aux.simps
wenzelm@52658
  1392
        apply auto
wenzelm@52658
  1393
        apply (rule exI[where x="0\<^sub>p"])
wenzelm@52658
  1394
        apply simp
wenzelm@52658
  1395
        done }
chaieb@33154
  1396
    moreover 
berghofe@34915
  1397
    {assume dn': "\<not> degree s < n" hence dn: "degree s \<ge> n" by arith
chaieb@33154
  1398
      have degsp': "degree s = degree ?p'" 
berghofe@34915
  1399
        using dn ndp funpow_shift1_degree[where k = "degree s - n" and p="p"] by simp
chaieb@33154
  1400
      {assume ba: "?b = a"
wenzelm@33268
  1401
        hence headsp': "head s = head ?p'" using ap headp' by simp
wenzelm@33268
  1402
        have nr: "isnpolyh (s -\<^sub>p ?p') 0" using polysub_normh[OF ns np'] by simp
berghofe@34915
  1403
        from degree_polysub_samehead[OF ns np' headsp' degsp']
berghofe@34915
  1404
        have "degree (s -\<^sub>p ?p') < degree s \<or> s -\<^sub>p ?p' = 0\<^sub>p" by simp
wenzelm@33268
  1405
        moreover 
berghofe@34915
  1406
        {assume deglt:"degree (s -\<^sub>p ?p') < degree s"
krauss@41403
  1407
          from polydivide_aux.simps sz dn' ba
krauss@41403
  1408
          have eq: "polydivide_aux a n p k s = polydivide_aux a n p k (s -\<^sub>p ?p')"
wenzelm@33268
  1409
            by (simp add: Let_def)
krauss@41403
  1410
          {assume h1: "polydivide_aux a n p k s = (k', r)"
berghofe@34915
  1411
            from less(1)[OF deglt nr, of k k' r]
wenzelm@33268
  1412
              trans[OF eq[symmetric] h1]
wenzelm@33268
  1413
            have kk': "k \<le> k'" and nr:"\<exists>nr. isnpolyh r nr" and dr: "degree r = 0 \<or> degree r < degree p"
wenzelm@33268
  1414
              and q1:"\<exists>q nq. isnpolyh q nq \<and> (a ^\<^sub>p k' - k *\<^sub>p (s -\<^sub>p ?p') = p *\<^sub>p q +\<^sub>p r)" by auto
wenzelm@33268
  1415
            from q1 obtain q n1 where nq: "isnpolyh q n1" 
wenzelm@33268
  1416
              and asp:"a^\<^sub>p (k' - k) *\<^sub>p (s -\<^sub>p ?p') = p *\<^sub>p q +\<^sub>p r"  by blast
wenzelm@33268
  1417
            from nr obtain nr where nr': "isnpolyh r nr" by blast
wenzelm@33268
  1418
            from polymul_normh[OF nakk' ns] have nakks': "isnpolyh (a ^\<^sub>p (k' - k) *\<^sub>p s) 0" by simp
wenzelm@33268
  1419
            from polyadd_normh[OF polymul_normh[OF nakk' nxdn] nq]
wenzelm@33268
  1420
            have nq': "isnpolyh (?akk' *\<^sub>p ?xdn +\<^sub>p q) 0" by simp
wenzelm@33268
  1421
            from polyadd_normh[OF polymul_normh[OF np 
wenzelm@33268
  1422
              polyadd_normh[OF polymul_normh[OF nakk' nxdn] nq]] nr']
wenzelm@33268
  1423
            have nqr': "isnpolyh (p *\<^sub>p (?akk' *\<^sub>p ?xdn +\<^sub>p q) +\<^sub>p r) 0" by simp 
haftmann@36409
  1424
            from asp have "\<forall> (bs:: 'a::{field_char_0, field_inverse_zero} list). Ipoly bs (a^\<^sub>p (k' - k) *\<^sub>p (s -\<^sub>p ?p')) = 
wenzelm@33268
  1425
              Ipoly bs (p *\<^sub>p q +\<^sub>p r)" by simp
haftmann@36409
  1426
            hence " \<forall>(bs:: 'a::{field_char_0, field_inverse_zero} list). Ipoly bs (a^\<^sub>p (k' - k)*\<^sub>p s) = 
wenzelm@33268
  1427
              Ipoly bs (a^\<^sub>p (k' - k)) * Ipoly bs ?p' + Ipoly bs p * Ipoly bs q + Ipoly bs r" 
haftmann@36349
  1428
              by (simp add: field_simps)
haftmann@36409
  1429
            hence " \<forall>(bs:: 'a::{field_char_0, field_inverse_zero} list). Ipoly bs (a ^\<^sub>p (k' - k) *\<^sub>p s) = 
wenzelm@50282
  1430
              Ipoly bs (a^\<^sub>p (k' - k)) * Ipoly bs (funpow (degree s - n) shift1 (1)\<^sub>p *\<^sub>p p) 
wenzelm@33268
  1431
              + Ipoly bs p * Ipoly bs q + Ipoly bs r"
wenzelm@33268
  1432
              by (auto simp only: funpow_shift1_1) 
haftmann@36409
  1433
            hence "\<forall>(bs:: 'a::{field_char_0, field_inverse_zero} list). Ipoly bs (a ^\<^sub>p (k' - k) *\<^sub>p s) = 
wenzelm@50282
  1434
              Ipoly bs p * (Ipoly bs (a^\<^sub>p (k' - k)) * Ipoly bs (funpow (degree s - n) shift1 (1)\<^sub>p) 
haftmann@36349
  1435
              + Ipoly bs q) + Ipoly bs r" by (simp add: field_simps)
haftmann@36409
  1436
            hence "\<forall>(bs:: 'a::{field_char_0, field_inverse_zero} list). Ipoly bs (a ^\<^sub>p (k' - k) *\<^sub>p s) = 
wenzelm@50282
  1437
              Ipoly bs (p *\<^sub>p ((a^\<^sub>p (k' - k)) *\<^sub>p (funpow (degree s - n) shift1 (1)\<^sub>p) +\<^sub>p q) +\<^sub>p r)" by simp
wenzelm@33268
  1438
            with isnpolyh_unique[OF nakks' nqr']
wenzelm@33268
  1439
            have "a ^\<^sub>p (k' - k) *\<^sub>p s = 
wenzelm@50282
  1440
              p *\<^sub>p ((a^\<^sub>p (k' - k)) *\<^sub>p (funpow (degree s - n) shift1 (1)\<^sub>p) +\<^sub>p q) +\<^sub>p r" by blast
wenzelm@33268
  1441
            hence ?qths using nq'
wenzelm@50282
  1442
              apply (rule_tac x="(a^\<^sub>p (k' - k)) *\<^sub>p (funpow (degree s - n) shift1 (1)\<^sub>p) +\<^sub>p q" in exI)
wenzelm@33268
  1443
              apply (rule_tac x="0" in exI) by simp
wenzelm@33268
  1444
            with kk' nr dr have "k \<le> k' \<and> (degree r = 0 \<or> degree r < degree p) \<and> (\<exists>nr. isnpolyh r nr) \<and> ?qths"
krauss@41403
  1445
              by blast } hence ?ths by blast }
wenzelm@33268
  1446
        moreover 
wenzelm@33268
  1447
        {assume spz:"s -\<^sub>p ?p' = 0\<^sub>p"
haftmann@36409
  1448
          from spz isnpolyh_unique[OF polysub_normh[OF ns np'], where q="0\<^sub>p", symmetric, where ?'a = "'a::{field_char_0, field_inverse_zero}"]
haftmann@36409
  1449
          have " \<forall>(bs:: 'a::{field_char_0, field_inverse_zero} list). Ipoly bs s = Ipoly bs ?p'" by simp
wenzelm@52658
  1450
          hence "\<forall>(bs:: 'a::{field_char_0, field_inverse_zero} list). Ipoly bs s = Ipoly bs (?xdn *\<^sub>p p)"
wenzelm@52658
  1451
            using np nxdn
wenzelm@52658
  1452
            apply simp
wenzelm@52658
  1453
            apply (simp only: funpow_shift1_1)
wenzelm@52658
  1454
            apply simp
wenzelm@52658
  1455
            done
wenzelm@52658
  1456
          hence sp': "s = ?xdn *\<^sub>p p" using isnpolyh_unique[OF ns polymul_normh[OF nxdn np]]
wenzelm@52658
  1457
            by blast
krauss@41403
  1458
          {assume h1: "polydivide_aux a n p k s = (k',r)"
krauss@41403
  1459
            from polydivide_aux.simps sz dn' ba
krauss@41403
  1460
            have eq: "polydivide_aux a n p k s = polydivide_aux a n p k (s -\<^sub>p ?p')"
wenzelm@33268
  1461
              by (simp add: Let_def)
krauss@41403
  1462
            also have "\<dots> = (k,0\<^sub>p)" using polydivide_aux.simps spz by simp
wenzelm@33268
  1463
            finally have "(k',r) = (k,0\<^sub>p)" using h1 by simp
berghofe@34915
  1464
            with sp'[symmetric] ns np nxdn polyadd_0(1)[OF polymul_normh[OF np nxdn]]
krauss@41403
  1465
              polyadd_0(2)[OF polymul_normh[OF np nxdn]] have ?ths
wenzelm@33268
  1466
              apply auto
wenzelm@33268
  1467
              apply (rule exI[where x="?xdn"])        
berghofe@34915
  1468
              apply (auto simp add: polymul_commute[of p])
krauss@41403
  1469
              done} }
wenzelm@33268
  1470
        ultimately have ?ths by blast }
chaieb@33154
  1471
      moreover
chaieb@33154
  1472
      {assume ba: "?b \<noteq> a"
wenzelm@33268
  1473
        from polysub_normh[OF polymul_normh[OF head_isnpolyh[OF np0, simplified ap] ns] 
wenzelm@33268
  1474
          polymul_normh[OF head_isnpolyh[OF ns] np']]
wenzelm@33268
  1475
        have nth: "isnpolyh ((a *\<^sub>p s) -\<^sub>p (?b *\<^sub>p ?p')) 0" by(simp add: min_def)
wenzelm@33268
  1476
        have nzths: "a *\<^sub>p s \<noteq> 0\<^sub>p" "?b *\<^sub>p ?p' \<noteq> 0\<^sub>p"
wenzelm@33268
  1477
          using polymul_eq0_iff[OF head_isnpolyh[OF np0, simplified ap] ns] 
wenzelm@33268
  1478
            polymul_eq0_iff[OF head_isnpolyh[OF ns] np']head_nz[OF np0] ap pnz sz head_nz[OF ns]
wenzelm@33268
  1479
            funpow_shift1_nz[OF pnz] by simp_all
wenzelm@33268
  1480
        from polymul_head_polyeq[OF head_isnpolyh[OF np] ns] head_nz[OF np] sz ap head_head[OF np] pnz
berghofe@34915
  1481
          polymul_head_polyeq[OF head_isnpolyh[OF ns] np'] head_nz [OF ns] sz funpow_shift1_nz[OF pnz, where n="degree s - n"]
wenzelm@33268
  1482
        have hdth: "head (a *\<^sub>p s) = head (?b *\<^sub>p ?p')" 
wenzelm@33268
  1483
          using head_head[OF ns] funpow_shift1_head[OF np pnz]
wenzelm@33268
  1484
            polymul_commute[OF head_isnpolyh[OF np] head_isnpolyh[OF ns]]
wenzelm@33268
  1485
          by (simp add: ap)
wenzelm@33268
  1486
        from polymul_degreen[OF head_isnpolyh[OF np] ns, where m="0"]
wenzelm@33268
  1487
          head_nz[OF np] pnz sz ap[symmetric]
berghofe@34915
  1488
          funpow_shift1_nz[OF pnz, where n="degree s - n"]
wenzelm@33268
  1489
          polymul_degreen[OF head_isnpolyh[OF ns] np', where m="0"]  head_nz[OF ns]
berghofe@34915
  1490
          ndp dn
wenzelm@33268
  1491
        have degth: "degree (a *\<^sub>p s) = degree (?b *\<^sub>p ?p') "
wenzelm@33268
  1492
          by (simp add: degree_eq_degreen0[symmetric] funpow_shift1_degree)
berghofe@34915
  1493
        {assume dth: "degree ((a *\<^sub>p s) -\<^sub>p (?b *\<^sub>p ?p')) < degree s"
wenzelm@33268
  1494
          from polysub_normh[OF polymul_normh[OF head_isnpolyh[OF np] ns] polymul_normh[OF head_isnpolyh[OF ns]np']]
wenzelm@33268
  1495
          ap have nasbp': "isnpolyh ((a *\<^sub>p s) -\<^sub>p (?b *\<^sub>p ?p')) 0" by simp
krauss@41403
  1496
          {assume h1:"polydivide_aux a n p k s = (k', r)"
krauss@41403
  1497
            from h1 polydivide_aux.simps sz dn' ba
krauss@41403
  1498
            have eq:"polydivide_aux a n p (Suc k) ((a *\<^sub>p s) -\<^sub>p (?b *\<^sub>p ?p')) = (k',r)"
wenzelm@33268
  1499
              by (simp add: Let_def)
berghofe@34915
  1500
            with less(1)[OF dth nasbp', of "Suc k" k' r]
wenzelm@33268
  1501
            obtain q nq nr where kk': "Suc k \<le> k'" and nr: "isnpolyh r nr" and nq: "isnpolyh q nq" 
wenzelm@33268
  1502
              and dr: "degree r = 0 \<or> degree r < degree p"
wenzelm@33268
  1503
              and qr: "a ^\<^sub>p (k' - Suc k) *\<^sub>p ((a *\<^sub>p s) -\<^sub>p (?b *\<^sub>p ?p')) = p *\<^sub>p q +\<^sub>p r" by auto
wenzelm@33268
  1504
            from kk' have kk'':"Suc (k' - Suc k) = k' - k" by arith
haftmann@36409
  1505
            {fix bs:: "'a::{field_char_0, field_inverse_zero} list"
wenzelm@33268
  1506
              
wenzelm@33268
  1507
            from qr isnpolyh_unique[OF polypow_normh[OF head_isnpolyh[OF np], where k="k' - Suc k", simplified ap] nasbp', symmetric]
wenzelm@52658
  1508
            have "Ipoly bs (a ^\<^sub>p (k' - Suc k) *\<^sub>p ((a *\<^sub>p s) -\<^sub>p (?b *\<^sub>p ?p'))) = Ipoly bs (p *\<^sub>p q +\<^sub>p r)"
wenzelm@52658
  1509
              by simp
wenzelm@52658
  1510
            hence "Ipoly bs a ^ (Suc (k' - Suc k)) * Ipoly bs s =
wenzelm@52658
  1511
              Ipoly bs p * Ipoly bs q + Ipoly bs a ^ (k' - Suc k) * Ipoly bs ?b * Ipoly bs ?p' + Ipoly bs r"
wenzelm@52658
  1512
              by (simp add: field_simps)
wenzelm@52658
  1513
            hence "Ipoly bs a ^ (k' - k)  * Ipoly bs s =
wenzelm@52658
  1514
              Ipoly bs p * Ipoly bs q + Ipoly bs a ^ (k' - Suc k) * Ipoly bs ?b * Ipoly bs ?xdn * Ipoly bs p + Ipoly bs r"
wenzelm@52658
  1515
              by (simp add: kk'' funpow_shift1_1[where n="degree s - n" and p="p"])
wenzelm@52658
  1516
            hence "Ipoly bs (a ^\<^sub>p (k' - k) *\<^sub>p s) =
wenzelm@52658
  1517
              Ipoly bs p * (Ipoly bs q + Ipoly bs a ^ (k' - Suc k) * Ipoly bs ?b * Ipoly bs ?xdn) + Ipoly bs r"
haftmann@36349
  1518
              by (simp add: field_simps)}
haftmann@36409
  1519
            hence ieq:"\<forall>(bs :: 'a::{field_char_0, field_inverse_zero} list). Ipoly bs (a ^\<^sub>p (k' - k) *\<^sub>p s) = 
wenzelm@33268
  1520
              Ipoly bs (p *\<^sub>p (q +\<^sub>p (a ^\<^sub>p (k' - Suc k) *\<^sub>p ?b *\<^sub>p ?xdn)) +\<^sub>p r)" by auto 
wenzelm@33268
  1521
            let ?q = "q +\<^sub>p (a ^\<^sub>p (k' - Suc k) *\<^sub>p ?b *\<^sub>p ?xdn)"
wenzelm@33268
  1522
            from polyadd_normh[OF nq polymul_normh[OF polymul_normh[OF polypow_normh[OF head_isnpolyh[OF np], where k="k' - Suc k"] head_isnpolyh[OF ns], simplified ap ] nxdn]]
wenzelm@33268
  1523
            have nqw: "isnpolyh ?q 0" by simp
wenzelm@33268
  1524
            from ieq isnpolyh_unique[OF polymul_normh[OF polypow_normh[OF head_isnpolyh[OF np], where k="k' - k"] ns, simplified ap] polyadd_normh[OF polymul_normh[OF np nqw] nr]]
wenzelm@33268
  1525
            have asth: "(a ^\<^sub>p (k' - k) *\<^sub>p s) = p *\<^sub>p (q +\<^sub>p (a ^\<^sub>p (k' - Suc k) *\<^sub>p ?b *\<^sub>p ?xdn)) +\<^sub>p r" by blast
krauss@41403
  1526
            from dr kk' nr h1 asth nqw have ?ths apply simp
wenzelm@33268
  1527
              apply (rule conjI)
wenzelm@33268
  1528
              apply (rule exI[where x="nr"], simp)
wenzelm@33268
  1529
              apply (rule exI[where x="(q +\<^sub>p (a ^\<^sub>p (k' - Suc k) *\<^sub>p ?b *\<^sub>p ?xdn))"], simp)
wenzelm@33268
  1530
              apply (rule exI[where x="0"], simp)
wenzelm@33268
  1531
              done}
krauss@41403
  1532
          hence ?ths by blast }
wenzelm@33268
  1533
        moreover 
wenzelm@33268
  1534
        {assume spz: "a *\<^sub>p s -\<^sub>p (?b *\<^sub>p ?p') = 0\<^sub>p"
haftmann@36409
  1535
          {fix bs :: "'a::{field_char_0, field_inverse_zero} list"
wenzelm@33268
  1536
            from isnpolyh_unique[OF nth, where ?'a="'a" and q="0\<^sub>p",simplified,symmetric] spz
wenzelm@33268
  1537
          have "Ipoly bs (a*\<^sub>p s) = Ipoly bs ?b * Ipoly bs ?p'" by simp
wenzelm@33268
  1538
          hence "Ipoly bs (a*\<^sub>p s) = Ipoly bs (?b *\<^sub>p ?xdn) * Ipoly bs p" 
berghofe@34915
  1539
            by (simp add: funpow_shift1_1[where n="degree s - n" and p="p"])
wenzelm@33268
  1540
          hence "Ipoly bs (a*\<^sub>p s) = Ipoly bs (p *\<^sub>p (?b *\<^sub>p ?xdn))" by simp
wenzelm@33268
  1541
        }
wenzelm@52658
  1542
        hence hth: "\<forall> (bs:: 'a::{field_char_0, field_inverse_zero} list). Ipoly bs (a*\<^sub>p s) =
wenzelm@52658
  1543
            Ipoly bs (p *\<^sub>p (?b *\<^sub>p ?xdn))" ..
wenzelm@33268
  1544
          from hth
wenzelm@33268
  1545
          have asq: "a *\<^sub>p s = p *\<^sub>p (?b *\<^sub>p ?xdn)" 
haftmann@36409
  1546
            using isnpolyh_unique[where ?'a = "'a::{field_char_0, field_inverse_zero}", OF polymul_normh[OF head_isnpolyh[OF np] ns] 
chaieb@33154
  1547
                    polymul_normh[OF np polymul_normh[OF head_isnpolyh[OF ns] nxdn]],
wenzelm@33268
  1548
              simplified ap] by simp
krauss@41403
  1549
          {assume h1: "polydivide_aux a n p k s = (k', r)"
krauss@41403
  1550
          from h1 sz ba dn' spz polydivide_aux.simps polydivide_aux.simps
wenzelm@33268
  1551
          have "(k',r) = (Suc k, 0\<^sub>p)" by (simp add: Let_def)
wenzelm@33268
  1552
          with h1 np head_isnpolyh[OF np, simplified ap] ns polymul_normh[OF head_isnpolyh[OF ns] nxdn]
wenzelm@33268
  1553
            polymul_normh[OF np polymul_normh[OF head_isnpolyh[OF ns] nxdn]] asq
wenzelm@52658
  1554
          have ?ths
wenzelm@52658
  1555
            apply (clarsimp simp add: Let_def)
wenzelm@52658
  1556
            apply (rule exI[where x="?b *\<^sub>p ?xdn"])
wenzelm@52658
  1557
            apply simp
wenzelm@33268
  1558
            apply (rule exI[where x="0"], simp)
wenzelm@52658
  1559
            done }
wenzelm@52658
  1560
        hence ?ths by blast }
wenzelm@52658
  1561
        ultimately have ?ths
wenzelm@52658
  1562
          using  degree_polysub_samehead[OF polymul_normh[OF head_isnpolyh[OF np0, simplified ap] ns] polymul_normh[OF head_isnpolyh[OF ns] np'] hdth degth] polymul_degreen[OF head_isnpolyh[OF np] ns, where m="0"]
wenzelm@52658
  1563
            head_nz[OF np] pnz sz ap[symmetric]
wenzelm@33268
  1564
          by (simp add: degree_eq_degreen0[symmetric]) blast }
chaieb@33154
  1565
      ultimately have ?ths by blast
chaieb@33154
  1566
    }
wenzelm@52658
  1567
    ultimately have ?ths by blast }
chaieb@33154
  1568
  ultimately show ?ths by blast
chaieb@33154
  1569
qed
chaieb@33154
  1570
chaieb@33154
  1571
lemma polydivide_properties: 
haftmann@36409
  1572
  assumes "SORT_CONSTRAINT('a::{field_char_0, field_inverse_zero})"
chaieb@33154
  1573
  and np: "isnpolyh p n0" and ns: "isnpolyh s n1" and pnz: "p \<noteq> 0\<^sub>p"
chaieb@33154
  1574
  shows "(\<exists> k r. polydivide s p = (k,r) \<and> (\<exists>nr. isnpolyh r nr) \<and> (degree r = 0 \<or> degree r < degree p) 
chaieb@33154
  1575
  \<and> (\<exists>q n1. isnpolyh q n1 \<and> ((polypow k (head p)) *\<^sub>p s = p *\<^sub>p q +\<^sub>p r)))"
chaieb@33154
  1576
proof-
chaieb@33154
  1577
  have trv: "head p = head p" "degree p = degree p" by simp_all
krauss@41403
  1578
  from polydivide_def[where s="s" and p="p"] 
chaieb@33154
  1579
  have ex: "\<exists> k r. polydivide s p = (k,r)" by auto
chaieb@33154
  1580
  then obtain k r where kr: "polydivide s p = (k,r)" by blast
krauss@41403
  1581
  from trans[OF meta_eq_to_obj_eq[OF polydivide_def[where s="s"and p="p"], symmetric] kr]
chaieb@33154
  1582
    polydivide_aux_properties[OF np ns trv pnz, where k="0" and k'="k" and r="r"]
chaieb@33154
  1583
  have "(degree r = 0 \<or> degree r < degree p) \<and>
chaieb@33154
  1584
   (\<exists>nr. isnpolyh r nr) \<and> (\<exists>q n1. isnpolyh q n1 \<and> head p ^\<^sub>p k - 0 *\<^sub>p s = p *\<^sub>p q +\<^sub>p r)" by blast
chaieb@33154
  1585
  with kr show ?thesis 
chaieb@33154
  1586
    apply -
chaieb@33154
  1587
    apply (rule exI[where x="k"])
chaieb@33154
  1588
    apply (rule exI[where x="r"])
chaieb@33154
  1589
    apply simp
chaieb@33154
  1590
    done
chaieb@33154
  1591
qed
chaieb@33154
  1592
wenzelm@52658
  1593
chaieb@33154
  1594
subsection{* More about polypoly and pnormal etc *}
chaieb@33154
  1595
chaieb@33154
  1596
definition "isnonconstant p = (\<not> isconstant p)"
chaieb@33154
  1597
wenzelm@52658
  1598
lemma isnonconstant_pnormal_iff:
wenzelm@52658
  1599
  assumes nc: "isnonconstant p" 
chaieb@33154
  1600
  shows "pnormal (polypoly bs p) \<longleftrightarrow> Ipoly bs (head p) \<noteq> 0" 
chaieb@33154
  1601
proof
chaieb@33154
  1602
  let ?p = "polypoly bs p"  
chaieb@33154
  1603
  assume H: "pnormal ?p"
wenzelm@52658
  1604
  have csz: "coefficients p \<noteq> []" using nc by (cases p) auto
chaieb@33154
  1605
  
chaieb@33154
  1606
  from coefficients_head[of p] last_map[OF csz, of "Ipoly bs"]  
chaieb@33154
  1607
    pnormal_last_nonzero[OF H]
chaieb@33154
  1608
  show "Ipoly bs (head p) \<noteq> 0" by (simp add: polypoly_def)
chaieb@33154
  1609
next
chaieb@33154
  1610
  assume h: "\<lparr>head p\<rparr>\<^sub>p\<^bsup>bs\<^esup> \<noteq> 0"
chaieb@33154
  1611
  let ?p = "polypoly bs p"
wenzelm@52658
  1612
  have csz: "coefficients p \<noteq> []" using nc by (cases p) auto
chaieb@33154
  1613
  hence pz: "?p \<noteq> []" by (simp add: polypoly_def) 
chaieb@33154
  1614
  hence lg: "length ?p > 0" by simp
chaieb@33154
  1615
  from h coefficients_head[of p] last_map[OF csz, of "Ipoly bs"] 
chaieb@33154
  1616
  have lz: "last ?p \<noteq> 0" by (simp add: polypoly_def)
chaieb@33154
  1617
  from pnormal_last_length[OF lg lz] show "pnormal ?p" .
chaieb@33154
  1618
qed
chaieb@33154
  1619
chaieb@33154
  1620
lemma isnonconstant_coefficients_length: "isnonconstant p \<Longrightarrow> length (coefficients p) > 1"
chaieb@33154
  1621
  unfolding isnonconstant_def
wenzelm@52658
  1622
  apply (cases p)
wenzelm@52658
  1623
  apply simp_all
wenzelm@52658
  1624
  apply (case_tac nat)
wenzelm@52658
  1625
  apply auto
chaieb@33154
  1626
  done
wenzelm@52658
  1627
wenzelm@52658
  1628
lemma isnonconstant_nonconstant:
wenzelm@52658
  1629
  assumes inc: "isnonconstant p"
chaieb@33154
  1630
  shows "nonconstant (polypoly bs p) \<longleftrightarrow> Ipoly bs (head p) \<noteq> 0"
chaieb@33154
  1631
proof
chaieb@33154
  1632
  let ?p = "polypoly bs p"
chaieb@33154
  1633
  assume nc: "nonconstant ?p"
chaieb@33154
  1634
  from isnonconstant_pnormal_iff[OF inc, of bs] nc
chaieb@33154
  1635
  show "\<lparr>head p\<rparr>\<^sub>p\<^bsup>bs\<^esup> \<noteq> 0" unfolding nonconstant_def by blast
chaieb@33154
  1636
next
chaieb@33154
  1637
  let ?p = "polypoly bs p"
chaieb@33154
  1638
  assume h: "\<lparr>head p\<rparr>\<^sub>p\<^bsup>bs\<^esup> \<noteq> 0"
chaieb@33154
  1639
  from isnonconstant_pnormal_iff[OF inc, of bs] h
chaieb@33154
  1640
  have pn: "pnormal ?p" by blast
chaieb@33154
  1641
  {fix x assume H: "?p = [x]" 
chaieb@33154
  1642
    from H have "length (coefficients p) = 1" unfolding polypoly_def by auto
chaieb@33154
  1643
    with isnonconstant_coefficients_length[OF inc] have False by arith}
chaieb@33154
  1644
  thus "nonconstant ?p" using pn unfolding nonconstant_def by blast  
chaieb@33154
  1645
qed
chaieb@33154
  1646
chaieb@33154
  1647
lemma pnormal_length: "p\<noteq>[] \<Longrightarrow> pnormal p \<longleftrightarrow> length (pnormalize p) = length p"
wenzelm@52658
  1648
  apply (induct p)
wenzelm@52658
  1649
  apply (simp_all add: pnormal_def)
wenzelm@52658
  1650
  apply (case_tac "p = []")
wenzelm@52658
  1651
  apply simp_all
wenzelm@52658
  1652
  done
chaieb@33154
  1653
wenzelm@52658
  1654
lemma degree_degree:
wenzelm@52658
  1655
  assumes inc: "isnonconstant p"
chaieb@33154
  1656
  shows "degree p = Polynomial_List.degree (polypoly bs p) \<longleftrightarrow> \<lparr>head p\<rparr>\<^sub>p\<^bsup>bs\<^esup> \<noteq> 0"
chaieb@33154
  1657
proof
chaieb@33154
  1658
  let  ?p = "polypoly bs p"
chaieb@33154
  1659
  assume H: "degree p = Polynomial_List.degree ?p"
chaieb@33154
  1660
  from isnonconstant_coefficients_length[OF inc] have pz: "?p \<noteq> []"
chaieb@33154
  1661
    unfolding polypoly_def by auto
chaieb@33154
  1662
  from H degree_coefficients[of p] isnonconstant_coefficients_length[OF inc]
chaieb@33154
  1663
  have lg:"length (pnormalize ?p) = length ?p"
chaieb@33154
  1664
    unfolding Polynomial_List.degree_def polypoly_def by simp
chaieb@33154
  1665
  hence "pnormal ?p" using pnormal_length[OF pz] by blast 
chaieb@33154
  1666
  with isnonconstant_pnormal_iff[OF inc]  
chaieb@33154
  1667
  show "\<lparr>head p\<rparr>\<^sub>p\<^bsup>bs\<^esup> \<noteq> 0" by blast
chaieb@33154
  1668
next
chaieb@33154
  1669
  let  ?p = "polypoly bs p"  
chaieb@33154
  1670
  assume H: "\<lparr>head p\<rparr>\<^sub>p\<^bsup>bs\<^esup> \<noteq> 0"
chaieb@33154
  1671
  with isnonconstant_pnormal_iff[OF inc] have "pnormal ?p" by blast
chaieb@33154
  1672
  with degree_coefficients[of p] isnonconstant_coefficients_length[OF inc]
chaieb@33154
  1673
  show "degree p = Polynomial_List.degree ?p" 
chaieb@33154
  1674
    unfolding polypoly_def pnormal_def Polynomial_List.degree_def by auto
chaieb@33154
  1675
qed
chaieb@33154
  1676
wenzelm@52658
  1677
chaieb@33154
  1678
section{* Swaps ; Division by a certain variable *}
wenzelm@52658
  1679
haftmann@39246
  1680
primrec swap:: "nat \<Rightarrow> nat \<Rightarrow> poly \<Rightarrow> poly" where
chaieb@33154
  1681
  "swap n m (C x) = C x"
haftmann@39246
  1682
| "swap n m (Bound k) = Bound (if k = n then m else if k=m then n else k)"
haftmann@39246
  1683
| "swap n m (Neg t) = Neg (swap n m t)"
haftmann@39246
  1684
| "swap n m (Add s t) = Add (swap n m s) (swap n m t)"
haftmann@39246
  1685
| "swap n m (Sub s t) = Sub (swap n m s) (swap n m t)"
haftmann@39246
  1686
| "swap n m (Mul s t) = Mul (swap n m s) (swap n m t)"
haftmann@39246
  1687
| "swap n m (Pw t k) = Pw (swap n m t) k"
haftmann@39246
  1688
| "swap n m (CN c k p) = CN (swap n m c) (if k = n then m else if k=m then n else k)
chaieb@33154
  1689
  (swap n m p)"
chaieb@33154
  1690
wenzelm@52658
  1691
lemma swap:
wenzelm@52658
  1692
  assumes nbs: "n < length bs"
wenzelm@52658
  1693
    and mbs: "m < length bs"
chaieb@33154
  1694
  shows "Ipoly bs (swap n m t) = Ipoly ((bs[n:= bs!m])[m:= bs!n]) t"
chaieb@33154
  1695
proof (induct t)
wenzelm@52658
  1696
  case (Bound k)
wenzelm@52658
  1697
  thus ?case using nbs mbs by simp 
chaieb@33154
  1698
next
wenzelm@52658
  1699
  case (CN c k p)
wenzelm@52658
  1700
  thus ?case using nbs mbs by simp 
chaieb@33154
  1701
qed simp_all
chaieb@33154
  1702
wenzelm@52658
  1703
lemma swap_swap_id [simp]: "swap n m (swap m n t) = t"
wenzelm@52658
  1704
  by (induct t) simp_all
wenzelm@52658
  1705
wenzelm@52658
  1706
lemma swap_commute: "swap n m p = swap m n p"
wenzelm@52658
  1707
  by (induct p) simp_all
chaieb@33154
  1708
chaieb@33154
  1709
lemma swap_same_id[simp]: "swap n n t = t"
wenzelm@52658
  1710
  by (induct t) simp_all
chaieb@33154
  1711
chaieb@33154
  1712
definition "swapnorm n m t = polynate (swap n m t)"
chaieb@33154
  1713
wenzelm@52658
  1714
lemma swapnorm:
wenzelm@52658
  1715
  assumes nbs: "n < length bs"
wenzelm@52658
  1716
    and mbs: "m < length bs"
wenzelm@52658
  1717
  shows "((Ipoly bs (swapnorm n m t) :: 'a\<Colon>{field_char_0, field_inverse_zero})) =
wenzelm@52658
  1718
    Ipoly ((bs[n:= bs!m])[m:= bs!n]) t"
wenzelm@41807
  1719
  using swap[OF assms] swapnorm_def by simp
chaieb@33154
  1720
wenzelm@52658
  1721
lemma swapnorm_isnpoly [simp]:
wenzelm@52658
  1722
  assumes "SORT_CONSTRAINT('a::{field_char_0, field_inverse_zero})"
chaieb@33154
  1723
  shows "isnpoly (swapnorm n m p)"
chaieb@33154
  1724
  unfolding swapnorm_def by simp
chaieb@33154
  1725
chaieb@33154
  1726
definition "polydivideby n s p = 
wenzelm@52658
  1727
  (let ss = swapnorm 0 n s ; sp = swapnorm 0 n p ; h = head sp; (k,r) = polydivide ss sp
wenzelm@52658
  1728
   in (k,swapnorm 0 n h,swapnorm 0 n r))"
chaieb@33154
  1729
wenzelm@52658
  1730
lemma swap_nz [simp]: " (swap n m p = 0\<^sub>p) = (p = 0\<^sub>p)"
wenzelm@52658
  1731
  by (induct p) simp_all
chaieb@33154
  1732
krauss@41808
  1733
fun isweaknpoly :: "poly \<Rightarrow> bool"
krauss@41808
  1734
where
chaieb@33154
  1735
  "isweaknpoly (C c) = True"
krauss@41808
  1736
| "isweaknpoly (CN c n p) \<longleftrightarrow> isweaknpoly c \<and> isweaknpoly p"
krauss@41808
  1737
| "isweaknpoly p = False"
chaieb@33154
  1738
chaieb@33154
  1739
lemma isnpolyh_isweaknpoly: "isnpolyh p n0 \<Longrightarrow> isweaknpoly p" 
wenzelm@52658
  1740
  by (induct p arbitrary: n0) auto
chaieb@33154
  1741
chaieb@33154
  1742
lemma swap_isweanpoly: "isweaknpoly p \<Longrightarrow> isweaknpoly (swap n m p)" 
wenzelm@52658
  1743
  by (induct p) auto
chaieb@33154
  1744
chaieb@33154
  1745
end