src/HOL/Int.thy
author haftmann
Thu Oct 09 08:47:27 2008 +0200 (2008-10-09)
changeset 28537 1e84256d1a8a
parent 28514 da83a614c454
child 28562 4e74209f113e
permissions -rw-r--r--
established canonical argument order in SML code generators
haftmann@25919
     1
(*  Title:      Int.thy
haftmann@25919
     2
    ID:         $Id$
haftmann@25919
     3
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
haftmann@25919
     4
                Tobias Nipkow, Florian Haftmann, TU Muenchen
haftmann@25919
     5
    Copyright   1994  University of Cambridge
haftmann@25919
     6
haftmann@25919
     7
*)
haftmann@25919
     8
haftmann@25919
     9
header {* The Integers as Equivalence Classes over Pairs of Natural Numbers *} 
haftmann@25919
    10
haftmann@25919
    11
theory Int
krauss@26748
    12
imports Equiv_Relations Nat Wellfounded
haftmann@25919
    13
uses
haftmann@25919
    14
  ("Tools/numeral.ML")
haftmann@25919
    15
  ("Tools/numeral_syntax.ML")
haftmann@25919
    16
  ("~~/src/Provers/Arith/assoc_fold.ML")
haftmann@25919
    17
  "~~/src/Provers/Arith/cancel_numerals.ML"
haftmann@25919
    18
  "~~/src/Provers/Arith/combine_numerals.ML"
haftmann@25919
    19
  ("int_arith1.ML")
haftmann@25919
    20
begin
haftmann@25919
    21
haftmann@25919
    22
subsection {* The equivalence relation underlying the integers *}
haftmann@25919
    23
haftmann@25919
    24
definition
haftmann@25919
    25
  intrel :: "((nat \<times> nat) \<times> (nat \<times> nat)) set"
haftmann@25919
    26
where
haftmann@27106
    27
  [code func del]: "intrel = {((x, y), (u, v)) | x y u v. x + v = u +y }"
haftmann@25919
    28
haftmann@25919
    29
typedef (Integ)
haftmann@25919
    30
  int = "UNIV//intrel"
haftmann@25919
    31
  by (auto simp add: quotient_def)
haftmann@25919
    32
haftmann@25919
    33
instantiation int :: "{zero, one, plus, minus, uminus, times, ord, abs, sgn}"
haftmann@25919
    34
begin
haftmann@25919
    35
haftmann@25919
    36
definition
haftmann@25919
    37
  Zero_int_def [code func del]: "0 = Abs_Integ (intrel `` {(0, 0)})"
haftmann@25919
    38
haftmann@25919
    39
definition
haftmann@25919
    40
  One_int_def [code func del]: "1 = Abs_Integ (intrel `` {(1, 0)})"
haftmann@25919
    41
haftmann@25919
    42
definition
haftmann@25919
    43
  add_int_def [code func del]: "z + w = Abs_Integ
haftmann@25919
    44
    (\<Union>(x, y) \<in> Rep_Integ z. \<Union>(u, v) \<in> Rep_Integ w.
haftmann@25919
    45
      intrel `` {(x + u, y + v)})"
haftmann@25919
    46
haftmann@25919
    47
definition
haftmann@25919
    48
  minus_int_def [code func del]:
haftmann@25919
    49
    "- z = Abs_Integ (\<Union>(x, y) \<in> Rep_Integ z. intrel `` {(y, x)})"
haftmann@25919
    50
haftmann@25919
    51
definition
haftmann@25919
    52
  diff_int_def [code func del]:  "z - w = z + (-w \<Colon> int)"
haftmann@25919
    53
haftmann@25919
    54
definition
haftmann@25919
    55
  mult_int_def [code func del]: "z * w = Abs_Integ
haftmann@25919
    56
    (\<Union>(x, y) \<in> Rep_Integ z. \<Union>(u,v ) \<in> Rep_Integ w.
haftmann@25919
    57
      intrel `` {(x*u + y*v, x*v + y*u)})"
haftmann@25919
    58
haftmann@25919
    59
definition
haftmann@25919
    60
  le_int_def [code func del]:
haftmann@25919
    61
   "z \<le> w \<longleftrightarrow> (\<exists>x y u v. x+v \<le> u+y \<and> (x, y) \<in> Rep_Integ z \<and> (u, v) \<in> Rep_Integ w)"
haftmann@25919
    62
haftmann@25919
    63
definition
haftmann@25919
    64
  less_int_def [code func del]: "(z\<Colon>int) < w \<longleftrightarrow> z \<le> w \<and> z \<noteq> w"
haftmann@25919
    65
haftmann@25919
    66
definition
haftmann@25919
    67
  zabs_def: "\<bar>i\<Colon>int\<bar> = (if i < 0 then - i else i)"
haftmann@25919
    68
haftmann@25919
    69
definition
haftmann@25919
    70
  zsgn_def: "sgn (i\<Colon>int) = (if i=0 then 0 else if 0<i then 1 else - 1)"
haftmann@25919
    71
haftmann@25919
    72
instance ..
haftmann@25919
    73
haftmann@25919
    74
end
haftmann@25919
    75
haftmann@25919
    76
haftmann@25919
    77
subsection{*Construction of the Integers*}
haftmann@25919
    78
haftmann@25919
    79
lemma intrel_iff [simp]: "(((x,y),(u,v)) \<in> intrel) = (x+v = u+y)"
haftmann@25919
    80
by (simp add: intrel_def)
haftmann@25919
    81
haftmann@25919
    82
lemma equiv_intrel: "equiv UNIV intrel"
haftmann@25919
    83
by (simp add: intrel_def equiv_def refl_def sym_def trans_def)
haftmann@25919
    84
haftmann@25919
    85
text{*Reduces equality of equivalence classes to the @{term intrel} relation:
haftmann@25919
    86
  @{term "(intrel `` {x} = intrel `` {y}) = ((x,y) \<in> intrel)"} *}
haftmann@25919
    87
lemmas equiv_intrel_iff [simp] = eq_equiv_class_iff [OF equiv_intrel UNIV_I UNIV_I]
haftmann@25919
    88
haftmann@25919
    89
text{*All equivalence classes belong to set of representatives*}
haftmann@25919
    90
lemma [simp]: "intrel``{(x,y)} \<in> Integ"
haftmann@25919
    91
by (auto simp add: Integ_def intrel_def quotient_def)
haftmann@25919
    92
haftmann@25919
    93
text{*Reduces equality on abstractions to equality on representatives:
haftmann@25919
    94
  @{prop "\<lbrakk>x \<in> Integ; y \<in> Integ\<rbrakk> \<Longrightarrow> (Abs_Integ x = Abs_Integ y) = (x=y)"} *}
haftmann@25919
    95
declare Abs_Integ_inject [simp,noatp]  Abs_Integ_inverse [simp,noatp]
haftmann@25919
    96
haftmann@25919
    97
text{*Case analysis on the representation of an integer as an equivalence
haftmann@25919
    98
      class of pairs of naturals.*}
haftmann@25919
    99
lemma eq_Abs_Integ [case_names Abs_Integ, cases type: int]:
haftmann@25919
   100
     "(!!x y. z = Abs_Integ(intrel``{(x,y)}) ==> P) ==> P"
haftmann@25919
   101
apply (rule Abs_Integ_cases [of z]) 
haftmann@25919
   102
apply (auto simp add: Integ_def quotient_def) 
haftmann@25919
   103
done
haftmann@25919
   104
haftmann@25919
   105
haftmann@25919
   106
subsection {* Arithmetic Operations *}
haftmann@25919
   107
haftmann@25919
   108
lemma minus: "- Abs_Integ(intrel``{(x,y)}) = Abs_Integ(intrel `` {(y,x)})"
haftmann@25919
   109
proof -
haftmann@25919
   110
  have "(\<lambda>(x,y). intrel``{(y,x)}) respects intrel"
haftmann@25919
   111
    by (simp add: congruent_def) 
haftmann@25919
   112
  thus ?thesis
haftmann@25919
   113
    by (simp add: minus_int_def UN_equiv_class [OF equiv_intrel])
haftmann@25919
   114
qed
haftmann@25919
   115
haftmann@25919
   116
lemma add:
haftmann@25919
   117
     "Abs_Integ (intrel``{(x,y)}) + Abs_Integ (intrel``{(u,v)}) =
haftmann@25919
   118
      Abs_Integ (intrel``{(x+u, y+v)})"
haftmann@25919
   119
proof -
haftmann@25919
   120
  have "(\<lambda>z w. (\<lambda>(x,y). (\<lambda>(u,v). intrel `` {(x+u, y+v)}) w) z) 
haftmann@25919
   121
        respects2 intrel"
haftmann@25919
   122
    by (simp add: congruent2_def)
haftmann@25919
   123
  thus ?thesis
haftmann@25919
   124
    by (simp add: add_int_def UN_UN_split_split_eq
haftmann@25919
   125
                  UN_equiv_class2 [OF equiv_intrel equiv_intrel])
haftmann@25919
   126
qed
haftmann@25919
   127
haftmann@25919
   128
text{*Congruence property for multiplication*}
haftmann@25919
   129
lemma mult_congruent2:
haftmann@25919
   130
     "(%p1 p2. (%(x,y). (%(u,v). intrel``{(x*u + y*v, x*v + y*u)}) p2) p1)
haftmann@25919
   131
      respects2 intrel"
haftmann@25919
   132
apply (rule equiv_intrel [THEN congruent2_commuteI])
haftmann@25919
   133
 apply (force simp add: mult_ac, clarify) 
haftmann@25919
   134
apply (simp add: congruent_def mult_ac)  
haftmann@25919
   135
apply (rename_tac u v w x y z)
haftmann@25919
   136
apply (subgoal_tac "u*y + x*y = w*y + v*y  &  u*z + x*z = w*z + v*z")
haftmann@25919
   137
apply (simp add: mult_ac)
haftmann@25919
   138
apply (simp add: add_mult_distrib [symmetric])
haftmann@25919
   139
done
haftmann@25919
   140
haftmann@25919
   141
lemma mult:
haftmann@25919
   142
     "Abs_Integ((intrel``{(x,y)})) * Abs_Integ((intrel``{(u,v)})) =
haftmann@25919
   143
      Abs_Integ(intrel `` {(x*u + y*v, x*v + y*u)})"
haftmann@25919
   144
by (simp add: mult_int_def UN_UN_split_split_eq mult_congruent2
haftmann@25919
   145
              UN_equiv_class2 [OF equiv_intrel equiv_intrel])
haftmann@25919
   146
haftmann@25919
   147
text{*The integers form a @{text comm_ring_1}*}
haftmann@25919
   148
instance int :: comm_ring_1
haftmann@25919
   149
proof
haftmann@25919
   150
  fix i j k :: int
haftmann@25919
   151
  show "(i + j) + k = i + (j + k)"
haftmann@25919
   152
    by (cases i, cases j, cases k) (simp add: add add_assoc)
haftmann@25919
   153
  show "i + j = j + i" 
haftmann@25919
   154
    by (cases i, cases j) (simp add: add_ac add)
haftmann@25919
   155
  show "0 + i = i"
haftmann@25919
   156
    by (cases i) (simp add: Zero_int_def add)
haftmann@25919
   157
  show "- i + i = 0"
haftmann@25919
   158
    by (cases i) (simp add: Zero_int_def minus add)
haftmann@25919
   159
  show "i - j = i + - j"
haftmann@25919
   160
    by (simp add: diff_int_def)
haftmann@25919
   161
  show "(i * j) * k = i * (j * k)"
haftmann@25919
   162
    by (cases i, cases j, cases k) (simp add: mult ring_simps)
haftmann@25919
   163
  show "i * j = j * i"
haftmann@25919
   164
    by (cases i, cases j) (simp add: mult ring_simps)
haftmann@25919
   165
  show "1 * i = i"
haftmann@25919
   166
    by (cases i) (simp add: One_int_def mult)
haftmann@25919
   167
  show "(i + j) * k = i * k + j * k"
haftmann@25919
   168
    by (cases i, cases j, cases k) (simp add: add mult ring_simps)
haftmann@25919
   169
  show "0 \<noteq> (1::int)"
haftmann@25919
   170
    by (simp add: Zero_int_def One_int_def)
haftmann@25919
   171
qed
haftmann@25919
   172
haftmann@25919
   173
lemma int_def: "of_nat m = Abs_Integ (intrel `` {(m, 0)})"
haftmann@25919
   174
by (induct m, simp_all add: Zero_int_def One_int_def add)
haftmann@25919
   175
haftmann@25919
   176
haftmann@25919
   177
subsection {* The @{text "\<le>"} Ordering *}
haftmann@25919
   178
haftmann@25919
   179
lemma le:
haftmann@25919
   180
  "(Abs_Integ(intrel``{(x,y)}) \<le> Abs_Integ(intrel``{(u,v)})) = (x+v \<le> u+y)"
haftmann@25919
   181
by (force simp add: le_int_def)
haftmann@25919
   182
haftmann@25919
   183
lemma less:
haftmann@25919
   184
  "(Abs_Integ(intrel``{(x,y)}) < Abs_Integ(intrel``{(u,v)})) = (x+v < u+y)"
haftmann@25919
   185
by (simp add: less_int_def le order_less_le)
haftmann@25919
   186
haftmann@25919
   187
instance int :: linorder
haftmann@25919
   188
proof
haftmann@25919
   189
  fix i j k :: int
haftmann@27682
   190
  show antisym: "i \<le> j \<Longrightarrow> j \<le> i \<Longrightarrow> i = j"
haftmann@27682
   191
    by (cases i, cases j) (simp add: le)
haftmann@27682
   192
  show "(i < j) = (i \<le> j \<and> \<not> j \<le> i)"
haftmann@27682
   193
    by (auto simp add: less_int_def dest: antisym) 
haftmann@25919
   194
  show "i \<le> i"
haftmann@25919
   195
    by (cases i) (simp add: le)
haftmann@25919
   196
  show "i \<le> j \<Longrightarrow> j \<le> k \<Longrightarrow> i \<le> k"
haftmann@25919
   197
    by (cases i, cases j, cases k) (simp add: le)
haftmann@25919
   198
  show "i \<le> j \<or> j \<le> i"
haftmann@25919
   199
    by (cases i, cases j) (simp add: le linorder_linear)
haftmann@25919
   200
qed
haftmann@25919
   201
haftmann@25919
   202
instantiation int :: distrib_lattice
haftmann@25919
   203
begin
haftmann@25919
   204
haftmann@25919
   205
definition
haftmann@25919
   206
  "(inf \<Colon> int \<Rightarrow> int \<Rightarrow> int) = min"
haftmann@25919
   207
haftmann@25919
   208
definition
haftmann@25919
   209
  "(sup \<Colon> int \<Rightarrow> int \<Rightarrow> int) = max"
haftmann@25919
   210
haftmann@25919
   211
instance
haftmann@25919
   212
  by intro_classes
haftmann@25919
   213
    (auto simp add: inf_int_def sup_int_def min_max.sup_inf_distrib1)
haftmann@25919
   214
haftmann@25919
   215
end
haftmann@25919
   216
haftmann@25919
   217
instance int :: pordered_cancel_ab_semigroup_add
haftmann@25919
   218
proof
haftmann@25919
   219
  fix i j k :: int
haftmann@25919
   220
  show "i \<le> j \<Longrightarrow> k + i \<le> k + j"
haftmann@25919
   221
    by (cases i, cases j, cases k) (simp add: le add)
haftmann@25919
   222
qed
haftmann@25919
   223
haftmann@25961
   224
haftmann@25919
   225
text{*Strict Monotonicity of Multiplication*}
haftmann@25919
   226
haftmann@25919
   227
text{*strict, in 1st argument; proof is by induction on k>0*}
haftmann@25919
   228
lemma zmult_zless_mono2_lemma:
haftmann@25919
   229
     "(i::int)<j ==> 0<k ==> of_nat k * i < of_nat k * j"
haftmann@25919
   230
apply (induct "k", simp)
haftmann@25919
   231
apply (simp add: left_distrib)
haftmann@25919
   232
apply (case_tac "k=0")
haftmann@25919
   233
apply (simp_all add: add_strict_mono)
haftmann@25919
   234
done
haftmann@25919
   235
haftmann@25919
   236
lemma zero_le_imp_eq_int: "(0::int) \<le> k ==> \<exists>n. k = of_nat n"
haftmann@25919
   237
apply (cases k)
haftmann@25919
   238
apply (auto simp add: le add int_def Zero_int_def)
haftmann@25919
   239
apply (rule_tac x="x-y" in exI, simp)
haftmann@25919
   240
done
haftmann@25919
   241
haftmann@25919
   242
lemma zero_less_imp_eq_int: "(0::int) < k ==> \<exists>n>0. k = of_nat n"
haftmann@25919
   243
apply (cases k)
haftmann@25919
   244
apply (simp add: less int_def Zero_int_def)
haftmann@25919
   245
apply (rule_tac x="x-y" in exI, simp)
haftmann@25919
   246
done
haftmann@25919
   247
haftmann@25919
   248
lemma zmult_zless_mono2: "[| i<j;  (0::int) < k |] ==> k*i < k*j"
haftmann@25919
   249
apply (drule zero_less_imp_eq_int)
haftmann@25919
   250
apply (auto simp add: zmult_zless_mono2_lemma)
haftmann@25919
   251
done
haftmann@25919
   252
haftmann@25919
   253
text{*The integers form an ordered integral domain*}
haftmann@25919
   254
instance int :: ordered_idom
haftmann@25919
   255
proof
haftmann@25919
   256
  fix i j k :: int
haftmann@25919
   257
  show "i < j \<Longrightarrow> 0 < k \<Longrightarrow> k * i < k * j"
haftmann@25919
   258
    by (rule zmult_zless_mono2)
haftmann@25919
   259
  show "\<bar>i\<bar> = (if i < 0 then -i else i)"
haftmann@25919
   260
    by (simp only: zabs_def)
haftmann@25919
   261
  show "sgn (i\<Colon>int) = (if i=0 then 0 else if 0<i then 1 else - 1)"
haftmann@25919
   262
    by (simp only: zsgn_def)
haftmann@25919
   263
qed
haftmann@25919
   264
haftmann@25961
   265
instance int :: lordered_ring
haftmann@25961
   266
proof  
haftmann@25961
   267
  fix k :: int
haftmann@25961
   268
  show "abs k = sup k (- k)"
haftmann@25961
   269
    by (auto simp add: sup_int_def zabs_def max_def less_minus_self_iff [symmetric])
haftmann@25961
   270
qed
haftmann@25961
   271
haftmann@25919
   272
lemma zless_imp_add1_zle: "w < z \<Longrightarrow> w + (1\<Colon>int) \<le> z"
haftmann@25919
   273
apply (cases w, cases z) 
haftmann@25919
   274
apply (simp add: less le add One_int_def)
haftmann@25919
   275
done
haftmann@25919
   276
haftmann@25919
   277
lemma zless_iff_Suc_zadd:
haftmann@25919
   278
  "(w \<Colon> int) < z \<longleftrightarrow> (\<exists>n. z = w + of_nat (Suc n))"
haftmann@25919
   279
apply (cases z, cases w)
haftmann@25919
   280
apply (auto simp add: less add int_def)
haftmann@25919
   281
apply (rename_tac a b c d) 
haftmann@25919
   282
apply (rule_tac x="a+d - Suc(c+b)" in exI) 
haftmann@25919
   283
apply arith
haftmann@25919
   284
done
haftmann@25919
   285
haftmann@25919
   286
lemmas int_distrib =
haftmann@25919
   287
  left_distrib [of "z1::int" "z2" "w", standard]
haftmann@25919
   288
  right_distrib [of "w::int" "z1" "z2", standard]
haftmann@25919
   289
  left_diff_distrib [of "z1::int" "z2" "w", standard]
haftmann@25919
   290
  right_diff_distrib [of "w::int" "z1" "z2", standard]
haftmann@25919
   291
haftmann@25919
   292
haftmann@25919
   293
subsection {* Embedding of the Integers into any @{text ring_1}: @{text of_int}*}
haftmann@25919
   294
haftmann@25919
   295
context ring_1
haftmann@25919
   296
begin
haftmann@25919
   297
haftmann@25919
   298
definition
haftmann@25919
   299
  of_int :: "int \<Rightarrow> 'a"
haftmann@25919
   300
where
haftmann@25919
   301
  [code func del]: "of_int z = contents (\<Union>(i, j) \<in> Rep_Integ z. { of_nat i - of_nat j })"
haftmann@25919
   302
haftmann@25919
   303
lemma of_int: "of_int (Abs_Integ (intrel `` {(i,j)})) = of_nat i - of_nat j"
haftmann@25919
   304
proof -
haftmann@25919
   305
  have "(\<lambda>(i,j). { of_nat i - (of_nat j :: 'a) }) respects intrel"
haftmann@25919
   306
    by (simp add: congruent_def compare_rls of_nat_add [symmetric]
haftmann@25919
   307
            del: of_nat_add) 
haftmann@25919
   308
  thus ?thesis
haftmann@25919
   309
    by (simp add: of_int_def UN_equiv_class [OF equiv_intrel])
haftmann@25919
   310
qed
haftmann@25919
   311
haftmann@25919
   312
lemma of_int_0 [simp]: "of_int 0 = 0"
haftmann@25919
   313
  by (simp add: of_int Zero_int_def)
haftmann@25919
   314
haftmann@25919
   315
lemma of_int_1 [simp]: "of_int 1 = 1"
haftmann@25919
   316
  by (simp add: of_int One_int_def)
haftmann@25919
   317
haftmann@25919
   318
lemma of_int_add [simp]: "of_int (w+z) = of_int w + of_int z"
haftmann@25919
   319
  by (cases w, cases z, simp add: compare_rls of_int OrderedGroup.compare_rls add)
haftmann@25919
   320
haftmann@25919
   321
lemma of_int_minus [simp]: "of_int (-z) = - (of_int z)"
haftmann@25919
   322
  by (cases z, simp add: compare_rls of_int minus)
haftmann@25919
   323
haftmann@25919
   324
lemma of_int_diff [simp]: "of_int (w - z) = of_int w - of_int z"
haftmann@25919
   325
  by (simp add: OrderedGroup.diff_minus diff_minus)
haftmann@25919
   326
haftmann@25919
   327
lemma of_int_mult [simp]: "of_int (w*z) = of_int w * of_int z"
haftmann@25919
   328
apply (cases w, cases z)
haftmann@25919
   329
apply (simp add: compare_rls of_int left_diff_distrib right_diff_distrib
haftmann@25919
   330
                 mult add_ac of_nat_mult)
haftmann@25919
   331
done
haftmann@25919
   332
haftmann@25919
   333
text{*Collapse nested embeddings*}
haftmann@25919
   334
lemma of_int_of_nat_eq [simp]: "of_int (of_nat n) = of_nat n"
haftmann@25919
   335
  by (induct n) auto
haftmann@25919
   336
haftmann@25919
   337
end
haftmann@25919
   338
haftmann@25919
   339
context ordered_idom
haftmann@25919
   340
begin
haftmann@25919
   341
haftmann@25919
   342
lemma of_int_le_iff [simp]:
haftmann@25919
   343
  "of_int w \<le> of_int z \<longleftrightarrow> w \<le> z"
haftmann@25919
   344
  by (cases w, cases z, simp add: of_int le minus compare_rls of_nat_add [symmetric] del: of_nat_add)
haftmann@25919
   345
haftmann@25919
   346
text{*Special cases where either operand is zero*}
haftmann@25919
   347
lemmas of_int_0_le_iff [simp] = of_int_le_iff [of 0, simplified]
haftmann@25919
   348
lemmas of_int_le_0_iff [simp] = of_int_le_iff [of _ 0, simplified]
haftmann@25919
   349
haftmann@25919
   350
lemma of_int_less_iff [simp]:
haftmann@25919
   351
  "of_int w < of_int z \<longleftrightarrow> w < z"
haftmann@25919
   352
  by (simp add: not_le [symmetric] linorder_not_le [symmetric])
haftmann@25919
   353
haftmann@25919
   354
text{*Special cases where either operand is zero*}
haftmann@25919
   355
lemmas of_int_0_less_iff [simp] = of_int_less_iff [of 0, simplified]
haftmann@25919
   356
lemmas of_int_less_0_iff [simp] = of_int_less_iff [of _ 0, simplified]
haftmann@25919
   357
haftmann@25919
   358
end
haftmann@25919
   359
haftmann@25919
   360
text{*Class for unital rings with characteristic zero.
haftmann@25919
   361
 Includes non-ordered rings like the complex numbers.*}
haftmann@25919
   362
class ring_char_0 = ring_1 + semiring_char_0
haftmann@25919
   363
begin
haftmann@25919
   364
haftmann@25919
   365
lemma of_int_eq_iff [simp]:
haftmann@25919
   366
   "of_int w = of_int z \<longleftrightarrow> w = z"
haftmann@25919
   367
apply (cases w, cases z, simp add: of_int)
haftmann@25919
   368
apply (simp only: diff_eq_eq diff_add_eq eq_diff_eq)
haftmann@25919
   369
apply (simp only: of_nat_add [symmetric] of_nat_eq_iff)
haftmann@25919
   370
done
haftmann@25919
   371
haftmann@25919
   372
text{*Special cases where either operand is zero*}
haftmann@25919
   373
lemmas of_int_0_eq_iff [simp] = of_int_eq_iff [of 0, simplified]
haftmann@25919
   374
lemmas of_int_eq_0_iff [simp] = of_int_eq_iff [of _ 0, simplified]
haftmann@25919
   375
haftmann@25919
   376
end
haftmann@25919
   377
haftmann@25919
   378
text{*Every @{text ordered_idom} has characteristic zero.*}
haftmann@25919
   379
subclass (in ordered_idom) ring_char_0 by intro_locales
haftmann@25919
   380
haftmann@25919
   381
lemma of_int_eq_id [simp]: "of_int = id"
haftmann@25919
   382
proof
haftmann@25919
   383
  fix z show "of_int z = id z"
haftmann@25919
   384
    by (cases z) (simp add: of_int add minus int_def diff_minus)
haftmann@25919
   385
qed
haftmann@25919
   386
haftmann@25919
   387
haftmann@25919
   388
subsection {* Magnitude of an Integer, as a Natural Number: @{text nat} *}
haftmann@25919
   389
haftmann@25919
   390
definition
haftmann@25919
   391
  nat :: "int \<Rightarrow> nat"
haftmann@25919
   392
where
haftmann@25919
   393
  [code func del]: "nat z = contents (\<Union>(x, y) \<in> Rep_Integ z. {x-y})"
haftmann@25919
   394
haftmann@25919
   395
lemma nat: "nat (Abs_Integ (intrel``{(x,y)})) = x-y"
haftmann@25919
   396
proof -
haftmann@25919
   397
  have "(\<lambda>(x,y). {x-y}) respects intrel"
haftmann@25919
   398
    by (simp add: congruent_def) arith
haftmann@25919
   399
  thus ?thesis
haftmann@25919
   400
    by (simp add: nat_def UN_equiv_class [OF equiv_intrel])
haftmann@25919
   401
qed
haftmann@25919
   402
haftmann@25919
   403
lemma nat_int [simp]: "nat (of_nat n) = n"
haftmann@25919
   404
by (simp add: nat int_def)
haftmann@25919
   405
haftmann@25919
   406
lemma nat_zero [simp]: "nat 0 = 0"
haftmann@25919
   407
by (simp add: Zero_int_def nat)
haftmann@25919
   408
haftmann@25919
   409
lemma int_nat_eq [simp]: "of_nat (nat z) = (if 0 \<le> z then z else 0)"
haftmann@25919
   410
by (cases z, simp add: nat le int_def Zero_int_def)
haftmann@25919
   411
haftmann@25919
   412
corollary nat_0_le: "0 \<le> z ==> of_nat (nat z) = z"
haftmann@25919
   413
by simp
haftmann@25919
   414
haftmann@25919
   415
lemma nat_le_0 [simp]: "z \<le> 0 ==> nat z = 0"
haftmann@25919
   416
by (cases z, simp add: nat le Zero_int_def)
haftmann@25919
   417
haftmann@25919
   418
lemma nat_le_eq_zle: "0 < w | 0 \<le> z ==> (nat w \<le> nat z) = (w\<le>z)"
haftmann@25919
   419
apply (cases w, cases z) 
haftmann@25919
   420
apply (simp add: nat le linorder_not_le [symmetric] Zero_int_def, arith)
haftmann@25919
   421
done
haftmann@25919
   422
haftmann@25919
   423
text{*An alternative condition is @{term "0 \<le> w"} *}
haftmann@25919
   424
corollary nat_mono_iff: "0 < z ==> (nat w < nat z) = (w < z)"
haftmann@25919
   425
by (simp add: nat_le_eq_zle linorder_not_le [symmetric]) 
haftmann@25919
   426
haftmann@25919
   427
corollary nat_less_eq_zless: "0 \<le> w ==> (nat w < nat z) = (w<z)"
haftmann@25919
   428
by (simp add: nat_le_eq_zle linorder_not_le [symmetric]) 
haftmann@25919
   429
haftmann@25919
   430
lemma zless_nat_conj [simp]: "(nat w < nat z) = (0 < z & w < z)"
haftmann@25919
   431
apply (cases w, cases z) 
haftmann@25919
   432
apply (simp add: nat le Zero_int_def linorder_not_le [symmetric], arith)
haftmann@25919
   433
done
haftmann@25919
   434
haftmann@25919
   435
lemma nonneg_eq_int:
haftmann@25919
   436
  fixes z :: int
haftmann@25919
   437
  assumes "0 \<le> z" and "\<And>m. z = of_nat m \<Longrightarrow> P"
haftmann@25919
   438
  shows P
haftmann@25919
   439
  using assms by (blast dest: nat_0_le sym)
haftmann@25919
   440
haftmann@25919
   441
lemma nat_eq_iff: "(nat w = m) = (if 0 \<le> w then w = of_nat m else m=0)"
haftmann@25919
   442
by (cases w, simp add: nat le int_def Zero_int_def, arith)
haftmann@25919
   443
haftmann@25919
   444
corollary nat_eq_iff2: "(m = nat w) = (if 0 \<le> w then w = of_nat m else m=0)"
haftmann@25919
   445
by (simp only: eq_commute [of m] nat_eq_iff)
haftmann@25919
   446
haftmann@25919
   447
lemma nat_less_iff: "0 \<le> w ==> (nat w < m) = (w < of_nat m)"
haftmann@25919
   448
apply (cases w)
haftmann@25919
   449
apply (simp add: nat le int_def Zero_int_def linorder_not_le [symmetric], arith)
haftmann@25919
   450
done
haftmann@25919
   451
haftmann@25919
   452
lemma int_eq_iff: "(of_nat m = z) = (m = nat z & 0 \<le> z)"
haftmann@25919
   453
by (auto simp add: nat_eq_iff2)
haftmann@25919
   454
haftmann@25919
   455
lemma zero_less_nat_eq [simp]: "(0 < nat z) = (0 < z)"
haftmann@25919
   456
by (insert zless_nat_conj [of 0], auto)
haftmann@25919
   457
haftmann@25919
   458
lemma nat_add_distrib:
haftmann@25919
   459
     "[| (0::int) \<le> z;  0 \<le> z' |] ==> nat (z+z') = nat z + nat z'"
haftmann@25919
   460
by (cases z, cases z', simp add: nat add le Zero_int_def)
haftmann@25919
   461
haftmann@25919
   462
lemma nat_diff_distrib:
haftmann@25919
   463
     "[| (0::int) \<le> z';  z' \<le> z |] ==> nat (z-z') = nat z - nat z'"
haftmann@25919
   464
by (cases z, cases z', 
haftmann@25919
   465
    simp add: nat add minus diff_minus le Zero_int_def)
haftmann@25919
   466
haftmann@25919
   467
lemma nat_zminus_int [simp]: "nat (- (of_nat n)) = 0"
haftmann@25919
   468
by (simp add: int_def minus nat Zero_int_def) 
haftmann@25919
   469
haftmann@25919
   470
lemma zless_nat_eq_int_zless: "(m < nat z) = (of_nat m < z)"
haftmann@25919
   471
by (cases z, simp add: nat less int_def, arith)
haftmann@25919
   472
haftmann@25919
   473
context ring_1
haftmann@25919
   474
begin
haftmann@25919
   475
haftmann@25919
   476
lemma of_nat_nat: "0 \<le> z \<Longrightarrow> of_nat (nat z) = of_int z"
haftmann@25919
   477
  by (cases z rule: eq_Abs_Integ)
haftmann@25919
   478
   (simp add: nat le of_int Zero_int_def of_nat_diff)
haftmann@25919
   479
haftmann@25919
   480
end
haftmann@25919
   481
haftmann@25919
   482
haftmann@25919
   483
subsection{*Lemmas about the Function @{term of_nat} and Orderings*}
haftmann@25919
   484
haftmann@25919
   485
lemma negative_zless_0: "- (of_nat (Suc n)) < (0 \<Colon> int)"
haftmann@25919
   486
by (simp add: order_less_le del: of_nat_Suc)
haftmann@25919
   487
haftmann@25919
   488
lemma negative_zless [iff]: "- (of_nat (Suc n)) < (of_nat m \<Colon> int)"
haftmann@25919
   489
by (rule negative_zless_0 [THEN order_less_le_trans], simp)
haftmann@25919
   490
haftmann@25919
   491
lemma negative_zle_0: "- of_nat n \<le> (0 \<Colon> int)"
haftmann@25919
   492
by (simp add: minus_le_iff)
haftmann@25919
   493
haftmann@25919
   494
lemma negative_zle [iff]: "- of_nat n \<le> (of_nat m \<Colon> int)"
haftmann@25919
   495
by (rule order_trans [OF negative_zle_0 of_nat_0_le_iff])
haftmann@25919
   496
haftmann@25919
   497
lemma not_zle_0_negative [simp]: "~ (0 \<le> - (of_nat (Suc n) \<Colon> int))"
haftmann@25919
   498
by (subst le_minus_iff, simp del: of_nat_Suc)
haftmann@25919
   499
haftmann@25919
   500
lemma int_zle_neg: "((of_nat n \<Colon> int) \<le> - of_nat m) = (n = 0 & m = 0)"
haftmann@25919
   501
by (simp add: int_def le minus Zero_int_def)
haftmann@25919
   502
haftmann@25919
   503
lemma not_int_zless_negative [simp]: "~ ((of_nat n \<Colon> int) < - of_nat m)"
haftmann@25919
   504
by (simp add: linorder_not_less)
haftmann@25919
   505
haftmann@25919
   506
lemma negative_eq_positive [simp]: "((- of_nat n \<Colon> int) = of_nat m) = (n = 0 & m = 0)"
haftmann@25919
   507
by (force simp add: order_eq_iff [of "- of_nat n"] int_zle_neg)
haftmann@25919
   508
haftmann@25919
   509
lemma zle_iff_zadd: "(w\<Colon>int) \<le> z \<longleftrightarrow> (\<exists>n. z = w + of_nat n)"
haftmann@25919
   510
proof -
haftmann@25919
   511
  have "(w \<le> z) = (0 \<le> z - w)"
haftmann@25919
   512
    by (simp only: le_diff_eq add_0_left)
haftmann@25919
   513
  also have "\<dots> = (\<exists>n. z - w = of_nat n)"
haftmann@25919
   514
    by (auto elim: zero_le_imp_eq_int)
haftmann@25919
   515
  also have "\<dots> = (\<exists>n. z = w + of_nat n)"
haftmann@25919
   516
    by (simp only: group_simps)
haftmann@25919
   517
  finally show ?thesis .
haftmann@25919
   518
qed
haftmann@25919
   519
haftmann@25919
   520
lemma zadd_int_left: "of_nat m + (of_nat n + z) = of_nat (m + n) + (z\<Colon>int)"
haftmann@25919
   521
by simp
haftmann@25919
   522
haftmann@25919
   523
lemma int_Suc0_eq_1: "of_nat (Suc 0) = (1\<Colon>int)"
haftmann@25919
   524
by simp
haftmann@25919
   525
haftmann@25919
   526
text{*This version is proved for all ordered rings, not just integers!
haftmann@25919
   527
      It is proved here because attribute @{text arith_split} is not available
haftmann@25919
   528
      in theory @{text Ring_and_Field}.
haftmann@25919
   529
      But is it really better than just rewriting with @{text abs_if}?*}
haftmann@25919
   530
lemma abs_split [arith_split,noatp]:
haftmann@25919
   531
     "P(abs(a::'a::ordered_idom)) = ((0 \<le> a --> P a) & (a < 0 --> P(-a)))"
haftmann@25919
   532
by (force dest: order_less_le_trans simp add: abs_if linorder_not_less)
haftmann@25919
   533
haftmann@25919
   534
lemma negD: "(x \<Colon> int) < 0 \<Longrightarrow> \<exists>n. x = - (of_nat (Suc n))"
haftmann@25919
   535
apply (cases x)
haftmann@25919
   536
apply (auto simp add: le minus Zero_int_def int_def order_less_le)
haftmann@25919
   537
apply (rule_tac x="y - Suc x" in exI, arith)
haftmann@25919
   538
done
haftmann@25919
   539
haftmann@25919
   540
haftmann@25919
   541
subsection {* Cases and induction *}
haftmann@25919
   542
haftmann@25919
   543
text{*Now we replace the case analysis rule by a more conventional one:
haftmann@25919
   544
whether an integer is negative or not.*}
haftmann@25919
   545
haftmann@25919
   546
theorem int_cases [cases type: int, case_names nonneg neg]:
haftmann@25919
   547
  "[|!! n. (z \<Colon> int) = of_nat n ==> P;  !! n. z =  - (of_nat (Suc n)) ==> P |] ==> P"
haftmann@25919
   548
apply (cases "z < 0", blast dest!: negD)
haftmann@25919
   549
apply (simp add: linorder_not_less del: of_nat_Suc)
haftmann@25919
   550
apply auto
haftmann@25919
   551
apply (blast dest: nat_0_le [THEN sym])
haftmann@25919
   552
done
haftmann@25919
   553
haftmann@25919
   554
theorem int_induct [induct type: int, case_names nonneg neg]:
haftmann@25919
   555
     "[|!! n. P (of_nat n \<Colon> int);  !!n. P (- (of_nat (Suc n))) |] ==> P z"
haftmann@25919
   556
  by (cases z rule: int_cases) auto
haftmann@25919
   557
haftmann@25919
   558
text{*Contributed by Brian Huffman*}
haftmann@25919
   559
theorem int_diff_cases:
haftmann@25919
   560
  obtains (diff) m n where "(z\<Colon>int) = of_nat m - of_nat n"
haftmann@25919
   561
apply (cases z rule: eq_Abs_Integ)
haftmann@25919
   562
apply (rule_tac m=x and n=y in diff)
haftmann@25919
   563
apply (simp add: int_def diff_def minus add)
haftmann@25919
   564
done
haftmann@25919
   565
haftmann@25919
   566
haftmann@25919
   567
subsection {* Binary representation *}
haftmann@25919
   568
haftmann@25919
   569
text {*
haftmann@25919
   570
  This formalization defines binary arithmetic in terms of the integers
haftmann@25919
   571
  rather than using a datatype. This avoids multiple representations (leading
haftmann@25919
   572
  zeroes, etc.)  See @{text "ZF/Tools/twos-compl.ML"}, function @{text
haftmann@25919
   573
  int_of_binary}, for the numerical interpretation.
haftmann@25919
   574
haftmann@25919
   575
  The representation expects that @{text "(m mod 2)"} is 0 or 1,
haftmann@25919
   576
  even if m is negative;
haftmann@25919
   577
  For instance, @{text "-5 div 2 = -3"} and @{text "-5 mod 2 = 1"}; thus
haftmann@25919
   578
  @{text "-5 = (-3)*2 + 1"}.
haftmann@25919
   579
  
haftmann@25919
   580
  This two's complement binary representation derives from the paper 
haftmann@25919
   581
  "An Efficient Representation of Arithmetic for Term Rewriting" by
haftmann@25919
   582
  Dave Cohen and Phil Watson, Rewriting Techniques and Applications,
haftmann@25919
   583
  Springer LNCS 488 (240-251), 1991.
haftmann@25919
   584
*}
haftmann@25919
   585
haftmann@25919
   586
definition
haftmann@25919
   587
  Pls :: int where
haftmann@25919
   588
  [code func del]: "Pls = 0"
haftmann@25919
   589
haftmann@25919
   590
definition
haftmann@25919
   591
  Min :: int where
haftmann@25919
   592
  [code func del]: "Min = - 1"
haftmann@25919
   593
haftmann@25919
   594
definition
huffman@26086
   595
  Bit0 :: "int \<Rightarrow> int" where
huffman@26086
   596
  [code func del]: "Bit0 k = k + k"
huffman@26086
   597
huffman@26086
   598
definition
huffman@26086
   599
  Bit1 :: "int \<Rightarrow> int" where
huffman@26086
   600
  [code func del]: "Bit1 k = 1 + k + k"
haftmann@25919
   601
haftmann@25919
   602
class number = type + -- {* for numeric types: nat, int, real, \dots *}
haftmann@25919
   603
  fixes number_of :: "int \<Rightarrow> 'a"
haftmann@25919
   604
haftmann@25919
   605
use "Tools/numeral.ML"
haftmann@25919
   606
haftmann@25919
   607
syntax
haftmann@25919
   608
  "_Numeral" :: "num_const \<Rightarrow> 'a"    ("_")
haftmann@25919
   609
haftmann@25919
   610
use "Tools/numeral_syntax.ML"
haftmann@25919
   611
setup NumeralSyntax.setup
haftmann@25919
   612
haftmann@25919
   613
abbreviation
haftmann@25919
   614
  "Numeral0 \<equiv> number_of Pls"
haftmann@25919
   615
haftmann@25919
   616
abbreviation
huffman@26086
   617
  "Numeral1 \<equiv> number_of (Bit1 Pls)"
haftmann@25919
   618
haftmann@25919
   619
lemma Let_number_of [simp]: "Let (number_of v) f = f (number_of v)"
haftmann@25919
   620
  -- {* Unfold all @{text let}s involving constants *}
haftmann@25919
   621
  unfolding Let_def ..
haftmann@25919
   622
haftmann@25919
   623
definition
haftmann@25919
   624
  succ :: "int \<Rightarrow> int" where
haftmann@25919
   625
  [code func del]: "succ k = k + 1"
haftmann@25919
   626
haftmann@25919
   627
definition
haftmann@25919
   628
  pred :: "int \<Rightarrow> int" where
haftmann@25919
   629
  [code func del]: "pred k = k - 1"
haftmann@25919
   630
haftmann@25919
   631
lemmas
haftmann@25919
   632
  max_number_of [simp] = max_def
haftmann@25919
   633
    [of "number_of u" "number_of v", standard, simp]
haftmann@25919
   634
and
haftmann@25919
   635
  min_number_of [simp] = min_def 
haftmann@25919
   636
    [of "number_of u" "number_of v", standard, simp]
haftmann@25919
   637
  -- {* unfolding @{text minx} and @{text max} on numerals *}
haftmann@25919
   638
haftmann@25919
   639
lemmas numeral_simps = 
huffman@26086
   640
  succ_def pred_def Pls_def Min_def Bit0_def Bit1_def
haftmann@25919
   641
haftmann@25919
   642
text {* Removal of leading zeroes *}
haftmann@25919
   643
huffman@26086
   644
lemma Bit0_Pls [simp, code post]:
huffman@26086
   645
  "Bit0 Pls = Pls"
haftmann@25919
   646
  unfolding numeral_simps by simp
haftmann@25919
   647
huffman@26086
   648
lemma Bit1_Min [simp, code post]:
huffman@26086
   649
  "Bit1 Min = Min"
haftmann@25919
   650
  unfolding numeral_simps by simp
haftmann@25919
   651
huffman@26075
   652
lemmas normalize_bin_simps =
huffman@26086
   653
  Bit0_Pls Bit1_Min
huffman@26075
   654
haftmann@25919
   655
haftmann@25919
   656
subsection {* The Functions @{term succ}, @{term pred} and @{term uminus} *}
haftmann@25919
   657
haftmann@25919
   658
lemma succ_Pls [simp]:
huffman@26086
   659
  "succ Pls = Bit1 Pls"
haftmann@25919
   660
  unfolding numeral_simps by simp
haftmann@25919
   661
haftmann@25919
   662
lemma succ_Min [simp]:
haftmann@25919
   663
  "succ Min = Pls"
haftmann@25919
   664
  unfolding numeral_simps by simp
haftmann@25919
   665
huffman@26086
   666
lemma succ_Bit0 [simp]:
huffman@26086
   667
  "succ (Bit0 k) = Bit1 k"
haftmann@25919
   668
  unfolding numeral_simps by simp
haftmann@25919
   669
huffman@26086
   670
lemma succ_Bit1 [simp]:
huffman@26086
   671
  "succ (Bit1 k) = Bit0 (succ k)"
haftmann@25919
   672
  unfolding numeral_simps by simp
haftmann@25919
   673
huffman@26075
   674
lemmas succ_bin_simps =
huffman@26086
   675
  succ_Pls succ_Min succ_Bit0 succ_Bit1
huffman@26075
   676
haftmann@25919
   677
lemma pred_Pls [simp]:
haftmann@25919
   678
  "pred Pls = Min"
haftmann@25919
   679
  unfolding numeral_simps by simp
haftmann@25919
   680
haftmann@25919
   681
lemma pred_Min [simp]:
huffman@26086
   682
  "pred Min = Bit0 Min"
haftmann@25919
   683
  unfolding numeral_simps by simp
haftmann@25919
   684
huffman@26086
   685
lemma pred_Bit0 [simp]:
huffman@26086
   686
  "pred (Bit0 k) = Bit1 (pred k)"
haftmann@25919
   687
  unfolding numeral_simps by simp 
haftmann@25919
   688
huffman@26086
   689
lemma pred_Bit1 [simp]:
huffman@26086
   690
  "pred (Bit1 k) = Bit0 k"
huffman@26086
   691
  unfolding numeral_simps by simp
huffman@26086
   692
huffman@26075
   693
lemmas pred_bin_simps =
huffman@26086
   694
  pred_Pls pred_Min pred_Bit0 pred_Bit1
huffman@26075
   695
haftmann@25919
   696
lemma minus_Pls [simp]:
haftmann@25919
   697
  "- Pls = Pls"
haftmann@25919
   698
  unfolding numeral_simps by simp 
haftmann@25919
   699
haftmann@25919
   700
lemma minus_Min [simp]:
huffman@26086
   701
  "- Min = Bit1 Pls"
haftmann@25919
   702
  unfolding numeral_simps by simp 
haftmann@25919
   703
huffman@26086
   704
lemma minus_Bit0 [simp]:
huffman@26086
   705
  "- (Bit0 k) = Bit0 (- k)"
haftmann@25919
   706
  unfolding numeral_simps by simp 
haftmann@25919
   707
huffman@26086
   708
lemma minus_Bit1 [simp]:
huffman@26086
   709
  "- (Bit1 k) = Bit1 (pred (- k))"
huffman@26086
   710
  unfolding numeral_simps by simp
haftmann@25919
   711
huffman@26075
   712
lemmas minus_bin_simps =
huffman@26086
   713
  minus_Pls minus_Min minus_Bit0 minus_Bit1
huffman@26075
   714
haftmann@25919
   715
haftmann@25919
   716
subsection {*
haftmann@25919
   717
  Binary Addition and Multiplication: @{term "op + \<Colon> int \<Rightarrow> int \<Rightarrow> int"}
haftmann@25919
   718
    and @{term "op * \<Colon> int \<Rightarrow> int \<Rightarrow> int"}
haftmann@25919
   719
*}
haftmann@25919
   720
haftmann@25919
   721
lemma add_Pls [simp]:
haftmann@25919
   722
  "Pls + k = k"
haftmann@25919
   723
  unfolding numeral_simps by simp 
haftmann@25919
   724
haftmann@25919
   725
lemma add_Min [simp]:
haftmann@25919
   726
  "Min + k = pred k"
haftmann@25919
   727
  unfolding numeral_simps by simp
haftmann@25919
   728
huffman@26086
   729
lemma add_Bit0_Bit0 [simp]:
huffman@26086
   730
  "(Bit0 k) + (Bit0 l) = Bit0 (k + l)"
huffman@26086
   731
  unfolding numeral_simps by simp_all 
huffman@26086
   732
huffman@26086
   733
lemma add_Bit0_Bit1 [simp]:
huffman@26086
   734
  "(Bit0 k) + (Bit1 l) = Bit1 (k + l)"
huffman@26086
   735
  unfolding numeral_simps by simp_all 
huffman@26086
   736
huffman@26086
   737
lemma add_Bit1_Bit0 [simp]:
huffman@26086
   738
  "(Bit1 k) + (Bit0 l) = Bit1 (k + l)"
haftmann@25919
   739
  unfolding numeral_simps by simp
haftmann@25919
   740
huffman@26086
   741
lemma add_Bit1_Bit1 [simp]:
huffman@26086
   742
  "(Bit1 k) + (Bit1 l) = Bit0 (k + succ l)"
haftmann@25919
   743
  unfolding numeral_simps by simp
haftmann@25919
   744
haftmann@25919
   745
lemma add_Pls_right [simp]:
haftmann@25919
   746
  "k + Pls = k"
haftmann@25919
   747
  unfolding numeral_simps by simp 
haftmann@25919
   748
haftmann@25919
   749
lemma add_Min_right [simp]:
haftmann@25919
   750
  "k + Min = pred k"
huffman@26086
   751
  unfolding numeral_simps by simp
haftmann@25919
   752
huffman@26075
   753
lemmas add_bin_simps =
huffman@26086
   754
  add_Pls add_Min add_Pls_right add_Min_right
huffman@26086
   755
  add_Bit0_Bit0 add_Bit0_Bit1 add_Bit1_Bit0 add_Bit1_Bit1
huffman@26075
   756
haftmann@25919
   757
lemma mult_Pls [simp]:
haftmann@25919
   758
  "Pls * w = Pls"
haftmann@25919
   759
  unfolding numeral_simps by simp 
haftmann@25919
   760
haftmann@25919
   761
lemma mult_Min [simp]:
haftmann@25919
   762
  "Min * k = - k"
haftmann@25919
   763
  unfolding numeral_simps by simp
haftmann@25919
   764
huffman@26086
   765
lemma mult_Bit0 [simp]:
huffman@26086
   766
  "(Bit0 k) * l = Bit0 (k * l)"
huffman@26086
   767
  unfolding numeral_simps int_distrib by simp
haftmann@25919
   768
huffman@26086
   769
lemma mult_Bit1 [simp]:
huffman@26086
   770
  "(Bit1 k) * l = (Bit0 (k * l)) + l"
haftmann@25919
   771
  unfolding numeral_simps int_distrib by simp 
haftmann@25919
   772
huffman@26075
   773
lemmas mult_bin_simps =
huffman@26086
   774
  mult_Pls mult_Min mult_Bit0 mult_Bit1
huffman@26075
   775
haftmann@25919
   776
haftmann@25919
   777
subsection {* Converting Numerals to Rings: @{term number_of} *}
haftmann@25919
   778
haftmann@25919
   779
class number_ring = number + comm_ring_1 +
haftmann@25919
   780
  assumes number_of_eq: "number_of k = of_int k"
haftmann@25919
   781
haftmann@25919
   782
text {* self-embedding of the integers *}
haftmann@25919
   783
haftmann@25919
   784
instantiation int :: number_ring
haftmann@25919
   785
begin
haftmann@25919
   786
haftmann@25919
   787
definition
haftmann@25919
   788
  int_number_of_def [code func del]: "number_of w = (of_int w \<Colon> int)"
haftmann@25919
   789
haftmann@25919
   790
instance
haftmann@25919
   791
  by intro_classes (simp only: int_number_of_def)
haftmann@25919
   792
haftmann@25919
   793
end
haftmann@25919
   794
haftmann@25919
   795
lemma number_of_is_id:
haftmann@25919
   796
  "number_of (k::int) = k"
haftmann@25919
   797
  unfolding int_number_of_def by simp
haftmann@25919
   798
haftmann@25919
   799
lemma number_of_succ:
haftmann@25919
   800
  "number_of (succ k) = (1 + number_of k ::'a::number_ring)"
haftmann@25919
   801
  unfolding number_of_eq numeral_simps by simp
haftmann@25919
   802
haftmann@25919
   803
lemma number_of_pred:
haftmann@25919
   804
  "number_of (pred w) = (- 1 + number_of w ::'a::number_ring)"
haftmann@25919
   805
  unfolding number_of_eq numeral_simps by simp
haftmann@25919
   806
haftmann@25919
   807
lemma number_of_minus:
haftmann@25919
   808
  "number_of (uminus w) = (- (number_of w)::'a::number_ring)"
haftmann@25919
   809
  unfolding number_of_eq numeral_simps by simp
haftmann@25919
   810
haftmann@25919
   811
lemma number_of_add:
haftmann@25919
   812
  "number_of (v + w) = (number_of v + number_of w::'a::number_ring)"
haftmann@25919
   813
  unfolding number_of_eq numeral_simps by simp
haftmann@25919
   814
haftmann@25919
   815
lemma number_of_mult:
haftmann@25919
   816
  "number_of (v * w) = (number_of v * number_of w::'a::number_ring)"
haftmann@25919
   817
  unfolding number_of_eq numeral_simps by simp
haftmann@25919
   818
haftmann@25919
   819
text {*
haftmann@25919
   820
  The correctness of shifting.
haftmann@25919
   821
  But it doesn't seem to give a measurable speed-up.
haftmann@25919
   822
*}
haftmann@25919
   823
huffman@26086
   824
lemma double_number_of_Bit0:
huffman@26086
   825
  "(1 + 1) * number_of w = (number_of (Bit0 w) ::'a::number_ring)"
haftmann@25919
   826
  unfolding number_of_eq numeral_simps left_distrib by simp
haftmann@25919
   827
haftmann@25919
   828
text {*
haftmann@25919
   829
  Converting numerals 0 and 1 to their abstract versions.
haftmann@25919
   830
*}
haftmann@25919
   831
haftmann@25919
   832
lemma numeral_0_eq_0 [simp]:
haftmann@25919
   833
  "Numeral0 = (0::'a::number_ring)"
haftmann@25919
   834
  unfolding number_of_eq numeral_simps by simp
haftmann@25919
   835
haftmann@25919
   836
lemma numeral_1_eq_1 [simp]:
haftmann@25919
   837
  "Numeral1 = (1::'a::number_ring)"
haftmann@25919
   838
  unfolding number_of_eq numeral_simps by simp
haftmann@25919
   839
haftmann@25919
   840
text {*
haftmann@25919
   841
  Special-case simplification for small constants.
haftmann@25919
   842
*}
haftmann@25919
   843
haftmann@25919
   844
text{*
haftmann@25919
   845
  Unary minus for the abstract constant 1. Cannot be inserted
haftmann@25919
   846
  as a simprule until later: it is @{text number_of_Min} re-oriented!
haftmann@25919
   847
*}
haftmann@25919
   848
haftmann@25919
   849
lemma numeral_m1_eq_minus_1:
haftmann@25919
   850
  "(-1::'a::number_ring) = - 1"
haftmann@25919
   851
  unfolding number_of_eq numeral_simps by simp
haftmann@25919
   852
haftmann@25919
   853
lemma mult_minus1 [simp]:
haftmann@25919
   854
  "-1 * z = -(z::'a::number_ring)"
haftmann@25919
   855
  unfolding number_of_eq numeral_simps by simp
haftmann@25919
   856
haftmann@25919
   857
lemma mult_minus1_right [simp]:
haftmann@25919
   858
  "z * -1 = -(z::'a::number_ring)"
haftmann@25919
   859
  unfolding number_of_eq numeral_simps by simp
haftmann@25919
   860
haftmann@25919
   861
(*Negation of a coefficient*)
haftmann@25919
   862
lemma minus_number_of_mult [simp]:
haftmann@25919
   863
   "- (number_of w) * z = number_of (uminus w) * (z::'a::number_ring)"
haftmann@25919
   864
   unfolding number_of_eq by simp
haftmann@25919
   865
haftmann@25919
   866
text {* Subtraction *}
haftmann@25919
   867
haftmann@25919
   868
lemma diff_number_of_eq:
haftmann@25919
   869
  "number_of v - number_of w =
haftmann@25919
   870
    (number_of (v + uminus w)::'a::number_ring)"
haftmann@25919
   871
  unfolding number_of_eq by simp
haftmann@25919
   872
haftmann@25919
   873
lemma number_of_Pls:
haftmann@25919
   874
  "number_of Pls = (0::'a::number_ring)"
haftmann@25919
   875
  unfolding number_of_eq numeral_simps by simp
haftmann@25919
   876
haftmann@25919
   877
lemma number_of_Min:
haftmann@25919
   878
  "number_of Min = (- 1::'a::number_ring)"
haftmann@25919
   879
  unfolding number_of_eq numeral_simps by simp
haftmann@25919
   880
huffman@26086
   881
lemma number_of_Bit0:
huffman@26086
   882
  "number_of (Bit0 w) = (0::'a::number_ring) + (number_of w) + (number_of w)"
huffman@26086
   883
  unfolding number_of_eq numeral_simps by simp
huffman@26086
   884
huffman@26086
   885
lemma number_of_Bit1:
huffman@26086
   886
  "number_of (Bit1 w) = (1::'a::number_ring) + (number_of w) + (number_of w)"
huffman@26086
   887
  unfolding number_of_eq numeral_simps by simp
haftmann@25919
   888
haftmann@25919
   889
haftmann@25919
   890
subsection {* Equality of Binary Numbers *}
haftmann@25919
   891
haftmann@25919
   892
text {* First version by Norbert Voelker *}
haftmann@25919
   893
haftmann@25919
   894
definition
haftmann@25919
   895
  neg  :: "'a\<Colon>ordered_idom \<Rightarrow> bool"
haftmann@25919
   896
where
haftmann@25919
   897
  "neg Z \<longleftrightarrow> Z < 0"
haftmann@25919
   898
haftmann@25919
   899
definition (*for simplifying equalities*)
haftmann@25919
   900
  iszero :: "'a\<Colon>semiring_1 \<Rightarrow> bool"
haftmann@25919
   901
where
haftmann@25919
   902
  "iszero z \<longleftrightarrow> z = 0"
haftmann@25919
   903
haftmann@25919
   904
lemma not_neg_int [simp]: "~ neg (of_nat n)"
haftmann@25919
   905
by (simp add: neg_def)
haftmann@25919
   906
haftmann@25919
   907
lemma neg_zminus_int [simp]: "neg (- (of_nat (Suc n)))"
haftmann@25919
   908
by (simp add: neg_def neg_less_0_iff_less del: of_nat_Suc)
haftmann@25919
   909
haftmann@25919
   910
lemmas neg_eq_less_0 = neg_def
haftmann@25919
   911
haftmann@25919
   912
lemma not_neg_eq_ge_0: "(~neg x) = (0 \<le> x)"
haftmann@25919
   913
by (simp add: neg_def linorder_not_less)
haftmann@25919
   914
haftmann@25919
   915
text{*To simplify inequalities when Numeral1 can get simplified to 1*}
haftmann@25919
   916
haftmann@25919
   917
lemma not_neg_0: "~ neg 0"
haftmann@25919
   918
by (simp add: One_int_def neg_def)
haftmann@25919
   919
haftmann@25919
   920
lemma not_neg_1: "~ neg 1"
haftmann@25919
   921
by (simp add: neg_def linorder_not_less zero_le_one)
haftmann@25919
   922
haftmann@25919
   923
lemma iszero_0: "iszero 0"
haftmann@25919
   924
by (simp add: iszero_def)
haftmann@25919
   925
haftmann@25919
   926
lemma not_iszero_1: "~ iszero 1"
haftmann@25919
   927
by (simp add: iszero_def eq_commute)
haftmann@25919
   928
haftmann@25919
   929
lemma neg_nat: "neg z ==> nat z = 0"
haftmann@25919
   930
by (simp add: neg_def order_less_imp_le) 
haftmann@25919
   931
haftmann@25919
   932
lemma not_neg_nat: "~ neg z ==> of_nat (nat z) = z"
haftmann@25919
   933
by (simp add: linorder_not_less neg_def)
haftmann@25919
   934
haftmann@25919
   935
lemma eq_number_of_eq:
haftmann@25919
   936
  "((number_of x::'a::number_ring) = number_of y) =
haftmann@25919
   937
   iszero (number_of (x + uminus y) :: 'a)"
haftmann@25919
   938
  unfolding iszero_def number_of_add number_of_minus
haftmann@25919
   939
  by (simp add: compare_rls)
haftmann@25919
   940
haftmann@25919
   941
lemma iszero_number_of_Pls:
haftmann@25919
   942
  "iszero ((number_of Pls)::'a::number_ring)"
haftmann@25919
   943
  unfolding iszero_def numeral_0_eq_0 ..
haftmann@25919
   944
haftmann@25919
   945
lemma nonzero_number_of_Min:
haftmann@25919
   946
  "~ iszero ((number_of Min)::'a::number_ring)"
haftmann@25919
   947
  unfolding iszero_def numeral_m1_eq_minus_1 by simp
haftmann@25919
   948
haftmann@25919
   949
haftmann@25919
   950
subsection {* Comparisons, for Ordered Rings *}
haftmann@25919
   951
haftmann@25919
   952
lemmas double_eq_0_iff = double_zero
haftmann@25919
   953
haftmann@25919
   954
lemma le_imp_0_less: 
haftmann@25919
   955
  assumes le: "0 \<le> z"
haftmann@25919
   956
  shows "(0::int) < 1 + z"
haftmann@25919
   957
proof -
haftmann@25919
   958
  have "0 \<le> z" by fact
haftmann@25919
   959
  also have "... < z + 1" by (rule less_add_one) 
haftmann@25919
   960
  also have "... = 1 + z" by (simp add: add_ac)
haftmann@25919
   961
  finally show "0 < 1 + z" .
haftmann@25919
   962
qed
haftmann@25919
   963
haftmann@25919
   964
lemma odd_nonzero:
haftmann@25919
   965
  "1 + z + z \<noteq> (0::int)";
haftmann@25919
   966
proof (cases z rule: int_cases)
haftmann@25919
   967
  case (nonneg n)
haftmann@25919
   968
  have le: "0 \<le> z+z" by (simp add: nonneg add_increasing) 
haftmann@25919
   969
  thus ?thesis using  le_imp_0_less [OF le]
haftmann@25919
   970
    by (auto simp add: add_assoc) 
haftmann@25919
   971
next
haftmann@25919
   972
  case (neg n)
haftmann@25919
   973
  show ?thesis
haftmann@25919
   974
  proof
haftmann@25919
   975
    assume eq: "1 + z + z = 0"
haftmann@25919
   976
    have "(0::int) < 1 + (of_nat n + of_nat n)"
haftmann@25919
   977
      by (simp add: le_imp_0_less add_increasing) 
haftmann@25919
   978
    also have "... = - (1 + z + z)" 
haftmann@25919
   979
      by (simp add: neg add_assoc [symmetric]) 
haftmann@25919
   980
    also have "... = 0" by (simp add: eq) 
haftmann@25919
   981
    finally have "0<0" ..
haftmann@25919
   982
    thus False by blast
haftmann@25919
   983
  qed
haftmann@25919
   984
qed
haftmann@25919
   985
huffman@26086
   986
lemma iszero_number_of_Bit0:
huffman@26086
   987
  "iszero (number_of (Bit0 w)::'a) = 
huffman@26086
   988
   iszero (number_of w::'a::{ring_char_0,number_ring})"
haftmann@25919
   989
proof -
haftmann@25919
   990
  have "(of_int w + of_int w = (0::'a)) \<Longrightarrow> (w = 0)"
haftmann@25919
   991
  proof -
haftmann@25919
   992
    assume eq: "of_int w + of_int w = (0::'a)"
haftmann@25919
   993
    then have "of_int (w + w) = (of_int 0 :: 'a)" by simp
haftmann@25919
   994
    then have "w + w = 0" by (simp only: of_int_eq_iff)
haftmann@25919
   995
    then show "w = 0" by (simp only: double_eq_0_iff)
haftmann@25919
   996
  qed
huffman@26086
   997
  thus ?thesis
huffman@26086
   998
    by (auto simp add: iszero_def number_of_eq numeral_simps)
huffman@26086
   999
qed
huffman@26086
  1000
huffman@26086
  1001
lemma iszero_number_of_Bit1:
huffman@26086
  1002
  "~ iszero (number_of (Bit1 w)::'a::{ring_char_0,number_ring})"
huffman@26086
  1003
proof -
huffman@26086
  1004
  have "1 + of_int w + of_int w \<noteq> (0::'a)"
haftmann@25919
  1005
  proof
haftmann@25919
  1006
    assume eq: "1 + of_int w + of_int w = (0::'a)"
haftmann@25919
  1007
    hence "of_int (1 + w + w) = (of_int 0 :: 'a)" by simp 
haftmann@25919
  1008
    hence "1 + w + w = 0" by (simp only: of_int_eq_iff)
haftmann@25919
  1009
    with odd_nonzero show False by blast
haftmann@25919
  1010
  qed
huffman@26086
  1011
  thus ?thesis
huffman@26086
  1012
    by (auto simp add: iszero_def number_of_eq numeral_simps)
haftmann@25919
  1013
qed
haftmann@25919
  1014
haftmann@25919
  1015
haftmann@25919
  1016
subsection {* The Less-Than Relation *}
haftmann@25919
  1017
haftmann@25919
  1018
lemma less_number_of_eq_neg:
haftmann@25919
  1019
  "((number_of x::'a::{ordered_idom,number_ring}) < number_of y)
haftmann@25919
  1020
  = neg (number_of (x + uminus y) :: 'a)"
haftmann@25919
  1021
apply (subst less_iff_diff_less_0) 
haftmann@25919
  1022
apply (simp add: neg_def diff_minus number_of_add number_of_minus)
haftmann@25919
  1023
done
haftmann@25919
  1024
haftmann@25919
  1025
text {*
haftmann@25919
  1026
  If @{term Numeral0} is rewritten to 0 then this rule can't be applied:
haftmann@25919
  1027
  @{term Numeral0} IS @{term "number_of Pls"}
haftmann@25919
  1028
*}
haftmann@25919
  1029
haftmann@25919
  1030
lemma not_neg_number_of_Pls:
haftmann@25919
  1031
  "~ neg (number_of Pls ::'a::{ordered_idom,number_ring})"
haftmann@25919
  1032
  by (simp add: neg_def numeral_0_eq_0)
haftmann@25919
  1033
haftmann@25919
  1034
lemma neg_number_of_Min:
haftmann@25919
  1035
  "neg (number_of Min ::'a::{ordered_idom,number_ring})"
haftmann@25919
  1036
  by (simp add: neg_def zero_less_one numeral_m1_eq_minus_1)
haftmann@25919
  1037
haftmann@25919
  1038
lemma double_less_0_iff:
haftmann@25919
  1039
  "(a + a < 0) = (a < (0::'a::ordered_idom))"
haftmann@25919
  1040
proof -
haftmann@25919
  1041
  have "(a + a < 0) = ((1+1)*a < 0)" by (simp add: left_distrib)
haftmann@25919
  1042
  also have "... = (a < 0)"
haftmann@25919
  1043
    by (simp add: mult_less_0_iff zero_less_two 
haftmann@25919
  1044
                  order_less_not_sym [OF zero_less_two]) 
haftmann@25919
  1045
  finally show ?thesis .
haftmann@25919
  1046
qed
haftmann@25919
  1047
haftmann@25919
  1048
lemma odd_less_0:
haftmann@25919
  1049
  "(1 + z + z < 0) = (z < (0::int))";
haftmann@25919
  1050
proof (cases z rule: int_cases)
haftmann@25919
  1051
  case (nonneg n)
haftmann@25919
  1052
  thus ?thesis by (simp add: linorder_not_less add_assoc add_increasing
haftmann@25919
  1053
                             le_imp_0_less [THEN order_less_imp_le])  
haftmann@25919
  1054
next
haftmann@25919
  1055
  case (neg n)
haftmann@25919
  1056
  thus ?thesis by (simp del: of_nat_Suc of_nat_add
haftmann@25919
  1057
    add: compare_rls of_nat_1 [symmetric] of_nat_add [symmetric])
haftmann@25919
  1058
qed
haftmann@25919
  1059
huffman@26086
  1060
lemma neg_number_of_Bit0:
huffman@26086
  1061
  "neg (number_of (Bit0 w)::'a) = 
huffman@26086
  1062
  neg (number_of w :: 'a::{ordered_idom,number_ring})"
huffman@26086
  1063
by (simp add: neg_def number_of_eq numeral_simps double_less_0_iff)
huffman@26086
  1064
huffman@26086
  1065
lemma neg_number_of_Bit1:
huffman@26086
  1066
  "neg (number_of (Bit1 w)::'a) = 
haftmann@25919
  1067
  neg (number_of w :: 'a::{ordered_idom,number_ring})"
haftmann@25919
  1068
proof -
haftmann@25919
  1069
  have "((1::'a) + of_int w + of_int w < 0) = (of_int (1 + w + w) < (of_int 0 :: 'a))"
haftmann@25919
  1070
    by simp
haftmann@25919
  1071
  also have "... = (w < 0)" by (simp only: of_int_less_iff odd_less_0)
haftmann@25919
  1072
  finally show ?thesis
huffman@26086
  1073
  by (simp add: neg_def number_of_eq numeral_simps)
haftmann@25919
  1074
qed
haftmann@25919
  1075
haftmann@25919
  1076
haftmann@25919
  1077
text {* Less-Than or Equals *}
haftmann@25919
  1078
haftmann@25919
  1079
text {* Reduces @{term "a\<le>b"} to @{term "~ (b<a)"} for ALL numerals. *}
haftmann@25919
  1080
haftmann@25919
  1081
lemmas le_number_of_eq_not_less =
haftmann@25919
  1082
  linorder_not_less [of "number_of w" "number_of v", symmetric, 
haftmann@25919
  1083
  standard]
haftmann@25919
  1084
haftmann@25919
  1085
lemma le_number_of_eq:
haftmann@25919
  1086
    "((number_of x::'a::{ordered_idom,number_ring}) \<le> number_of y)
haftmann@25919
  1087
     = (~ (neg (number_of (y + uminus x) :: 'a)))"
haftmann@25919
  1088
by (simp add: le_number_of_eq_not_less less_number_of_eq_neg)
haftmann@25919
  1089
haftmann@25919
  1090
haftmann@25919
  1091
text {* Absolute value (@{term abs}) *}
haftmann@25919
  1092
haftmann@25919
  1093
lemma abs_number_of:
haftmann@25919
  1094
  "abs(number_of x::'a::{ordered_idom,number_ring}) =
haftmann@25919
  1095
   (if number_of x < (0::'a) then -number_of x else number_of x)"
haftmann@25919
  1096
  by (simp add: abs_if)
haftmann@25919
  1097
haftmann@25919
  1098
haftmann@25919
  1099
text {* Re-orientation of the equation nnn=x *}
haftmann@25919
  1100
haftmann@25919
  1101
lemma number_of_reorient:
haftmann@25919
  1102
  "(number_of w = x) = (x = number_of w)"
haftmann@25919
  1103
  by auto
haftmann@25919
  1104
haftmann@25919
  1105
haftmann@25919
  1106
subsection {* Simplification of arithmetic operations on integer constants. *}
haftmann@25919
  1107
haftmann@25919
  1108
lemmas arith_extra_simps [standard, simp] =
haftmann@25919
  1109
  number_of_add [symmetric]
haftmann@25919
  1110
  number_of_minus [symmetric] numeral_m1_eq_minus_1 [symmetric]
haftmann@25919
  1111
  number_of_mult [symmetric]
haftmann@25919
  1112
  diff_number_of_eq abs_number_of 
haftmann@25919
  1113
haftmann@25919
  1114
text {*
haftmann@25919
  1115
  For making a minimal simpset, one must include these default simprules.
haftmann@25919
  1116
  Also include @{text simp_thms}.
haftmann@25919
  1117
*}
haftmann@25919
  1118
haftmann@25919
  1119
lemmas arith_simps = 
huffman@26075
  1120
  normalize_bin_simps pred_bin_simps succ_bin_simps
huffman@26075
  1121
  add_bin_simps minus_bin_simps mult_bin_simps
haftmann@25919
  1122
  abs_zero abs_one arith_extra_simps
haftmann@25919
  1123
haftmann@25919
  1124
text {* Simplification of relational operations *}
haftmann@25919
  1125
haftmann@25919
  1126
lemmas rel_simps [simp] = 
haftmann@25919
  1127
  eq_number_of_eq iszero_0 nonzero_number_of_Min
huffman@26086
  1128
  iszero_number_of_Bit0 iszero_number_of_Bit1
haftmann@25919
  1129
  less_number_of_eq_neg
haftmann@25919
  1130
  not_neg_number_of_Pls not_neg_0 not_neg_1 not_iszero_1
huffman@26086
  1131
  neg_number_of_Min neg_number_of_Bit0 neg_number_of_Bit1
haftmann@25919
  1132
  le_number_of_eq
haftmann@25919
  1133
(* iszero_number_of_Pls would never be used
haftmann@25919
  1134
   because its lhs simplifies to "iszero 0" *)
haftmann@25919
  1135
haftmann@25919
  1136
haftmann@25919
  1137
subsection {* Simplification of arithmetic when nested to the right. *}
haftmann@25919
  1138
haftmann@25919
  1139
lemma add_number_of_left [simp]:
haftmann@25919
  1140
  "number_of v + (number_of w + z) =
haftmann@25919
  1141
   (number_of(v + w) + z::'a::number_ring)"
haftmann@25919
  1142
  by (simp add: add_assoc [symmetric])
haftmann@25919
  1143
haftmann@25919
  1144
lemma mult_number_of_left [simp]:
haftmann@25919
  1145
  "number_of v * (number_of w * z) =
haftmann@25919
  1146
   (number_of(v * w) * z::'a::number_ring)"
haftmann@25919
  1147
  by (simp add: mult_assoc [symmetric])
haftmann@25919
  1148
haftmann@25919
  1149
lemma add_number_of_diff1:
haftmann@25919
  1150
  "number_of v + (number_of w - c) = 
haftmann@25919
  1151
  number_of(v + w) - (c::'a::number_ring)"
haftmann@25919
  1152
  by (simp add: diff_minus add_number_of_left)
haftmann@25919
  1153
haftmann@25919
  1154
lemma add_number_of_diff2 [simp]:
haftmann@25919
  1155
  "number_of v + (c - number_of w) =
haftmann@25919
  1156
   number_of (v + uminus w) + (c::'a::number_ring)"
haftmann@25919
  1157
apply (subst diff_number_of_eq [symmetric])
haftmann@25919
  1158
apply (simp only: compare_rls)
haftmann@25919
  1159
done
haftmann@25919
  1160
haftmann@25919
  1161
haftmann@25919
  1162
subsection {* The Set of Integers *}
haftmann@25919
  1163
haftmann@25919
  1164
context ring_1
haftmann@25919
  1165
begin
haftmann@25919
  1166
haftmann@25919
  1167
definition
haftmann@25919
  1168
  Ints  :: "'a set"
haftmann@25919
  1169
where
haftmann@27106
  1170
  [code func del]: "Ints = range of_int"
haftmann@25919
  1171
haftmann@25919
  1172
end
haftmann@25919
  1173
haftmann@25919
  1174
notation (xsymbols)
haftmann@25919
  1175
  Ints  ("\<int>")
haftmann@25919
  1176
haftmann@25919
  1177
context ring_1
haftmann@25919
  1178
begin
haftmann@25919
  1179
haftmann@25919
  1180
lemma Ints_0 [simp]: "0 \<in> \<int>"
haftmann@25919
  1181
apply (simp add: Ints_def)
haftmann@25919
  1182
apply (rule range_eqI)
haftmann@25919
  1183
apply (rule of_int_0 [symmetric])
haftmann@25919
  1184
done
haftmann@25919
  1185
haftmann@25919
  1186
lemma Ints_1 [simp]: "1 \<in> \<int>"
haftmann@25919
  1187
apply (simp add: Ints_def)
haftmann@25919
  1188
apply (rule range_eqI)
haftmann@25919
  1189
apply (rule of_int_1 [symmetric])
haftmann@25919
  1190
done
haftmann@25919
  1191
haftmann@25919
  1192
lemma Ints_add [simp]: "a \<in> \<int> \<Longrightarrow> b \<in> \<int> \<Longrightarrow> a + b \<in> \<int>"
haftmann@25919
  1193
apply (auto simp add: Ints_def)
haftmann@25919
  1194
apply (rule range_eqI)
haftmann@25919
  1195
apply (rule of_int_add [symmetric])
haftmann@25919
  1196
done
haftmann@25919
  1197
haftmann@25919
  1198
lemma Ints_minus [simp]: "a \<in> \<int> \<Longrightarrow> -a \<in> \<int>"
haftmann@25919
  1199
apply (auto simp add: Ints_def)
haftmann@25919
  1200
apply (rule range_eqI)
haftmann@25919
  1201
apply (rule of_int_minus [symmetric])
haftmann@25919
  1202
done
haftmann@25919
  1203
haftmann@25919
  1204
lemma Ints_mult [simp]: "a \<in> \<int> \<Longrightarrow> b \<in> \<int> \<Longrightarrow> a * b \<in> \<int>"
haftmann@25919
  1205
apply (auto simp add: Ints_def)
haftmann@25919
  1206
apply (rule range_eqI)
haftmann@25919
  1207
apply (rule of_int_mult [symmetric])
haftmann@25919
  1208
done
haftmann@25919
  1209
haftmann@25919
  1210
lemma Ints_cases [cases set: Ints]:
haftmann@25919
  1211
  assumes "q \<in> \<int>"
haftmann@25919
  1212
  obtains (of_int) z where "q = of_int z"
haftmann@25919
  1213
  unfolding Ints_def
haftmann@25919
  1214
proof -
haftmann@25919
  1215
  from `q \<in> \<int>` have "q \<in> range of_int" unfolding Ints_def .
haftmann@25919
  1216
  then obtain z where "q = of_int z" ..
haftmann@25919
  1217
  then show thesis ..
haftmann@25919
  1218
qed
haftmann@25919
  1219
haftmann@25919
  1220
lemma Ints_induct [case_names of_int, induct set: Ints]:
haftmann@25919
  1221
  "q \<in> \<int> \<Longrightarrow> (\<And>z. P (of_int z)) \<Longrightarrow> P q"
haftmann@25919
  1222
  by (rule Ints_cases) auto
haftmann@25919
  1223
haftmann@25919
  1224
end
haftmann@25919
  1225
haftmann@25919
  1226
lemma Ints_diff [simp]: "a \<in> \<int> \<Longrightarrow> b \<in> \<int> \<Longrightarrow> a-b \<in> \<int>"
haftmann@25919
  1227
apply (auto simp add: Ints_def)
haftmann@25919
  1228
apply (rule range_eqI)
haftmann@25919
  1229
apply (rule of_int_diff [symmetric])
haftmann@25919
  1230
done
haftmann@25919
  1231
haftmann@25919
  1232
text {* The premise involving @{term Ints} prevents @{term "a = 1/2"}. *}
haftmann@25919
  1233
haftmann@25919
  1234
lemma Ints_double_eq_0_iff:
haftmann@25919
  1235
  assumes in_Ints: "a \<in> Ints"
haftmann@25919
  1236
  shows "(a + a = 0) = (a = (0::'a::ring_char_0))"
haftmann@25919
  1237
proof -
haftmann@25919
  1238
  from in_Ints have "a \<in> range of_int" unfolding Ints_def [symmetric] .
haftmann@25919
  1239
  then obtain z where a: "a = of_int z" ..
haftmann@25919
  1240
  show ?thesis
haftmann@25919
  1241
  proof
haftmann@25919
  1242
    assume "a = 0"
haftmann@25919
  1243
    thus "a + a = 0" by simp
haftmann@25919
  1244
  next
haftmann@25919
  1245
    assume eq: "a + a = 0"
haftmann@25919
  1246
    hence "of_int (z + z) = (of_int 0 :: 'a)" by (simp add: a)
haftmann@25919
  1247
    hence "z + z = 0" by (simp only: of_int_eq_iff)
haftmann@25919
  1248
    hence "z = 0" by (simp only: double_eq_0_iff)
haftmann@25919
  1249
    thus "a = 0" by (simp add: a)
haftmann@25919
  1250
  qed
haftmann@25919
  1251
qed
haftmann@25919
  1252
haftmann@25919
  1253
lemma Ints_odd_nonzero:
haftmann@25919
  1254
  assumes in_Ints: "a \<in> Ints"
haftmann@25919
  1255
  shows "1 + a + a \<noteq> (0::'a::ring_char_0)"
haftmann@25919
  1256
proof -
haftmann@25919
  1257
  from in_Ints have "a \<in> range of_int" unfolding Ints_def [symmetric] .
haftmann@25919
  1258
  then obtain z where a: "a = of_int z" ..
haftmann@25919
  1259
  show ?thesis
haftmann@25919
  1260
  proof
haftmann@25919
  1261
    assume eq: "1 + a + a = 0"
haftmann@25919
  1262
    hence "of_int (1 + z + z) = (of_int 0 :: 'a)" by (simp add: a)
haftmann@25919
  1263
    hence "1 + z + z = 0" by (simp only: of_int_eq_iff)
haftmann@25919
  1264
    with odd_nonzero show False by blast
haftmann@25919
  1265
  qed
haftmann@25919
  1266
qed 
haftmann@25919
  1267
haftmann@25919
  1268
lemma Ints_number_of:
haftmann@25919
  1269
  "(number_of w :: 'a::number_ring) \<in> Ints"
haftmann@25919
  1270
  unfolding number_of_eq Ints_def by simp
haftmann@25919
  1271
haftmann@25919
  1272
lemma Ints_odd_less_0: 
haftmann@25919
  1273
  assumes in_Ints: "a \<in> Ints"
haftmann@25919
  1274
  shows "(1 + a + a < 0) = (a < (0::'a::ordered_idom))";
haftmann@25919
  1275
proof -
haftmann@25919
  1276
  from in_Ints have "a \<in> range of_int" unfolding Ints_def [symmetric] .
haftmann@25919
  1277
  then obtain z where a: "a = of_int z" ..
haftmann@25919
  1278
  hence "((1::'a) + a + a < 0) = (of_int (1 + z + z) < (of_int 0 :: 'a))"
haftmann@25919
  1279
    by (simp add: a)
haftmann@25919
  1280
  also have "... = (z < 0)" by (simp only: of_int_less_iff odd_less_0)
haftmann@25919
  1281
  also have "... = (a < 0)" by (simp add: a)
haftmann@25919
  1282
  finally show ?thesis .
haftmann@25919
  1283
qed
haftmann@25919
  1284
haftmann@25919
  1285
haftmann@25919
  1286
subsection {* @{term setsum} and @{term setprod} *}
haftmann@25919
  1287
haftmann@25919
  1288
text {*By Jeremy Avigad*}
haftmann@25919
  1289
haftmann@25919
  1290
lemma of_nat_setsum: "of_nat (setsum f A) = (\<Sum>x\<in>A. of_nat(f x))"
haftmann@25919
  1291
  apply (cases "finite A")
haftmann@25919
  1292
  apply (erule finite_induct, auto)
haftmann@25919
  1293
  done
haftmann@25919
  1294
haftmann@25919
  1295
lemma of_int_setsum: "of_int (setsum f A) = (\<Sum>x\<in>A. of_int(f x))"
haftmann@25919
  1296
  apply (cases "finite A")
haftmann@25919
  1297
  apply (erule finite_induct, auto)
haftmann@25919
  1298
  done
haftmann@25919
  1299
haftmann@25919
  1300
lemma of_nat_setprod: "of_nat (setprod f A) = (\<Prod>x\<in>A. of_nat(f x))"
haftmann@25919
  1301
  apply (cases "finite A")
haftmann@25919
  1302
  apply (erule finite_induct, auto simp add: of_nat_mult)
haftmann@25919
  1303
  done
haftmann@25919
  1304
haftmann@25919
  1305
lemma of_int_setprod: "of_int (setprod f A) = (\<Prod>x\<in>A. of_int(f x))"
haftmann@25919
  1306
  apply (cases "finite A")
haftmann@25919
  1307
  apply (erule finite_induct, auto)
haftmann@25919
  1308
  done
haftmann@25919
  1309
haftmann@25919
  1310
lemma setprod_nonzero_nat:
haftmann@25919
  1311
    "finite A ==> (\<forall>x \<in> A. f x \<noteq> (0::nat)) ==> setprod f A \<noteq> 0"
haftmann@25919
  1312
  by (rule setprod_nonzero, auto)
haftmann@25919
  1313
haftmann@25919
  1314
lemma setprod_zero_eq_nat:
haftmann@25919
  1315
    "finite A ==> (setprod f A = (0::nat)) = (\<exists>x \<in> A. f x = 0)"
haftmann@25919
  1316
  by (rule setprod_zero_eq, auto)
haftmann@25919
  1317
haftmann@25919
  1318
lemma setprod_nonzero_int:
haftmann@25919
  1319
    "finite A ==> (\<forall>x \<in> A. f x \<noteq> (0::int)) ==> setprod f A \<noteq> 0"
haftmann@25919
  1320
  by (rule setprod_nonzero, auto)
haftmann@25919
  1321
haftmann@25919
  1322
lemma setprod_zero_eq_int:
haftmann@25919
  1323
    "finite A ==> (setprod f A = (0::int)) = (\<exists>x \<in> A. f x = 0)"
haftmann@25919
  1324
  by (rule setprod_zero_eq, auto)
haftmann@25919
  1325
haftmann@25919
  1326
lemmas int_setsum = of_nat_setsum [where 'a=int]
haftmann@25919
  1327
lemmas int_setprod = of_nat_setprod [where 'a=int]
haftmann@25919
  1328
haftmann@25919
  1329
haftmann@25919
  1330
subsection{*Inequality Reasoning for the Arithmetic Simproc*}
haftmann@25919
  1331
haftmann@25919
  1332
lemma add_numeral_0: "Numeral0 + a = (a::'a::number_ring)"
haftmann@25919
  1333
by simp 
haftmann@25919
  1334
haftmann@25919
  1335
lemma add_numeral_0_right: "a + Numeral0 = (a::'a::number_ring)"
haftmann@25919
  1336
by simp
haftmann@25919
  1337
haftmann@25919
  1338
lemma mult_numeral_1: "Numeral1 * a = (a::'a::number_ring)"
haftmann@25919
  1339
by simp 
haftmann@25919
  1340
haftmann@25919
  1341
lemma mult_numeral_1_right: "a * Numeral1 = (a::'a::number_ring)"
haftmann@25919
  1342
by simp
haftmann@25919
  1343
haftmann@25919
  1344
lemma divide_numeral_1: "a / Numeral1 = (a::'a::{number_ring,field})"
haftmann@25919
  1345
by simp
haftmann@25919
  1346
haftmann@25919
  1347
lemma inverse_numeral_1:
haftmann@25919
  1348
  "inverse Numeral1 = (Numeral1::'a::{number_ring,field})"
haftmann@25919
  1349
by simp
haftmann@25919
  1350
haftmann@25919
  1351
text{*Theorem lists for the cancellation simprocs. The use of binary numerals
haftmann@25919
  1352
for 0 and 1 reduces the number of special cases.*}
haftmann@25919
  1353
haftmann@25919
  1354
lemmas add_0s = add_numeral_0 add_numeral_0_right
haftmann@25919
  1355
lemmas mult_1s = mult_numeral_1 mult_numeral_1_right 
haftmann@25919
  1356
                 mult_minus1 mult_minus1_right
haftmann@25919
  1357
haftmann@25919
  1358
haftmann@25919
  1359
subsection{*Special Arithmetic Rules for Abstract 0 and 1*}
haftmann@25919
  1360
haftmann@25919
  1361
text{*Arithmetic computations are defined for binary literals, which leaves 0
haftmann@25919
  1362
and 1 as special cases. Addition already has rules for 0, but not 1.
haftmann@25919
  1363
Multiplication and unary minus already have rules for both 0 and 1.*}
haftmann@25919
  1364
haftmann@25919
  1365
haftmann@25919
  1366
lemma binop_eq: "[|f x y = g x y; x = x'; y = y'|] ==> f x' y' = g x' y'"
haftmann@25919
  1367
by simp
haftmann@25919
  1368
haftmann@25919
  1369
haftmann@25919
  1370
lemmas add_number_of_eq = number_of_add [symmetric]
haftmann@25919
  1371
haftmann@25919
  1372
text{*Allow 1 on either or both sides*}
haftmann@25919
  1373
lemma one_add_one_is_two: "1 + 1 = (2::'a::number_ring)"
haftmann@25919
  1374
by (simp del: numeral_1_eq_1 add: numeral_1_eq_1 [symmetric] add_number_of_eq)
haftmann@25919
  1375
haftmann@25919
  1376
lemmas add_special =
haftmann@25919
  1377
    one_add_one_is_two
haftmann@25919
  1378
    binop_eq [of "op +", OF add_number_of_eq numeral_1_eq_1 refl, standard]
haftmann@25919
  1379
    binop_eq [of "op +", OF add_number_of_eq refl numeral_1_eq_1, standard]
haftmann@25919
  1380
haftmann@25919
  1381
text{*Allow 1 on either or both sides (1-1 already simplifies to 0)*}
haftmann@25919
  1382
lemmas diff_special =
haftmann@25919
  1383
    binop_eq [of "op -", OF diff_number_of_eq numeral_1_eq_1 refl, standard]
haftmann@25919
  1384
    binop_eq [of "op -", OF diff_number_of_eq refl numeral_1_eq_1, standard]
haftmann@25919
  1385
haftmann@25919
  1386
text{*Allow 0 or 1 on either side with a binary numeral on the other*}
haftmann@25919
  1387
lemmas eq_special =
haftmann@25919
  1388
    binop_eq [of "op =", OF eq_number_of_eq numeral_0_eq_0 refl, standard]
haftmann@25919
  1389
    binop_eq [of "op =", OF eq_number_of_eq numeral_1_eq_1 refl, standard]
haftmann@25919
  1390
    binop_eq [of "op =", OF eq_number_of_eq refl numeral_0_eq_0, standard]
haftmann@25919
  1391
    binop_eq [of "op =", OF eq_number_of_eq refl numeral_1_eq_1, standard]
haftmann@25919
  1392
haftmann@25919
  1393
text{*Allow 0 or 1 on either side with a binary numeral on the other*}
haftmann@25919
  1394
lemmas less_special =
haftmann@25919
  1395
  binop_eq [of "op <", OF less_number_of_eq_neg numeral_0_eq_0 refl, standard]
haftmann@25919
  1396
  binop_eq [of "op <", OF less_number_of_eq_neg numeral_1_eq_1 refl, standard]
haftmann@25919
  1397
  binop_eq [of "op <", OF less_number_of_eq_neg refl numeral_0_eq_0, standard]
haftmann@25919
  1398
  binop_eq [of "op <", OF less_number_of_eq_neg refl numeral_1_eq_1, standard]
haftmann@25919
  1399
haftmann@25919
  1400
text{*Allow 0 or 1 on either side with a binary numeral on the other*}
haftmann@25919
  1401
lemmas le_special =
haftmann@25919
  1402
    binop_eq [of "op \<le>", OF le_number_of_eq numeral_0_eq_0 refl, standard]
haftmann@25919
  1403
    binop_eq [of "op \<le>", OF le_number_of_eq numeral_1_eq_1 refl, standard]
haftmann@25919
  1404
    binop_eq [of "op \<le>", OF le_number_of_eq refl numeral_0_eq_0, standard]
haftmann@25919
  1405
    binop_eq [of "op \<le>", OF le_number_of_eq refl numeral_1_eq_1, standard]
haftmann@25919
  1406
haftmann@25919
  1407
lemmas arith_special[simp] = 
haftmann@25919
  1408
       add_special diff_special eq_special less_special le_special
haftmann@25919
  1409
haftmann@25919
  1410
haftmann@25919
  1411
lemma min_max_01: "min (0::int) 1 = 0 & min (1::int) 0 = 0 &
haftmann@25919
  1412
                   max (0::int) 1 = 1 & max (1::int) 0 = 1"
haftmann@25919
  1413
by(simp add:min_def max_def)
haftmann@25919
  1414
haftmann@25919
  1415
lemmas min_max_special[simp] =
haftmann@25919
  1416
 min_max_01
haftmann@25919
  1417
 max_def[of "0::int" "number_of v", standard, simp]
haftmann@25919
  1418
 min_def[of "0::int" "number_of v", standard, simp]
haftmann@25919
  1419
 max_def[of "number_of u" "0::int", standard, simp]
haftmann@25919
  1420
 min_def[of "number_of u" "0::int", standard, simp]
haftmann@25919
  1421
 max_def[of "1::int" "number_of v", standard, simp]
haftmann@25919
  1422
 min_def[of "1::int" "number_of v", standard, simp]
haftmann@25919
  1423
 max_def[of "number_of u" "1::int", standard, simp]
haftmann@25919
  1424
 min_def[of "number_of u" "1::int", standard, simp]
haftmann@25919
  1425
haftmann@25919
  1426
text {* Legacy theorems *}
haftmann@25919
  1427
haftmann@25919
  1428
lemmas zle_int = of_nat_le_iff [where 'a=int]
haftmann@25919
  1429
lemmas int_int_eq = of_nat_eq_iff [where 'a=int]
haftmann@25919
  1430
haftmann@25919
  1431
use "~~/src/Provers/Arith/assoc_fold.ML"
haftmann@25919
  1432
use "int_arith1.ML"
haftmann@25919
  1433
declaration {* K int_arith_setup *}
haftmann@25919
  1434
haftmann@25919
  1435
haftmann@25919
  1436
subsection{*Lemmas About Small Numerals*}
haftmann@25919
  1437
haftmann@25919
  1438
lemma of_int_m1 [simp]: "of_int -1 = (-1 :: 'a :: number_ring)"
haftmann@25919
  1439
proof -
haftmann@25919
  1440
  have "(of_int -1 :: 'a) = of_int (- 1)" by simp
haftmann@25919
  1441
  also have "... = - of_int 1" by (simp only: of_int_minus)
haftmann@25919
  1442
  also have "... = -1" by simp
haftmann@25919
  1443
  finally show ?thesis .
haftmann@25919
  1444
qed
haftmann@25919
  1445
haftmann@25919
  1446
lemma abs_minus_one [simp]: "abs (-1) = (1::'a::{ordered_idom,number_ring})"
haftmann@25919
  1447
by (simp add: abs_if)
haftmann@25919
  1448
haftmann@25919
  1449
lemma abs_power_minus_one [simp]:
haftmann@25919
  1450
     "abs(-1 ^ n) = (1::'a::{ordered_idom,number_ring,recpower})"
haftmann@25919
  1451
by (simp add: power_abs)
haftmann@25919
  1452
haftmann@25919
  1453
lemma of_int_number_of_eq:
haftmann@25919
  1454
     "of_int (number_of v) = (number_of v :: 'a :: number_ring)"
haftmann@25919
  1455
by (simp add: number_of_eq) 
haftmann@25919
  1456
haftmann@25919
  1457
text{*Lemmas for specialist use, NOT as default simprules*}
haftmann@25919
  1458
lemma mult_2: "2 * z = (z+z::'a::number_ring)"
haftmann@25919
  1459
proof -
haftmann@25919
  1460
  have "2*z = (1 + 1)*z" by simp
haftmann@25919
  1461
  also have "... = z+z" by (simp add: left_distrib)
haftmann@25919
  1462
  finally show ?thesis .
haftmann@25919
  1463
qed
haftmann@25919
  1464
haftmann@25919
  1465
lemma mult_2_right: "z * 2 = (z+z::'a::number_ring)"
haftmann@25919
  1466
by (subst mult_commute, rule mult_2)
haftmann@25919
  1467
haftmann@25919
  1468
haftmann@25919
  1469
subsection{*More Inequality Reasoning*}
haftmann@25919
  1470
haftmann@25919
  1471
lemma zless_add1_eq: "(w < z + (1::int)) = (w<z | w=z)"
haftmann@25919
  1472
by arith
haftmann@25919
  1473
haftmann@25919
  1474
lemma add1_zle_eq: "(w + (1::int) \<le> z) = (w<z)"
haftmann@25919
  1475
by arith
haftmann@25919
  1476
haftmann@25919
  1477
lemma zle_diff1_eq [simp]: "(w \<le> z - (1::int)) = (w<z)"
haftmann@25919
  1478
by arith
haftmann@25919
  1479
haftmann@25919
  1480
lemma zle_add1_eq_le [simp]: "(w < z + (1::int)) = (w\<le>z)"
haftmann@25919
  1481
by arith
haftmann@25919
  1482
haftmann@25919
  1483
lemma int_one_le_iff_zero_less: "((1::int) \<le> z) = (0 < z)"
haftmann@25919
  1484
by arith
haftmann@25919
  1485
haftmann@25919
  1486
haftmann@25919
  1487
subsection{*The Functions @{term nat} and @{term int}*}
haftmann@25919
  1488
haftmann@25919
  1489
text{*Simplify the terms @{term "int 0"}, @{term "int(Suc 0)"} and
haftmann@25919
  1490
  @{term "w + - z"}*}
haftmann@25919
  1491
declare Zero_int_def [symmetric, simp]
haftmann@25919
  1492
declare One_int_def [symmetric, simp]
haftmann@25919
  1493
haftmann@25919
  1494
lemmas diff_int_def_symmetric = diff_int_def [symmetric, simp]
haftmann@25919
  1495
haftmann@25919
  1496
lemma nat_0: "nat 0 = 0"
haftmann@25919
  1497
by (simp add: nat_eq_iff)
haftmann@25919
  1498
haftmann@25919
  1499
lemma nat_1: "nat 1 = Suc 0"
haftmann@25919
  1500
by (subst nat_eq_iff, simp)
haftmann@25919
  1501
haftmann@25919
  1502
lemma nat_2: "nat 2 = Suc (Suc 0)"
haftmann@25919
  1503
by (subst nat_eq_iff, simp)
haftmann@25919
  1504
haftmann@25919
  1505
lemma one_less_nat_eq [simp]: "(Suc 0 < nat z) = (1 < z)"
haftmann@25919
  1506
apply (insert zless_nat_conj [of 1 z])
haftmann@25919
  1507
apply (auto simp add: nat_1)
haftmann@25919
  1508
done
haftmann@25919
  1509
haftmann@25919
  1510
text{*This simplifies expressions of the form @{term "int n = z"} where
haftmann@25919
  1511
      z is an integer literal.*}
haftmann@25919
  1512
lemmas int_eq_iff_number_of [simp] = int_eq_iff [of _ "number_of v", standard]
haftmann@25919
  1513
haftmann@25919
  1514
lemma split_nat [arith_split]:
haftmann@25919
  1515
  "P(nat(i::int)) = ((\<forall>n. i = of_nat n \<longrightarrow> P n) & (i < 0 \<longrightarrow> P 0))"
haftmann@25919
  1516
  (is "?P = (?L & ?R)")
haftmann@25919
  1517
proof (cases "i < 0")
haftmann@25919
  1518
  case True thus ?thesis by auto
haftmann@25919
  1519
next
haftmann@25919
  1520
  case False
haftmann@25919
  1521
  have "?P = ?L"
haftmann@25919
  1522
  proof
haftmann@25919
  1523
    assume ?P thus ?L using False by clarsimp
haftmann@25919
  1524
  next
haftmann@25919
  1525
    assume ?L thus ?P using False by simp
haftmann@25919
  1526
  qed
haftmann@25919
  1527
  with False show ?thesis by simp
haftmann@25919
  1528
qed
haftmann@25919
  1529
haftmann@25919
  1530
context ring_1
haftmann@25919
  1531
begin
haftmann@25919
  1532
haftmann@25919
  1533
lemma of_int_of_nat:
haftmann@25919
  1534
  "of_int k = (if k < 0 then - of_nat (nat (- k)) else of_nat (nat k))"
haftmann@25919
  1535
proof (cases "k < 0")
haftmann@25919
  1536
  case True then have "0 \<le> - k" by simp
haftmann@25919
  1537
  then have "of_nat (nat (- k)) = of_int (- k)" by (rule of_nat_nat)
haftmann@25919
  1538
  with True show ?thesis by simp
haftmann@25919
  1539
next
haftmann@25919
  1540
  case False then show ?thesis by (simp add: not_less of_nat_nat)
haftmann@25919
  1541
qed
haftmann@25919
  1542
haftmann@25919
  1543
end
haftmann@25919
  1544
haftmann@25919
  1545
lemma nat_mult_distrib:
haftmann@25919
  1546
  fixes z z' :: int
haftmann@25919
  1547
  assumes "0 \<le> z"
haftmann@25919
  1548
  shows "nat (z * z') = nat z * nat z'"
haftmann@25919
  1549
proof (cases "0 \<le> z'")
haftmann@25919
  1550
  case False with assms have "z * z' \<le> 0"
haftmann@25919
  1551
    by (simp add: not_le mult_le_0_iff)
haftmann@25919
  1552
  then have "nat (z * z') = 0" by simp
haftmann@25919
  1553
  moreover from False have "nat z' = 0" by simp
haftmann@25919
  1554
  ultimately show ?thesis by simp
haftmann@25919
  1555
next
haftmann@25919
  1556
  case True with assms have ge_0: "z * z' \<ge> 0" by (simp add: zero_le_mult_iff)
haftmann@25919
  1557
  show ?thesis
haftmann@25919
  1558
    by (rule injD [of "of_nat :: nat \<Rightarrow> int", OF inj_of_nat])
haftmann@25919
  1559
      (simp only: of_nat_mult of_nat_nat [OF True]
haftmann@25919
  1560
         of_nat_nat [OF assms] of_nat_nat [OF ge_0], simp)
haftmann@25919
  1561
qed
haftmann@25919
  1562
haftmann@25919
  1563
lemma nat_mult_distrib_neg: "z \<le> (0::int) ==> nat(z*z') = nat(-z) * nat(-z')"
haftmann@25919
  1564
apply (rule trans)
haftmann@25919
  1565
apply (rule_tac [2] nat_mult_distrib, auto)
haftmann@25919
  1566
done
haftmann@25919
  1567
haftmann@25919
  1568
lemma nat_abs_mult_distrib: "nat (abs (w * z)) = nat (abs w) * nat (abs z)"
haftmann@25919
  1569
apply (cases "z=0 | w=0")
haftmann@25919
  1570
apply (auto simp add: abs_if nat_mult_distrib [symmetric] 
haftmann@25919
  1571
                      nat_mult_distrib_neg [symmetric] mult_less_0_iff)
haftmann@25919
  1572
done
haftmann@25919
  1573
haftmann@25919
  1574
haftmann@25919
  1575
subsection "Induction principles for int"
haftmann@25919
  1576
haftmann@25919
  1577
text{*Well-founded segments of the integers*}
haftmann@25919
  1578
haftmann@25919
  1579
definition
haftmann@25919
  1580
  int_ge_less_than  ::  "int => (int * int) set"
haftmann@25919
  1581
where
haftmann@25919
  1582
  "int_ge_less_than d = {(z',z). d \<le> z' & z' < z}"
haftmann@25919
  1583
haftmann@25919
  1584
theorem wf_int_ge_less_than: "wf (int_ge_less_than d)"
haftmann@25919
  1585
proof -
haftmann@25919
  1586
  have "int_ge_less_than d \<subseteq> measure (%z. nat (z-d))"
haftmann@25919
  1587
    by (auto simp add: int_ge_less_than_def)
haftmann@25919
  1588
  thus ?thesis 
haftmann@25919
  1589
    by (rule wf_subset [OF wf_measure]) 
haftmann@25919
  1590
qed
haftmann@25919
  1591
haftmann@25919
  1592
text{*This variant looks odd, but is typical of the relations suggested
haftmann@25919
  1593
by RankFinder.*}
haftmann@25919
  1594
haftmann@25919
  1595
definition
haftmann@25919
  1596
  int_ge_less_than2 ::  "int => (int * int) set"
haftmann@25919
  1597
where
haftmann@25919
  1598
  "int_ge_less_than2 d = {(z',z). d \<le> z & z' < z}"
haftmann@25919
  1599
haftmann@25919
  1600
theorem wf_int_ge_less_than2: "wf (int_ge_less_than2 d)"
haftmann@25919
  1601
proof -
haftmann@25919
  1602
  have "int_ge_less_than2 d \<subseteq> measure (%z. nat (1+z-d))" 
haftmann@25919
  1603
    by (auto simp add: int_ge_less_than2_def)
haftmann@25919
  1604
  thus ?thesis 
haftmann@25919
  1605
    by (rule wf_subset [OF wf_measure]) 
haftmann@25919
  1606
qed
haftmann@25919
  1607
haftmann@25919
  1608
abbreviation
haftmann@25919
  1609
  int :: "nat \<Rightarrow> int"
haftmann@25919
  1610
where
haftmann@25919
  1611
  "int \<equiv> of_nat"
haftmann@25919
  1612
haftmann@25919
  1613
(* `set:int': dummy construction *)
haftmann@25919
  1614
theorem int_ge_induct [case_names base step, induct set: int]:
haftmann@25919
  1615
  fixes i :: int
haftmann@25919
  1616
  assumes ge: "k \<le> i" and
haftmann@25919
  1617
    base: "P k" and
haftmann@25919
  1618
    step: "\<And>i. k \<le> i \<Longrightarrow> P i \<Longrightarrow> P (i + 1)"
haftmann@25919
  1619
  shows "P i"
haftmann@25919
  1620
proof -
haftmann@25919
  1621
  { fix n have "\<And>i::int. n = nat(i-k) \<Longrightarrow> k \<le> i \<Longrightarrow> P i"
haftmann@25919
  1622
    proof (induct n)
haftmann@25919
  1623
      case 0
haftmann@25919
  1624
      hence "i = k" by arith
haftmann@25919
  1625
      thus "P i" using base by simp
haftmann@25919
  1626
    next
haftmann@25919
  1627
      case (Suc n)
haftmann@25919
  1628
      then have "n = nat((i - 1) - k)" by arith
haftmann@25919
  1629
      moreover
haftmann@25919
  1630
      have ki1: "k \<le> i - 1" using Suc.prems by arith
haftmann@25919
  1631
      ultimately
haftmann@25919
  1632
      have "P(i - 1)" by(rule Suc.hyps)
haftmann@25919
  1633
      from step[OF ki1 this] show ?case by simp
haftmann@25919
  1634
    qed
haftmann@25919
  1635
  }
haftmann@25919
  1636
  with ge show ?thesis by fast
haftmann@25919
  1637
qed
haftmann@25919
  1638
haftmann@25928
  1639
(* `set:int': dummy construction *)
haftmann@25928
  1640
theorem int_gr_induct [case_names base step, induct set: int]:
haftmann@25919
  1641
  assumes gr: "k < (i::int)" and
haftmann@25919
  1642
        base: "P(k+1)" and
haftmann@25919
  1643
        step: "\<And>i. \<lbrakk>k < i; P i\<rbrakk> \<Longrightarrow> P(i+1)"
haftmann@25919
  1644
  shows "P i"
haftmann@25919
  1645
apply(rule int_ge_induct[of "k + 1"])
haftmann@25919
  1646
  using gr apply arith
haftmann@25919
  1647
 apply(rule base)
haftmann@25919
  1648
apply (rule step, simp+)
haftmann@25919
  1649
done
haftmann@25919
  1650
haftmann@25919
  1651
theorem int_le_induct[consumes 1,case_names base step]:
haftmann@25919
  1652
  assumes le: "i \<le> (k::int)" and
haftmann@25919
  1653
        base: "P(k)" and
haftmann@25919
  1654
        step: "\<And>i. \<lbrakk>i \<le> k; P i\<rbrakk> \<Longrightarrow> P(i - 1)"
haftmann@25919
  1655
  shows "P i"
haftmann@25919
  1656
proof -
haftmann@25919
  1657
  { fix n have "\<And>i::int. n = nat(k-i) \<Longrightarrow> i \<le> k \<Longrightarrow> P i"
haftmann@25919
  1658
    proof (induct n)
haftmann@25919
  1659
      case 0
haftmann@25919
  1660
      hence "i = k" by arith
haftmann@25919
  1661
      thus "P i" using base by simp
haftmann@25919
  1662
    next
haftmann@25919
  1663
      case (Suc n)
haftmann@25919
  1664
      hence "n = nat(k - (i+1))" by arith
haftmann@25919
  1665
      moreover
haftmann@25919
  1666
      have ki1: "i + 1 \<le> k" using Suc.prems by arith
haftmann@25919
  1667
      ultimately
haftmann@25919
  1668
      have "P(i+1)" by(rule Suc.hyps)
haftmann@25919
  1669
      from step[OF ki1 this] show ?case by simp
haftmann@25919
  1670
    qed
haftmann@25919
  1671
  }
haftmann@25919
  1672
  with le show ?thesis by fast
haftmann@25919
  1673
qed
haftmann@25919
  1674
haftmann@25919
  1675
theorem int_less_induct [consumes 1,case_names base step]:
haftmann@25919
  1676
  assumes less: "(i::int) < k" and
haftmann@25919
  1677
        base: "P(k - 1)" and
haftmann@25919
  1678
        step: "\<And>i. \<lbrakk>i < k; P i\<rbrakk> \<Longrightarrow> P(i - 1)"
haftmann@25919
  1679
  shows "P i"
haftmann@25919
  1680
apply(rule int_le_induct[of _ "k - 1"])
haftmann@25919
  1681
  using less apply arith
haftmann@25919
  1682
 apply(rule base)
haftmann@25919
  1683
apply (rule step, simp+)
haftmann@25919
  1684
done
haftmann@25919
  1685
haftmann@25919
  1686
subsection{*Intermediate value theorems*}
haftmann@25919
  1687
haftmann@25919
  1688
lemma int_val_lemma:
haftmann@25919
  1689
     "(\<forall>i<n::nat. abs(f(i+1) - f i) \<le> 1) -->  
haftmann@25919
  1690
      f 0 \<le> k --> k \<le> f n --> (\<exists>i \<le> n. f i = (k::int))"
haftmann@27106
  1691
apply (induct n, simp)
haftmann@25919
  1692
apply (intro strip)
haftmann@25919
  1693
apply (erule impE, simp)
haftmann@25919
  1694
apply (erule_tac x = n in allE, simp)
haftmann@25919
  1695
apply (case_tac "k = f (n+1) ")
haftmann@27106
  1696
apply force
haftmann@25919
  1697
apply (erule impE)
haftmann@25919
  1698
 apply (simp add: abs_if split add: split_if_asm)
haftmann@25919
  1699
apply (blast intro: le_SucI)
haftmann@25919
  1700
done
haftmann@25919
  1701
haftmann@25919
  1702
lemmas nat0_intermed_int_val = int_val_lemma [rule_format (no_asm)]
haftmann@25919
  1703
haftmann@25919
  1704
lemma nat_intermed_int_val:
haftmann@25919
  1705
     "[| \<forall>i. m \<le> i & i < n --> abs(f(i + 1::nat) - f i) \<le> 1; m < n;  
haftmann@25919
  1706
         f m \<le> k; k \<le> f n |] ==> ? i. m \<le> i & i \<le> n & f i = (k::int)"
haftmann@25919
  1707
apply (cut_tac n = "n-m" and f = "%i. f (i+m) " and k = k 
haftmann@25919
  1708
       in int_val_lemma)
haftmann@25919
  1709
apply simp
haftmann@25919
  1710
apply (erule exE)
haftmann@25919
  1711
apply (rule_tac x = "i+m" in exI, arith)
haftmann@25919
  1712
done
haftmann@25919
  1713
haftmann@25919
  1714
haftmann@25919
  1715
subsection{*Products and 1, by T. M. Rasmussen*}
haftmann@25919
  1716
haftmann@25919
  1717
lemma zabs_less_one_iff [simp]: "(\<bar>z\<bar> < 1) = (z = (0::int))"
haftmann@25919
  1718
by arith
haftmann@25919
  1719
haftmann@25919
  1720
lemma abs_zmult_eq_1: "(\<bar>m * n\<bar> = 1) ==> \<bar>m\<bar> = (1::int)"
haftmann@25919
  1721
apply (cases "\<bar>n\<bar>=1") 
haftmann@25919
  1722
apply (simp add: abs_mult) 
haftmann@25919
  1723
apply (rule ccontr) 
haftmann@25919
  1724
apply (auto simp add: linorder_neq_iff abs_mult) 
haftmann@25919
  1725
apply (subgoal_tac "2 \<le> \<bar>m\<bar> & 2 \<le> \<bar>n\<bar>")
haftmann@25919
  1726
 prefer 2 apply arith 
haftmann@25919
  1727
apply (subgoal_tac "2*2 \<le> \<bar>m\<bar> * \<bar>n\<bar>", simp) 
haftmann@25919
  1728
apply (rule mult_mono, auto) 
haftmann@25919
  1729
done
haftmann@25919
  1730
haftmann@25919
  1731
lemma pos_zmult_eq_1_iff_lemma: "(m * n = 1) ==> m = (1::int) | m = -1"
haftmann@25919
  1732
by (insert abs_zmult_eq_1 [of m n], arith)
haftmann@25919
  1733
haftmann@25919
  1734
lemma pos_zmult_eq_1_iff: "0 < (m::int) ==> (m * n = 1) = (m = 1 & n = 1)"
haftmann@25919
  1735
apply (auto dest: pos_zmult_eq_1_iff_lemma) 
haftmann@25919
  1736
apply (simp add: mult_commute [of m]) 
haftmann@25919
  1737
apply (frule pos_zmult_eq_1_iff_lemma, auto) 
haftmann@25919
  1738
done
haftmann@25919
  1739
haftmann@25919
  1740
lemma zmult_eq_1_iff: "(m*n = (1::int)) = ((m = 1 & n = 1) | (m = -1 & n = -1))"
haftmann@25919
  1741
apply (rule iffI) 
haftmann@25919
  1742
 apply (frule pos_zmult_eq_1_iff_lemma)
haftmann@25919
  1743
 apply (simp add: mult_commute [of m]) 
haftmann@25919
  1744
 apply (frule pos_zmult_eq_1_iff_lemma, auto) 
haftmann@25919
  1745
done
haftmann@25919
  1746
haftmann@25919
  1747
(* Could be simplified but Presburger only becomes available too late *)
haftmann@25919
  1748
lemma infinite_UNIV_int: "~finite(UNIV::int set)"
haftmann@25919
  1749
proof
haftmann@25919
  1750
  assume "finite(UNIV::int set)"
haftmann@25919
  1751
  moreover have "~(EX i::int. 2*i = 1)"
haftmann@25919
  1752
    by (auto simp: pos_zmult_eq_1_iff)
haftmann@25919
  1753
  ultimately show False using finite_UNIV_inj_surj[of "%n::int. n+n"]
haftmann@25919
  1754
    by (simp add:inj_on_def surj_def) (blast intro:sym)
haftmann@25919
  1755
qed
haftmann@25919
  1756
haftmann@25919
  1757
haftmann@25961
  1758
subsection{*Integer Powers*} 
haftmann@25961
  1759
haftmann@25961
  1760
instantiation int :: recpower
haftmann@25961
  1761
begin
haftmann@25961
  1762
haftmann@25961
  1763
primrec power_int where
haftmann@25961
  1764
  "p ^ 0 = (1\<Colon>int)"
haftmann@25961
  1765
  | "p ^ (Suc n) = (p\<Colon>int) * (p ^ n)"
haftmann@25961
  1766
haftmann@25961
  1767
instance proof
haftmann@25961
  1768
  fix z :: int
haftmann@25961
  1769
  fix n :: nat
haftmann@25961
  1770
  show "z ^ 0 = 1" by simp
haftmann@25961
  1771
  show "z ^ Suc n = z * (z ^ n)" by simp
haftmann@25961
  1772
qed
haftmann@25961
  1773
haftmann@25961
  1774
end
haftmann@25961
  1775
haftmann@25961
  1776
lemma zpower_zadd_distrib: "x ^ (y + z) = ((x ^ y) * (x ^ z)::int)"
haftmann@25961
  1777
  by (rule Power.power_add)
haftmann@25961
  1778
haftmann@25961
  1779
lemma zpower_zpower: "(x ^ y) ^ z = (x ^ (y * z)::int)"
haftmann@25961
  1780
  by (rule Power.power_mult [symmetric])
haftmann@25961
  1781
haftmann@25961
  1782
lemma zero_less_zpower_abs_iff [simp]:
haftmann@25961
  1783
  "(0 < abs x ^ n) \<longleftrightarrow> (x \<noteq> (0::int) | n = 0)"
haftmann@25961
  1784
  by (induct n) (auto simp add: zero_less_mult_iff)
haftmann@25961
  1785
haftmann@25961
  1786
lemma zero_le_zpower_abs [simp]: "(0::int) \<le> abs x ^ n"
haftmann@25961
  1787
  by (induct n) (auto simp add: zero_le_mult_iff)
haftmann@25961
  1788
haftmann@25961
  1789
lemma of_int_power:
haftmann@25961
  1790
  "of_int (z ^ n) = (of_int z ^ n :: 'a::{recpower, ring_1})"
haftmann@25961
  1791
  by (induct n) (simp_all add: power_Suc)
haftmann@25961
  1792
haftmann@25961
  1793
lemma int_power: "int (m^n) = (int m) ^ n"
haftmann@25961
  1794
  by (rule of_nat_power)
haftmann@25961
  1795
haftmann@25961
  1796
lemmas zpower_int = int_power [symmetric]
haftmann@25961
  1797
haftmann@25919
  1798
subsection {* Configuration of the code generator *}
haftmann@25919
  1799
haftmann@26507
  1800
code_datatype Pls Min Bit0 Bit1 "number_of \<Colon> int \<Rightarrow> int"
haftmann@26507
  1801
haftmann@26507
  1802
lemmas pred_succ_numeral_code [code func] =
haftmann@26507
  1803
  pred_bin_simps succ_bin_simps
haftmann@26507
  1804
haftmann@26507
  1805
lemmas plus_numeral_code [code func] =
haftmann@26507
  1806
  add_bin_simps
haftmann@26507
  1807
  arith_extra_simps(1) [where 'a = int]
haftmann@26507
  1808
haftmann@26507
  1809
lemmas minus_numeral_code [code func] =
haftmann@26507
  1810
  minus_bin_simps
haftmann@26507
  1811
  arith_extra_simps(2) [where 'a = int]
haftmann@26507
  1812
  arith_extra_simps(5) [where 'a = int]
haftmann@26507
  1813
haftmann@26507
  1814
lemmas times_numeral_code [code func] =
haftmann@26507
  1815
  mult_bin_simps
haftmann@26507
  1816
  arith_extra_simps(4) [where 'a = int]
haftmann@26507
  1817
haftmann@26507
  1818
instantiation int :: eq
haftmann@26507
  1819
begin
haftmann@26507
  1820
haftmann@26732
  1821
definition [code func del]: "eq_class.eq k l \<longleftrightarrow> k - l = (0\<Colon>int)"
haftmann@26507
  1822
haftmann@26507
  1823
instance by default (simp add: eq_int_def)
haftmann@26507
  1824
haftmann@26507
  1825
end
haftmann@26507
  1826
haftmann@26507
  1827
lemma eq_number_of_int_code [code func]:
haftmann@26732
  1828
  "eq_class.eq (number_of k \<Colon> int) (number_of l) \<longleftrightarrow> eq_class.eq k l"
haftmann@26507
  1829
  unfolding eq_int_def number_of_is_id ..
haftmann@26507
  1830
haftmann@26507
  1831
lemma eq_int_code [code func]:
haftmann@26732
  1832
  "eq_class.eq Int.Pls Int.Pls \<longleftrightarrow> True"
haftmann@26732
  1833
  "eq_class.eq Int.Pls Int.Min \<longleftrightarrow> False"
haftmann@26732
  1834
  "eq_class.eq Int.Pls (Int.Bit0 k2) \<longleftrightarrow> eq_class.eq Int.Pls k2"
haftmann@26732
  1835
  "eq_class.eq Int.Pls (Int.Bit1 k2) \<longleftrightarrow> False"
haftmann@26732
  1836
  "eq_class.eq Int.Min Int.Pls \<longleftrightarrow> False"
haftmann@26732
  1837
  "eq_class.eq Int.Min Int.Min \<longleftrightarrow> True"
haftmann@26732
  1838
  "eq_class.eq Int.Min (Int.Bit0 k2) \<longleftrightarrow> False"
haftmann@26732
  1839
  "eq_class.eq Int.Min (Int.Bit1 k2) \<longleftrightarrow> eq_class.eq Int.Min k2"
haftmann@26732
  1840
  "eq_class.eq (Int.Bit0 k1) Int.Pls \<longleftrightarrow> eq_class.eq Int.Pls k1"
haftmann@26732
  1841
  "eq_class.eq (Int.Bit1 k1) Int.Pls \<longleftrightarrow> False"
haftmann@26732
  1842
  "eq_class.eq (Int.Bit0 k1) Int.Min \<longleftrightarrow> False"
haftmann@26732
  1843
  "eq_class.eq (Int.Bit1 k1) Int.Min \<longleftrightarrow> eq_class.eq Int.Min k1"
haftmann@26732
  1844
  "eq_class.eq (Int.Bit0 k1) (Int.Bit0 k2) \<longleftrightarrow> eq_class.eq k1 k2"
haftmann@26732
  1845
  "eq_class.eq (Int.Bit0 k1) (Int.Bit1 k2) \<longleftrightarrow> False"
haftmann@26732
  1846
  "eq_class.eq (Int.Bit1 k1) (Int.Bit0 k2) \<longleftrightarrow> False"
haftmann@26732
  1847
  "eq_class.eq (Int.Bit1 k1) (Int.Bit1 k2) \<longleftrightarrow> eq_class.eq k1 k2"
haftmann@26507
  1848
  unfolding eq_number_of_int_code [symmetric, of Int.Pls] 
haftmann@26507
  1849
    eq_number_of_int_code [symmetric, of Int.Min]
haftmann@26507
  1850
    eq_number_of_int_code [symmetric, of "Int.Bit0 k1"]
haftmann@26507
  1851
    eq_number_of_int_code [symmetric, of "Int.Bit1 k1"]
haftmann@26507
  1852
    eq_number_of_int_code [symmetric, of "Int.Bit0 k2"]
haftmann@26507
  1853
    eq_number_of_int_code [symmetric, of "Int.Bit1 k2"]
haftmann@26507
  1854
  by (simp_all add: eq Pls_def,
haftmann@26507
  1855
    simp_all only: Min_def succ_def pred_def number_of_is_id)
haftmann@26507
  1856
    (auto simp add: iszero_def)
haftmann@25919
  1857
haftmann@28351
  1858
lemma eq_int_refl [code nbe]:
haftmann@28351
  1859
  "eq_class.eq (k::int) k \<longleftrightarrow> True"
haftmann@28351
  1860
  by (rule HOL.eq_refl)
haftmann@28351
  1861
haftmann@26507
  1862
lemma less_eq_number_of_int_code [code func]:
haftmann@26507
  1863
  "(number_of k \<Colon> int) \<le> number_of l \<longleftrightarrow> k \<le> l"
haftmann@26507
  1864
  unfolding number_of_is_id ..
haftmann@26507
  1865
haftmann@26507
  1866
lemma less_eq_int_code [code func]:
haftmann@26507
  1867
  "Int.Pls \<le> Int.Pls \<longleftrightarrow> True"
haftmann@26507
  1868
  "Int.Pls \<le> Int.Min \<longleftrightarrow> False"
haftmann@26507
  1869
  "Int.Pls \<le> Int.Bit0 k \<longleftrightarrow> Int.Pls \<le> k"
haftmann@26507
  1870
  "Int.Pls \<le> Int.Bit1 k \<longleftrightarrow> Int.Pls \<le> k"
haftmann@26507
  1871
  "Int.Min \<le> Int.Pls \<longleftrightarrow> True"
haftmann@26507
  1872
  "Int.Min \<le> Int.Min \<longleftrightarrow> True"
haftmann@26507
  1873
  "Int.Min \<le> Int.Bit0 k \<longleftrightarrow> Int.Min < k"
haftmann@26507
  1874
  "Int.Min \<le> Int.Bit1 k \<longleftrightarrow> Int.Min \<le> k"
haftmann@26507
  1875
  "Int.Bit0 k \<le> Int.Pls \<longleftrightarrow> k \<le> Int.Pls"
haftmann@26507
  1876
  "Int.Bit1 k \<le> Int.Pls \<longleftrightarrow> k < Int.Pls"
haftmann@26507
  1877
  "Int.Bit0 k \<le> Int.Min \<longleftrightarrow> k \<le> Int.Min"
haftmann@26507
  1878
  "Int.Bit1 k \<le> Int.Min \<longleftrightarrow> k \<le> Int.Min"
haftmann@26507
  1879
  "Int.Bit0 k1 \<le> Int.Bit0 k2 \<longleftrightarrow> k1 \<le> k2"
haftmann@26507
  1880
  "Int.Bit0 k1 \<le> Int.Bit1 k2 \<longleftrightarrow> k1 \<le> k2"
haftmann@26507
  1881
  "Int.Bit1 k1 \<le> Int.Bit0 k2 \<longleftrightarrow> k1 < k2"
haftmann@26507
  1882
  "Int.Bit1 k1 \<le> Int.Bit1 k2 \<longleftrightarrow> k1 \<le> k2"
haftmann@26507
  1883
  unfolding less_eq_number_of_int_code [symmetric, of Int.Pls] 
haftmann@26507
  1884
    less_eq_number_of_int_code [symmetric, of Int.Min]
haftmann@26507
  1885
    less_eq_number_of_int_code [symmetric, of "Int.Bit0 k1"]
haftmann@26507
  1886
    less_eq_number_of_int_code [symmetric, of "Int.Bit1 k1"]
haftmann@26507
  1887
    less_eq_number_of_int_code [symmetric, of "Int.Bit0 k2"]
haftmann@26507
  1888
    less_eq_number_of_int_code [symmetric, of "Int.Bit1 k2"]
haftmann@26507
  1889
  by (simp_all add: Pls_def, simp_all only: Min_def succ_def pred_def number_of_is_id)
haftmann@26507
  1890
    (auto simp add: neg_def linorder_not_less group_simps
haftmann@26507
  1891
      zle_add1_eq_le [symmetric] del: iffI , auto simp only: Bit0_def Bit1_def)
haftmann@26507
  1892
haftmann@26507
  1893
lemma less_number_of_int_code [code func]:
haftmann@26507
  1894
  "(number_of k \<Colon> int) < number_of l \<longleftrightarrow> k < l"
haftmann@26507
  1895
  unfolding number_of_is_id ..
haftmann@26507
  1896
haftmann@26507
  1897
lemma less_int_code [code func]:
haftmann@26507
  1898
  "Int.Pls < Int.Pls \<longleftrightarrow> False"
haftmann@26507
  1899
  "Int.Pls < Int.Min \<longleftrightarrow> False"
haftmann@26507
  1900
  "Int.Pls < Int.Bit0 k \<longleftrightarrow> Int.Pls < k"
haftmann@26507
  1901
  "Int.Pls < Int.Bit1 k \<longleftrightarrow> Int.Pls \<le> k"
haftmann@26507
  1902
  "Int.Min < Int.Pls \<longleftrightarrow> True"
haftmann@26507
  1903
  "Int.Min < Int.Min \<longleftrightarrow> False"
haftmann@26507
  1904
  "Int.Min < Int.Bit0 k \<longleftrightarrow> Int.Min < k"
haftmann@26507
  1905
  "Int.Min < Int.Bit1 k \<longleftrightarrow> Int.Min < k"
haftmann@26507
  1906
  "Int.Bit0 k < Int.Pls \<longleftrightarrow> k < Int.Pls"
haftmann@26507
  1907
  "Int.Bit1 k < Int.Pls \<longleftrightarrow> k < Int.Pls"
haftmann@26507
  1908
  "Int.Bit0 k < Int.Min \<longleftrightarrow> k \<le> Int.Min"
haftmann@26507
  1909
  "Int.Bit1 k < Int.Min \<longleftrightarrow> k < Int.Min"
haftmann@26507
  1910
  "Int.Bit0 k1 < Int.Bit0 k2 \<longleftrightarrow> k1 < k2"
haftmann@26507
  1911
  "Int.Bit0 k1 < Int.Bit1 k2 \<longleftrightarrow> k1 \<le> k2"
haftmann@26507
  1912
  "Int.Bit1 k1 < Int.Bit0 k2 \<longleftrightarrow> k1 < k2"
haftmann@26507
  1913
  "Int.Bit1 k1 < Int.Bit1 k2 \<longleftrightarrow> k1 < k2"
haftmann@26507
  1914
  unfolding less_number_of_int_code [symmetric, of Int.Pls] 
haftmann@26507
  1915
    less_number_of_int_code [symmetric, of Int.Min]
haftmann@26507
  1916
    less_number_of_int_code [symmetric, of "Int.Bit0 k1"]
haftmann@26507
  1917
    less_number_of_int_code [symmetric, of "Int.Bit1 k1"]
haftmann@26507
  1918
    less_number_of_int_code [symmetric, of "Int.Bit0 k2"]
haftmann@26507
  1919
    less_number_of_int_code [symmetric, of "Int.Bit1 k2"]
haftmann@26507
  1920
  by (simp_all add: Pls_def, simp_all only: Min_def succ_def pred_def number_of_is_id)
haftmann@26507
  1921
    (auto simp add: neg_def group_simps zle_add1_eq_le [symmetric] del: iffI,
haftmann@26507
  1922
      auto simp only: Bit0_def Bit1_def)
haftmann@25919
  1923
haftmann@25919
  1924
definition
haftmann@25919
  1925
  nat_aux :: "int \<Rightarrow> nat \<Rightarrow> nat" where
haftmann@25919
  1926
  "nat_aux i n = nat i + n"
haftmann@25919
  1927
haftmann@25919
  1928
lemma [code]:
haftmann@25919
  1929
  "nat_aux i n = (if i \<le> 0 then n else nat_aux (i - 1) (Suc n))"  -- {* tail recursive *}
haftmann@25919
  1930
  by (auto simp add: nat_aux_def nat_eq_iff linorder_not_le order_less_imp_le
haftmann@25919
  1931
    dest: zless_imp_add1_zle)
haftmann@25919
  1932
haftmann@25919
  1933
lemma [code]: "nat i = nat_aux i 0"
haftmann@25919
  1934
  by (simp add: nat_aux_def)
haftmann@25919
  1935
haftmann@28514
  1936
hide (open) const nat_aux
haftmann@25928
  1937
haftmann@25919
  1938
lemma zero_is_num_zero [code func, code inline, symmetric, code post]:
haftmann@25919
  1939
  "(0\<Colon>int) = Numeral0" 
haftmann@25919
  1940
  by simp
haftmann@25919
  1941
haftmann@25919
  1942
lemma one_is_num_one [code func, code inline, symmetric, code post]:
haftmann@25919
  1943
  "(1\<Colon>int) = Numeral1" 
haftmann@25961
  1944
  by simp
haftmann@25919
  1945
haftmann@25919
  1946
code_modulename SML
haftmann@25928
  1947
  Int Integer
haftmann@25919
  1948
haftmann@25919
  1949
code_modulename OCaml
haftmann@25928
  1950
  Int Integer
haftmann@25919
  1951
haftmann@25919
  1952
code_modulename Haskell
haftmann@25928
  1953
  Int Integer
haftmann@25919
  1954
haftmann@25919
  1955
types_code
haftmann@25919
  1956
  "int" ("int")
haftmann@25919
  1957
attach (term_of) {*
haftmann@25919
  1958
val term_of_int = HOLogic.mk_number HOLogic.intT;
haftmann@25919
  1959
*}
haftmann@25919
  1960
attach (test) {*
haftmann@25919
  1961
fun gen_int i =
haftmann@25919
  1962
  let val j = one_of [~1, 1] * random_range 0 i
haftmann@25919
  1963
  in (j, fn () => term_of_int j) end;
haftmann@25919
  1964
*}
haftmann@25919
  1965
haftmann@25919
  1966
setup {*
haftmann@25919
  1967
let
haftmann@25919
  1968
haftmann@25919
  1969
fun strip_number_of (@{term "Int.number_of :: int => int"} $ t) = t
haftmann@25919
  1970
  | strip_number_of t = t;
haftmann@25919
  1971
haftmann@28537
  1972
fun numeral_codegen thy defs dep module b t gr =
haftmann@25919
  1973
  let val i = HOLogic.dest_numeral (strip_number_of t)
haftmann@25919
  1974
  in
haftmann@28537
  1975
    SOME (Codegen.str (string_of_int i),
haftmann@28537
  1976
      snd (Codegen.invoke_tycodegen thy defs dep module false HOLogic.intT gr))
haftmann@25919
  1977
  end handle TERM _ => NONE;
haftmann@25919
  1978
haftmann@25919
  1979
in
haftmann@25919
  1980
haftmann@25919
  1981
Codegen.add_codegen "numeral_codegen" numeral_codegen
haftmann@25919
  1982
haftmann@25919
  1983
end
haftmann@25919
  1984
*}
haftmann@25919
  1985
haftmann@25919
  1986
consts_code
haftmann@25919
  1987
  "number_of :: int \<Rightarrow> int"    ("(_)")
haftmann@25919
  1988
  "0 :: int"                   ("0")
haftmann@25919
  1989
  "1 :: int"                   ("1")
haftmann@25919
  1990
  "uminus :: int => int"       ("~")
haftmann@25919
  1991
  "op + :: int => int => int"  ("(_ +/ _)")
haftmann@25919
  1992
  "op * :: int => int => int"  ("(_ */ _)")
haftmann@25919
  1993
  "op \<le> :: int => int => bool" ("(_ <=/ _)")
haftmann@25919
  1994
  "op < :: int => int => bool" ("(_ </ _)")
haftmann@25919
  1995
haftmann@25919
  1996
quickcheck_params [default_type = int]
haftmann@25919
  1997
huffman@26086
  1998
hide (open) const Pls Min Bit0 Bit1 succ pred
haftmann@25919
  1999
haftmann@25919
  2000
haftmann@25919
  2001
subsection {* Legacy theorems *}
haftmann@25919
  2002
haftmann@25919
  2003
lemmas zminus_zminus = minus_minus [of "z::int", standard]
haftmann@25919
  2004
lemmas zminus_0 = minus_zero [where 'a=int]
haftmann@25919
  2005
lemmas zminus_zadd_distrib = minus_add_distrib [of "z::int" "w", standard]
haftmann@25919
  2006
lemmas zadd_commute = add_commute [of "z::int" "w", standard]
haftmann@25919
  2007
lemmas zadd_assoc = add_assoc [of "z1::int" "z2" "z3", standard]
haftmann@25919
  2008
lemmas zadd_left_commute = add_left_commute [of "x::int" "y" "z", standard]
haftmann@25919
  2009
lemmas zadd_ac = zadd_assoc zadd_commute zadd_left_commute
haftmann@25919
  2010
lemmas zmult_ac = OrderedGroup.mult_ac
haftmann@25919
  2011
lemmas zadd_0 = OrderedGroup.add_0_left [of "z::int", standard]
haftmann@25919
  2012
lemmas zadd_0_right = OrderedGroup.add_0_left [of "z::int", standard]
haftmann@25919
  2013
lemmas zadd_zminus_inverse2 = left_minus [of "z::int", standard]
haftmann@25919
  2014
lemmas zmult_zminus = mult_minus_left [of "z::int" "w", standard]
haftmann@25919
  2015
lemmas zmult_commute = mult_commute [of "z::int" "w", standard]
haftmann@25919
  2016
lemmas zmult_assoc = mult_assoc [of "z1::int" "z2" "z3", standard]
haftmann@25919
  2017
lemmas zadd_zmult_distrib = left_distrib [of "z1::int" "z2" "w", standard]
haftmann@25919
  2018
lemmas zadd_zmult_distrib2 = right_distrib [of "w::int" "z1" "z2", standard]
haftmann@25919
  2019
lemmas zdiff_zmult_distrib = left_diff_distrib [of "z1::int" "z2" "w", standard]
haftmann@25919
  2020
lemmas zdiff_zmult_distrib2 = right_diff_distrib [of "w::int" "z1" "z2", standard]
haftmann@25919
  2021
haftmann@25919
  2022
lemmas zmult_1 = mult_1_left [of "z::int", standard]
haftmann@25919
  2023
lemmas zmult_1_right = mult_1_right [of "z::int", standard]
haftmann@25919
  2024
haftmann@25919
  2025
lemmas zle_refl = order_refl [of "w::int", standard]
haftmann@25919
  2026
lemmas zle_trans = order_trans [where 'a=int and x="i" and y="j" and z="k", standard]
haftmann@25919
  2027
lemmas zle_anti_sym = order_antisym [of "z::int" "w", standard]
haftmann@25919
  2028
lemmas zle_linear = linorder_linear [of "z::int" "w", standard]
haftmann@25919
  2029
lemmas zless_linear = linorder_less_linear [where 'a = int]
haftmann@25919
  2030
haftmann@25919
  2031
lemmas zadd_left_mono = add_left_mono [of "i::int" "j" "k", standard]
haftmann@25919
  2032
lemmas zadd_strict_right_mono = add_strict_right_mono [of "i::int" "j" "k", standard]
haftmann@25919
  2033
lemmas zadd_zless_mono = add_less_le_mono [of "w'::int" "w" "z'" "z", standard]
haftmann@25919
  2034
haftmann@25919
  2035
lemmas int_0_less_1 = zero_less_one [where 'a=int]
haftmann@25919
  2036
lemmas int_0_neq_1 = zero_neq_one [where 'a=int]
haftmann@25919
  2037
haftmann@25919
  2038
lemmas inj_int = inj_of_nat [where 'a=int]
haftmann@25919
  2039
lemmas zadd_int = of_nat_add [where 'a=int, symmetric]
haftmann@25919
  2040
lemmas int_mult = of_nat_mult [where 'a=int]
haftmann@25919
  2041
lemmas zmult_int = of_nat_mult [where 'a=int, symmetric]
haftmann@25919
  2042
lemmas int_eq_0_conv = of_nat_eq_0_iff [where 'a=int and m="n", standard]
haftmann@25919
  2043
lemmas zless_int = of_nat_less_iff [where 'a=int]
haftmann@25919
  2044
lemmas int_less_0_conv = of_nat_less_0_iff [where 'a=int and m="k", standard]
haftmann@25919
  2045
lemmas zero_less_int_conv = of_nat_0_less_iff [where 'a=int]
haftmann@25919
  2046
lemmas zero_zle_int = of_nat_0_le_iff [where 'a=int]
haftmann@25919
  2047
lemmas int_le_0_conv = of_nat_le_0_iff [where 'a=int and m="n", standard]
haftmann@25919
  2048
lemmas int_0 = of_nat_0 [where 'a=int]
haftmann@25919
  2049
lemmas int_1 = of_nat_1 [where 'a=int]
haftmann@25919
  2050
lemmas int_Suc = of_nat_Suc [where 'a=int]
haftmann@25919
  2051
lemmas abs_int_eq = abs_of_nat [where 'a=int and n="m", standard]
haftmann@25919
  2052
lemmas of_int_int_eq = of_int_of_nat_eq [where 'a=int]
haftmann@25919
  2053
lemmas zdiff_int = of_nat_diff [where 'a=int, symmetric]
haftmann@25919
  2054
lemmas zless_le = less_int_def
haftmann@25919
  2055
lemmas int_eq_of_nat = TrueI
haftmann@25919
  2056
haftmann@25919
  2057
end