hoelzl@30439
|
1 |
(* Title: HOL/Decision_Procs/Cooper.thy
|
haftmann@27456
|
2 |
Author: Amine Chaieb
|
haftmann@27456
|
3 |
*)
|
haftmann@27456
|
4 |
|
haftmann@29788
|
5 |
theory Cooper
|
haftmann@51143
|
6 |
imports Complex_Main "~~/src/HOL/Library/Code_Target_Numeral" "~~/src/HOL/Library/Old_Recdef"
|
nipkow@23477
|
7 |
begin
|
chaieb@17378
|
8 |
|
chaieb@17378
|
9 |
(* Periodicity of dvd *)
|
chaieb@23315
|
10 |
|
chaieb@23274
|
11 |
(*********************************************************************************)
|
chaieb@23274
|
12 |
(**** SHADOW SYNTAX AND SEMANTICS ****)
|
chaieb@23274
|
13 |
(*********************************************************************************)
|
chaieb@23274
|
14 |
|
wenzelm@50313
|
15 |
datatype num = C int | Bound nat | CN nat int num | Neg num | Add num num| Sub num num
|
chaieb@23274
|
16 |
| Mul int num
|
chaieb@23274
|
17 |
|
wenzelm@50313
|
18 |
primrec num_size :: "num \<Rightarrow> nat" -- {* A size for num to make inductive proofs simpler *}
|
wenzelm@50313
|
19 |
where
|
chaieb@23274
|
20 |
"num_size (C c) = 1"
|
haftmann@27456
|
21 |
| "num_size (Bound n) = 1"
|
haftmann@27456
|
22 |
| "num_size (Neg a) = 1 + num_size a"
|
haftmann@27456
|
23 |
| "num_size (Add a b) = 1 + num_size a + num_size b"
|
haftmann@27456
|
24 |
| "num_size (Sub a b) = 3 + num_size a + num_size b"
|
haftmann@27456
|
25 |
| "num_size (CN n c a) = 4 + num_size a"
|
haftmann@27456
|
26 |
| "num_size (Mul c a) = 1 + num_size a"
|
chaieb@17378
|
27 |
|
haftmann@27456
|
28 |
primrec Inum :: "int list \<Rightarrow> num \<Rightarrow> int" where
|
chaieb@23274
|
29 |
"Inum bs (C c) = c"
|
haftmann@27456
|
30 |
| "Inum bs (Bound n) = bs!n"
|
haftmann@27456
|
31 |
| "Inum bs (CN n c a) = c * (bs!n) + (Inum bs a)"
|
haftmann@27456
|
32 |
| "Inum bs (Neg a) = -(Inum bs a)"
|
haftmann@27456
|
33 |
| "Inum bs (Add a b) = Inum bs a + Inum bs b"
|
haftmann@27456
|
34 |
| "Inum bs (Sub a b) = Inum bs a - Inum bs b"
|
haftmann@27456
|
35 |
| "Inum bs (Mul c a) = c* Inum bs a"
|
chaieb@23274
|
36 |
|
wenzelm@50313
|
37 |
datatype fm =
|
chaieb@23274
|
38 |
T| F| Lt num| Le num| Gt num| Ge num| Eq num| NEq num| Dvd int num| NDvd int num|
|
wenzelm@50313
|
39 |
NOT fm| And fm fm| Or fm fm| Imp fm fm| Iff fm fm| E fm| A fm
|
chaieb@23274
|
40 |
| Closed nat | NClosed nat
|
chaieb@23274
|
41 |
|
chaieb@23274
|
42 |
|
wenzelm@50313
|
43 |
fun fmsize :: "fm \<Rightarrow> nat" -- {* A size for fm *}
|
wenzelm@50313
|
44 |
where
|
chaieb@23274
|
45 |
"fmsize (NOT p) = 1 + fmsize p"
|
krauss@41837
|
46 |
| "fmsize (And p q) = 1 + fmsize p + fmsize q"
|
krauss@41837
|
47 |
| "fmsize (Or p q) = 1 + fmsize p + fmsize q"
|
krauss@41837
|
48 |
| "fmsize (Imp p q) = 3 + fmsize p + fmsize q"
|
krauss@41837
|
49 |
| "fmsize (Iff p q) = 3 + 2*(fmsize p + fmsize q)"
|
krauss@41837
|
50 |
| "fmsize (E p) = 1 + fmsize p"
|
krauss@41837
|
51 |
| "fmsize (A p) = 4+ fmsize p"
|
krauss@41837
|
52 |
| "fmsize (Dvd i t) = 2"
|
krauss@41837
|
53 |
| "fmsize (NDvd i t) = 2"
|
krauss@41837
|
54 |
| "fmsize p = 1"
|
wenzelm@50313
|
55 |
|
wenzelm@32960
|
56 |
lemma fmsize_pos: "fmsize p > 0"
|
wenzelm@32960
|
57 |
by (induct p rule: fmsize.induct) simp_all
|
chaieb@17378
|
58 |
|
wenzelm@50313
|
59 |
primrec Ifm :: "bool list \<Rightarrow> int list \<Rightarrow> fm \<Rightarrow> bool" -- {* Semantics of formulae (fm) *}
|
wenzelm@50313
|
60 |
where
|
chaieb@23274
|
61 |
"Ifm bbs bs T = True"
|
haftmann@39246
|
62 |
| "Ifm bbs bs F = False"
|
haftmann@39246
|
63 |
| "Ifm bbs bs (Lt a) = (Inum bs a < 0)"
|
haftmann@39246
|
64 |
| "Ifm bbs bs (Gt a) = (Inum bs a > 0)"
|
haftmann@39246
|
65 |
| "Ifm bbs bs (Le a) = (Inum bs a \<le> 0)"
|
haftmann@39246
|
66 |
| "Ifm bbs bs (Ge a) = (Inum bs a \<ge> 0)"
|
haftmann@39246
|
67 |
| "Ifm bbs bs (Eq a) = (Inum bs a = 0)"
|
haftmann@39246
|
68 |
| "Ifm bbs bs (NEq a) = (Inum bs a \<noteq> 0)"
|
haftmann@39246
|
69 |
| "Ifm bbs bs (Dvd i b) = (i dvd Inum bs b)"
|
haftmann@39246
|
70 |
| "Ifm bbs bs (NDvd i b) = (\<not>(i dvd Inum bs b))"
|
haftmann@39246
|
71 |
| "Ifm bbs bs (NOT p) = (\<not> (Ifm bbs bs p))"
|
haftmann@39246
|
72 |
| "Ifm bbs bs (And p q) = (Ifm bbs bs p \<and> Ifm bbs bs q)"
|
haftmann@39246
|
73 |
| "Ifm bbs bs (Or p q) = (Ifm bbs bs p \<or> Ifm bbs bs q)"
|
haftmann@39246
|
74 |
| "Ifm bbs bs (Imp p q) = ((Ifm bbs bs p) \<longrightarrow> (Ifm bbs bs q))"
|
haftmann@39246
|
75 |
| "Ifm bbs bs (Iff p q) = (Ifm bbs bs p = Ifm bbs bs q)"
|
wenzelm@50313
|
76 |
| "Ifm bbs bs (E p) = (\<exists>x. Ifm bbs (x#bs) p)"
|
wenzelm@50313
|
77 |
| "Ifm bbs bs (A p) = (\<forall>x. Ifm bbs (x#bs) p)"
|
haftmann@39246
|
78 |
| "Ifm bbs bs (Closed n) = bbs!n"
|
haftmann@39246
|
79 |
| "Ifm bbs bs (NClosed n) = (\<not> bbs!n)"
|
chaieb@23274
|
80 |
|
chaieb@23274
|
81 |
consts prep :: "fm \<Rightarrow> fm"
|
chaieb@23274
|
82 |
recdef prep "measure fmsize"
|
chaieb@23274
|
83 |
"prep (E T) = T"
|
chaieb@23274
|
84 |
"prep (E F) = F"
|
chaieb@23274
|
85 |
"prep (E (Or p q)) = Or (prep (E p)) (prep (E q))"
|
chaieb@23274
|
86 |
"prep (E (Imp p q)) = Or (prep (E (NOT p))) (prep (E q))"
|
wenzelm@50313
|
87 |
"prep (E (Iff p q)) = Or (prep (E (And p q))) (prep (E (And (NOT p) (NOT q))))"
|
chaieb@23274
|
88 |
"prep (E (NOT (And p q))) = Or (prep (E (NOT p))) (prep (E(NOT q)))"
|
chaieb@23274
|
89 |
"prep (E (NOT (Imp p q))) = prep (E (And p (NOT q)))"
|
chaieb@23274
|
90 |
"prep (E (NOT (Iff p q))) = Or (prep (E (And p (NOT q)))) (prep (E(And (NOT p) q)))"
|
chaieb@23274
|
91 |
"prep (E p) = E (prep p)"
|
chaieb@23274
|
92 |
"prep (A (And p q)) = And (prep (A p)) (prep (A q))"
|
chaieb@23274
|
93 |
"prep (A p) = prep (NOT (E (NOT p)))"
|
chaieb@23274
|
94 |
"prep (NOT (NOT p)) = prep p"
|
chaieb@23274
|
95 |
"prep (NOT (And p q)) = Or (prep (NOT p)) (prep (NOT q))"
|
chaieb@23274
|
96 |
"prep (NOT (A p)) = prep (E (NOT p))"
|
chaieb@23274
|
97 |
"prep (NOT (Or p q)) = And (prep (NOT p)) (prep (NOT q))"
|
chaieb@23274
|
98 |
"prep (NOT (Imp p q)) = And (prep p) (prep (NOT q))"
|
chaieb@23274
|
99 |
"prep (NOT (Iff p q)) = Or (prep (And p (NOT q))) (prep (And (NOT p) q))"
|
chaieb@23274
|
100 |
"prep (NOT p) = NOT (prep p)"
|
chaieb@23274
|
101 |
"prep (Or p q) = Or (prep p) (prep q)"
|
chaieb@23274
|
102 |
"prep (And p q) = And (prep p) (prep q)"
|
chaieb@23274
|
103 |
"prep (Imp p q) = prep (Or (NOT p) q)"
|
chaieb@23274
|
104 |
"prep (Iff p q) = Or (prep (And p q)) (prep (And (NOT p) (NOT q)))"
|
chaieb@23274
|
105 |
"prep p = p"
|
wenzelm@50313
|
106 |
(hints simp add: fmsize_pos)
|
wenzelm@50313
|
107 |
|
chaieb@23274
|
108 |
lemma prep: "Ifm bbs bs (prep p) = Ifm bbs bs p"
|
wenzelm@50313
|
109 |
by (induct p arbitrary: bs rule: prep.induct) auto
|
chaieb@23274
|
110 |
|
chaieb@17378
|
111 |
|
wenzelm@50313
|
112 |
fun qfree :: "fm \<Rightarrow> bool" -- {* Quantifier freeness *}
|
wenzelm@50313
|
113 |
where
|
chaieb@23274
|
114 |
"qfree (E p) = False"
|
krauss@41837
|
115 |
| "qfree (A p) = False"
|
wenzelm@50313
|
116 |
| "qfree (NOT p) = qfree p"
|
wenzelm@50313
|
117 |
| "qfree (And p q) = (qfree p \<and> qfree q)"
|
wenzelm@50313
|
118 |
| "qfree (Or p q) = (qfree p \<and> qfree q)"
|
wenzelm@50313
|
119 |
| "qfree (Imp p q) = (qfree p \<and> qfree q)"
|
krauss@41837
|
120 |
| "qfree (Iff p q) = (qfree p \<and> qfree q)"
|
krauss@41837
|
121 |
| "qfree p = True"
|
chaieb@23274
|
122 |
|
wenzelm@50313
|
123 |
|
wenzelm@50313
|
124 |
text {* Boundedness and substitution *}
|
wenzelm@50313
|
125 |
|
wenzelm@50313
|
126 |
primrec numbound0 :: "num \<Rightarrow> bool" -- {* a num is INDEPENDENT of Bound 0 *}
|
wenzelm@50313
|
127 |
where
|
chaieb@23274
|
128 |
"numbound0 (C c) = True"
|
haftmann@39246
|
129 |
| "numbound0 (Bound n) = (n>0)"
|
haftmann@39246
|
130 |
| "numbound0 (CN n i a) = (n >0 \<and> numbound0 a)"
|
haftmann@39246
|
131 |
| "numbound0 (Neg a) = numbound0 a"
|
haftmann@39246
|
132 |
| "numbound0 (Add a b) = (numbound0 a \<and> numbound0 b)"
|
wenzelm@50313
|
133 |
| "numbound0 (Sub a b) = (numbound0 a \<and> numbound0 b)"
|
haftmann@39246
|
134 |
| "numbound0 (Mul i a) = numbound0 a"
|
chaieb@23274
|
135 |
|
chaieb@23274
|
136 |
lemma numbound0_I:
|
chaieb@23274
|
137 |
assumes nb: "numbound0 a"
|
chaieb@23274
|
138 |
shows "Inum (b#bs) a = Inum (b'#bs) a"
|
wenzelm@50313
|
139 |
using nb by (induct a rule: num.induct) (auto simp add: gr0_conv_Suc)
|
chaieb@17378
|
140 |
|
wenzelm@50313
|
141 |
primrec bound0 :: "fm \<Rightarrow> bool" -- {* A Formula is independent of Bound 0 *}
|
wenzelm@50313
|
142 |
where
|
chaieb@23274
|
143 |
"bound0 T = True"
|
haftmann@39246
|
144 |
| "bound0 F = True"
|
haftmann@39246
|
145 |
| "bound0 (Lt a) = numbound0 a"
|
haftmann@39246
|
146 |
| "bound0 (Le a) = numbound0 a"
|
haftmann@39246
|
147 |
| "bound0 (Gt a) = numbound0 a"
|
haftmann@39246
|
148 |
| "bound0 (Ge a) = numbound0 a"
|
haftmann@39246
|
149 |
| "bound0 (Eq a) = numbound0 a"
|
haftmann@39246
|
150 |
| "bound0 (NEq a) = numbound0 a"
|
haftmann@39246
|
151 |
| "bound0 (Dvd i a) = numbound0 a"
|
haftmann@39246
|
152 |
| "bound0 (NDvd i a) = numbound0 a"
|
haftmann@39246
|
153 |
| "bound0 (NOT p) = bound0 p"
|
haftmann@39246
|
154 |
| "bound0 (And p q) = (bound0 p \<and> bound0 q)"
|
haftmann@39246
|
155 |
| "bound0 (Or p q) = (bound0 p \<and> bound0 q)"
|
haftmann@39246
|
156 |
| "bound0 (Imp p q) = ((bound0 p) \<and> (bound0 q))"
|
haftmann@39246
|
157 |
| "bound0 (Iff p q) = (bound0 p \<and> bound0 q)"
|
haftmann@39246
|
158 |
| "bound0 (E p) = False"
|
haftmann@39246
|
159 |
| "bound0 (A p) = False"
|
haftmann@39246
|
160 |
| "bound0 (Closed P) = True"
|
haftmann@39246
|
161 |
| "bound0 (NClosed P) = True"
|
wenzelm@50313
|
162 |
|
chaieb@23274
|
163 |
lemma bound0_I:
|
chaieb@23274
|
164 |
assumes bp: "bound0 p"
|
chaieb@23274
|
165 |
shows "Ifm bbs (b#bs) p = Ifm bbs (b'#bs) p"
|
wenzelm@50313
|
166 |
using bp numbound0_I[where b="b" and bs="bs" and b'="b'"]
|
wenzelm@50313
|
167 |
by (induct p rule: fm.induct) (auto simp add: gr0_conv_Suc)
|
chaieb@23274
|
168 |
|
wenzelm@50313
|
169 |
fun numsubst0 :: "num \<Rightarrow> num \<Rightarrow> num"
|
wenzelm@50313
|
170 |
where
|
chaieb@23274
|
171 |
"numsubst0 t (C c) = (C c)"
|
chaieb@23995
|
172 |
| "numsubst0 t (Bound n) = (if n=0 then t else Bound n)"
|
chaieb@23995
|
173 |
| "numsubst0 t (CN 0 i a) = Add (Mul i t) (numsubst0 t a)"
|
chaieb@23995
|
174 |
| "numsubst0 t (CN n i a) = CN n i (numsubst0 t a)"
|
chaieb@23995
|
175 |
| "numsubst0 t (Neg a) = Neg (numsubst0 t a)"
|
chaieb@23995
|
176 |
| "numsubst0 t (Add a b) = Add (numsubst0 t a) (numsubst0 t b)"
|
wenzelm@50313
|
177 |
| "numsubst0 t (Sub a b) = Sub (numsubst0 t a) (numsubst0 t b)"
|
chaieb@23995
|
178 |
| "numsubst0 t (Mul i a) = Mul i (numsubst0 t a)"
|
chaieb@23274
|
179 |
|
wenzelm@50313
|
180 |
lemma numsubst0_I: "Inum (b#bs) (numsubst0 a t) = Inum ((Inum (b#bs) a)#bs) t"
|
wenzelm@50313
|
181 |
by (induct t rule: numsubst0.induct) (auto simp: nth_Cons')
|
chaieb@17378
|
182 |
|
chaieb@23274
|
183 |
lemma numsubst0_I':
|
nipkow@25134
|
184 |
"numbound0 a \<Longrightarrow> Inum (b#bs) (numsubst0 a t) = Inum ((Inum (b'#bs) a)#bs) t"
|
wenzelm@50313
|
185 |
by (induct t rule: numsubst0.induct) (auto simp: nth_Cons' numbound0_I[where b="b" and b'="b'"])
|
chaieb@23274
|
186 |
|
wenzelm@50313
|
187 |
primrec subst0:: "num \<Rightarrow> fm \<Rightarrow> fm" -- {* substitue a num into a formula for Bound 0 *}
|
wenzelm@50313
|
188 |
where
|
chaieb@23274
|
189 |
"subst0 t T = T"
|
haftmann@39246
|
190 |
| "subst0 t F = F"
|
haftmann@39246
|
191 |
| "subst0 t (Lt a) = Lt (numsubst0 t a)"
|
haftmann@39246
|
192 |
| "subst0 t (Le a) = Le (numsubst0 t a)"
|
haftmann@39246
|
193 |
| "subst0 t (Gt a) = Gt (numsubst0 t a)"
|
haftmann@39246
|
194 |
| "subst0 t (Ge a) = Ge (numsubst0 t a)"
|
haftmann@39246
|
195 |
| "subst0 t (Eq a) = Eq (numsubst0 t a)"
|
haftmann@39246
|
196 |
| "subst0 t (NEq a) = NEq (numsubst0 t a)"
|
haftmann@39246
|
197 |
| "subst0 t (Dvd i a) = Dvd i (numsubst0 t a)"
|
haftmann@39246
|
198 |
| "subst0 t (NDvd i a) = NDvd i (numsubst0 t a)"
|
haftmann@39246
|
199 |
| "subst0 t (NOT p) = NOT (subst0 t p)"
|
haftmann@39246
|
200 |
| "subst0 t (And p q) = And (subst0 t p) (subst0 t q)"
|
haftmann@39246
|
201 |
| "subst0 t (Or p q) = Or (subst0 t p) (subst0 t q)"
|
haftmann@39246
|
202 |
| "subst0 t (Imp p q) = Imp (subst0 t p) (subst0 t q)"
|
haftmann@39246
|
203 |
| "subst0 t (Iff p q) = Iff (subst0 t p) (subst0 t q)"
|
haftmann@39246
|
204 |
| "subst0 t (Closed P) = (Closed P)"
|
haftmann@39246
|
205 |
| "subst0 t (NClosed P) = (NClosed P)"
|
chaieb@23274
|
206 |
|
wenzelm@50313
|
207 |
lemma subst0_I:
|
wenzelm@50313
|
208 |
assumes qfp: "qfree p"
|
chaieb@23274
|
209 |
shows "Ifm bbs (b#bs) (subst0 a p) = Ifm bbs ((Inum (b#bs) a)#bs) p"
|
chaieb@23274
|
210 |
using qfp numsubst0_I[where b="b" and bs="bs" and a="a"]
|
haftmann@23689
|
211 |
by (induct p) (simp_all add: gr0_conv_Suc)
|
chaieb@23274
|
212 |
|
wenzelm@50313
|
213 |
fun decrnum:: "num \<Rightarrow> num"
|
wenzelm@50313
|
214 |
where
|
chaieb@23274
|
215 |
"decrnum (Bound n) = Bound (n - 1)"
|
krauss@41837
|
216 |
| "decrnum (Neg a) = Neg (decrnum a)"
|
krauss@41837
|
217 |
| "decrnum (Add a b) = Add (decrnum a) (decrnum b)"
|
krauss@41837
|
218 |
| "decrnum (Sub a b) = Sub (decrnum a) (decrnum b)"
|
krauss@41837
|
219 |
| "decrnum (Mul c a) = Mul c (decrnum a)"
|
krauss@41837
|
220 |
| "decrnum (CN n i a) = (CN (n - 1) i (decrnum a))"
|
krauss@41837
|
221 |
| "decrnum a = a"
|
chaieb@17378
|
222 |
|
wenzelm@50313
|
223 |
fun decr :: "fm \<Rightarrow> fm"
|
wenzelm@50313
|
224 |
where
|
chaieb@23274
|
225 |
"decr (Lt a) = Lt (decrnum a)"
|
krauss@41837
|
226 |
| "decr (Le a) = Le (decrnum a)"
|
krauss@41837
|
227 |
| "decr (Gt a) = Gt (decrnum a)"
|
krauss@41837
|
228 |
| "decr (Ge a) = Ge (decrnum a)"
|
krauss@41837
|
229 |
| "decr (Eq a) = Eq (decrnum a)"
|
krauss@41837
|
230 |
| "decr (NEq a) = NEq (decrnum a)"
|
krauss@41837
|
231 |
| "decr (Dvd i a) = Dvd i (decrnum a)"
|
krauss@41837
|
232 |
| "decr (NDvd i a) = NDvd i (decrnum a)"
|
wenzelm@50313
|
233 |
| "decr (NOT p) = NOT (decr p)"
|
krauss@41837
|
234 |
| "decr (And p q) = And (decr p) (decr q)"
|
krauss@41837
|
235 |
| "decr (Or p q) = Or (decr p) (decr q)"
|
krauss@41837
|
236 |
| "decr (Imp p q) = Imp (decr p) (decr q)"
|
krauss@41837
|
237 |
| "decr (Iff p q) = Iff (decr p) (decr q)"
|
krauss@41837
|
238 |
| "decr p = p"
|
chaieb@23274
|
239 |
|
wenzelm@50313
|
240 |
lemma decrnum:
|
wenzelm@50313
|
241 |
assumes nb: "numbound0 t"
|
chaieb@23274
|
242 |
shows "Inum (x#bs) t = Inum bs (decrnum t)"
|
wenzelm@50313
|
243 |
using nb by (induct t rule: decrnum.induct) (auto simp add: gr0_conv_Suc)
|
chaieb@23274
|
244 |
|
wenzelm@50313
|
245 |
lemma decr:
|
wenzelm@50313
|
246 |
assumes nb: "bound0 p"
|
chaieb@23274
|
247 |
shows "Ifm bbs (x#bs) p = Ifm bbs bs (decr p)"
|
wenzelm@50313
|
248 |
using nb by (induct p rule: decr.induct) (simp_all add: gr0_conv_Suc decrnum)
|
chaieb@23274
|
249 |
|
chaieb@23274
|
250 |
lemma decr_qf: "bound0 p \<Longrightarrow> qfree (decr p)"
|
wenzelm@50313
|
251 |
by (induct p) simp_all
|
chaieb@23274
|
252 |
|
wenzelm@50313
|
253 |
fun isatom :: "fm \<Rightarrow> bool" -- {* test for atomicity *}
|
wenzelm@50313
|
254 |
where
|
chaieb@23274
|
255 |
"isatom T = True"
|
krauss@41837
|
256 |
| "isatom F = True"
|
krauss@41837
|
257 |
| "isatom (Lt a) = True"
|
krauss@41837
|
258 |
| "isatom (Le a) = True"
|
krauss@41837
|
259 |
| "isatom (Gt a) = True"
|
krauss@41837
|
260 |
| "isatom (Ge a) = True"
|
krauss@41837
|
261 |
| "isatom (Eq a) = True"
|
krauss@41837
|
262 |
| "isatom (NEq a) = True"
|
krauss@41837
|
263 |
| "isatom (Dvd i b) = True"
|
krauss@41837
|
264 |
| "isatom (NDvd i b) = True"
|
krauss@41837
|
265 |
| "isatom (Closed P) = True"
|
krauss@41837
|
266 |
| "isatom (NClosed P) = True"
|
krauss@41837
|
267 |
| "isatom p = False"
|
chaieb@17378
|
268 |
|
wenzelm@50313
|
269 |
lemma numsubst0_numbound0:
|
wenzelm@50313
|
270 |
assumes nb: "numbound0 t"
|
chaieb@23274
|
271 |
shows "numbound0 (numsubst0 t a)"
|
wenzelm@50313
|
272 |
using nb apply (induct a)
|
wenzelm@50313
|
273 |
apply simp_all
|
wenzelm@50313
|
274 |
apply (case_tac nat, simp_all)
|
wenzelm@50313
|
275 |
done
|
chaieb@23274
|
276 |
|
wenzelm@50313
|
277 |
lemma subst0_bound0:
|
wenzelm@50313
|
278 |
assumes qf: "qfree p" and nb: "numbound0 t"
|
chaieb@23274
|
279 |
shows "bound0 (subst0 t p)"
|
wenzelm@50313
|
280 |
using qf numsubst0_numbound0[OF nb] by (induct p) auto
|
chaieb@23274
|
281 |
|
chaieb@23274
|
282 |
lemma bound0_qf: "bound0 p \<Longrightarrow> qfree p"
|
wenzelm@50313
|
283 |
by (induct p) simp_all
|
chaieb@23274
|
284 |
|
chaieb@23274
|
285 |
|
wenzelm@50313
|
286 |
definition djf :: "('a \<Rightarrow> fm) \<Rightarrow> 'a \<Rightarrow> fm \<Rightarrow> fm"
|
wenzelm@50313
|
287 |
where
|
wenzelm@50313
|
288 |
"djf f p q =
|
wenzelm@50313
|
289 |
(if q = T then T
|
wenzelm@50313
|
290 |
else if q = F then f p
|
wenzelm@50313
|
291 |
else (let fp = f p in case fp of T \<Rightarrow> T | F \<Rightarrow> q | _ \<Rightarrow> Or (f p) q))"
|
wenzelm@50313
|
292 |
|
wenzelm@50313
|
293 |
definition evaldjf :: "('a \<Rightarrow> fm) \<Rightarrow> 'a list \<Rightarrow> fm"
|
wenzelm@50313
|
294 |
where "evaldjf f ps = foldr (djf f) ps F"
|
chaieb@23274
|
295 |
|
chaieb@23274
|
296 |
lemma djf_Or: "Ifm bbs bs (djf f p q) = Ifm bbs bs (Or (f p) q)"
|
wenzelm@50313
|
297 |
by (cases "q=T", simp add: djf_def,cases "q=F",simp add: djf_def)
|
wenzelm@50313
|
298 |
(cases "f p", simp_all add: Let_def djf_def)
|
chaieb@23274
|
299 |
|
wenzelm@50313
|
300 |
lemma evaldjf_ex: "Ifm bbs bs (evaldjf f ps) = (\<exists>p \<in> set ps. Ifm bbs bs (f p))"
|
wenzelm@50313
|
301 |
by (induct ps) (simp_all add: evaldjf_def djf_Or)
|
chaieb@17378
|
302 |
|
wenzelm@50313
|
303 |
lemma evaldjf_bound0:
|
wenzelm@50313
|
304 |
assumes nb: "\<forall>x\<in> set xs. bound0 (f x)"
|
chaieb@23274
|
305 |
shows "bound0 (evaldjf f xs)"
|
wenzelm@50313
|
306 |
using nb by (induct xs) (auto simp add: evaldjf_def djf_def Let_def, case_tac "f a", auto)
|
chaieb@23274
|
307 |
|
wenzelm@50313
|
308 |
lemma evaldjf_qf:
|
wenzelm@50313
|
309 |
assumes nb: "\<forall>x\<in> set xs. qfree (f x)"
|
chaieb@23274
|
310 |
shows "qfree (evaldjf f xs)"
|
wenzelm@50313
|
311 |
using nb by (induct xs) (auto simp add: evaldjf_def djf_def Let_def, case_tac "f a", auto)
|
chaieb@17378
|
312 |
|
wenzelm@50313
|
313 |
fun disjuncts :: "fm \<Rightarrow> fm list"
|
wenzelm@50313
|
314 |
where
|
wenzelm@50313
|
315 |
"disjuncts (Or p q) = disjuncts p @ disjuncts q"
|
krauss@41837
|
316 |
| "disjuncts F = []"
|
krauss@41837
|
317 |
| "disjuncts p = [p]"
|
chaieb@23274
|
318 |
|
wenzelm@50313
|
319 |
lemma disjuncts: "(\<exists>q \<in> set (disjuncts p). Ifm bbs bs q) = Ifm bbs bs p"
|
wenzelm@50313
|
320 |
by (induct p rule: disjuncts.induct) auto
|
chaieb@23274
|
321 |
|
wenzelm@50313
|
322 |
lemma disjuncts_nb:
|
wenzelm@50313
|
323 |
assumes nb: "bound0 p"
|
wenzelm@50313
|
324 |
shows "\<forall>q \<in> set (disjuncts p). bound0 q"
|
wenzelm@50313
|
325 |
proof -
|
wenzelm@50313
|
326 |
from nb have "list_all bound0 (disjuncts p)"
|
wenzelm@50313
|
327 |
by (induct p rule: disjuncts.induct) auto
|
chaieb@23274
|
328 |
thus ?thesis by (simp only: list_all_iff)
|
chaieb@17378
|
329 |
qed
|
chaieb@17378
|
330 |
|
wenzelm@50313
|
331 |
lemma disjuncts_qf:
|
wenzelm@50313
|
332 |
assumes qf: "qfree p"
|
wenzelm@50313
|
333 |
shows "\<forall>q \<in> set (disjuncts p). qfree q"
|
wenzelm@50313
|
334 |
proof -
|
wenzelm@50313
|
335 |
from qf have "list_all qfree (disjuncts p)"
|
wenzelm@50313
|
336 |
by (induct p rule: disjuncts.induct) auto
|
chaieb@23274
|
337 |
thus ?thesis by (simp only: list_all_iff)
|
chaieb@23274
|
338 |
qed
|
chaieb@17378
|
339 |
|
wenzelm@50313
|
340 |
definition DJ :: "(fm \<Rightarrow> fm) \<Rightarrow> fm \<Rightarrow> fm"
|
wenzelm@50313
|
341 |
where "DJ f p = evaldjf f (disjuncts p)"
|
chaieb@17378
|
342 |
|
wenzelm@50313
|
343 |
lemma DJ:
|
wenzelm@50313
|
344 |
assumes fdj: "\<forall>p q. f (Or p q) = Or (f p) (f q)"
|
wenzelm@50313
|
345 |
and fF: "f F = F"
|
chaieb@23274
|
346 |
shows "Ifm bbs bs (DJ f p) = Ifm bbs bs (f p)"
|
wenzelm@50313
|
347 |
proof -
|
wenzelm@50313
|
348 |
have "Ifm bbs bs (DJ f p) = (\<exists>q \<in> set (disjuncts p). Ifm bbs bs (f q))"
|
wenzelm@50313
|
349 |
by (simp add: DJ_def evaldjf_ex)
|
wenzelm@50313
|
350 |
also have "\<dots> = Ifm bbs bs (f p)"
|
wenzelm@50313
|
351 |
using fdj fF by (induct p rule: disjuncts.induct) auto
|
chaieb@23274
|
352 |
finally show ?thesis .
|
chaieb@23274
|
353 |
qed
|
chaieb@17378
|
354 |
|
wenzelm@50313
|
355 |
lemma DJ_qf:
|
wenzelm@50313
|
356 |
assumes fqf: "\<forall>p. qfree p \<longrightarrow> qfree (f p)"
|
chaieb@23274
|
357 |
shows "\<forall>p. qfree p \<longrightarrow> qfree (DJ f p) "
|
wenzelm@50313
|
358 |
proof clarify
|
wenzelm@50313
|
359 |
fix p assume qf: "qfree p"
|
chaieb@23274
|
360 |
have th: "DJ f p = evaldjf f (disjuncts p)" by (simp add: DJ_def)
|
wenzelm@50313
|
361 |
from disjuncts_qf[OF qf] have "\<forall>q\<in> set (disjuncts p). qfree q" .
|
wenzelm@50313
|
362 |
with fqf have th':"\<forall>q\<in> set (disjuncts p). qfree (f q)" by blast
|
wenzelm@50313
|
363 |
|
chaieb@23274
|
364 |
from evaldjf_qf[OF th'] th show "qfree (DJ f p)" by simp
|
chaieb@17378
|
365 |
qed
|
chaieb@17378
|
366 |
|
wenzelm@50313
|
367 |
lemma DJ_qe:
|
wenzelm@50313
|
368 |
assumes qe: "\<forall>bs p. qfree p \<longrightarrow> qfree (qe p) \<and> (Ifm bbs bs (qe p) = Ifm bbs bs (E p))"
|
wenzelm@50313
|
369 |
shows "\<forall>bs p. qfree p \<longrightarrow> qfree (DJ qe p) \<and> (Ifm bbs bs ((DJ qe p)) = Ifm bbs bs (E p))"
|
wenzelm@50313
|
370 |
proof clarify
|
wenzelm@50313
|
371 |
fix p :: fm and bs
|
chaieb@23274
|
372 |
assume qf: "qfree p"
|
wenzelm@50313
|
373 |
from qe have qth: "\<forall>p. qfree p \<longrightarrow> qfree (qe p)" by blast
|
chaieb@23274
|
374 |
from DJ_qf[OF qth] qf have qfth:"qfree (DJ qe p)" by auto
|
wenzelm@50313
|
375 |
have "Ifm bbs bs (DJ qe p) = (\<exists>q\<in> set (disjuncts p). Ifm bbs bs (qe q))"
|
chaieb@23274
|
376 |
by (simp add: DJ_def evaldjf_ex)
|
wenzelm@50313
|
377 |
also have "\<dots> = (\<exists>q \<in> set(disjuncts p). Ifm bbs bs (E q))"
|
wenzelm@50313
|
378 |
using qe disjuncts_qf[OF qf] by auto
|
wenzelm@50313
|
379 |
also have "\<dots> = Ifm bbs bs (E p)"
|
wenzelm@50313
|
380 |
by (induct p rule: disjuncts.induct) auto
|
wenzelm@50313
|
381 |
finally show "qfree (DJ qe p) \<and> Ifm bbs bs (DJ qe p) = Ifm bbs bs (E p)"
|
wenzelm@50313
|
382 |
using qfth by blast
|
chaieb@23274
|
383 |
qed
|
wenzelm@50313
|
384 |
|
wenzelm@50313
|
385 |
|
wenzelm@50313
|
386 |
text {* Simplification *}
|
chaieb@23274
|
387 |
|
wenzelm@50313
|
388 |
text {* Algebraic simplifications for nums *}
|
krauss@41837
|
389 |
|
wenzelm@50313
|
390 |
fun bnds :: "num \<Rightarrow> nat list"
|
wenzelm@50313
|
391 |
where
|
chaieb@23274
|
392 |
"bnds (Bound n) = [n]"
|
krauss@41837
|
393 |
| "bnds (CN n c a) = n#(bnds a)"
|
krauss@41837
|
394 |
| "bnds (Neg a) = bnds a"
|
krauss@41837
|
395 |
| "bnds (Add a b) = (bnds a)@(bnds b)"
|
krauss@41837
|
396 |
| "bnds (Sub a b) = (bnds a)@(bnds b)"
|
krauss@41837
|
397 |
| "bnds (Mul i a) = bnds a"
|
krauss@41837
|
398 |
| "bnds a = []"
|
krauss@41837
|
399 |
|
wenzelm@50313
|
400 |
fun lex_ns:: "nat list \<Rightarrow> nat list \<Rightarrow> bool"
|
wenzelm@50313
|
401 |
where
|
krauss@41837
|
402 |
"lex_ns [] ms = True"
|
krauss@41837
|
403 |
| "lex_ns ns [] = False"
|
krauss@41837
|
404 |
| "lex_ns (n#ns) (m#ms) = (n<m \<or> ((n = m) \<and> lex_ns ns ms)) "
|
chaieb@23274
|
405 |
|
wenzelm@50313
|
406 |
definition lex_bnd :: "num \<Rightarrow> num \<Rightarrow> bool"
|
wenzelm@50313
|
407 |
where "lex_bnd t s = lex_ns (bnds t) (bnds s)"
|
wenzelm@50313
|
408 |
|
wenzelm@50313
|
409 |
consts numadd:: "num \<times> num \<Rightarrow> num"
|
wenzelm@50313
|
410 |
recdef numadd "measure (\<lambda>(t,s). num_size t + num_size s)"
|
chaieb@23995
|
411 |
"numadd (CN n1 c1 r1 ,CN n2 c2 r2) =
|
wenzelm@50313
|
412 |
(if n1 = n2 then
|
wenzelm@50313
|
413 |
(let c = c1 + c2
|
wenzelm@50313
|
414 |
in if c=0 then numadd (r1, r2) else CN n1 c (numadd (r1, r2)))
|
wenzelm@50313
|
415 |
else if n1 \<le> n2 then CN n1 c1 (numadd (r1,Add (Mul c2 (Bound n2)) r2))
|
wenzelm@50313
|
416 |
else CN n2 c2 (numadd (Add (Mul c1 (Bound n1)) r1, r2)))"
|
wenzelm@50313
|
417 |
"numadd (CN n1 c1 r1, t) = CN n1 c1 (numadd (r1, t))"
|
wenzelm@50313
|
418 |
"numadd (t, CN n2 c2 r2) = CN n2 c2 (numadd (t, r2))"
|
wenzelm@50313
|
419 |
"numadd (C b1, C b2) = C (b1 + b2)"
|
wenzelm@50313
|
420 |
"numadd (a, b) = Add a b"
|
chaieb@23274
|
421 |
|
haftmann@23689
|
422 |
(*function (sequential)
|
haftmann@23689
|
423 |
numadd :: "num \<Rightarrow> num \<Rightarrow> num"
|
haftmann@23689
|
424 |
where
|
haftmann@23689
|
425 |
"numadd (Add (Mul c1 (Bound n1)) r1) (Add (Mul c2 (Bound n2)) r2) =
|
haftmann@23689
|
426 |
(if n1 = n2 then (let c = c1 + c2
|
haftmann@23689
|
427 |
in (if c = 0 then numadd r1 r2 else
|
haftmann@23689
|
428 |
Add (Mul c (Bound n1)) (numadd r1 r2)))
|
haftmann@23689
|
429 |
else if n1 \<le> n2 then
|
haftmann@23689
|
430 |
Add (Mul c1 (Bound n1)) (numadd r1 (Add (Mul c2 (Bound n2)) r2))
|
haftmann@23689
|
431 |
else
|
haftmann@23689
|
432 |
Add (Mul c2 (Bound n2)) (numadd (Add (Mul c1 (Bound n1)) r1) r2))"
|
haftmann@23689
|
433 |
| "numadd (Add (Mul c1 (Bound n1)) r1) t =
|
wenzelm@50313
|
434 |
Add (Mul c1 (Bound n1)) (numadd r1 t)"
|
haftmann@23689
|
435 |
| "numadd t (Add (Mul c2 (Bound n2)) r2) =
|
wenzelm@50313
|
436 |
Add (Mul c2 (Bound n2)) (numadd t r2)"
|
haftmann@23689
|
437 |
| "numadd (C b1) (C b2) = C (b1 + b2)"
|
haftmann@23689
|
438 |
| "numadd a b = Add a b"
|
haftmann@23689
|
439 |
apply pat_completeness apply auto*)
|
wenzelm@50313
|
440 |
|
chaieb@23274
|
441 |
lemma numadd: "Inum bs (numadd (t,s)) = Inum bs (Add t s)"
|
wenzelm@50313
|
442 |
apply (induct t s rule: numadd.induct, simp_all add: Let_def)
|
wenzelm@50313
|
443 |
apply (case_tac "c1 + c2 = 0", case_tac "n1 \<le> n2", simp_all)
|
wenzelm@50313
|
444 |
apply (case_tac "n1 = n2")
|
wenzelm@50313
|
445 |
apply(simp_all add: algebra_simps)
|
wenzelm@50313
|
446 |
apply(simp add: distrib_right[symmetric])
|
wenzelm@50313
|
447 |
done
|
chaieb@23274
|
448 |
|
wenzelm@50313
|
449 |
lemma numadd_nb: "numbound0 t \<Longrightarrow> numbound0 s \<Longrightarrow> numbound0 (numadd (t, s))"
|
wenzelm@50313
|
450 |
by (induct t s rule: numadd.induct) (auto simp add: Let_def)
|
chaieb@23274
|
451 |
|
wenzelm@50313
|
452 |
fun nummul :: "int \<Rightarrow> num \<Rightarrow> num"
|
wenzelm@50313
|
453 |
where
|
haftmann@23689
|
454 |
"nummul i (C j) = C (i * j)"
|
krauss@41837
|
455 |
| "nummul i (CN n c t) = CN n (c*i) (nummul i t)"
|
krauss@41837
|
456 |
| "nummul i t = Mul i t"
|
chaieb@23274
|
457 |
|
wenzelm@50313
|
458 |
lemma nummul: "Inum bs (nummul i t) = Inum bs (Mul i t)"
|
wenzelm@50313
|
459 |
by (induct t arbitrary: i rule: nummul.induct) (auto simp add: algebra_simps numadd)
|
chaieb@23274
|
460 |
|
wenzelm@50313
|
461 |
lemma nummul_nb: "numbound0 t \<Longrightarrow> numbound0 (nummul i t)"
|
wenzelm@50313
|
462 |
by (induct t arbitrary: i rule: nummul.induct) (auto simp add: numadd_nb)
|
chaieb@23274
|
463 |
|
wenzelm@50313
|
464 |
definition numneg :: "num \<Rightarrow> num"
|
wenzelm@50313
|
465 |
where "numneg t = nummul (- 1) t"
|
chaieb@23274
|
466 |
|
wenzelm@50313
|
467 |
definition numsub :: "num \<Rightarrow> num \<Rightarrow> num"
|
wenzelm@50313
|
468 |
where "numsub s t = (if s = t then C 0 else numadd (s, numneg t))"
|
chaieb@23274
|
469 |
|
chaieb@23274
|
470 |
lemma numneg: "Inum bs (numneg t) = Inum bs (Neg t)"
|
wenzelm@50313
|
471 |
using numneg_def nummul by simp
|
chaieb@23274
|
472 |
|
chaieb@23274
|
473 |
lemma numneg_nb: "numbound0 t \<Longrightarrow> numbound0 (numneg t)"
|
wenzelm@50313
|
474 |
using numneg_def nummul_nb by simp
|
chaieb@23274
|
475 |
|
chaieb@23274
|
476 |
lemma numsub: "Inum bs (numsub a b) = Inum bs (Sub a b)"
|
wenzelm@50313
|
477 |
using numneg numadd numsub_def by simp
|
chaieb@23274
|
478 |
|
wenzelm@50313
|
479 |
lemma numsub_nb: "numbound0 t \<Longrightarrow> numbound0 s \<Longrightarrow> numbound0 (numsub t s)"
|
wenzelm@50313
|
480 |
using numsub_def numadd_nb numneg_nb by simp
|
chaieb@23274
|
481 |
|
wenzelm@50313
|
482 |
fun simpnum :: "num \<Rightarrow> num"
|
haftmann@23689
|
483 |
where
|
chaieb@23274
|
484 |
"simpnum (C j) = C j"
|
wenzelm@50313
|
485 |
| "simpnum (Bound n) = CN n 1 (C 0)"
|
wenzelm@50313
|
486 |
| "simpnum (Neg t) = numneg (simpnum t)"
|
wenzelm@50313
|
487 |
| "simpnum (Add t s) = numadd (simpnum t, simpnum s)"
|
wenzelm@50313
|
488 |
| "simpnum (Sub t s) = numsub (simpnum t) (simpnum s)"
|
wenzelm@50313
|
489 |
| "simpnum (Mul i t) = (if i = 0 then C 0 else nummul i (simpnum t))"
|
wenzelm@50313
|
490 |
| "simpnum t = t"
|
chaieb@23274
|
491 |
|
chaieb@23274
|
492 |
lemma simpnum_ci: "Inum bs (simpnum t) = Inum bs t"
|
wenzelm@50313
|
493 |
by (induct t rule: simpnum.induct) (auto simp add: numneg numadd numsub nummul)
|
chaieb@23274
|
494 |
|
wenzelm@50313
|
495 |
lemma simpnum_numbound0: "numbound0 t \<Longrightarrow> numbound0 (simpnum t)"
|
wenzelm@50313
|
496 |
by (induct t rule: simpnum.induct) (auto simp add: numadd_nb numsub_nb nummul_nb numneg_nb)
|
chaieb@23274
|
497 |
|
wenzelm@50313
|
498 |
fun not :: "fm \<Rightarrow> fm"
|
haftmann@23689
|
499 |
where
|
chaieb@23274
|
500 |
"not (NOT p) = p"
|
wenzelm@50313
|
501 |
| "not T = F"
|
wenzelm@50313
|
502 |
| "not F = T"
|
wenzelm@50313
|
503 |
| "not p = NOT p"
|
wenzelm@50313
|
504 |
|
chaieb@23274
|
505 |
lemma not: "Ifm bbs bs (not p) = Ifm bbs bs (NOT p)"
|
wenzelm@41807
|
506 |
by (cases p) auto
|
wenzelm@50313
|
507 |
|
chaieb@23274
|
508 |
lemma not_qf: "qfree p \<Longrightarrow> qfree (not p)"
|
wenzelm@41807
|
509 |
by (cases p) auto
|
wenzelm@50313
|
510 |
|
chaieb@23274
|
511 |
lemma not_bn: "bound0 p \<Longrightarrow> bound0 (not p)"
|
wenzelm@41807
|
512 |
by (cases p) auto
|
chaieb@23274
|
513 |
|
wenzelm@50313
|
514 |
definition conj :: "fm \<Rightarrow> fm \<Rightarrow> fm"
|
wenzelm@50313
|
515 |
where
|
wenzelm@50313
|
516 |
"conj p q = (if (p = F \<or> q=F) then F else if p=T then q else if q=T then p else And p q)"
|
wenzelm@50313
|
517 |
|
chaieb@23274
|
518 |
lemma conj: "Ifm bbs bs (conj p q) = Ifm bbs bs (And p q)"
|
wenzelm@50313
|
519 |
by (cases "p=F \<or> q=F", simp_all add: conj_def) (cases p, simp_all)
|
chaieb@23274
|
520 |
|
wenzelm@50313
|
521 |
lemma conj_qf: "qfree p \<Longrightarrow> qfree q \<Longrightarrow> qfree (conj p q)"
|
wenzelm@50313
|
522 |
using conj_def by auto
|
chaieb@23274
|
523 |
|
wenzelm@50313
|
524 |
lemma conj_nb: "bound0 p \<Longrightarrow> bound0 q \<Longrightarrow> bound0 (conj p q)"
|
wenzelm@50313
|
525 |
using conj_def by auto
|
wenzelm@50313
|
526 |
|
wenzelm@50313
|
527 |
definition disj :: "fm \<Rightarrow> fm \<Rightarrow> fm"
|
wenzelm@50313
|
528 |
where
|
wenzelm@50313
|
529 |
"disj p q =
|
wenzelm@50313
|
530 |
(if (p = T \<or> q=T) then T else if p=F then q else if q=F then p else Or p q)"
|
chaieb@23274
|
531 |
|
chaieb@23274
|
532 |
lemma disj: "Ifm bbs bs (disj p q) = Ifm bbs bs (Or p q)"
|
wenzelm@50313
|
533 |
by (cases "p=T \<or> q=T", simp_all add: disj_def) (cases p, simp_all)
|
wenzelm@50313
|
534 |
|
chaieb@23274
|
535 |
lemma disj_qf: "\<lbrakk>qfree p ; qfree q\<rbrakk> \<Longrightarrow> qfree (disj p q)"
|
wenzelm@50313
|
536 |
using disj_def by auto
|
wenzelm@50313
|
537 |
|
chaieb@23274
|
538 |
lemma disj_nb: "\<lbrakk>bound0 p ; bound0 q\<rbrakk> \<Longrightarrow> bound0 (disj p q)"
|
wenzelm@50313
|
539 |
using disj_def by auto
|
chaieb@23274
|
540 |
|
wenzelm@50313
|
541 |
definition imp :: "fm \<Rightarrow> fm \<Rightarrow> fm"
|
wenzelm@50313
|
542 |
where
|
wenzelm@50313
|
543 |
"imp p q = (if (p = F \<or> q=T) then T else if p=T then q else if q=F then not p else Imp p q)"
|
wenzelm@50313
|
544 |
|
chaieb@23274
|
545 |
lemma imp: "Ifm bbs bs (imp p q) = Ifm bbs bs (Imp p q)"
|
wenzelm@50313
|
546 |
by (cases "p=F \<or> q=T", simp_all add: imp_def, cases p) (simp_all add: not)
|
wenzelm@50313
|
547 |
|
wenzelm@50313
|
548 |
lemma imp_qf: "qfree p \<Longrightarrow> qfree q \<Longrightarrow> qfree (imp p q)"
|
wenzelm@50313
|
549 |
using imp_def by (cases "p=F \<or> q=T",simp_all add: imp_def,cases p) (simp_all add: not_qf)
|
wenzelm@50313
|
550 |
|
wenzelm@50313
|
551 |
lemma imp_nb: "bound0 p \<Longrightarrow> bound0 q \<Longrightarrow> bound0 (imp p q)"
|
wenzelm@50313
|
552 |
using imp_def by (cases "p=F \<or> q=T",simp_all add: imp_def,cases p) simp_all
|
chaieb@23274
|
553 |
|
wenzelm@50313
|
554 |
definition iff :: "fm \<Rightarrow> fm \<Rightarrow> fm"
|
wenzelm@50313
|
555 |
where
|
wenzelm@50313
|
556 |
"iff p q =
|
wenzelm@50313
|
557 |
(if (p = q) then T
|
wenzelm@50313
|
558 |
else if (p = not q \<or> not p = q) then F
|
wenzelm@50313
|
559 |
else if p = F then not q
|
wenzelm@50313
|
560 |
else if q = F then not p
|
wenzelm@50313
|
561 |
else if p = T then q
|
wenzelm@50313
|
562 |
else if q = T then p
|
wenzelm@50313
|
563 |
else Iff p q)"
|
wenzelm@50313
|
564 |
|
chaieb@23274
|
565 |
lemma iff: "Ifm bbs bs (iff p q) = Ifm bbs bs (Iff p q)"
|
wenzelm@50313
|
566 |
by (unfold iff_def,cases "p=q", simp,cases "p=not q", simp add:not)
|
wenzelm@50313
|
567 |
(cases "not p= q", auto simp add:not)
|
wenzelm@50313
|
568 |
|
chaieb@23274
|
569 |
lemma iff_qf: "\<lbrakk>qfree p ; qfree q\<rbrakk> \<Longrightarrow> qfree (iff p q)"
|
chaieb@23274
|
570 |
by (unfold iff_def,cases "p=q", auto simp add: not_qf)
|
chaieb@23274
|
571 |
|
wenzelm@50313
|
572 |
lemma iff_nb: "\<lbrakk>bound0 p ; bound0 q\<rbrakk> \<Longrightarrow> bound0 (iff p q)"
|
wenzelm@50313
|
573 |
using iff_def by (unfold iff_def,cases "p=q", auto simp add: not_bn)
|
wenzelm@50313
|
574 |
|
wenzelm@50313
|
575 |
function (sequential) simpfm :: "fm \<Rightarrow> fm"
|
haftmann@23689
|
576 |
where
|
chaieb@23274
|
577 |
"simpfm (And p q) = conj (simpfm p) (simpfm q)"
|
wenzelm@50313
|
578 |
| "simpfm (Or p q) = disj (simpfm p) (simpfm q)"
|
wenzelm@50313
|
579 |
| "simpfm (Imp p q) = imp (simpfm p) (simpfm q)"
|
wenzelm@50313
|
580 |
| "simpfm (Iff p q) = iff (simpfm p) (simpfm q)"
|
wenzelm@50313
|
581 |
| "simpfm (NOT p) = not (simpfm p)"
|
wenzelm@50313
|
582 |
| "simpfm (Lt a) = (let a' = simpnum a in case a' of C v \<Rightarrow> if (v < 0) then T else F | _ \<Rightarrow> Lt a')"
|
wenzelm@50313
|
583 |
| "simpfm (Le a) = (let a' = simpnum a in case a' of C v \<Rightarrow> if (v \<le> 0) then T else F | _ \<Rightarrow> Le a')"
|
wenzelm@50313
|
584 |
| "simpfm (Gt a) = (let a' = simpnum a in case a' of C v \<Rightarrow> if (v > 0) then T else F | _ \<Rightarrow> Gt a')"
|
wenzelm@50313
|
585 |
| "simpfm (Ge a) = (let a' = simpnum a in case a' of C v \<Rightarrow> if (v \<ge> 0) then T else F | _ \<Rightarrow> Ge a')"
|
wenzelm@50313
|
586 |
| "simpfm (Eq a) = (let a' = simpnum a in case a' of C v \<Rightarrow> if (v = 0) then T else F | _ \<Rightarrow> Eq a')"
|
wenzelm@50313
|
587 |
| "simpfm (NEq a) = (let a' = simpnum a in case a' of C v \<Rightarrow> if (v \<noteq> 0) then T else F | _ \<Rightarrow> NEq a')"
|
wenzelm@50313
|
588 |
| "simpfm (Dvd i a) =
|
wenzelm@50313
|
589 |
(if i=0 then simpfm (Eq a)
|
wenzelm@50313
|
590 |
else if (abs i = 1) then T
|
wenzelm@50313
|
591 |
else let a' = simpnum a in case a' of C v \<Rightarrow> if (i dvd v) then T else F | _ \<Rightarrow> Dvd i a')"
|
wenzelm@50313
|
592 |
| "simpfm (NDvd i a) =
|
wenzelm@50313
|
593 |
(if i=0 then simpfm (NEq a)
|
wenzelm@50313
|
594 |
else if (abs i = 1) then F
|
wenzelm@50313
|
595 |
else let a' = simpnum a in case a' of C v \<Rightarrow> if (\<not>(i dvd v)) then T else F | _ \<Rightarrow> NDvd i a')"
|
wenzelm@50313
|
596 |
| "simpfm p = p"
|
wenzelm@50313
|
597 |
by pat_completeness auto
|
haftmann@23689
|
598 |
termination by (relation "measure fmsize") auto
|
haftmann@23689
|
599 |
|
chaieb@23274
|
600 |
lemma simpfm: "Ifm bbs bs (simpfm p) = Ifm bbs bs p"
|
chaieb@23274
|
601 |
proof(induct p rule: simpfm.induct)
|
wenzelm@50313
|
602 |
case (6 a)
|
wenzelm@50313
|
603 |
let ?sa = "simpnum a"
|
wenzelm@50313
|
604 |
from simpnum_ci have sa: "Inum bs ?sa = Inum bs a" by simp
|
wenzelm@50313
|
605 |
{ fix v assume "?sa = C v" hence ?case using sa by simp }
|
wenzelm@50313
|
606 |
moreover {
|
wenzelm@50313
|
607 |
assume "\<not> (\<exists>v. ?sa = C v)"
|
wenzelm@50313
|
608 |
hence ?case using sa by (cases ?sa) (simp_all add: Let_def)
|
wenzelm@50313
|
609 |
}
|
chaieb@23274
|
610 |
ultimately show ?case by blast
|
chaieb@17378
|
611 |
next
|
wenzelm@50313
|
612 |
case (7 a)
|
wenzelm@50313
|
613 |
let ?sa = "simpnum a"
|
chaieb@23274
|
614 |
from simpnum_ci have sa: "Inum bs ?sa = Inum bs a" by simp
|
wenzelm@50313
|
615 |
{ fix v assume "?sa = C v" hence ?case using sa by simp }
|
wenzelm@50313
|
616 |
moreover {
|
wenzelm@50313
|
617 |
assume "\<not> (\<exists>v. ?sa = C v)"
|
wenzelm@50313
|
618 |
hence ?case using sa by (cases ?sa) (simp_all add: Let_def)
|
wenzelm@50313
|
619 |
}
|
chaieb@23274
|
620 |
ultimately show ?case by blast
|
chaieb@23274
|
621 |
next
|
wenzelm@50313
|
622 |
case (8 a)
|
wenzelm@50313
|
623 |
let ?sa = "simpnum a"
|
chaieb@23274
|
624 |
from simpnum_ci have sa: "Inum bs ?sa = Inum bs a" by simp
|
wenzelm@50313
|
625 |
{ fix v assume "?sa = C v" hence ?case using sa by simp }
|
wenzelm@50313
|
626 |
moreover {
|
wenzelm@50313
|
627 |
assume "\<not> (\<exists>v. ?sa = C v)"
|
wenzelm@50313
|
628 |
hence ?case using sa by (cases ?sa) (simp_all add: Let_def)
|
wenzelm@50313
|
629 |
}
|
chaieb@23274
|
630 |
ultimately show ?case by blast
|
chaieb@23274
|
631 |
next
|
wenzelm@50313
|
632 |
case (9 a)
|
wenzelm@50313
|
633 |
let ?sa = "simpnum a"
|
chaieb@23274
|
634 |
from simpnum_ci have sa: "Inum bs ?sa = Inum bs a" by simp
|
wenzelm@50313
|
635 |
{ fix v assume "?sa = C v" hence ?case using sa by simp }
|
wenzelm@50313
|
636 |
moreover {
|
wenzelm@50313
|
637 |
assume "\<not> (\<exists>v. ?sa = C v)"
|
wenzelm@50313
|
638 |
hence ?case using sa by (cases ?sa) (simp_all add: Let_def)
|
wenzelm@50313
|
639 |
}
|
chaieb@23274
|
640 |
ultimately show ?case by blast
|
chaieb@23274
|
641 |
next
|
wenzelm@50313
|
642 |
case (10 a)
|
wenzelm@50313
|
643 |
let ?sa = "simpnum a"
|
chaieb@23274
|
644 |
from simpnum_ci have sa: "Inum bs ?sa = Inum bs a" by simp
|
wenzelm@50313
|
645 |
{ fix v assume "?sa = C v" hence ?case using sa by simp }
|
wenzelm@50313
|
646 |
moreover {
|
wenzelm@50313
|
647 |
assume "\<not> (\<exists>v. ?sa = C v)"
|
wenzelm@50313
|
648 |
hence ?case using sa by (cases ?sa) (simp_all add: Let_def)
|
wenzelm@50313
|
649 |
}
|
chaieb@23274
|
650 |
ultimately show ?case by blast
|
chaieb@23274
|
651 |
next
|
wenzelm@50313
|
652 |
case (11 a)
|
wenzelm@50313
|
653 |
let ?sa = "simpnum a"
|
wenzelm@50313
|
654 |
from simpnum_ci have sa: "Inum bs ?sa = Inum bs a" by simp
|
wenzelm@50313
|
655 |
{ fix v assume "?sa = C v" hence ?case using sa by simp }
|
wenzelm@50313
|
656 |
moreover {
|
wenzelm@50313
|
657 |
assume "\<not> (\<exists>v. ?sa = C v)"
|
wenzelm@50313
|
658 |
hence ?case using sa by (cases ?sa) (simp_all add: Let_def)
|
wenzelm@50313
|
659 |
}
|
chaieb@23274
|
660 |
ultimately show ?case by blast
|
chaieb@23274
|
661 |
next
|
wenzelm@50313
|
662 |
case (12 i a)
|
wenzelm@50313
|
663 |
let ?sa = "simpnum a"
|
wenzelm@50313
|
664 |
from simpnum_ci have sa: "Inum bs ?sa = Inum bs a" by simp
|
wenzelm@50313
|
665 |
{ assume "i=0" hence ?case using "12.hyps" by (simp add: dvd_def Let_def) }
|
wenzelm@50313
|
666 |
moreover
|
wenzelm@50313
|
667 |
{ assume i1: "abs i = 1"
|
wenzelm@50313
|
668 |
from one_dvd[of "Inum bs a"] uminus_dvd_conv[where d="1" and t="Inum bs a"]
|
wenzelm@50313
|
669 |
have ?case using i1
|
wenzelm@50313
|
670 |
apply (cases "i=0", simp_all add: Let_def)
|
wenzelm@50313
|
671 |
apply (cases "i > 0", simp_all)
|
wenzelm@50313
|
672 |
done
|
wenzelm@50313
|
673 |
}
|
wenzelm@50313
|
674 |
moreover
|
wenzelm@50313
|
675 |
{ assume inz: "i\<noteq>0" and cond: "abs i \<noteq> 1"
|
wenzelm@50313
|
676 |
{ fix v assume "?sa = C v"
|
wenzelm@50313
|
677 |
hence ?case using sa[symmetric] inz cond
|
wenzelm@50313
|
678 |
by (cases "abs i = 1") auto }
|
wenzelm@50313
|
679 |
moreover {
|
wenzelm@50313
|
680 |
assume "\<not> (\<exists>v. ?sa = C v)"
|
wenzelm@50313
|
681 |
hence "simpfm (Dvd i a) = Dvd i ?sa" using inz cond
|
wenzelm@50313
|
682 |
by (cases ?sa) (auto simp add: Let_def)
|
wenzelm@50313
|
683 |
hence ?case using sa by simp }
|
wenzelm@50313
|
684 |
ultimately have ?case by blast }
|
wenzelm@50313
|
685 |
ultimately show ?case by blast
|
wenzelm@50313
|
686 |
next
|
wenzelm@50313
|
687 |
case (13 i a)
|
wenzelm@50313
|
688 |
let ?sa = "simpnum a" from simpnum_ci
|
chaieb@23274
|
689 |
have sa: "Inum bs ?sa = Inum bs a" by simp
|
wenzelm@50313
|
690 |
{ assume "i=0" hence ?case using "13.hyps" by (simp add: dvd_def Let_def) }
|
wenzelm@50313
|
691 |
moreover
|
wenzelm@50313
|
692 |
{ assume i1: "abs i = 1"
|
wenzelm@50313
|
693 |
from one_dvd[of "Inum bs a"] uminus_dvd_conv[where d="1" and t="Inum bs a"]
|
wenzelm@50313
|
694 |
have ?case using i1
|
wenzelm@50313
|
695 |
apply (cases "i=0", simp_all add: Let_def)
|
wenzelm@50313
|
696 |
apply (cases "i > 0", simp_all)
|
wenzelm@50313
|
697 |
done
|
wenzelm@50313
|
698 |
}
|
wenzelm@50313
|
699 |
moreover
|
wenzelm@50313
|
700 |
{ assume inz: "i\<noteq>0" and cond: "abs i \<noteq> 1"
|
wenzelm@50313
|
701 |
{ fix v assume "?sa = C v"
|
wenzelm@50313
|
702 |
hence ?case using sa[symmetric] inz cond
|
wenzelm@50313
|
703 |
by (cases "abs i = 1") auto }
|
wenzelm@50313
|
704 |
moreover {
|
wenzelm@50313
|
705 |
assume "\<not> (\<exists>v. ?sa = C v)"
|
wenzelm@50313
|
706 |
hence "simpfm (NDvd i a) = NDvd i ?sa" using inz cond
|
wenzelm@50313
|
707 |
by (cases ?sa) (auto simp add: Let_def)
|
wenzelm@50313
|
708 |
hence ?case using sa by simp }
|
wenzelm@50313
|
709 |
ultimately have ?case by blast }
|
chaieb@23274
|
710 |
ultimately show ?case by blast
|
wenzelm@50313
|
711 |
qed (simp_all add: conj disj imp iff not)
|
chaieb@17378
|
712 |
|
chaieb@23274
|
713 |
lemma simpfm_bound0: "bound0 p \<Longrightarrow> bound0 (simpfm p)"
|
wenzelm@50313
|
714 |
proof (induct p rule: simpfm.induct)
|
chaieb@23274
|
715 |
case (6 a) hence nb: "numbound0 a" by simp
|
chaieb@23274
|
716 |
hence "numbound0 (simpnum a)" by (simp only: simpnum_numbound0[OF nb])
|
wenzelm@50313
|
717 |
thus ?case by (cases "simpnum a") (auto simp add: Let_def)
|
chaieb@23274
|
718 |
next
|
chaieb@23274
|
719 |
case (7 a) hence nb: "numbound0 a" by simp
|
chaieb@23274
|
720 |
hence "numbound0 (simpnum a)" by (simp only: simpnum_numbound0[OF nb])
|
wenzelm@50313
|
721 |
thus ?case by (cases "simpnum a") (auto simp add: Let_def)
|
chaieb@23274
|
722 |
next
|
chaieb@23274
|
723 |
case (8 a) hence nb: "numbound0 a" by simp
|
chaieb@23274
|
724 |
hence "numbound0 (simpnum a)" by (simp only: simpnum_numbound0[OF nb])
|
wenzelm@50313
|
725 |
thus ?case by (cases "simpnum a") (auto simp add: Let_def)
|
chaieb@23274
|
726 |
next
|
chaieb@23274
|
727 |
case (9 a) hence nb: "numbound0 a" by simp
|
chaieb@23274
|
728 |
hence "numbound0 (simpnum a)" by (simp only: simpnum_numbound0[OF nb])
|
wenzelm@50313
|
729 |
thus ?case by (cases "simpnum a") (auto simp add: Let_def)
|
chaieb@23274
|
730 |
next
|
chaieb@23274
|
731 |
case (10 a) hence nb: "numbound0 a" by simp
|
chaieb@23274
|
732 |
hence "numbound0 (simpnum a)" by (simp only: simpnum_numbound0[OF nb])
|
wenzelm@50313
|
733 |
thus ?case by (cases "simpnum a") (auto simp add: Let_def)
|
chaieb@23274
|
734 |
next
|
chaieb@23274
|
735 |
case (11 a) hence nb: "numbound0 a" by simp
|
chaieb@23274
|
736 |
hence "numbound0 (simpnum a)" by (simp only: simpnum_numbound0[OF nb])
|
wenzelm@50313
|
737 |
thus ?case by (cases "simpnum a") (auto simp add: Let_def)
|
chaieb@23274
|
738 |
next
|
chaieb@23274
|
739 |
case (12 i a) hence nb: "numbound0 a" by simp
|
chaieb@23274
|
740 |
hence "numbound0 (simpnum a)" by (simp only: simpnum_numbound0[OF nb])
|
wenzelm@50313
|
741 |
thus ?case by (cases "simpnum a") (auto simp add: Let_def)
|
chaieb@23274
|
742 |
next
|
chaieb@23274
|
743 |
case (13 i a) hence nb: "numbound0 a" by simp
|
chaieb@23274
|
744 |
hence "numbound0 (simpnum a)" by (simp only: simpnum_numbound0[OF nb])
|
wenzelm@50313
|
745 |
thus ?case by (cases "simpnum a") (auto simp add: Let_def)
|
wenzelm@50313
|
746 |
qed (auto simp add: disj_def imp_def iff_def conj_def not_bn)
|
chaieb@17378
|
747 |
|
chaieb@23274
|
748 |
lemma simpfm_qf: "qfree p \<Longrightarrow> qfree (simpfm p)"
|
wenzelm@50313
|
749 |
by (induct p rule: simpfm.induct, auto simp add: disj_qf imp_qf iff_qf conj_qf not_qf Let_def)
|
wenzelm@50313
|
750 |
(case_tac "simpnum a", auto)+
|
chaieb@23274
|
751 |
|
wenzelm@50313
|
752 |
text {* Generic quantifier elimination *}
|
wenzelm@50313
|
753 |
function (sequential) qelim :: "fm \<Rightarrow> (fm \<Rightarrow> fm) \<Rightarrow> fm"
|
wenzelm@50313
|
754 |
where
|
wenzelm@50313
|
755 |
"qelim (E p) = (\<lambda>qe. DJ qe (qelim p qe))"
|
wenzelm@50313
|
756 |
| "qelim (A p) = (\<lambda>qe. not (qe ((qelim (NOT p) qe))))"
|
wenzelm@50313
|
757 |
| "qelim (NOT p) = (\<lambda>qe. not (qelim p qe))"
|
wenzelm@50313
|
758 |
| "qelim (And p q) = (\<lambda>qe. conj (qelim p qe) (qelim q qe))"
|
wenzelm@50313
|
759 |
| "qelim (Or p q) = (\<lambda>qe. disj (qelim p qe) (qelim q qe))"
|
wenzelm@50313
|
760 |
| "qelim (Imp p q) = (\<lambda>qe. imp (qelim p qe) (qelim q qe))"
|
wenzelm@50313
|
761 |
| "qelim (Iff p q) = (\<lambda>qe. iff (qelim p qe) (qelim q qe))"
|
wenzelm@50313
|
762 |
| "qelim p = (\<lambda>y. simpfm p)"
|
wenzelm@50313
|
763 |
by pat_completeness auto
|
krauss@41837
|
764 |
termination by (relation "measure fmsize") auto
|
haftmann@23689
|
765 |
|
chaieb@23274
|
766 |
lemma qelim_ci:
|
wenzelm@50313
|
767 |
assumes qe_inv: "\<forall>bs p. qfree p \<longrightarrow> qfree (qe p) \<and> (Ifm bbs bs (qe p) = Ifm bbs bs (E p))"
|
wenzelm@50313
|
768 |
shows "\<And>bs. qfree (qelim p qe) \<and> (Ifm bbs bs (qelim p qe) = Ifm bbs bs p)"
|
wenzelm@50313
|
769 |
using qe_inv DJ_qe[OF qe_inv]
|
wenzelm@50313
|
770 |
by(induct p rule: qelim.induct)
|
wenzelm@50313
|
771 |
(auto simp add: not disj conj iff imp not_qf disj_qf conj_qf imp_qf iff_qf
|
wenzelm@50313
|
772 |
simpfm simpfm_qf simp del: simpfm.simps)
|
haftmann@23689
|
773 |
|
wenzelm@50313
|
774 |
text {* Linearity for fm where Bound 0 ranges over @{text "\<int>"} *}
|
wenzelm@50313
|
775 |
|
wenzelm@50313
|
776 |
fun zsplit0 :: "num \<Rightarrow> int \<times> num" -- {* splits the bounded from the unbounded part *}
|
haftmann@23689
|
777 |
where
|
chaieb@23274
|
778 |
"zsplit0 (C c) = (0,C c)"
|
wenzelm@50313
|
779 |
| "zsplit0 (Bound n) = (if n=0 then (1, C 0) else (0,Bound n))"
|
wenzelm@50313
|
780 |
| "zsplit0 (CN n i a) =
|
wenzelm@50313
|
781 |
(let (i',a') = zsplit0 a
|
wenzelm@50313
|
782 |
in if n=0 then (i+i', a') else (i',CN n i a'))"
|
wenzelm@50313
|
783 |
| "zsplit0 (Neg a) = (let (i',a') = zsplit0 a in (-i', Neg a'))"
|
wenzelm@50313
|
784 |
| "zsplit0 (Add a b) = (let (ia,a') = zsplit0 a ;
|
wenzelm@50313
|
785 |
(ib,b') = zsplit0 b
|
wenzelm@50313
|
786 |
in (ia+ib, Add a' b'))"
|
wenzelm@50313
|
787 |
| "zsplit0 (Sub a b) = (let (ia,a') = zsplit0 a ;
|
wenzelm@50313
|
788 |
(ib,b') = zsplit0 b
|
wenzelm@50313
|
789 |
in (ia-ib, Sub a' b'))"
|
wenzelm@50313
|
790 |
| "zsplit0 (Mul i a) = (let (i',a') = zsplit0 a in (i*i', Mul i a'))"
|
chaieb@23274
|
791 |
|
chaieb@23274
|
792 |
lemma zsplit0_I:
|
wenzelm@50313
|
793 |
shows "\<And>n a. zsplit0 t = (n,a) \<Longrightarrow> (Inum ((x::int) #bs) (CN 0 n a) = Inum (x #bs) t) \<and> numbound0 a"
|
wenzelm@50313
|
794 |
(is "\<And>n a. ?S t = (n,a) \<Longrightarrow> (?I x (CN 0 n a) = ?I x t) \<and> ?N a")
|
wenzelm@50313
|
795 |
proof (induct t rule: zsplit0.induct)
|
wenzelm@50313
|
796 |
case (1 c n a) thus ?case by auto
|
chaieb@23274
|
797 |
next
|
chaieb@23274
|
798 |
case (2 m n a) thus ?case by (cases "m=0") auto
|
chaieb@23274
|
799 |
next
|
chaieb@23995
|
800 |
case (3 m i a n a')
|
chaieb@23274
|
801 |
let ?j = "fst (zsplit0 a)"
|
chaieb@23274
|
802 |
let ?b = "snd (zsplit0 a)"
|
wenzelm@50313
|
803 |
have abj: "zsplit0 a = (?j,?b)" by simp
|
wenzelm@50313
|
804 |
{assume "m\<noteq>0"
|
wenzelm@41807
|
805 |
with 3(1)[OF abj] 3(2) have ?case by (auto simp add: Let_def split_def)}
|
chaieb@23995
|
806 |
moreover
|
chaieb@23995
|
807 |
{assume m0: "m =0"
|
wenzelm@50313
|
808 |
with abj have th: "a'=?b \<and> n=i+?j" using 3
|
chaieb@23995
|
809 |
by (simp add: Let_def split_def)
|
wenzelm@41807
|
810 |
from abj 3 m0 have th2: "(?I x (CN 0 ?j ?b) = ?I x a) \<and> ?N ?b" by blast
|
chaieb@23995
|
811 |
from th have "?I x (CN 0 n a') = ?I x (CN 0 (i+?j) ?b)" by simp
|
webertj@49962
|
812 |
also from th2 have "\<dots> = ?I x (CN 0 i (CN 0 ?j ?b))" by (simp add: distrib_right)
|
chaieb@23995
|
813 |
finally have "?I x (CN 0 n a') = ?I x (CN 0 i a)" using th2 by simp
|
wenzelm@50313
|
814 |
with th2 th have ?case using m0 by blast}
|
chaieb@23995
|
815 |
ultimately show ?case by blast
|
chaieb@23274
|
816 |
next
|
chaieb@23274
|
817 |
case (4 t n a)
|
chaieb@23274
|
818 |
let ?nt = "fst (zsplit0 t)"
|
chaieb@23274
|
819 |
let ?at = "snd (zsplit0 t)"
|
wenzelm@41807
|
820 |
have abj: "zsplit0 t = (?nt,?at)" by simp hence th: "a=Neg ?at \<and> n=-?nt" using 4
|
chaieb@23274
|
821 |
by (simp add: Let_def split_def)
|
wenzelm@41807
|
822 |
from abj 4 have th2: "(?I x (CN 0 ?nt ?at) = ?I x t) \<and> ?N ?at" by blast
|
chaieb@23274
|
823 |
from th2[simplified] th[simplified] show ?case by simp
|
chaieb@23274
|
824 |
next
|
chaieb@23274
|
825 |
case (5 s t n a)
|
chaieb@23274
|
826 |
let ?ns = "fst (zsplit0 s)"
|
chaieb@23274
|
827 |
let ?as = "snd (zsplit0 s)"
|
chaieb@23274
|
828 |
let ?nt = "fst (zsplit0 t)"
|
chaieb@23274
|
829 |
let ?at = "snd (zsplit0 t)"
|
wenzelm@50313
|
830 |
have abjs: "zsplit0 s = (?ns,?as)" by simp
|
wenzelm@50313
|
831 |
moreover have abjt: "zsplit0 t = (?nt,?at)" by simp
|
wenzelm@41807
|
832 |
ultimately have th: "a=Add ?as ?at \<and> n=?ns + ?nt" using 5
|
chaieb@23274
|
833 |
by (simp add: Let_def split_def)
|
wenzelm@50313
|
834 |
from abjs[symmetric] have bluddy: "\<exists>x y. (x,y) = zsplit0 s" by blast
|
wenzelm@50313
|
835 |
from 5 have "(\<exists>x y. (x,y) = zsplit0 s) \<longrightarrow> (\<forall>xa xb. zsplit0 t = (xa, xb) \<longrightarrow> Inum (x # bs) (CN 0 xa xb) = Inum (x # bs) t \<and> numbound0 xb)" by auto
|
chaieb@23995
|
836 |
with bluddy abjt have th3: "(?I x (CN 0 ?nt ?at) = ?I x t) \<and> ?N ?at" by blast
|
wenzelm@41807
|
837 |
from abjs 5 have th2: "(?I x (CN 0 ?ns ?as) = ?I x s) \<and> ?N ?as" by blast
|
wenzelm@50313
|
838 |
from th3[simplified] th2[simplified] th[simplified] show ?case
|
webertj@49962
|
839 |
by (simp add: distrib_right)
|
chaieb@23274
|
840 |
next
|
chaieb@23274
|
841 |
case (6 s t n a)
|
chaieb@23274
|
842 |
let ?ns = "fst (zsplit0 s)"
|
chaieb@23274
|
843 |
let ?as = "snd (zsplit0 s)"
|
chaieb@23274
|
844 |
let ?nt = "fst (zsplit0 t)"
|
chaieb@23274
|
845 |
let ?at = "snd (zsplit0 t)"
|
wenzelm@50313
|
846 |
have abjs: "zsplit0 s = (?ns,?as)" by simp
|
wenzelm@50313
|
847 |
moreover have abjt: "zsplit0 t = (?nt,?at)" by simp
|
wenzelm@41807
|
848 |
ultimately have th: "a=Sub ?as ?at \<and> n=?ns - ?nt" using 6
|
chaieb@23274
|
849 |
by (simp add: Let_def split_def)
|
wenzelm@50313
|
850 |
from abjs[symmetric] have bluddy: "\<exists>x y. (x,y) = zsplit0 s" by blast
|
wenzelm@50313
|
851 |
from 6 have "(\<exists>x y. (x,y) = zsplit0 s) \<longrightarrow>
|
wenzelm@50313
|
852 |
(\<forall>xa xb. zsplit0 t = (xa, xb) \<longrightarrow> Inum (x # bs) (CN 0 xa xb) = Inum (x # bs) t \<and> numbound0 xb)"
|
wenzelm@50313
|
853 |
by auto
|
chaieb@23995
|
854 |
with bluddy abjt have th3: "(?I x (CN 0 ?nt ?at) = ?I x t) \<and> ?N ?at" by blast
|
wenzelm@41807
|
855 |
from abjs 6 have th2: "(?I x (CN 0 ?ns ?as) = ?I x s) \<and> ?N ?as" by blast
|
wenzelm@50313
|
856 |
from th3[simplified] th2[simplified] th[simplified] show ?case
|
chaieb@23274
|
857 |
by (simp add: left_diff_distrib)
|
chaieb@23274
|
858 |
next
|
chaieb@23274
|
859 |
case (7 i t n a)
|
chaieb@23274
|
860 |
let ?nt = "fst (zsplit0 t)"
|
chaieb@23274
|
861 |
let ?at = "snd (zsplit0 t)"
|
wenzelm@50313
|
862 |
have abj: "zsplit0 t = (?nt,?at)" by simp
|
wenzelm@50313
|
863 |
hence th: "a=Mul i ?at \<and> n=i*?nt" using 7
|
chaieb@23274
|
864 |
by (simp add: Let_def split_def)
|
wenzelm@41807
|
865 |
from abj 7 have th2: "(?I x (CN 0 ?nt ?at) = ?I x t) \<and> ?N ?at" by blast
|
wenzelm@41807
|
866 |
hence "?I x (Mul i t) = i * ?I x (CN 0 ?nt ?at)" by simp
|
webertj@49962
|
867 |
also have "\<dots> = ?I x (CN 0 (i*?nt) (Mul i ?at))" by (simp add: distrib_left)
|
chaieb@23274
|
868 |
finally show ?case using th th2 by simp
|
chaieb@17378
|
869 |
qed
|
chaieb@17378
|
870 |
|
wenzelm@50313
|
871 |
consts iszlfm :: "fm \<Rightarrow> bool" -- {* Linearity test for fm *}
|
chaieb@23274
|
872 |
recdef iszlfm "measure size"
|
wenzelm@50313
|
873 |
"iszlfm (And p q) = (iszlfm p \<and> iszlfm q)"
|
wenzelm@50313
|
874 |
"iszlfm (Or p q) = (iszlfm p \<and> iszlfm q)"
|
chaieb@23995
|
875 |
"iszlfm (Eq (CN 0 c e)) = (c>0 \<and> numbound0 e)"
|
chaieb@23995
|
876 |
"iszlfm (NEq (CN 0 c e)) = (c>0 \<and> numbound0 e)"
|
chaieb@23995
|
877 |
"iszlfm (Lt (CN 0 c e)) = (c>0 \<and> numbound0 e)"
|
chaieb@23995
|
878 |
"iszlfm (Le (CN 0 c e)) = (c>0 \<and> numbound0 e)"
|
chaieb@23995
|
879 |
"iszlfm (Gt (CN 0 c e)) = (c>0 \<and> numbound0 e)"
|
chaieb@23995
|
880 |
"iszlfm (Ge (CN 0 c e)) = ( c>0 \<and> numbound0 e)"
|
wenzelm@50313
|
881 |
"iszlfm (Dvd i (CN 0 c e)) =
|
chaieb@23274
|
882 |
(c>0 \<and> i>0 \<and> numbound0 e)"
|
wenzelm@50313
|
883 |
"iszlfm (NDvd i (CN 0 c e))=
|
chaieb@23274
|
884 |
(c>0 \<and> i>0 \<and> numbound0 e)"
|
chaieb@23274
|
885 |
"iszlfm p = (isatom p \<and> (bound0 p))"
|
chaieb@17378
|
886 |
|
chaieb@23274
|
887 |
lemma zlin_qfree: "iszlfm p \<Longrightarrow> qfree p"
|
chaieb@23274
|
888 |
by (induct p rule: iszlfm.induct) auto
|
chaieb@17378
|
889 |
|
wenzelm@50313
|
890 |
consts zlfm :: "fm \<Rightarrow> fm" -- {* Linearity transformation for fm *}
|
chaieb@23274
|
891 |
recdef zlfm "measure fmsize"
|
chaieb@23274
|
892 |
"zlfm (And p q) = And (zlfm p) (zlfm q)"
|
chaieb@23274
|
893 |
"zlfm (Or p q) = Or (zlfm p) (zlfm q)"
|
chaieb@23274
|
894 |
"zlfm (Imp p q) = Or (zlfm (NOT p)) (zlfm q)"
|
chaieb@23274
|
895 |
"zlfm (Iff p q) = Or (And (zlfm p) (zlfm q)) (And (zlfm (NOT p)) (zlfm (NOT q)))"
|
wenzelm@50313
|
896 |
"zlfm (Lt a) = (let (c,r) = zsplit0 a in
|
wenzelm@50313
|
897 |
if c=0 then Lt r else
|
chaieb@23995
|
898 |
if c>0 then (Lt (CN 0 c r)) else (Gt (CN 0 (- c) (Neg r))))"
|
wenzelm@50313
|
899 |
"zlfm (Le a) = (let (c,r) = zsplit0 a in
|
wenzelm@50313
|
900 |
if c=0 then Le r else
|
chaieb@23995
|
901 |
if c>0 then (Le (CN 0 c r)) else (Ge (CN 0 (- c) (Neg r))))"
|
wenzelm@50313
|
902 |
"zlfm (Gt a) = (let (c,r) = zsplit0 a in
|
wenzelm@50313
|
903 |
if c=0 then Gt r else
|
chaieb@23995
|
904 |
if c>0 then (Gt (CN 0 c r)) else (Lt (CN 0 (- c) (Neg r))))"
|
wenzelm@50313
|
905 |
"zlfm (Ge a) = (let (c,r) = zsplit0 a in
|
wenzelm@50313
|
906 |
if c=0 then Ge r else
|
chaieb@23995
|
907 |
if c>0 then (Ge (CN 0 c r)) else (Le (CN 0 (- c) (Neg r))))"
|
wenzelm@50313
|
908 |
"zlfm (Eq a) = (let (c,r) = zsplit0 a in
|
wenzelm@50313
|
909 |
if c=0 then Eq r else
|
chaieb@23995
|
910 |
if c>0 then (Eq (CN 0 c r)) else (Eq (CN 0 (- c) (Neg r))))"
|
wenzelm@50313
|
911 |
"zlfm (NEq a) = (let (c,r) = zsplit0 a in
|
wenzelm@50313
|
912 |
if c=0 then NEq r else
|
chaieb@23995
|
913 |
if c>0 then (NEq (CN 0 c r)) else (NEq (CN 0 (- c) (Neg r))))"
|
wenzelm@50313
|
914 |
"zlfm (Dvd i a) = (if i=0 then zlfm (Eq a)
|
wenzelm@50313
|
915 |
else (let (c,r) = zsplit0 a in
|
wenzelm@50313
|
916 |
if c=0 then (Dvd (abs i) r) else
|
chaieb@23995
|
917 |
if c>0 then (Dvd (abs i) (CN 0 c r))
|
chaieb@23995
|
918 |
else (Dvd (abs i) (CN 0 (- c) (Neg r)))))"
|
wenzelm@50313
|
919 |
"zlfm (NDvd i a) = (if i=0 then zlfm (NEq a)
|
wenzelm@50313
|
920 |
else (let (c,r) = zsplit0 a in
|
wenzelm@50313
|
921 |
if c=0 then (NDvd (abs i) r) else
|
chaieb@23995
|
922 |
if c>0 then (NDvd (abs i) (CN 0 c r))
|
chaieb@23995
|
923 |
else (NDvd (abs i) (CN 0 (- c) (Neg r)))))"
|
chaieb@23274
|
924 |
"zlfm (NOT (And p q)) = Or (zlfm (NOT p)) (zlfm (NOT q))"
|
chaieb@23274
|
925 |
"zlfm (NOT (Or p q)) = And (zlfm (NOT p)) (zlfm (NOT q))"
|
chaieb@23274
|
926 |
"zlfm (NOT (Imp p q)) = And (zlfm p) (zlfm (NOT q))"
|
chaieb@23274
|
927 |
"zlfm (NOT (Iff p q)) = Or (And(zlfm p) (zlfm(NOT q))) (And (zlfm(NOT p)) (zlfm q))"
|
chaieb@23274
|
928 |
"zlfm (NOT (NOT p)) = zlfm p"
|
chaieb@23274
|
929 |
"zlfm (NOT T) = F"
|
chaieb@23274
|
930 |
"zlfm (NOT F) = T"
|
chaieb@23274
|
931 |
"zlfm (NOT (Lt a)) = zlfm (Ge a)"
|
chaieb@23274
|
932 |
"zlfm (NOT (Le a)) = zlfm (Gt a)"
|
chaieb@23274
|
933 |
"zlfm (NOT (Gt a)) = zlfm (Le a)"
|
chaieb@23274
|
934 |
"zlfm (NOT (Ge a)) = zlfm (Lt a)"
|
chaieb@23274
|
935 |
"zlfm (NOT (Eq a)) = zlfm (NEq a)"
|
chaieb@23274
|
936 |
"zlfm (NOT (NEq a)) = zlfm (Eq a)"
|
chaieb@23274
|
937 |
"zlfm (NOT (Dvd i a)) = zlfm (NDvd i a)"
|
chaieb@23274
|
938 |
"zlfm (NOT (NDvd i a)) = zlfm (Dvd i a)"
|
chaieb@23274
|
939 |
"zlfm (NOT (Closed P)) = NClosed P"
|
chaieb@23274
|
940 |
"zlfm (NOT (NClosed P)) = Closed P"
|
chaieb@23274
|
941 |
"zlfm p = p" (hints simp add: fmsize_pos)
|
chaieb@23274
|
942 |
|
chaieb@23274
|
943 |
lemma zlfm_I:
|
chaieb@23274
|
944 |
assumes qfp: "qfree p"
|
chaieb@23274
|
945 |
shows "(Ifm bbs (i#bs) (zlfm p) = Ifm bbs (i# bs) p) \<and> iszlfm (zlfm p)"
|
chaieb@23274
|
946 |
(is "(?I (?l p) = ?I p) \<and> ?L (?l p)")
|
wenzelm@50313
|
947 |
using qfp
|
wenzelm@50313
|
948 |
proof (induct p rule: zlfm.induct)
|
wenzelm@50313
|
949 |
case (5 a)
|
chaieb@23274
|
950 |
let ?c = "fst (zsplit0 a)"
|
chaieb@23274
|
951 |
let ?r = "snd (zsplit0 a)"
|
chaieb@23274
|
952 |
have spl: "zsplit0 a = (?c,?r)" by simp
|
wenzelm@50313
|
953 |
from zsplit0_I[OF spl, where x="i" and bs="bs"]
|
wenzelm@50313
|
954 |
have Ia:"Inum (i # bs) a = Inum (i #bs) (CN 0 ?c ?r)" and nb: "numbound0 ?r" by auto
|
wenzelm@50313
|
955 |
let ?N = "\<lambda>t. Inum (i#bs) t"
|
wenzelm@50313
|
956 |
from 5 Ia nb show ?case
|
wenzelm@50313
|
957 |
apply (auto simp add: Let_def split_def algebra_simps)
|
wenzelm@41807
|
958 |
apply (cases "?r", auto)
|
chaieb@23995
|
959 |
apply (case_tac nat, auto)
|
chaieb@23995
|
960 |
done
|
chaieb@23274
|
961 |
next
|
wenzelm@50313
|
962 |
case (6 a)
|
chaieb@23274
|
963 |
let ?c = "fst (zsplit0 a)"
|
chaieb@23274
|
964 |
let ?r = "snd (zsplit0 a)"
|
chaieb@23274
|
965 |
have spl: "zsplit0 a = (?c,?r)" by simp
|
wenzelm@50313
|
966 |
from zsplit0_I[OF spl, where x="i" and bs="bs"]
|
wenzelm@50313
|
967 |
have Ia:"Inum (i # bs) a = Inum (i #bs) (CN 0 ?c ?r)" and nb: "numbound0 ?r" by auto
|
wenzelm@50313
|
968 |
let ?N = "\<lambda>t. Inum (i#bs) t"
|
wenzelm@50313
|
969 |
from 6 Ia nb show ?case
|
wenzelm@50313
|
970 |
apply (auto simp add: Let_def split_def algebra_simps)
|
wenzelm@41807
|
971 |
apply (cases "?r", auto)
|
chaieb@23995
|
972 |
apply (case_tac nat, auto)
|
chaieb@23995
|
973 |
done
|
chaieb@23274
|
974 |
next
|
wenzelm@50313
|
975 |
case (7 a)
|
chaieb@23274
|
976 |
let ?c = "fst (zsplit0 a)"
|
chaieb@23274
|
977 |
let ?r = "snd (zsplit0 a)"
|
chaieb@23274
|
978 |
have spl: "zsplit0 a = (?c,?r)" by simp
|
wenzelm@50313
|
979 |
from zsplit0_I[OF spl, where x="i" and bs="bs"]
|
wenzelm@50313
|
980 |
have Ia:"Inum (i # bs) a = Inum (i #bs) (CN 0 ?c ?r)" and nb: "numbound0 ?r" by auto
|
wenzelm@50313
|
981 |
let ?N = "\<lambda>t. Inum (i#bs) t"
|
wenzelm@50313
|
982 |
from 7 Ia nb show ?case
|
wenzelm@50313
|
983 |
apply (auto simp add: Let_def split_def algebra_simps)
|
wenzelm@41807
|
984 |
apply (cases "?r", auto)
|
chaieb@23995
|
985 |
apply (case_tac nat, auto)
|
chaieb@23995
|
986 |
done
|
chaieb@23274
|
987 |
next
|
wenzelm@50313
|
988 |
case (8 a)
|
chaieb@23274
|
989 |
let ?c = "fst (zsplit0 a)"
|
chaieb@23274
|
990 |
let ?r = "snd (zsplit0 a)"
|
chaieb@23274
|
991 |
have spl: "zsplit0 a = (?c,?r)" by simp
|
wenzelm@50313
|
992 |
from zsplit0_I[OF spl, where x="i" and bs="bs"]
|
wenzelm@50313
|
993 |
have Ia:"Inum (i # bs) a = Inum (i #bs) (CN 0 ?c ?r)" and nb: "numbound0 ?r" by auto
|
wenzelm@50313
|
994 |
let ?N = "\<lambda>t. Inum (i#bs) t"
|
wenzelm@41807
|
995 |
from 8 Ia nb show ?case
|
wenzelm@50313
|
996 |
apply (auto simp add: Let_def split_def algebra_simps)
|
wenzelm@41807
|
997 |
apply (cases "?r", auto)
|
chaieb@23995
|
998 |
apply (case_tac nat, auto)
|
chaieb@23995
|
999 |
done
|
chaieb@23274
|
1000 |
next
|
wenzelm@50313
|
1001 |
case (9 a)
|
chaieb@23274
|
1002 |
let ?c = "fst (zsplit0 a)"
|
chaieb@23274
|
1003 |
let ?r = "snd (zsplit0 a)"
|
chaieb@23274
|
1004 |
have spl: "zsplit0 a = (?c,?r)" by simp
|
wenzelm@50313
|
1005 |
from zsplit0_I[OF spl, where x="i" and bs="bs"]
|
wenzelm@50313
|
1006 |
have Ia:"Inum (i # bs) a = Inum (i #bs) (CN 0 ?c ?r)" and nb: "numbound0 ?r" by auto
|
wenzelm@50313
|
1007 |
let ?N = "\<lambda>t. Inum (i#bs) t"
|
wenzelm@41807
|
1008 |
from 9 Ia nb show ?case
|
wenzelm@50313
|
1009 |
apply (auto simp add: Let_def split_def algebra_simps)
|
wenzelm@41807
|
1010 |
apply (cases "?r", auto)
|
chaieb@23995
|
1011 |
apply (case_tac nat, auto)
|
chaieb@23995
|
1012 |
done
|
chaieb@23274
|
1013 |
next
|
wenzelm@50313
|
1014 |
case (10 a)
|
chaieb@23274
|
1015 |
let ?c = "fst (zsplit0 a)"
|
chaieb@23274
|
1016 |
let ?r = "snd (zsplit0 a)"
|
chaieb@23274
|
1017 |
have spl: "zsplit0 a = (?c,?r)" by simp
|
wenzelm@50313
|
1018 |
from zsplit0_I[OF spl, where x="i" and bs="bs"]
|
wenzelm@50313
|
1019 |
have Ia:"Inum (i # bs) a = Inum (i #bs) (CN 0 ?c ?r)" and nb: "numbound0 ?r" by auto
|
wenzelm@50313
|
1020 |
let ?N = "\<lambda>t. Inum (i#bs) t"
|
wenzelm@41807
|
1021 |
from 10 Ia nb show ?case
|
wenzelm@50313
|
1022 |
apply (auto simp add: Let_def split_def algebra_simps)
|
chaieb@23995
|
1023 |
apply (cases "?r",auto)
|
chaieb@23995
|
1024 |
apply (case_tac nat, auto)
|
chaieb@23995
|
1025 |
done
|
chaieb@17378
|
1026 |
next
|
wenzelm@50313
|
1027 |
case (11 j a)
|
chaieb@23274
|
1028 |
let ?c = "fst (zsplit0 a)"
|
chaieb@23274
|
1029 |
let ?r = "snd (zsplit0 a)"
|
chaieb@23274
|
1030 |
have spl: "zsplit0 a = (?c,?r)" by simp
|
wenzelm@50313
|
1031 |
from zsplit0_I[OF spl, where x="i" and bs="bs"]
|
wenzelm@50313
|
1032 |
have Ia:"Inum (i # bs) a = Inum (i #bs) (CN 0 ?c ?r)" and nb: "numbound0 ?r" by auto
|
wenzelm@50313
|
1033 |
let ?N = "\<lambda>t. Inum (i#bs) t"
|
chaieb@23274
|
1034 |
have "j=0 \<or> (j\<noteq>0 \<and> ?c = 0) \<or> (j\<noteq>0 \<and> ?c >0) \<or> (j\<noteq> 0 \<and> ?c<0)" by arith
|
chaieb@23274
|
1035 |
moreover
|
wenzelm@50313
|
1036 |
{assume "j=0" hence z: "zlfm (Dvd j a) = (zlfm (Eq a))" by (simp add: Let_def)
|
wenzelm@41807
|
1037 |
hence ?case using 11 `j = 0` by (simp del: zlfm.simps) }
|
chaieb@23274
|
1038 |
moreover
|
wenzelm@50313
|
1039 |
{assume "?c=0" and "j\<noteq>0" hence ?case
|
nipkow@29700
|
1040 |
using zsplit0_I[OF spl, where x="i" and bs="bs"]
|
wenzelm@50313
|
1041 |
apply (auto simp add: Let_def split_def algebra_simps)
|
chaieb@23995
|
1042 |
apply (cases "?r",auto)
|
chaieb@23995
|
1043 |
apply (case_tac nat, auto)
|
chaieb@23995
|
1044 |
done}
|
chaieb@23274
|
1045 |
moreover
|
wenzelm@50313
|
1046 |
{assume cp: "?c > 0" and jnz: "j\<noteq>0" hence l: "?L (?l (Dvd j a))"
|
chaieb@23274
|
1047 |
by (simp add: nb Let_def split_def)
|
nipkow@29700
|
1048 |
hence ?case using Ia cp jnz by (simp add: Let_def split_def)}
|
chaieb@23274
|
1049 |
moreover
|
wenzelm@50313
|
1050 |
{assume cn: "?c < 0" and jnz: "j\<noteq>0" hence l: "?L (?l (Dvd j a))"
|
chaieb@23274
|
1051 |
by (simp add: nb Let_def split_def)
|
nipkow@30042
|
1052 |
hence ?case using Ia cn jnz dvd_minus_iff[of "abs j" "?c*i + ?N ?r" ]
|
nipkow@29700
|
1053 |
by (simp add: Let_def split_def) }
|
chaieb@23274
|
1054 |
ultimately show ?case by blast
|
chaieb@17378
|
1055 |
next
|
wenzelm@50313
|
1056 |
case (12 j a)
|
chaieb@23274
|
1057 |
let ?c = "fst (zsplit0 a)"
|
chaieb@23274
|
1058 |
let ?r = "snd (zsplit0 a)"
|
chaieb@23274
|
1059 |
have spl: "zsplit0 a = (?c,?r)" by simp
|
wenzelm@50313
|
1060 |
from zsplit0_I[OF spl, where x="i" and bs="bs"]
|
wenzelm@50313
|
1061 |
have Ia:"Inum (i # bs) a = Inum (i #bs) (CN 0 ?c ?r)" and nb: "numbound0 ?r" by auto
|
wenzelm@50313
|
1062 |
let ?N = "\<lambda>t. Inum (i#bs) t"
|
chaieb@23274
|
1063 |
have "j=0 \<or> (j\<noteq>0 \<and> ?c = 0) \<or> (j\<noteq>0 \<and> ?c >0) \<or> (j\<noteq> 0 \<and> ?c<0)" by arith
|
chaieb@23274
|
1064 |
moreover
|
wenzelm@50313
|
1065 |
{assume "j=0" hence z: "zlfm (NDvd j a) = (zlfm (NEq a))" by (simp add: Let_def)
|
wenzelm@41807
|
1066 |
hence ?case using assms 12 `j = 0` by (simp del: zlfm.simps)}
|
chaieb@23274
|
1067 |
moreover
|
wenzelm@50313
|
1068 |
{assume "?c=0" and "j\<noteq>0" hence ?case
|
nipkow@29700
|
1069 |
using zsplit0_I[OF spl, where x="i" and bs="bs"]
|
wenzelm@50313
|
1070 |
apply (auto simp add: Let_def split_def algebra_simps)
|
chaieb@23995
|
1071 |
apply (cases "?r",auto)
|
chaieb@23995
|
1072 |
apply (case_tac nat, auto)
|
chaieb@23995
|
1073 |
done}
|
chaieb@23274
|
1074 |
moreover
|
wenzelm@50313
|
1075 |
{assume cp: "?c > 0" and jnz: "j\<noteq>0" hence l: "?L (?l (Dvd j a))"
|
chaieb@23274
|
1076 |
by (simp add: nb Let_def split_def)
|
nipkow@29700
|
1077 |
hence ?case using Ia cp jnz by (simp add: Let_def split_def) }
|
chaieb@23274
|
1078 |
moreover
|
wenzelm@50313
|
1079 |
{assume cn: "?c < 0" and jnz: "j\<noteq>0" hence l: "?L (?l (Dvd j a))"
|
chaieb@23274
|
1080 |
by (simp add: nb Let_def split_def)
|
nipkow@30042
|
1081 |
hence ?case using Ia cn jnz dvd_minus_iff[of "abs j" "?c*i + ?N ?r"]
|
nipkow@29700
|
1082 |
by (simp add: Let_def split_def)}
|
chaieb@23274
|
1083 |
ultimately show ?case by blast
|
chaieb@23274
|
1084 |
qed auto
|
chaieb@23274
|
1085 |
|
wenzelm@50313
|
1086 |
consts minusinf :: "fm \<Rightarrow> fm" -- {* Virtual substitution of @{text "-\<infinity>"} *}
|
chaieb@23274
|
1087 |
recdef minusinf "measure size"
|
wenzelm@50313
|
1088 |
"minusinf (And p q) = And (minusinf p) (minusinf q)"
|
wenzelm@50313
|
1089 |
"minusinf (Or p q) = Or (minusinf p) (minusinf q)"
|
chaieb@23995
|
1090 |
"minusinf (Eq (CN 0 c e)) = F"
|
chaieb@23995
|
1091 |
"minusinf (NEq (CN 0 c e)) = T"
|
chaieb@23995
|
1092 |
"minusinf (Lt (CN 0 c e)) = T"
|
chaieb@23995
|
1093 |
"minusinf (Le (CN 0 c e)) = T"
|
chaieb@23995
|
1094 |
"minusinf (Gt (CN 0 c e)) = F"
|
chaieb@23995
|
1095 |
"minusinf (Ge (CN 0 c e)) = F"
|
chaieb@23274
|
1096 |
"minusinf p = p"
|
chaieb@23274
|
1097 |
|
chaieb@23274
|
1098 |
lemma minusinf_qfree: "qfree p \<Longrightarrow> qfree (minusinf p)"
|
wenzelm@50313
|
1099 |
by (induct p rule: minusinf.induct) auto
|
chaieb@23274
|
1100 |
|
wenzelm@50313
|
1101 |
consts plusinf :: "fm \<Rightarrow> fm" -- {* Virtual substitution of @{text "+\<infinity>"} *}
|
chaieb@23274
|
1102 |
recdef plusinf "measure size"
|
wenzelm@50313
|
1103 |
"plusinf (And p q) = And (plusinf p) (plusinf q)"
|
wenzelm@50313
|
1104 |
"plusinf (Or p q) = Or (plusinf p) (plusinf q)"
|
chaieb@23995
|
1105 |
"plusinf (Eq (CN 0 c e)) = F"
|
chaieb@23995
|
1106 |
"plusinf (NEq (CN 0 c e)) = T"
|
chaieb@23995
|
1107 |
"plusinf (Lt (CN 0 c e)) = F"
|
chaieb@23995
|
1108 |
"plusinf (Le (CN 0 c e)) = F"
|
chaieb@23995
|
1109 |
"plusinf (Gt (CN 0 c e)) = T"
|
chaieb@23995
|
1110 |
"plusinf (Ge (CN 0 c e)) = T"
|
chaieb@23274
|
1111 |
"plusinf p = p"
|
chaieb@23274
|
1112 |
|
wenzelm@50313
|
1113 |
consts \<delta> :: "fm \<Rightarrow> int" -- {* Compute @{text "lcm {d| N\<^isup>? Dvd c*x+t \<in> p}"} *}
|
chaieb@23274
|
1114 |
recdef \<delta> "measure size"
|
wenzelm@50313
|
1115 |
"\<delta> (And p q) = lcm (\<delta> p) (\<delta> q)"
|
wenzelm@50313
|
1116 |
"\<delta> (Or p q) = lcm (\<delta> p) (\<delta> q)"
|
chaieb@23995
|
1117 |
"\<delta> (Dvd i (CN 0 c e)) = i"
|
chaieb@23995
|
1118 |
"\<delta> (NDvd i (CN 0 c e)) = i"
|
chaieb@23274
|
1119 |
"\<delta> p = 1"
|
chaieb@23274
|
1120 |
|
wenzelm@50313
|
1121 |
consts d_\<delta> :: "fm \<Rightarrow> int \<Rightarrow> bool" -- {* check if a given l divides all the ds above *}
|
wenzelm@50252
|
1122 |
recdef d_\<delta> "measure size"
|
wenzelm@50313
|
1123 |
"d_\<delta> (And p q) = (\<lambda>d. d_\<delta> p d \<and> d_\<delta> q d)"
|
wenzelm@50313
|
1124 |
"d_\<delta> (Or p q) = (\<lambda>d. d_\<delta> p d \<and> d_\<delta> q d)"
|
wenzelm@50313
|
1125 |
"d_\<delta> (Dvd i (CN 0 c e)) = (\<lambda>d. i dvd d)"
|
wenzelm@50313
|
1126 |
"d_\<delta> (NDvd i (CN 0 c e)) = (\<lambda>d. i dvd d)"
|
wenzelm@50313
|
1127 |
"d_\<delta> p = (\<lambda>d. True)"
|
chaieb@23274
|
1128 |
|
wenzelm@50313
|
1129 |
lemma delta_mono:
|
chaieb@23274
|
1130 |
assumes lin: "iszlfm p"
|
wenzelm@50313
|
1131 |
and d: "d dvd d'"
|
wenzelm@50313
|
1132 |
and ad: "d_\<delta> p d"
|
wenzelm@50252
|
1133 |
shows "d_\<delta> p d'"
|
chaieb@23274
|
1134 |
using lin ad d
|
wenzelm@50313
|
1135 |
proof (induct p rule: iszlfm.induct)
|
chaieb@23274
|
1136 |
case (9 i c e) thus ?case using d
|
nipkow@30042
|
1137 |
by (simp add: dvd_trans[of "i" "d" "d'"])
|
chaieb@17378
|
1138 |
next
|
chaieb@23274
|
1139 |
case (10 i c e) thus ?case using d
|
nipkow@30042
|
1140 |
by (simp add: dvd_trans[of "i" "d" "d'"])
|
chaieb@23274
|
1141 |
qed simp_all
|
chaieb@17378
|
1142 |
|
wenzelm@50313
|
1143 |
lemma \<delta>:
|
wenzelm@50313
|
1144 |
assumes lin:"iszlfm p"
|
wenzelm@50252
|
1145 |
shows "d_\<delta> p (\<delta> p) \<and> \<delta> p >0"
|
wenzelm@50313
|
1146 |
using lin
|
chaieb@23274
|
1147 |
proof (induct p rule: iszlfm.induct)
|
wenzelm@50313
|
1148 |
case (1 p q)
|
chaieb@23274
|
1149 |
let ?d = "\<delta> (And p q)"
|
wenzelm@41807
|
1150 |
from 1 lcm_pos_int have dp: "?d >0" by simp
|
wenzelm@41807
|
1151 |
have d1: "\<delta> p dvd \<delta> (And p q)" using 1 by simp
|
wenzelm@50252
|
1152 |
hence th: "d_\<delta> p ?d" using delta_mono 1(2,3) by(simp only: iszlfm.simps)
|
wenzelm@41807
|
1153 |
have "\<delta> q dvd \<delta> (And p q)" using 1 by simp
|
wenzelm@50252
|
1154 |
hence th': "d_\<delta> q ?d" using delta_mono 1 by(simp only: iszlfm.simps)
|
nipkow@23984
|
1155 |
from th th' dp show ?case by simp
|
chaieb@23274
|
1156 |
next
|
wenzelm@50313
|
1157 |
case (2 p q)
|
chaieb@23274
|
1158 |
let ?d = "\<delta> (And p q)"
|
wenzelm@41807
|
1159 |
from 2 lcm_pos_int have dp: "?d >0" by simp
|
wenzelm@41807
|
1160 |
have "\<delta> p dvd \<delta> (And p q)" using 2 by simp
|
wenzelm@50252
|
1161 |
hence th: "d_\<delta> p ?d" using delta_mono 2 by(simp only: iszlfm.simps)
|
wenzelm@41807
|
1162 |
have "\<delta> q dvd \<delta> (And p q)" using 2 by simp
|
wenzelm@50252
|
1163 |
hence th': "d_\<delta> q ?d" using delta_mono 2 by(simp only: iszlfm.simps)
|
nipkow@23984
|
1164 |
from th th' dp show ?case by simp
|
chaieb@17378
|
1165 |
qed simp_all
|
chaieb@17378
|
1166 |
|
chaieb@17378
|
1167 |
|
wenzelm@50313
|
1168 |
consts a_\<beta> :: "fm \<Rightarrow> int \<Rightarrow> fm" -- {* adjust the coeffitients of a formula *}
|
wenzelm@50252
|
1169 |
recdef a_\<beta> "measure size"
|
wenzelm@50313
|
1170 |
"a_\<beta> (And p q) = (\<lambda>k. And (a_\<beta> p k) (a_\<beta> q k))"
|
wenzelm@50313
|
1171 |
"a_\<beta> (Or p q) = (\<lambda>k. Or (a_\<beta> p k) (a_\<beta> q k))"
|
wenzelm@50313
|
1172 |
"a_\<beta> (Eq (CN 0 c e)) = (\<lambda>k. Eq (CN 0 1 (Mul (k div c) e)))"
|
wenzelm@50313
|
1173 |
"a_\<beta> (NEq (CN 0 c e)) = (\<lambda>k. NEq (CN 0 1 (Mul (k div c) e)))"
|
wenzelm@50313
|
1174 |
"a_\<beta> (Lt (CN 0 c e)) = (\<lambda>k. Lt (CN 0 1 (Mul (k div c) e)))"
|
wenzelm@50313
|
1175 |
"a_\<beta> (Le (CN 0 c e)) = (\<lambda>k. Le (CN 0 1 (Mul (k div c) e)))"
|
wenzelm@50313
|
1176 |
"a_\<beta> (Gt (CN 0 c e)) = (\<lambda>k. Gt (CN 0 1 (Mul (k div c) e)))"
|
wenzelm@50313
|
1177 |
"a_\<beta> (Ge (CN 0 c e)) = (\<lambda>k. Ge (CN 0 1 (Mul (k div c) e)))"
|
wenzelm@50313
|
1178 |
"a_\<beta> (Dvd i (CN 0 c e)) =(\<lambda>k. Dvd ((k div c)*i) (CN 0 1 (Mul (k div c) e)))"
|
wenzelm@50313
|
1179 |
"a_\<beta> (NDvd i (CN 0 c e))=(\<lambda>k. NDvd ((k div c)*i) (CN 0 1 (Mul (k div c) e)))"
|
wenzelm@50313
|
1180 |
"a_\<beta> p = (\<lambda>k. p)"
|
chaieb@17378
|
1181 |
|
wenzelm@50313
|
1182 |
consts d_\<beta> :: "fm \<Rightarrow> int \<Rightarrow> bool" -- {* test if all coeffs c of c divide a given l *}
|
wenzelm@50252
|
1183 |
recdef d_\<beta> "measure size"
|
wenzelm@50313
|
1184 |
"d_\<beta> (And p q) = (\<lambda>k. (d_\<beta> p k) \<and> (d_\<beta> q k))"
|
wenzelm@50313
|
1185 |
"d_\<beta> (Or p q) = (\<lambda>k. (d_\<beta> p k) \<and> (d_\<beta> q k))"
|
wenzelm@50313
|
1186 |
"d_\<beta> (Eq (CN 0 c e)) = (\<lambda>k. c dvd k)"
|
wenzelm@50313
|
1187 |
"d_\<beta> (NEq (CN 0 c e)) = (\<lambda>k. c dvd k)"
|
wenzelm@50313
|
1188 |
"d_\<beta> (Lt (CN 0 c e)) = (\<lambda>k. c dvd k)"
|
wenzelm@50313
|
1189 |
"d_\<beta> (Le (CN 0 c e)) = (\<lambda>k. c dvd k)"
|
wenzelm@50313
|
1190 |
"d_\<beta> (Gt (CN 0 c e)) = (\<lambda>k. c dvd k)"
|
wenzelm@50313
|
1191 |
"d_\<beta> (Ge (CN 0 c e)) = (\<lambda>k. c dvd k)"
|
wenzelm@50313
|
1192 |
"d_\<beta> (Dvd i (CN 0 c e)) =(\<lambda>k. c dvd k)"
|
wenzelm@50313
|
1193 |
"d_\<beta> (NDvd i (CN 0 c e))=(\<lambda>k. c dvd k)"
|
wenzelm@50313
|
1194 |
"d_\<beta> p = (\<lambda>k. True)"
|
chaieb@17378
|
1195 |
|
wenzelm@50313
|
1196 |
consts \<zeta> :: "fm \<Rightarrow> int" -- {* computes the lcm of all coefficients of x *}
|
chaieb@23274
|
1197 |
recdef \<zeta> "measure size"
|
wenzelm@50313
|
1198 |
"\<zeta> (And p q) = lcm (\<zeta> p) (\<zeta> q)"
|
wenzelm@50313
|
1199 |
"\<zeta> (Or p q) = lcm (\<zeta> p) (\<zeta> q)"
|
chaieb@23995
|
1200 |
"\<zeta> (Eq (CN 0 c e)) = c"
|
chaieb@23995
|
1201 |
"\<zeta> (NEq (CN 0 c e)) = c"
|
chaieb@23995
|
1202 |
"\<zeta> (Lt (CN 0 c e)) = c"
|
chaieb@23995
|
1203 |
"\<zeta> (Le (CN 0 c e)) = c"
|
chaieb@23995
|
1204 |
"\<zeta> (Gt (CN 0 c e)) = c"
|
chaieb@23995
|
1205 |
"\<zeta> (Ge (CN 0 c e)) = c"
|
chaieb@23995
|
1206 |
"\<zeta> (Dvd i (CN 0 c e)) = c"
|
chaieb@23995
|
1207 |
"\<zeta> (NDvd i (CN 0 c e))= c"
|
chaieb@23274
|
1208 |
"\<zeta> p = 1"
|
chaieb@17378
|
1209 |
|
wenzelm@50313
|
1210 |
consts \<beta> :: "fm \<Rightarrow> num list"
|
chaieb@23274
|
1211 |
recdef \<beta> "measure size"
|
wenzelm@50313
|
1212 |
"\<beta> (And p q) = (\<beta> p @ \<beta> q)"
|
wenzelm@50313
|
1213 |
"\<beta> (Or p q) = (\<beta> p @ \<beta> q)"
|
chaieb@23995
|
1214 |
"\<beta> (Eq (CN 0 c e)) = [Sub (C -1) e]"
|
chaieb@23995
|
1215 |
"\<beta> (NEq (CN 0 c e)) = [Neg e]"
|
chaieb@23995
|
1216 |
"\<beta> (Lt (CN 0 c e)) = []"
|
chaieb@23995
|
1217 |
"\<beta> (Le (CN 0 c e)) = []"
|
chaieb@23995
|
1218 |
"\<beta> (Gt (CN 0 c e)) = [Neg e]"
|
chaieb@23995
|
1219 |
"\<beta> (Ge (CN 0 c e)) = [Sub (C -1) e]"
|
chaieb@23274
|
1220 |
"\<beta> p = []"
|
wenzelm@19736
|
1221 |
|
wenzelm@50313
|
1222 |
consts \<alpha> :: "fm \<Rightarrow> num list"
|
chaieb@23274
|
1223 |
recdef \<alpha> "measure size"
|
wenzelm@50313
|
1224 |
"\<alpha> (And p q) = (\<alpha> p @ \<alpha> q)"
|
wenzelm@50313
|
1225 |
"\<alpha> (Or p q) = (\<alpha> p @ \<alpha> q)"
|
chaieb@23995
|
1226 |
"\<alpha> (Eq (CN 0 c e)) = [Add (C -1) e]"
|
chaieb@23995
|
1227 |
"\<alpha> (NEq (CN 0 c e)) = [e]"
|
chaieb@23995
|
1228 |
"\<alpha> (Lt (CN 0 c e)) = [e]"
|
chaieb@23995
|
1229 |
"\<alpha> (Le (CN 0 c e)) = [Add (C -1) e]"
|
chaieb@23995
|
1230 |
"\<alpha> (Gt (CN 0 c e)) = []"
|
chaieb@23995
|
1231 |
"\<alpha> (Ge (CN 0 c e)) = []"
|
chaieb@23274
|
1232 |
"\<alpha> p = []"
|
wenzelm@50313
|
1233 |
|
chaieb@23274
|
1234 |
consts mirror :: "fm \<Rightarrow> fm"
|
chaieb@23274
|
1235 |
recdef mirror "measure size"
|
wenzelm@50313
|
1236 |
"mirror (And p q) = And (mirror p) (mirror q)"
|
wenzelm@50313
|
1237 |
"mirror (Or p q) = Or (mirror p) (mirror q)"
|
chaieb@23995
|
1238 |
"mirror (Eq (CN 0 c e)) = Eq (CN 0 c (Neg e))"
|
chaieb@23995
|
1239 |
"mirror (NEq (CN 0 c e)) = NEq (CN 0 c (Neg e))"
|
chaieb@23995
|
1240 |
"mirror (Lt (CN 0 c e)) = Gt (CN 0 c (Neg e))"
|
chaieb@23995
|
1241 |
"mirror (Le (CN 0 c e)) = Ge (CN 0 c (Neg e))"
|
chaieb@23995
|
1242 |
"mirror (Gt (CN 0 c e)) = Lt (CN 0 c (Neg e))"
|
chaieb@23995
|
1243 |
"mirror (Ge (CN 0 c e)) = Le (CN 0 c (Neg e))"
|
chaieb@23995
|
1244 |
"mirror (Dvd i (CN 0 c e)) = Dvd i (CN 0 c (Neg e))"
|
chaieb@23995
|
1245 |
"mirror (NDvd i (CN 0 c e)) = NDvd i (CN 0 c (Neg e))"
|
chaieb@23274
|
1246 |
"mirror p = p"
|
wenzelm@50313
|
1247 |
|
wenzelm@50313
|
1248 |
text {* Lemmas for the correctness of @{text "\<sigma>_\<rho>"} *}
|
wenzelm@50313
|
1249 |
|
chaieb@23274
|
1250 |
lemma dvd1_eq1: "x >0 \<Longrightarrow> (x::int) dvd 1 = (x = 1)"
|
wenzelm@41807
|
1251 |
by simp
|
chaieb@17378
|
1252 |
|
chaieb@23274
|
1253 |
lemma minusinf_inf:
|
chaieb@23274
|
1254 |
assumes linp: "iszlfm p"
|
wenzelm@50313
|
1255 |
and u: "d_\<beta> p 1"
|
wenzelm@50313
|
1256 |
shows "\<exists>(z::int). \<forall>x < z. Ifm bbs (x#bs) (minusinf p) = Ifm bbs (x#bs) p"
|
wenzelm@50313
|
1257 |
(is "?P p" is "\<exists>(z::int). \<forall>x < z. ?I x (?M p) = ?I x p")
|
wenzelm@50313
|
1258 |
using linp u
|
chaieb@23274
|
1259 |
proof (induct p rule: minusinf.induct)
|
wenzelm@50313
|
1260 |
case (1 p q) thus ?case
|
nipkow@29700
|
1261 |
by auto (rule_tac x="min z za" in exI,simp)
|
chaieb@23274
|
1262 |
next
|
wenzelm@50313
|
1263 |
case (2 p q) thus ?case
|
nipkow@29700
|
1264 |
by auto (rule_tac x="min z za" in exI,simp)
|
chaieb@17378
|
1265 |
next
|
wenzelm@50313
|
1266 |
case (3 c e) hence c1: "c=1" and nb: "numbound0 e" by simp_all
|
wenzelm@26934
|
1267 |
fix a
|
wenzelm@50313
|
1268 |
from 3 have "\<forall>x<(- Inum (a#bs) e). c*x + Inum (x#bs) e \<noteq> 0"
|
chaieb@23274
|
1269 |
proof(clarsimp)
|
chaieb@23274
|
1270 |
fix x assume "x < (- Inum (a#bs) e)" and"x + Inum (x#bs) e = 0"
|
chaieb@23274
|
1271 |
with numbound0_I[OF nb, where bs="bs" and b="a" and b'="x"]
|
chaieb@23274
|
1272 |
show "False" by simp
|
chaieb@23274
|
1273 |
qed
|
chaieb@23274
|
1274 |
thus ?case by auto
|
chaieb@17378
|
1275 |
next
|
wenzelm@50313
|
1276 |
case (4 c e) hence c1: "c=1" and nb: "numbound0 e" by simp_all
|
wenzelm@26934
|
1277 |
fix a
|
wenzelm@50313
|
1278 |
from 4 have "\<forall>x<(- Inum (a#bs) e). c*x + Inum (x#bs) e \<noteq> 0"
|
chaieb@23274
|
1279 |
proof(clarsimp)
|
chaieb@23274
|
1280 |
fix x assume "x < (- Inum (a#bs) e)" and"x + Inum (x#bs) e = 0"
|
chaieb@23274
|
1281 |
with numbound0_I[OF nb, where bs="bs" and b="a" and b'="x"]
|
chaieb@23274
|
1282 |
show "False" by simp
|
chaieb@23274
|
1283 |
qed
|
chaieb@23274
|
1284 |
thus ?case by auto
|
chaieb@17378
|
1285 |
next
|
wenzelm@50313
|
1286 |
case (5 c e) hence c1: "c=1" and nb: "numbound0 e" by simp_all
|
wenzelm@26934
|
1287 |
fix a
|
wenzelm@50313
|
1288 |
from 5 have "\<forall>x<(- Inum (a#bs) e). c*x + Inum (x#bs) e < 0"
|
chaieb@23274
|
1289 |
proof(clarsimp)
|
wenzelm@50313
|
1290 |
fix x assume "x < (- Inum (a#bs) e)"
|
chaieb@23274
|
1291 |
with numbound0_I[OF nb, where bs="bs" and b="a" and b'="x"]
|
chaieb@23274
|
1292 |
show "x + Inum (x#bs) e < 0" by simp
|
chaieb@23274
|
1293 |
qed
|
chaieb@23274
|
1294 |
thus ?case by auto
|
chaieb@23274
|
1295 |
next
|
wenzelm@50313
|
1296 |
case (6 c e) hence c1: "c=1" and nb: "numbound0 e" by simp_all
|
wenzelm@26934
|
1297 |
fix a
|
wenzelm@50313
|
1298 |
from 6 have "\<forall>x<(- Inum (a#bs) e). c*x + Inum (x#bs) e \<le> 0"
|
chaieb@23274
|
1299 |
proof(clarsimp)
|
wenzelm@50313
|
1300 |
fix x assume "x < (- Inum (a#bs) e)"
|
chaieb@23274
|
1301 |
with numbound0_I[OF nb, where bs="bs" and b="a" and b'="x"]
|
chaieb@23274
|
1302 |
show "x + Inum (x#bs) e \<le> 0" by simp
|
chaieb@23274
|
1303 |
qed
|
chaieb@23274
|
1304 |
thus ?case by auto
|
chaieb@23274
|
1305 |
next
|
wenzelm@50313
|
1306 |
case (7 c e) hence c1: "c=1" and nb: "numbound0 e" by simp_all
|
wenzelm@26934
|
1307 |
fix a
|
wenzelm@50313
|
1308 |
from 7 have "\<forall>x<(- Inum (a#bs) e). \<not> (c*x + Inum (x#bs) e > 0)"
|
chaieb@23274
|
1309 |
proof(clarsimp)
|
chaieb@23274
|
1310 |
fix x assume "x < (- Inum (a#bs) e)" and"x + Inum (x#bs) e > 0"
|
chaieb@23274
|
1311 |
with numbound0_I[OF nb, where bs="bs" and b="a" and b'="x"]
|
chaieb@23274
|
1312 |
show "False" by simp
|
chaieb@23274
|
1313 |
qed
|
chaieb@23274
|
1314 |
thus ?case by auto
|
chaieb@23274
|
1315 |
next
|
wenzelm@50313
|
1316 |
case (8 c e) hence c1: "c=1" and nb: "numbound0 e" by simp_all
|
wenzelm@26934
|
1317 |
fix a
|
wenzelm@50313
|
1318 |
from 8 have "\<forall>x<(- Inum (a#bs) e). \<not> (c*x + Inum (x#bs) e \<ge> 0)"
|
chaieb@23274
|
1319 |
proof(clarsimp)
|
chaieb@23274
|
1320 |
fix x assume "x < (- Inum (a#bs) e)" and"x + Inum (x#bs) e \<ge> 0"
|
chaieb@23274
|
1321 |
with numbound0_I[OF nb, where bs="bs" and b="a" and b'="x"]
|
chaieb@23274
|
1322 |
show "False" by simp
|
chaieb@23274
|
1323 |
qed
|
chaieb@23274
|
1324 |
thus ?case by auto
|
chaieb@23274
|
1325 |
qed auto
|
chaieb@17378
|
1326 |
|
chaieb@23274
|
1327 |
lemma minusinf_repeats:
|
wenzelm@50252
|
1328 |
assumes d: "d_\<delta> p d" and linp: "iszlfm p"
|
chaieb@23274
|
1329 |
shows "Ifm bbs ((x - k*d)#bs) (minusinf p) = Ifm bbs (x #bs) (minusinf p)"
|
wenzelm@50313
|
1330 |
using linp d
|
wenzelm@50313
|
1331 |
proof (induct p rule: iszlfm.induct)
|
wenzelm@50313
|
1332 |
case (9 i c e)
|
wenzelm@50313
|
1333 |
hence nbe: "numbound0 e" and id: "i dvd d" by simp_all
|
wenzelm@50313
|
1334 |
hence "\<exists>k. d=i*k" by (simp add: dvd_def)
|
wenzelm@50313
|
1335 |
then obtain "di" where di_def: "d=i*di" by blast
|
wenzelm@50313
|
1336 |
show ?case
|
wenzelm@50313
|
1337 |
proof (simp add: numbound0_I[OF nbe,where bs="bs" and b="x - k * d" and b'="x"] right_diff_distrib,
|
wenzelm@50313
|
1338 |
rule iffI)
|
wenzelm@50313
|
1339 |
assume "i dvd c * x - c*(k*d) + Inum (x # bs) e"
|
chaieb@23274
|
1340 |
(is "?ri dvd ?rc*?rx - ?rc*(?rk*?rd) + ?I x e" is "?ri dvd ?rt")
|
wenzelm@50313
|
1341 |
hence "\<exists>(l::int). ?rt = i * l" by (simp add: dvd_def)
|
wenzelm@50313
|
1342 |
hence "\<exists>(l::int). c*x+ ?I x e = i*l+c*(k * i*di)"
|
wenzelm@50313
|
1343 |
by (simp add: algebra_simps di_def)
|
wenzelm@50313
|
1344 |
hence "\<exists>(l::int). c*x+ ?I x e = i*(l + c*k*di)"
|
wenzelm@50313
|
1345 |
by (simp add: algebra_simps)
|
wenzelm@50313
|
1346 |
hence "\<exists>(l::int). c*x+ ?I x e = i*l" by blast
|
wenzelm@50313
|
1347 |
thus "i dvd c*x + Inum (x # bs) e" by (simp add: dvd_def)
|
wenzelm@50313
|
1348 |
next
|
wenzelm@50313
|
1349 |
assume "i dvd c*x + Inum (x # bs) e" (is "?ri dvd ?rc*?rx+?e")
|
wenzelm@50313
|
1350 |
hence "\<exists>(l::int). c*x+?e = i*l" by (simp add: dvd_def)
|
wenzelm@50313
|
1351 |
hence "\<exists>(l::int). c*x - c*(k*d) +?e = i*l - c*(k*d)" by simp
|
wenzelm@50313
|
1352 |
hence "\<exists>(l::int). c*x - c*(k*d) +?e = i*l - c*(k*i*di)" by (simp add: di_def)
|
wenzelm@50313
|
1353 |
hence "\<exists>(l::int). c*x - c*(k*d) +?e = i*((l - c*k*di))" by (simp add: algebra_simps)
|
wenzelm@50313
|
1354 |
hence "\<exists>(l::int). c*x - c * (k*d) +?e = i*l" by blast
|
wenzelm@50313
|
1355 |
thus "i dvd c*x - c*(k*d) + Inum (x # bs) e" by (simp add: dvd_def)
|
wenzelm@50313
|
1356 |
qed
|
chaieb@23274
|
1357 |
next
|
wenzelm@50313
|
1358 |
case (10 i c e)
|
wenzelm@50313
|
1359 |
hence nbe: "numbound0 e" and id: "i dvd d" by simp_all
|
wenzelm@50313
|
1360 |
hence "\<exists>k. d=i*k" by (simp add: dvd_def)
|
wenzelm@50313
|
1361 |
then obtain "di" where di_def: "d=i*di" by blast
|
wenzelm@50313
|
1362 |
show ?case
|
wenzelm@50313
|
1363 |
proof(simp add: numbound0_I[OF nbe,where bs="bs" and b="x - k * d" and b'="x"] right_diff_distrib, rule iffI)
|
wenzelm@50313
|
1364 |
assume "i dvd c * x - c*(k*d) + Inum (x # bs) e"
|
chaieb@23274
|
1365 |
(is "?ri dvd ?rc*?rx - ?rc*(?rk*?rd) + ?I x e" is "?ri dvd ?rt")
|
wenzelm@50313
|
1366 |
hence "\<exists>(l::int). ?rt = i * l" by (simp add: dvd_def)
|
wenzelm@50313
|
1367 |
hence "\<exists>(l::int). c*x+ ?I x e = i*l+c*(k * i*di)"
|
wenzelm@50313
|
1368 |
by (simp add: algebra_simps di_def)
|
wenzelm@50313
|
1369 |
hence "\<exists>(l::int). c*x+ ?I x e = i*(l + c*k*di)"
|
wenzelm@50313
|
1370 |
by (simp add: algebra_simps)
|
wenzelm@50313
|
1371 |
hence "\<exists>(l::int). c*x+ ?I x e = i*l" by blast
|
wenzelm@50313
|
1372 |
thus "i dvd c*x + Inum (x # bs) e" by (simp add: dvd_def)
|
wenzelm@50313
|
1373 |
next
|
wenzelm@50313
|
1374 |
assume
|
wenzelm@50313
|
1375 |
"i dvd c*x + Inum (x # bs) e" (is "?ri dvd ?rc*?rx+?e")
|
wenzelm@50313
|
1376 |
hence "\<exists>(l::int). c*x+?e = i*l" by (simp add: dvd_def)
|
wenzelm@50313
|
1377 |
hence "\<exists>(l::int). c*x - c*(k*d) +?e = i*l - c*(k*d)" by simp
|
wenzelm@50313
|
1378 |
hence "\<exists>(l::int). c*x - c*(k*d) +?e = i*l - c*(k*i*di)" by (simp add: di_def)
|
wenzelm@50313
|
1379 |
hence "\<exists>(l::int). c*x - c*(k*d) +?e = i*((l - c*k*di))" by (simp add: algebra_simps)
|
wenzelm@50313
|
1380 |
hence "\<exists>(l::int). c*x - c * (k*d) +?e = i*l"
|
wenzelm@50313
|
1381 |
by blast
|
wenzelm@50313
|
1382 |
thus "i dvd c*x - c*(k*d) + Inum (x # bs) e" by (simp add: dvd_def)
|
wenzelm@50313
|
1383 |
qed
|
haftmann@23689
|
1384 |
qed (auto simp add: gr0_conv_Suc numbound0_I[where bs="bs" and b="x - k*d" and b'="x"])
|
chaieb@17378
|
1385 |
|
wenzelm@50252
|
1386 |
lemma mirror_\<alpha>_\<beta>:
|
chaieb@23274
|
1387 |
assumes lp: "iszlfm p"
|
chaieb@23274
|
1388 |
shows "(Inum (i#bs)) ` set (\<alpha> p) = (Inum (i#bs)) ` set (\<beta> (mirror p))"
|
wenzelm@50313
|
1389 |
using lp by (induct p rule: mirror.induct) auto
|
chaieb@17378
|
1390 |
|
wenzelm@50313
|
1391 |
lemma mirror:
|
chaieb@23274
|
1392 |
assumes lp: "iszlfm p"
|
wenzelm@50313
|
1393 |
shows "Ifm bbs (x#bs) (mirror p) = Ifm bbs ((- x)#bs) p"
|
wenzelm@50313
|
1394 |
using lp
|
wenzelm@50313
|
1395 |
proof (induct p rule: iszlfm.induct)
|
wenzelm@50313
|
1396 |
case (9 j c e)
|
wenzelm@50313
|
1397 |
hence nb: "numbound0 e" by simp
|
wenzelm@50313
|
1398 |
have "Ifm bbs (x#bs) (mirror (Dvd j (CN 0 c e))) = (j dvd c*x - Inum (x#bs) e)"
|
wenzelm@50313
|
1399 |
(is "_ = (j dvd c*x - ?e)") by simp
|
wenzelm@50313
|
1400 |
also have "\<dots> = (j dvd (- (c*x - ?e)))"
|
nipkow@30042
|
1401 |
by (simp only: dvd_minus_iff)
|
chaieb@23274
|
1402 |
also have "\<dots> = (j dvd (c* (- x)) + ?e)"
|
huffman@44821
|
1403 |
apply (simp only: minus_mult_right[symmetric] minus_mult_left[symmetric] diff_minus add_ac minus_add_distrib)
|
wenzelm@50313
|
1404 |
apply (simp add: algebra_simps)
|
wenzelm@50313
|
1405 |
done
|
chaieb@23995
|
1406 |
also have "\<dots> = Ifm bbs ((- x)#bs) (Dvd j (CN 0 c e))"
|
wenzelm@50313
|
1407 |
using numbound0_I[OF nb, where bs="bs" and b="x" and b'="- x"] by simp
|
chaieb@23274
|
1408 |
finally show ?case .
|
chaieb@23274
|
1409 |
next
|
wenzelm@50313
|
1410 |
case (10 j c e) hence nb: "numbound0 e" by simp
|
wenzelm@50313
|
1411 |
have "Ifm bbs (x#bs) (mirror (Dvd j (CN 0 c e))) = (j dvd c*x - Inum (x#bs) e)"
|
wenzelm@50313
|
1412 |
(is "_ = (j dvd c*x - ?e)") by simp
|
wenzelm@50313
|
1413 |
also have "\<dots> = (j dvd (- (c*x - ?e)))"
|
nipkow@30042
|
1414 |
by (simp only: dvd_minus_iff)
|
chaieb@23274
|
1415 |
also have "\<dots> = (j dvd (c* (- x)) + ?e)"
|
huffman@44821
|
1416 |
apply (simp only: minus_mult_right[symmetric] minus_mult_left[symmetric] diff_minus add_ac minus_add_distrib)
|
wenzelm@50313
|
1417 |
apply (simp add: algebra_simps)
|
wenzelm@50313
|
1418 |
done
|
chaieb@23995
|
1419 |
also have "\<dots> = Ifm bbs ((- x)#bs) (Dvd j (CN 0 c e))"
|
wenzelm@50313
|
1420 |
using numbound0_I[OF nb, where bs="bs" and b="x" and b'="- x"] by simp
|
chaieb@23274
|
1421 |
finally show ?case by simp
|
haftmann@23689
|
1422 |
qed (auto simp add: numbound0_I[where bs="bs" and b="x" and b'="- x"] gr0_conv_Suc)
|
chaieb@17378
|
1423 |
|
wenzelm@50313
|
1424 |
lemma mirror_l: "iszlfm p \<and> d_\<beta> p 1 \<Longrightarrow> iszlfm (mirror p) \<and> d_\<beta> (mirror p) 1"
|
wenzelm@41807
|
1425 |
by (induct p rule: mirror.induct) auto
|
chaieb@17378
|
1426 |
|
chaieb@23274
|
1427 |
lemma mirror_\<delta>: "iszlfm p \<Longrightarrow> \<delta> (mirror p) = \<delta> p"
|
wenzelm@41807
|
1428 |
by (induct p rule: mirror.induct) auto
|
chaieb@23274
|
1429 |
|
wenzelm@50313
|
1430 |
lemma \<beta>_numbound0:
|
wenzelm@50313
|
1431 |
assumes lp: "iszlfm p"
|
wenzelm@50313
|
1432 |
shows "\<forall>b\<in> set (\<beta> p). numbound0 b"
|
wenzelm@41807
|
1433 |
using lp by (induct p rule: \<beta>.induct) auto
|
chaieb@17378
|
1434 |
|
wenzelm@50313
|
1435 |
lemma d_\<beta>_mono:
|
chaieb@23274
|
1436 |
assumes linp: "iszlfm p"
|
wenzelm@50313
|
1437 |
and dr: "d_\<beta> p l"
|
wenzelm@50313
|
1438 |
and d: "l dvd l'"
|
wenzelm@50252
|
1439 |
shows "d_\<beta> p l'"
|
wenzelm@50313
|
1440 |
using dr linp dvd_trans[of _ "l" "l'", simplified d]
|
wenzelm@41807
|
1441 |
by (induct p rule: iszlfm.induct) simp_all
|
chaieb@23274
|
1442 |
|
wenzelm@50313
|
1443 |
lemma \<alpha>_l:
|
wenzelm@50313
|
1444 |
assumes lp: "iszlfm p"
|
wenzelm@50313
|
1445 |
shows "\<forall>b \<in> set (\<alpha> p). numbound0 b"
|
wenzelm@50313
|
1446 |
using lp by (induct p rule: \<alpha>.induct) auto
|
chaieb@17378
|
1447 |
|
wenzelm@50313
|
1448 |
lemma \<zeta>:
|
chaieb@23274
|
1449 |
assumes linp: "iszlfm p"
|
wenzelm@50252
|
1450 |
shows "\<zeta> p > 0 \<and> d_\<beta> p (\<zeta> p)"
|
wenzelm@50313
|
1451 |
using linp
|
wenzelm@50313
|
1452 |
proof (induct p rule: iszlfm.induct)
|
chaieb@23274
|
1453 |
case (1 p q)
|
wenzelm@41807
|
1454 |
from 1 have dl1: "\<zeta> p dvd lcm (\<zeta> p) (\<zeta> q)" by simp
|
wenzelm@41807
|
1455 |
from 1 have dl2: "\<zeta> q dvd lcm (\<zeta> p) (\<zeta> q)" by simp
|
wenzelm@50313
|
1456 |
from 1 d_\<beta>_mono[where p = "p" and l="\<zeta> p" and l'="lcm (\<zeta> p) (\<zeta> q)"]
|
wenzelm@50313
|
1457 |
d_\<beta>_mono[where p = "q" and l="\<zeta> q" and l'="lcm (\<zeta> p) (\<zeta> q)"]
|
nipkow@31952
|
1458 |
dl1 dl2 show ?case by (auto simp add: lcm_pos_int)
|
chaieb@17378
|
1459 |
next
|
chaieb@23274
|
1460 |
case (2 p q)
|
wenzelm@41807
|
1461 |
from 2 have dl1: "\<zeta> p dvd lcm (\<zeta> p) (\<zeta> q)" by simp
|
wenzelm@41807
|
1462 |
from 2 have dl2: "\<zeta> q dvd lcm (\<zeta> p) (\<zeta> q)" by simp
|
wenzelm@50313
|
1463 |
from 2 d_\<beta>_mono[where p = "p" and l="\<zeta> p" and l'="lcm (\<zeta> p) (\<zeta> q)"]
|
wenzelm@50313
|
1464 |
d_\<beta>_mono[where p = "q" and l="\<zeta> q" and l'="lcm (\<zeta> p) (\<zeta> q)"]
|
nipkow@31952
|
1465 |
dl1 dl2 show ?case by (auto simp add: lcm_pos_int)
|
nipkow@31952
|
1466 |
qed (auto simp add: lcm_pos_int)
|
chaieb@17378
|
1467 |
|
wenzelm@50313
|
1468 |
lemma a_\<beta>:
|
wenzelm@50313
|
1469 |
assumes linp: "iszlfm p" and d: "d_\<beta> p l" and lp: "l > 0"
|
wenzelm@50252
|
1470 |
shows "iszlfm (a_\<beta> p l) \<and> d_\<beta> (a_\<beta> p l) 1 \<and> (Ifm bbs (l*x #bs) (a_\<beta> p l) = Ifm bbs (x#bs) p)"
|
wenzelm@50313
|
1471 |
using linp d
|
chaieb@23274
|
1472 |
proof (induct p rule: iszlfm.induct)
|
wenzelm@50313
|
1473 |
case (5 c e)
|
wenzelm@50313
|
1474 |
hence cp: "c>0" and be: "numbound0 e" and d': "c dvd l" by simp_all
|
wenzelm@50313
|
1475 |
from lp cp have clel: "c\<le>l" by (simp add: zdvd_imp_le [OF d' lp])
|
wenzelm@50313
|
1476 |
from cp have cnz: "c \<noteq> 0" by simp
|
wenzelm@50313
|
1477 |
have "c div c\<le> l div c"
|
wenzelm@50313
|
1478 |
by (simp add: zdiv_mono1[OF clel cp])
|
wenzelm@50313
|
1479 |
then have ldcp:"0 < l div c"
|
wenzelm@50313
|
1480 |
by (simp add: div_self[OF cnz])
|
wenzelm@50313
|
1481 |
have "c * (l div c) = c* (l div c) + l mod c" using d' dvd_eq_mod_eq_0[of "c" "l"]
|
wenzelm@50313
|
1482 |
by simp
|
wenzelm@50313
|
1483 |
hence cl:"c * (l div c) =l" using zmod_zdiv_equality[where a="l" and b="c", symmetric]
|
wenzelm@50313
|
1484 |
by simp
|
wenzelm@50313
|
1485 |
hence "(l*x + (l div c) * Inum (x # bs) e < 0) =
|
wenzelm@50313
|
1486 |
((c * (l div c)) * x + (l div c) * Inum (x # bs) e < 0)"
|
wenzelm@50313
|
1487 |
by simp
|
wenzelm@50313
|
1488 |
also have "\<dots> = ((l div c) * (c*x + Inum (x # bs) e) < (l div c) * 0)"
|
wenzelm@50313
|
1489 |
by (simp add: algebra_simps)
|
wenzelm@50313
|
1490 |
also have "\<dots> = (c*x + Inum (x # bs) e < 0)"
|
chaieb@23274
|
1491 |
using mult_less_0_iff [where a="(l div c)" and b="c*x + Inum (x # bs) e"] ldcp by simp
|
wenzelm@50313
|
1492 |
finally show ?case
|
wenzelm@50313
|
1493 |
using numbound0_I[OF be,where b="l*x" and b'="x" and bs="bs"] be by simp
|
chaieb@17378
|
1494 |
next
|
wenzelm@50313
|
1495 |
case (6 c e)
|
wenzelm@50313
|
1496 |
hence cp: "c>0" and be: "numbound0 e" and d': "c dvd l" by simp_all
|
wenzelm@50313
|
1497 |
from lp cp have clel: "c\<le>l" by (simp add: zdvd_imp_le [OF d' lp])
|
wenzelm@50313
|
1498 |
from cp have cnz: "c \<noteq> 0" by simp
|
wenzelm@50313
|
1499 |
have "c div c\<le> l div c"
|
wenzelm@50313
|
1500 |
by (simp add: zdiv_mono1[OF clel cp])
|
wenzelm@50313
|
1501 |
then have ldcp:"0 < l div c"
|
wenzelm@50313
|
1502 |
by (simp add: div_self[OF cnz])
|
wenzelm@50313
|
1503 |
have "c * (l div c) = c* (l div c) + l mod c" using d' dvd_eq_mod_eq_0[of "c" "l"]
|
wenzelm@50313
|
1504 |
by simp
|
wenzelm@50313
|
1505 |
hence cl:"c * (l div c) =l" using zmod_zdiv_equality[where a="l" and b="c", symmetric]
|
wenzelm@50313
|
1506 |
by simp
|
wenzelm@50313
|
1507 |
hence "(l*x + (l div c) * Inum (x# bs) e \<le> 0) =
|
wenzelm@50313
|
1508 |
((c * (l div c)) * x + (l div c) * Inum (x # bs) e \<le> 0)" by simp
|
wenzelm@50313
|
1509 |
also have "\<dots> = ((l div c) * (c * x + Inum (x # bs) e) \<le> ((l div c)) * 0)"
|
wenzelm@50313
|
1510 |
by (simp add: algebra_simps)
|
wenzelm@50313
|
1511 |
also have "\<dots> = (c*x + Inum (x # bs) e \<le> 0)"
|
chaieb@23274
|
1512 |
using mult_le_0_iff [where a="(l div c)" and b="c*x + Inum (x # bs) e"] ldcp by simp
|
wenzelm@50313
|
1513 |
finally show ?case
|
wenzelm@50313
|
1514 |
using numbound0_I[OF be,where b="l*x" and b'="x" and bs="bs"] be by simp
|
chaieb@17378
|
1515 |
next
|
wenzelm@50313
|
1516 |
case (7 c e)
|
wenzelm@50313
|
1517 |
hence cp: "c>0" and be: "numbound0 e" and d': "c dvd l" by simp_all
|
wenzelm@50313
|
1518 |
from lp cp have clel: "c\<le>l" by (simp add: zdvd_imp_le [OF d' lp])
|
wenzelm@50313
|
1519 |
from cp have cnz: "c \<noteq> 0" by simp
|
wenzelm@50313
|
1520 |
have "c div c\<le> l div c"
|
wenzelm@50313
|
1521 |
by (simp add: zdiv_mono1[OF clel cp])
|
wenzelm@50313
|
1522 |
then have ldcp:"0 < l div c"
|
wenzelm@50313
|
1523 |
by (simp add: div_self[OF cnz])
|
wenzelm@50313
|
1524 |
have "c * (l div c) = c* (l div c) + l mod c"
|
wenzelm@50313
|
1525 |
using d' dvd_eq_mod_eq_0[of "c" "l"] by simp
|
wenzelm@50313
|
1526 |
hence cl:"c * (l div c) =l" using zmod_zdiv_equality[where a="l" and b="c", symmetric]
|
wenzelm@50313
|
1527 |
by simp
|
wenzelm@50313
|
1528 |
hence "(l*x + (l div c)* Inum (x # bs) e > 0) =
|
wenzelm@50313
|
1529 |
((c * (l div c)) * x + (l div c) * Inum (x # bs) e > 0)" by simp
|
wenzelm@50313
|
1530 |
also have "\<dots> = ((l div c) * (c * x + Inum (x # bs) e) > ((l div c)) * 0)"
|
wenzelm@50313
|
1531 |
by (simp add: algebra_simps)
|
wenzelm@50313
|
1532 |
also have "\<dots> = (c * x + Inum (x # bs) e > 0)"
|
chaieb@23274
|
1533 |
using zero_less_mult_iff [where a="(l div c)" and b="c * x + Inum (x # bs) e"] ldcp by simp
|
wenzelm@50313
|
1534 |
finally show ?case
|
wenzelm@50313
|
1535 |
using numbound0_I[OF be,where b="(l * x)" and b'="x" and bs="bs"] be by simp
|
chaieb@17378
|
1536 |
next
|
wenzelm@50313
|
1537 |
case (8 c e)
|
wenzelm@50313
|
1538 |
hence cp: "c>0" and be: "numbound0 e" and d': "c dvd l" by simp_all
|
wenzelm@50313
|
1539 |
from lp cp have clel: "c\<le>l" by (simp add: zdvd_imp_le [OF d' lp])
|
wenzelm@50313
|
1540 |
from cp have cnz: "c \<noteq> 0" by simp
|
wenzelm@50313
|
1541 |
have "c div c\<le> l div c"
|
wenzelm@50313
|
1542 |
by (simp add: zdiv_mono1[OF clel cp])
|
wenzelm@50313
|
1543 |
then have ldcp:"0 < l div c"
|
wenzelm@50313
|
1544 |
by (simp add: div_self[OF cnz])
|
wenzelm@50313
|
1545 |
have "c * (l div c) = c* (l div c) + l mod c" using d' dvd_eq_mod_eq_0[of "c" "l"]
|
wenzelm@50313
|
1546 |
by simp
|
wenzelm@50313
|
1547 |
hence cl:"c * (l div c) =l" using zmod_zdiv_equality[where a="l" and b="c", symmetric]
|
chaieb@23274
|
1548 |
by simp
|
wenzelm@50313
|
1549 |
hence "(l*x + (l div c)* Inum (x # bs) e \<ge> 0) =
|
wenzelm@50313
|
1550 |
((c*(l div c))*x + (l div c)* Inum (x # bs) e \<ge> 0)" by simp
|
wenzelm@50313
|
1551 |
also have "\<dots> = ((l div c)*(c*x + Inum (x # bs) e) \<ge> ((l div c)) * 0)"
|
wenzelm@50313
|
1552 |
by (simp add: algebra_simps)
|
wenzelm@50313
|
1553 |
also have "\<dots> = (c*x + Inum (x # bs) e \<ge> 0)"
|
wenzelm@50313
|
1554 |
using ldcp zero_le_mult_iff [where a="l div c" and b="c*x + Inum (x # bs) e"] by simp
|
wenzelm@50313
|
1555 |
finally show ?case
|
wenzelm@50313
|
1556 |
using be numbound0_I[OF be,where b="l*x" and b'="x" and bs="bs"] by simp
|
chaieb@17378
|
1557 |
next
|
wenzelm@50313
|
1558 |
case (3 c e)
|
wenzelm@50313
|
1559 |
hence cp: "c>0" and be: "numbound0 e" and d': "c dvd l" by simp_all
|
wenzelm@50313
|
1560 |
from lp cp have clel: "c\<le>l" by (simp add: zdvd_imp_le [OF d' lp])
|
wenzelm@50313
|
1561 |
from cp have cnz: "c \<noteq> 0" by simp
|
wenzelm@50313
|
1562 |
have "c div c\<le> l div c"
|
wenzelm@50313
|
1563 |
by (simp add: zdiv_mono1[OF clel cp])
|
wenzelm@50313
|
1564 |
then have ldcp:"0 < l div c"
|
wenzelm@50313
|
1565 |
by (simp add: div_self[OF cnz])
|
wenzelm@50313
|
1566 |
have "c * (l div c) = c* (l div c) + l mod c" using d' dvd_eq_mod_eq_0[of "c" "l"]
|
wenzelm@50313
|
1567 |
by simp
|
wenzelm@50313
|
1568 |
hence cl:"c * (l div c) =l" using zmod_zdiv_equality[where a="l" and b="c", symmetric]
|
wenzelm@50313
|
1569 |
by simp
|
wenzelm@50313
|
1570 |
hence "(l * x + (l div c) * Inum (x # bs) e = 0) =
|
wenzelm@50313
|
1571 |
((c * (l div c)) * x + (l div c) * Inum (x # bs) e = 0)" by simp
|
wenzelm@50313
|
1572 |
also have "\<dots> = ((l div c) * (c * x + Inum (x # bs) e) = ((l div c)) * 0)"
|
wenzelm@50313
|
1573 |
by (simp add: algebra_simps)
|
wenzelm@50313
|
1574 |
also have "\<dots> = (c * x + Inum (x # bs) e = 0)"
|
chaieb@23274
|
1575 |
using mult_eq_0_iff [where a="(l div c)" and b="c * x + Inum (x # bs) e"] ldcp by simp
|
wenzelm@50313
|
1576 |
finally show ?case
|
wenzelm@50313
|
1577 |
using numbound0_I[OF be,where b="(l * x)" and b'="x" and bs="bs"] be by simp
|
chaieb@17378
|
1578 |
next
|
wenzelm@50313
|
1579 |
case (4 c e)
|
wenzelm@50313
|
1580 |
hence cp: "c>0" and be: "numbound0 e" and d': "c dvd l" by simp_all
|
wenzelm@50313
|
1581 |
from lp cp have clel: "c\<le>l" by (simp add: zdvd_imp_le [OF d' lp])
|
wenzelm@50313
|
1582 |
from cp have cnz: "c \<noteq> 0" by simp
|
wenzelm@50313
|
1583 |
have "c div c\<le> l div c"
|
wenzelm@50313
|
1584 |
by (simp add: zdiv_mono1[OF clel cp])
|
wenzelm@50313
|
1585 |
then have ldcp:"0 < l div c"
|
wenzelm@50313
|
1586 |
by (simp add: div_self[OF cnz])
|
wenzelm@50313
|
1587 |
have "c * (l div c) = c* (l div c) + l mod c" using d' dvd_eq_mod_eq_0[of "c" "l"]
|
wenzelm@50313
|
1588 |
by simp
|
wenzelm@50313
|
1589 |
hence cl:"c * (l div c) =l" using zmod_zdiv_equality[where a="l" and b="c", symmetric]
|
wenzelm@50313
|
1590 |
by simp
|
wenzelm@50313
|
1591 |
hence "(l * x + (l div c) * Inum (x # bs) e \<noteq> 0) =
|
wenzelm@50313
|
1592 |
((c * (l div c)) * x + (l div c) * Inum (x # bs) e \<noteq> 0)" by simp
|
wenzelm@50313
|
1593 |
also have "\<dots> = ((l div c) * (c * x + Inum (x # bs) e) \<noteq> ((l div c)) * 0)"
|
wenzelm@50313
|
1594 |
by (simp add: algebra_simps)
|
wenzelm@50313
|
1595 |
also have "\<dots> = (c * x + Inum (x # bs) e \<noteq> 0)"
|
chaieb@23274
|
1596 |
using zero_le_mult_iff [where a="(l div c)" and b="c * x + Inum (x # bs) e"] ldcp by simp
|
wenzelm@50313
|
1597 |
finally show ?case
|
wenzelm@50313
|
1598 |
using numbound0_I[OF be,where b="(l * x)" and b'="x" and bs="bs"] be by simp
|
chaieb@17378
|
1599 |
next
|
wenzelm@50313
|
1600 |
case (9 j c e)
|
wenzelm@50313
|
1601 |
hence cp: "c>0" and be: "numbound0 e" and jp: "j > 0" and d': "c dvd l" by simp_all
|
wenzelm@50313
|
1602 |
from lp cp have clel: "c\<le>l" by (simp add: zdvd_imp_le [OF d' lp])
|
wenzelm@50313
|
1603 |
from cp have cnz: "c \<noteq> 0" by simp
|
wenzelm@50313
|
1604 |
have "c div c\<le> l div c"
|
wenzelm@50313
|
1605 |
by (simp add: zdiv_mono1[OF clel cp])
|
wenzelm@50313
|
1606 |
then have ldcp:"0 < l div c"
|
wenzelm@50313
|
1607 |
by (simp add: div_self[OF cnz])
|
wenzelm@50313
|
1608 |
have "c * (l div c) = c* (l div c) + l mod c" using d' dvd_eq_mod_eq_0[of "c" "l"]
|
wenzelm@50313
|
1609 |
by simp
|
wenzelm@50313
|
1610 |
hence cl:"c * (l div c) =l" using zmod_zdiv_equality[where a="l" and b="c", symmetric]
|
wenzelm@50313
|
1611 |
by simp
|
wenzelm@50313
|
1612 |
hence "(\<exists>(k::int). l * x + (l div c) * Inum (x # bs) e = ((l div c) * j) * k) =
|
wenzelm@50313
|
1613 |
(\<exists>(k::int). (c * (l div c)) * x + (l div c) * Inum (x # bs) e = ((l div c) * j) * k)" by simp
|
wenzelm@50313
|
1614 |
also have "\<dots> = (\<exists>(k::int). (l div c) * (c * x + Inum (x # bs) e - j * k) = (l div c)*0)"
|
wenzelm@50313
|
1615 |
by (simp add: algebra_simps)
|
wenzelm@50313
|
1616 |
also have "\<dots> = (\<exists>(k::int). c * x + Inum (x # bs) e - j * k = 0)"
|
wenzelm@50313
|
1617 |
using zero_le_mult_iff [where a="(l div c)" and b="c * x + Inum (x # bs) e - j * k"] ldcp
|
wenzelm@50313
|
1618 |
by simp
|
wenzelm@50313
|
1619 |
also have "\<dots> = (\<exists>(k::int). c * x + Inum (x # bs) e = j * k)" by simp
|
wenzelm@50313
|
1620 |
finally show ?case
|
wenzelm@50313
|
1621 |
using numbound0_I[OF be,where b="(l * x)" and b'="x" and bs="bs"] be mult_strict_mono[OF ldcp jp ldcp ]
|
wenzelm@50313
|
1622 |
by (simp add: dvd_def)
|
wenzelm@50313
|
1623 |
next
|
wenzelm@50313
|
1624 |
case (10 j c e)
|
wenzelm@50313
|
1625 |
hence cp: "c>0" and be: "numbound0 e" and jp: "j > 0" and d': "c dvd l" by simp_all
|
wenzelm@50313
|
1626 |
from lp cp have clel: "c\<le>l" by (simp add: zdvd_imp_le [OF d' lp])
|
wenzelm@50313
|
1627 |
from cp have cnz: "c \<noteq> 0" by simp
|
wenzelm@50313
|
1628 |
have "c div c\<le> l div c"
|
wenzelm@50313
|
1629 |
by (simp add: zdiv_mono1[OF clel cp])
|
wenzelm@50313
|
1630 |
then have ldcp:"0 < l div c"
|
wenzelm@50313
|
1631 |
by (simp add: div_self[OF cnz])
|
wenzelm@50313
|
1632 |
have "c * (l div c) = c* (l div c) + l mod c" using d' dvd_eq_mod_eq_0[of "c" "l"] by simp
|
wenzelm@50313
|
1633 |
hence cl:"c * (l div c) =l" using zmod_zdiv_equality[where a="l" and b="c", symmetric]
|
wenzelm@50313
|
1634 |
by simp
|
wenzelm@50313
|
1635 |
hence "(\<exists>(k::int). l * x + (l div c) * Inum (x # bs) e = ((l div c) * j) * k) = (\<exists>(k::int). (c * (l div c)) * x + (l div c) * Inum (x # bs) e = ((l div c) * j) * k)" by simp
|
wenzelm@50313
|
1636 |
also have "\<dots> = (\<exists>(k::int). (l div c) * (c * x + Inum (x # bs) e - j * k) = (l div c)*0)" by (simp add: algebra_simps)
|
wenzelm@50313
|
1637 |
also fix k have "\<dots> = (\<exists>(k::int). c * x + Inum (x # bs) e - j * k = 0)"
|
chaieb@23274
|
1638 |
using zero_le_mult_iff [where a="(l div c)" and b="c * x + Inum (x # bs) e - j * k"] ldcp by simp
|
wenzelm@50313
|
1639 |
also have "\<dots> = (\<exists>(k::int). c * x + Inum (x # bs) e = j * k)" by simp
|
chaieb@23274
|
1640 |
finally show ?case using numbound0_I[OF be,where b="(l * x)" and b'="x" and bs="bs"] be mult_strict_mono[OF ldcp jp ldcp ] by (simp add: dvd_def)
|
haftmann@23689
|
1641 |
qed (auto simp add: gr0_conv_Suc numbound0_I[where bs="bs" and b="(l * x)" and b'="x"])
|
chaieb@17378
|
1642 |
|
wenzelm@50252
|
1643 |
lemma a_\<beta>_ex: assumes linp: "iszlfm p" and d: "d_\<beta> p l" and lp: "l>0"
|
wenzelm@50313
|
1644 |
shows "(\<exists>x. l dvd x \<and> Ifm bbs (x #bs) (a_\<beta> p l)) = (\<exists>(x::int). Ifm bbs (x#bs) p)"
|
wenzelm@50313
|
1645 |
(is "(\<exists>x. l dvd x \<and> ?P x) = (\<exists>x. ?P' x)")
|
chaieb@23274
|
1646 |
proof-
|
wenzelm@50313
|
1647 |
have "(\<exists>x. l dvd x \<and> ?P x) = (\<exists>(x::int). ?P (l*x))"
|
chaieb@23274
|
1648 |
using unity_coeff_ex[where l="l" and P="?P", simplified] by simp
|
wenzelm@50313
|
1649 |
also have "\<dots> = (\<exists>(x::int). ?P' x)" using a_\<beta>[OF linp d lp] by simp
|
wenzelm@50313
|
1650 |
finally show ?thesis .
|
chaieb@17378
|
1651 |
qed
|
chaieb@17378
|
1652 |
|
chaieb@23274
|
1653 |
lemma \<beta>:
|
chaieb@23274
|
1654 |
assumes lp: "iszlfm p"
|
wenzelm@50252
|
1655 |
and u: "d_\<beta> p 1"
|
wenzelm@50252
|
1656 |
and d: "d_\<delta> p d"
|
chaieb@23274
|
1657 |
and dp: "d > 0"
|
wenzelm@50313
|
1658 |
and nob: "\<not>(\<exists>(j::int) \<in> {1 .. d}. \<exists>b\<in> (Inum (a#bs)) ` set(\<beta> p). x = b + j)"
|
chaieb@23274
|
1659 |
and p: "Ifm bbs (x#bs) p" (is "?P x")
|
chaieb@23274
|
1660 |
shows "?P (x - d)"
|
chaieb@23274
|
1661 |
using lp u d dp nob p
|
chaieb@23274
|
1662 |
proof(induct p rule: iszlfm.induct)
|
wenzelm@41807
|
1663 |
case (5 c e) hence c1: "c=1" and bn:"numbound0 e" by simp_all
|
wenzelm@41807
|
1664 |
with dp p c1 numbound0_I[OF bn,where b="(x-d)" and b'="x" and bs="bs"] 5
|
wenzelm@41807
|
1665 |
show ?case by simp
|
chaieb@23274
|
1666 |
next
|
wenzelm@41807
|
1667 |
case (6 c e) hence c1: "c=1" and bn:"numbound0 e" by simp_all
|
wenzelm@41807
|
1668 |
with dp p c1 numbound0_I[OF bn,where b="(x-d)" and b'="x" and bs="bs"] 6
|
wenzelm@41807
|
1669 |
show ?case by simp
|
chaieb@23274
|
1670 |
next
|
wenzelm@41807
|
1671 |
case (7 c e) hence p: "Ifm bbs (x #bs) (Gt (CN 0 c e))" and c1: "c=1" and bn:"numbound0 e" by simp_all
|
wenzelm@41807
|
1672 |
let ?e = "Inum (x # bs) e"
|
wenzelm@50313
|
1673 |
{assume "(x-d) +?e > 0" hence ?case using c1
|
wenzelm@41807
|
1674 |
numbound0_I[OF bn,where b="(x-d)" and b'="x" and bs="bs"] by simp}
|
wenzelm@41807
|
1675 |
moreover
|
wenzelm@50313
|
1676 |
{assume H: "\<not> (x-d) + ?e > 0"
|
wenzelm@41807
|
1677 |
let ?v="Neg e"
|
wenzelm@41807
|
1678 |
have vb: "?v \<in> set (\<beta> (Gt (CN 0 c e)))" by simp
|
wenzelm@50313
|
1679 |
from 7(5)[simplified simp_thms Inum.simps \<beta>.simps set.simps bex_simps numbound0_I[OF bn,where b="a" and b'="x" and bs="bs"]]
|
wenzelm@50313
|
1680 |
have nob: "\<not> (\<exists>j\<in> {1 ..d}. x = - ?e + j)" by auto
|
wenzelm@41807
|
1681 |
from H p have "x + ?e > 0 \<and> x + ?e \<le> d" by (simp add: c1)
|
wenzelm@41807
|
1682 |
hence "x + ?e \<ge> 1 \<and> x + ?e \<le> d" by simp
|
wenzelm@50313
|
1683 |
hence "\<exists>(j::int) \<in> {1 .. d}. j = x + ?e" by simp
|
wenzelm@50313
|
1684 |
hence "\<exists>(j::int) \<in> {1 .. d}. x = (- ?e + j)"
|
wenzelm@41807
|
1685 |
by (simp add: algebra_simps)
|
wenzelm@41807
|
1686 |
with nob have ?case by auto}
|
wenzelm@41807
|
1687 |
ultimately show ?case by blast
|
chaieb@23274
|
1688 |
next
|
wenzelm@50313
|
1689 |
case (8 c e) hence p: "Ifm bbs (x #bs) (Ge (CN 0 c e))" and c1: "c=1" and bn:"numbound0 e"
|
wenzelm@50313
|
1690 |
by simp_all
|
chaieb@23274
|
1691 |
let ?e = "Inum (x # bs) e"
|
wenzelm@50313
|
1692 |
{assume "(x-d) +?e \<ge> 0" hence ?case using c1
|
chaieb@23274
|
1693 |
numbound0_I[OF bn,where b="(x-d)" and b'="x" and bs="bs"]
|
wenzelm@32960
|
1694 |
by simp}
|
chaieb@23274
|
1695 |
moreover
|
wenzelm@50313
|
1696 |
{assume H: "\<not> (x-d) + ?e \<ge> 0"
|
chaieb@23274
|
1697 |
let ?v="Sub (C -1) e"
|
chaieb@23995
|
1698 |
have vb: "?v \<in> set (\<beta> (Ge (CN 0 c e)))" by simp
|
wenzelm@50313
|
1699 |
from 8(5)[simplified simp_thms Inum.simps \<beta>.simps set.simps bex_simps numbound0_I[OF bn,where b="a" and b'="x" and bs="bs"]]
|
wenzelm@50313
|
1700 |
have nob: "\<not> (\<exists>j\<in> {1 ..d}. x = - ?e - 1 + j)" by auto
|
chaieb@23274
|
1701 |
from H p have "x + ?e \<ge> 0 \<and> x + ?e < d" by (simp add: c1)
|
chaieb@23274
|
1702 |
hence "x + ?e +1 \<ge> 1 \<and> x + ?e + 1 \<le> d" by simp
|
wenzelm@50313
|
1703 |
hence "\<exists>(j::int) \<in> {1 .. d}. j = x + ?e + 1" by simp
|
wenzelm@50313
|
1704 |
hence "\<exists>(j::int) \<in> {1 .. d}. x= - ?e - 1 + j" by (simp add: algebra_simps)
|
chaieb@23274
|
1705 |
with nob have ?case by simp }
|
chaieb@23274
|
1706 |
ultimately show ?case by blast
|
chaieb@23274
|
1707 |
next
|
wenzelm@50313
|
1708 |
case (3 c e) hence p: "Ifm bbs (x #bs) (Eq (CN 0 c e))" (is "?p x") and c1: "c=1" and bn:"numbound0 e" by simp_all
|
chaieb@23274
|
1709 |
let ?e = "Inum (x # bs) e"
|
chaieb@23274
|
1710 |
let ?v="(Sub (C -1) e)"
|
chaieb@23995
|
1711 |
have vb: "?v \<in> set (\<beta> (Eq (CN 0 c e)))" by simp
|
wenzelm@41807
|
1712 |
from p have "x= - ?e" by (simp add: c1) with 3(5) show ?case using dp
|
chaieb@23274
|
1713 |
by simp (erule ballE[where x="1"],
|
wenzelm@32960
|
1714 |
simp_all add:algebra_simps numbound0_I[OF bn,where b="x"and b'="a"and bs="bs"])
|
chaieb@23274
|
1715 |
next
|
wenzelm@50313
|
1716 |
case (4 c e)hence p: "Ifm bbs (x #bs) (NEq (CN 0 c e))" (is "?p x") and c1: "c=1" and bn:"numbound0 e" by simp_all
|
chaieb@23274
|
1717 |
let ?e = "Inum (x # bs) e"
|
chaieb@23274
|
1718 |
let ?v="Neg e"
|
chaieb@23995
|
1719 |
have vb: "?v \<in> set (\<beta> (NEq (CN 0 c e)))" by simp
|
wenzelm@50313
|
1720 |
{assume "x - d + Inum (((x -d)) # bs) e \<noteq> 0"
|
chaieb@23274
|
1721 |
hence ?case by (simp add: c1)}
|
chaieb@23274
|
1722 |
moreover
|
chaieb@23274
|
1723 |
{assume H: "x - d + Inum (((x -d)) # bs) e = 0"
|
chaieb@23274
|
1724 |
hence "x = - Inum (((x -d)) # bs) e + d" by simp
|
chaieb@23274
|
1725 |
hence "x = - Inum (a # bs) e + d"
|
wenzelm@32960
|
1726 |
by (simp add: numbound0_I[OF bn,where b="x - d"and b'="a"and bs="bs"])
|
wenzelm@41807
|
1727 |
with 4(5) have ?case using dp by simp}
|
chaieb@23274
|
1728 |
ultimately show ?case by blast
|
wenzelm@50313
|
1729 |
next
|
wenzelm@50313
|
1730 |
case (9 j c e) hence p: "Ifm bbs (x #bs) (Dvd j (CN 0 c e))" (is "?p x") and c1: "c=1" and bn:"numbound0 e" by simp_all
|
chaieb@23274
|
1731 |
let ?e = "Inum (x # bs) e"
|
wenzelm@41807
|
1732 |
from 9 have id: "j dvd d" by simp
|
chaieb@23274
|
1733 |
from c1 have "?p x = (j dvd (x+ ?e))" by simp
|
wenzelm@50313
|
1734 |
also have "\<dots> = (j dvd x - d + ?e)"
|
haftmann@23689
|
1735 |
using zdvd_period[OF id, where x="x" and c="-1" and t="?e"] by simp
|
wenzelm@50313
|
1736 |
finally show ?case
|
chaieb@23274
|
1737 |
using numbound0_I[OF bn,where b="(x-d)" and b'="x" and bs="bs"] c1 p by simp
|
chaieb@23274
|
1738 |
next
|
wenzelm@50313
|
1739 |
case (10 j c e) hence p: "Ifm bbs (x #bs) (NDvd j (CN 0 c e))" (is "?p x") and c1: "c=1" and bn:"numbound0 e" by simp_all
|
chaieb@23274
|
1740 |
let ?e = "Inum (x # bs) e"
|
wenzelm@41807
|
1741 |
from 10 have id: "j dvd d" by simp
|
chaieb@23274
|
1742 |
from c1 have "?p x = (\<not> j dvd (x+ ?e))" by simp
|
wenzelm@50313
|
1743 |
also have "\<dots> = (\<not> j dvd x - d + ?e)"
|
haftmann@23689
|
1744 |
using zdvd_period[OF id, where x="x" and c="-1" and t="?e"] by simp
|
chaieb@23274
|
1745 |
finally show ?case using numbound0_I[OF bn,where b="(x-d)" and b'="x" and bs="bs"] c1 p by simp
|
haftmann@23689
|
1746 |
qed (auto simp add: numbound0_I[where bs="bs" and b="(x - d)" and b'="x"] gr0_conv_Suc)
|
chaieb@17378
|
1747 |
|
wenzelm@50313
|
1748 |
lemma \<beta>':
|
chaieb@23274
|
1749 |
assumes lp: "iszlfm p"
|
wenzelm@50252
|
1750 |
and u: "d_\<beta> p 1"
|
wenzelm@50252
|
1751 |
and d: "d_\<delta> p d"
|
chaieb@23274
|
1752 |
and dp: "d > 0"
|
wenzelm@50313
|
1753 |
shows "\<forall>x. \<not>(\<exists>(j::int) \<in> {1 .. d}. \<exists>b\<in> set(\<beta> p). Ifm bbs ((Inum (a#bs) b + j) #bs) p) \<longrightarrow> Ifm bbs (x#bs) p \<longrightarrow> Ifm bbs ((x - d)#bs) p" (is "\<forall>x. ?b \<longrightarrow> ?P x \<longrightarrow> ?P (x - d)")
|
chaieb@23274
|
1754 |
proof(clarify)
|
wenzelm@50313
|
1755 |
fix x
|
wenzelm@50313
|
1756 |
assume nb:"?b" and px: "?P x"
|
wenzelm@50313
|
1757 |
hence nb2: "\<not>(\<exists>(j::int) \<in> {1 .. d}. \<exists>b\<in> (Inum (a#bs)) ` set(\<beta> p). x = b + j)"
|
chaieb@23274
|
1758 |
by auto
|
chaieb@23274
|
1759 |
from \<beta>[OF lp u d dp nb2 px] show "?P (x -d )" .
|
chaieb@17378
|
1760 |
qed
|
chaieb@23315
|
1761 |
lemma cpmi_eq: "0 < D \<Longrightarrow> (EX z::int. ALL x. x < z --> (P x = P1 x))
|
wenzelm@50313
|
1762 |
==> ALL x.~(EX (j::int) : {1..D}. EX (b::int) : B. P(b+j)) --> P (x) --> P (x - D)
|
chaieb@23315
|
1763 |
==> (ALL (x::int). ALL (k::int). ((P1 x)= (P1 (x-k*D))))
|
chaieb@23315
|
1764 |
==> (EX (x::int). P(x)) = ((EX (j::int) : {1..D} . (P1(j))) | (EX (j::int) : {1..D}. EX (b::int) : B. P (b+j)))"
|
chaieb@23315
|
1765 |
apply(rule iffI)
|
chaieb@23315
|
1766 |
prefer 2
|
chaieb@23315
|
1767 |
apply(drule minusinfinity)
|
chaieb@23315
|
1768 |
apply assumption+
|
nipkow@44890
|
1769 |
apply(fastforce)
|
chaieb@23315
|
1770 |
apply clarsimp
|
chaieb@23315
|
1771 |
apply(subgoal_tac "!!k. 0<=k \<Longrightarrow> !x. P x \<longrightarrow> P (x - k*D)")
|
chaieb@23315
|
1772 |
apply(frule_tac x = x and z=z in decr_lemma)
|
chaieb@23315
|
1773 |
apply(subgoal_tac "P1(x - (\<bar>x - z\<bar> + 1) * D)")
|
chaieb@23315
|
1774 |
prefer 2
|
chaieb@23315
|
1775 |
apply(subgoal_tac "0 <= (\<bar>x - z\<bar> + 1)")
|
chaieb@23315
|
1776 |
prefer 2 apply arith
|
nipkow@44890
|
1777 |
apply fastforce
|
chaieb@23315
|
1778 |
apply(drule (1) periodic_finite_ex)
|
chaieb@23315
|
1779 |
apply blast
|
chaieb@23315
|
1780 |
apply(blast dest:decr_mult_lemma)
|
chaieb@23315
|
1781 |
done
|
chaieb@17378
|
1782 |
|
chaieb@23274
|
1783 |
theorem cp_thm:
|
chaieb@23274
|
1784 |
assumes lp: "iszlfm p"
|
wenzelm@50252
|
1785 |
and u: "d_\<beta> p 1"
|
wenzelm@50252
|
1786 |
and d: "d_\<delta> p d"
|
chaieb@23274
|
1787 |
and dp: "d > 0"
|
wenzelm@50313
|
1788 |
shows "(\<exists>(x::int). Ifm bbs (x #bs) p) = (\<exists>j\<in> {1.. d}. Ifm bbs (j #bs) (minusinf p) \<or> (\<exists>b \<in> set (\<beta> p). Ifm bbs ((Inum (i#bs) b + j) #bs) p))"
|
wenzelm@50313
|
1789 |
(is "(\<exists>(x::int). ?P (x)) = (\<exists>j\<in> ?D. ?M j \<or> (\<exists>b\<in> ?B. ?P (?I b + j)))")
|
chaieb@17378
|
1790 |
proof-
|
wenzelm@50313
|
1791 |
from minusinf_inf[OF lp u]
|
chaieb@23274
|
1792 |
have th: "\<exists>(z::int). \<forall>x<z. ?P (x) = ?M x" by blast
|
chaieb@23274
|
1793 |
let ?B' = "{?I b | b. b\<in> ?B}"
|
wenzelm@50313
|
1794 |
have BB': "(\<exists>j\<in>?D. \<exists>b\<in> ?B. ?P (?I b +j)) = (\<exists>j \<in> ?D. \<exists>b \<in> ?B'. ?P (b + j))" by auto
|
wenzelm@50313
|
1795 |
hence th2: "\<forall>x. \<not> (\<exists>j \<in> ?D. \<exists>b \<in> ?B'. ?P ((b + j))) \<longrightarrow> ?P (x) \<longrightarrow> ?P ((x - d))"
|
chaieb@23274
|
1796 |
using \<beta>'[OF lp u d dp, where a="i" and bbs = "bbs"] by blast
|
chaieb@23274
|
1797 |
from minusinf_repeats[OF d lp]
|
wenzelm@50313
|
1798 |
have th3: "\<forall>x k. ?M x = ?M (x-k*d)" by simp
|
chaieb@23274
|
1799 |
from cpmi_eq[OF dp th th2 th3] BB' show ?thesis by blast
|
chaieb@17378
|
1800 |
qed
|
chaieb@17378
|
1801 |
|
chaieb@23274
|
1802 |
(* Implement the right hand sides of Cooper's theorem and Ferrante and Rackoff. *)
|
wenzelm@50313
|
1803 |
lemma mirror_ex:
|
chaieb@23274
|
1804 |
assumes lp: "iszlfm p"
|
wenzelm@50313
|
1805 |
shows "(\<exists>x. Ifm bbs (x#bs) (mirror p)) = (\<exists>x. Ifm bbs (x#bs) p)"
|
wenzelm@50313
|
1806 |
(is "(\<exists>x. ?I x ?mp) = (\<exists>x. ?I x p)")
|
chaieb@23274
|
1807 |
proof(auto)
|
chaieb@23274
|
1808 |
fix x assume "?I x ?mp" hence "?I (- x) p" using mirror[OF lp] by blast
|
wenzelm@50313
|
1809 |
thus "\<exists>x. ?I x p" by blast
|
chaieb@23274
|
1810 |
next
|
wenzelm@50313
|
1811 |
fix x assume "?I x p" hence "?I (- x) ?mp"
|
chaieb@23274
|
1812 |
using mirror[OF lp, where x="- x", symmetric] by auto
|
wenzelm@50313
|
1813 |
thus "\<exists>x. ?I x ?mp" by blast
|
chaieb@23274
|
1814 |
qed
|
nipkow@24349
|
1815 |
|
nipkow@24349
|
1816 |
|
wenzelm@50313
|
1817 |
lemma cp_thm':
|
chaieb@23274
|
1818 |
assumes lp: "iszlfm p"
|
wenzelm@50252
|
1819 |
and up: "d_\<beta> p 1" and dd: "d_\<delta> p d" and dp: "d > 0"
|
wenzelm@50313
|
1820 |
shows "(\<exists>x. Ifm bbs (x#bs) p) = ((\<exists>j\<in> {1 .. d}. Ifm bbs (j#bs) (minusinf p)) \<or> (\<exists>j\<in> {1.. d}. \<exists>b\<in> (Inum (i#bs)) ` set (\<beta> p). Ifm bbs ((b+j)#bs) p))"
|
chaieb@23274
|
1821 |
using cp_thm[OF lp up dd dp,where i="i"] by auto
|
chaieb@17378
|
1822 |
|
wenzelm@50313
|
1823 |
definition unit :: "fm \<Rightarrow> fm \<times> num list \<times> int"
|
wenzelm@50313
|
1824 |
where
|
wenzelm@50313
|
1825 |
"unit p = (let p' = zlfm p ; l = \<zeta> p' ; q = And (Dvd l (CN 0 1 (C 0))) (a_\<beta> p' l); d = \<delta> q;
|
chaieb@23274
|
1826 |
B = remdups (map simpnum (\<beta> q)) ; a = remdups (map simpnum (\<alpha> q))
|
chaieb@23274
|
1827 |
in if length B \<le> length a then (q,B,d) else (mirror q, a,d))"
|
chaieb@17378
|
1828 |
|
wenzelm@50313
|
1829 |
lemma unit:
|
wenzelm@50313
|
1830 |
assumes qf: "qfree p"
|
wenzelm@50313
|
1831 |
shows "\<And>q B d. unit p = (q,B,d) \<Longrightarrow> ((\<exists>x. Ifm bbs (x#bs) p) = (\<exists>x. Ifm bbs (x#bs) q)) \<and> (Inum (i#bs)) ` set B = (Inum (i#bs)) ` set (\<beta> q) \<and> d_\<beta> q 1 \<and> d_\<delta> q d \<and> d >0 \<and> iszlfm q \<and> (\<forall>b\<in> set B. numbound0 b)"
|
wenzelm@50313
|
1832 |
proof -
|
wenzelm@50313
|
1833 |
fix q B d
|
chaieb@23274
|
1834 |
assume qBd: "unit p = (q,B,d)"
|
wenzelm@50313
|
1835 |
let ?thes = "((\<exists>x. Ifm bbs (x#bs) p) = (\<exists>x. Ifm bbs (x#bs) q)) \<and>
|
chaieb@23274
|
1836 |
Inum (i#bs) ` set B = Inum (i#bs) ` set (\<beta> q) \<and>
|
wenzelm@50313
|
1837 |
d_\<beta> q 1 \<and> d_\<delta> q d \<and> 0 < d \<and> iszlfm q \<and> (\<forall>b\<in> set B. numbound0 b)"
|
wenzelm@50313
|
1838 |
let ?I = "\<lambda>x p. Ifm bbs (x#bs) p"
|
chaieb@23274
|
1839 |
let ?p' = "zlfm p"
|
chaieb@23274
|
1840 |
let ?l = "\<zeta> ?p'"
|
wenzelm@50252
|
1841 |
let ?q = "And (Dvd ?l (CN 0 1 (C 0))) (a_\<beta> ?p' ?l)"
|
chaieb@23274
|
1842 |
let ?d = "\<delta> ?q"
|
chaieb@23274
|
1843 |
let ?B = "set (\<beta> ?q)"
|
chaieb@23274
|
1844 |
let ?B'= "remdups (map simpnum (\<beta> ?q))"
|
chaieb@23274
|
1845 |
let ?A = "set (\<alpha> ?q)"
|
chaieb@23274
|
1846 |
let ?A'= "remdups (map simpnum (\<alpha> ?q))"
|
wenzelm@50313
|
1847 |
from conjunct1[OF zlfm_I[OF qf, where bs="bs"]]
|
wenzelm@50313
|
1848 |
have pp': "\<forall>i. ?I i ?p' = ?I i p" by auto
|
chaieb@23274
|
1849 |
from conjunct2[OF zlfm_I[OF qf, where bs="bs" and i="i"]]
|
wenzelm@50313
|
1850 |
have lp': "iszlfm ?p'" .
|
wenzelm@50252
|
1851 |
from lp' \<zeta>[where p="?p'"] have lp: "?l >0" and dl: "d_\<beta> ?p' ?l" by auto
|
wenzelm@50252
|
1852 |
from a_\<beta>_ex[where p="?p'" and l="?l" and bs="bs", OF lp' dl lp] pp'
|
wenzelm@50313
|
1853 |
have pq_ex:"(\<exists>(x::int). ?I x p) = (\<exists>x. ?I x ?q)" by simp
|
wenzelm@50252
|
1854 |
from lp' lp a_\<beta>[OF lp' dl lp] have lq:"iszlfm ?q" and uq: "d_\<beta> ?q 1" by auto
|
wenzelm@50252
|
1855 |
from \<delta>[OF lq] have dp:"?d >0" and dd: "d_\<delta> ?q ?d" by blast+
|
wenzelm@50313
|
1856 |
let ?N = "\<lambda>t. Inum (i#bs) t"
|
wenzelm@50313
|
1857 |
have "?N ` set ?B' = ((?N o simpnum) ` ?B)" by auto
|
chaieb@23274
|
1858 |
also have "\<dots> = ?N ` ?B" using simpnum_ci[where bs="i#bs"] by auto
|
chaieb@23274
|
1859 |
finally have BB': "?N ` set ?B' = ?N ` ?B" .
|
wenzelm@50313
|
1860 |
have "?N ` set ?A' = ((?N o simpnum) ` ?A)" by auto
|
chaieb@23274
|
1861 |
also have "\<dots> = ?N ` ?A" using simpnum_ci[where bs="i#bs"] by auto
|
chaieb@23274
|
1862 |
finally have AA': "?N ` set ?A' = ?N ` ?A" .
|
wenzelm@50313
|
1863 |
from \<beta>_numbound0[OF lq] have B_nb:"\<forall>b\<in> set ?B'. numbound0 b"
|
chaieb@23274
|
1864 |
by (simp add: simpnum_numbound0)
|
wenzelm@50313
|
1865 |
from \<alpha>_l[OF lq] have A_nb: "\<forall>b\<in> set ?A'. numbound0 b"
|
chaieb@23274
|
1866 |
by (simp add: simpnum_numbound0)
|
chaieb@23274
|
1867 |
{assume "length ?B' \<le> length ?A'"
|
chaieb@23274
|
1868 |
hence q:"q=?q" and "B = ?B'" and d:"d = ?d"
|
chaieb@23274
|
1869 |
using qBd by (auto simp add: Let_def unit_def)
|
wenzelm@50313
|
1870 |
with BB' B_nb have b: "?N ` (set B) = ?N ` set (\<beta> q)"
|
wenzelm@50313
|
1871 |
and bn: "\<forall>b\<in> set B. numbound0 b" by simp_all
|
chaieb@23274
|
1872 |
with pq_ex dp uq dd lq q d have ?thes by simp}
|
wenzelm@50313
|
1873 |
moreover
|
chaieb@23274
|
1874 |
{assume "\<not> (length ?B' \<le> length ?A')"
|
chaieb@23274
|
1875 |
hence q:"q=mirror ?q" and "B = ?A'" and d:"d = ?d"
|
chaieb@23274
|
1876 |
using qBd by (auto simp add: Let_def unit_def)
|
wenzelm@50313
|
1877 |
with AA' mirror_\<alpha>_\<beta>[OF lq] A_nb have b:"?N ` (set B) = ?N ` set (\<beta> q)"
|
wenzelm@50313
|
1878 |
and bn: "\<forall>b\<in> set B. numbound0 b" by simp_all
|
wenzelm@50313
|
1879 |
from mirror_ex[OF lq] pq_ex q
|
wenzelm@50313
|
1880 |
have pqm_eq:"(\<exists>(x::int). ?I x p) = (\<exists>(x::int). ?I x q)" by simp
|
chaieb@23274
|
1881 |
from lq uq q mirror_l[where p="?q"]
|
wenzelm@50252
|
1882 |
have lq': "iszlfm q" and uq: "d_\<beta> q 1" by auto
|
wenzelm@50252
|
1883 |
from \<delta>[OF lq'] mirror_\<delta>[OF lq] q d have dq:"d_\<delta> q d " by auto
|
chaieb@23274
|
1884 |
from pqm_eq b bn uq lq' dp dq q dp d have ?thes by simp
|
chaieb@23274
|
1885 |
}
|
chaieb@23274
|
1886 |
ultimately show ?thes by blast
|
chaieb@23274
|
1887 |
qed
|
wenzelm@50313
|
1888 |
|
wenzelm@50313
|
1889 |
|
wenzelm@50313
|
1890 |
text {* Cooper's Algorithm *}
|
chaieb@17378
|
1891 |
|
haftmann@35416
|
1892 |
definition cooper :: "fm \<Rightarrow> fm" where
|
wenzelm@50313
|
1893 |
"cooper p =
|
wenzelm@50313
|
1894 |
(let
|
wenzelm@50313
|
1895 |
(q, B, d) = unit p;
|
wenzelm@50313
|
1896 |
js = [1..d];
|
wenzelm@50313
|
1897 |
mq = simpfm (minusinf q);
|
wenzelm@50313
|
1898 |
md = evaldjf (\<lambda>j. simpfm (subst0 (C j) mq)) js
|
wenzelm@50313
|
1899 |
in
|
wenzelm@50313
|
1900 |
if md = T then T
|
wenzelm@50313
|
1901 |
else
|
wenzelm@50313
|
1902 |
(let
|
wenzelm@50313
|
1903 |
qd = evaldjf (\<lambda>(b, j). simpfm (subst0 (Add b (C j)) q)) [(b, j). b \<leftarrow> B, j \<leftarrow> js]
|
wenzelm@50313
|
1904 |
in decr (disj md qd)))"
|
wenzelm@50313
|
1905 |
|
wenzelm@50313
|
1906 |
lemma cooper:
|
wenzelm@50313
|
1907 |
assumes qf: "qfree p"
|
wenzelm@50313
|
1908 |
shows "((\<exists>x. Ifm bbs (x#bs) p) = (Ifm bbs bs (cooper p))) \<and> qfree (cooper p)"
|
chaieb@23274
|
1909 |
(is "(?lhs = ?rhs) \<and> _")
|
wenzelm@50313
|
1910 |
proof -
|
wenzelm@50313
|
1911 |
let ?I = "\<lambda>x p. Ifm bbs (x#bs) p"
|
chaieb@23274
|
1912 |
let ?q = "fst (unit p)"
|
chaieb@23274
|
1913 |
let ?B = "fst (snd(unit p))"
|
chaieb@23274
|
1914 |
let ?d = "snd (snd (unit p))"
|
krauss@41836
|
1915 |
let ?js = "[1..?d]"
|
chaieb@23274
|
1916 |
let ?mq = "minusinf ?q"
|
chaieb@23274
|
1917 |
let ?smq = "simpfm ?mq"
|
wenzelm@50313
|
1918 |
let ?md = "evaldjf (\<lambda>j. simpfm (subst0 (C j) ?smq)) ?js"
|
wenzelm@26934
|
1919 |
fix i
|
wenzelm@50313
|
1920 |
let ?N = "\<lambda>t. Inum (i#bs) t"
|
nipkow@24336
|
1921 |
let ?Bjs = "[(b,j). b\<leftarrow>?B,j\<leftarrow>?js]"
|
wenzelm@50313
|
1922 |
let ?qd = "evaldjf (\<lambda>(b,j). simpfm (subst0 (Add b (C j)) ?q)) ?Bjs"
|
chaieb@23274
|
1923 |
have qbf:"unit p = (?q,?B,?d)" by simp
|
wenzelm@50313
|
1924 |
from unit[OF qf qbf] have pq_ex: "(\<exists>(x::int). ?I x p) = (\<exists>(x::int). ?I x ?q)" and
|
wenzelm@50313
|
1925 |
B:"?N ` set ?B = ?N ` set (\<beta> ?q)" and
|
wenzelm@50313
|
1926 |
uq:"d_\<beta> ?q 1" and dd: "d_\<delta> ?q ?d" and dp: "?d > 0" and
|
wenzelm@50313
|
1927 |
lq: "iszlfm ?q" and
|
wenzelm@50313
|
1928 |
Bn: "\<forall>b\<in> set ?B. numbound0 b" by auto
|
chaieb@23274
|
1929 |
from zlin_qfree[OF lq] have qfq: "qfree ?q" .
|
chaieb@23274
|
1930 |
from simpfm_qf[OF minusinf_qfree[OF qfq]] have qfmq: "qfree ?smq".
|
wenzelm@50313
|
1931 |
have jsnb: "\<forall>j \<in> set ?js. numbound0 (C j)" by simp
|
wenzelm@50313
|
1932 |
hence "\<forall>j\<in> set ?js. bound0 (subst0 (C j) ?smq)"
|
chaieb@23274
|
1933 |
by (auto simp only: subst0_bound0[OF qfmq])
|
wenzelm@50313
|
1934 |
hence th: "\<forall>j\<in> set ?js. bound0 (simpfm (subst0 (C j) ?smq))"
|
chaieb@23274
|
1935 |
by (auto simp add: simpfm_bound0)
|
wenzelm@50313
|
1936 |
from evaldjf_bound0[OF th] have mdb: "bound0 ?md" by simp
|
wenzelm@50313
|
1937 |
from Bn jsnb have "\<forall>(b,j) \<in> set ?Bjs. numbound0 (Add b (C j))"
|
haftmann@23689
|
1938 |
by simp
|
wenzelm@50313
|
1939 |
hence "\<forall>(b,j) \<in> set ?Bjs. bound0 (subst0 (Add b (C j)) ?q)"
|
chaieb@23274
|
1940 |
using subst0_bound0[OF qfq] by blast
|
wenzelm@50313
|
1941 |
hence "\<forall>(b,j) \<in> set ?Bjs. bound0 (simpfm (subst0 (Add b (C j)) ?q))"
|
chaieb@23274
|
1942 |
using simpfm_bound0 by blast
|
wenzelm@50313
|
1943 |
hence th': "\<forall>x \<in> set ?Bjs. bound0 ((\<lambda>(b,j). simpfm (subst0 (Add b (C j)) ?q)) x)"
|
wenzelm@50313
|
1944 |
by auto
|
chaieb@23274
|
1945 |
from evaldjf_bound0 [OF th'] have qdb: "bound0 ?qd" by simp
|
wenzelm@50313
|
1946 |
from mdb qdb
|
wenzelm@50313
|
1947 |
have mdqdb: "bound0 (disj ?md ?qd)" unfolding disj_def by (cases "?md=T \<or> ?qd=T") simp_all
|
chaieb@23274
|
1948 |
from trans [OF pq_ex cp_thm'[OF lq uq dd dp,where i="i"]] B
|
wenzelm@50313
|
1949 |
have "?lhs = (\<exists>j\<in> {1.. ?d}. ?I j ?mq \<or> (\<exists>b\<in> ?N ` set ?B. Ifm bbs ((b+ j)#bs) ?q))" by auto
|
wenzelm@50313
|
1950 |
also have "\<dots> = (\<exists>j\<in> {1.. ?d}. ?I j ?mq \<or> (\<exists>b\<in> set ?B. Ifm bbs ((?N b+ j)#bs) ?q))" by simp
|
wenzelm@50313
|
1951 |
also have "\<dots> = ((\<exists>j\<in> {1.. ?d}. ?I j ?mq ) \<or>
|
wenzelm@50313
|
1952 |
(\<exists>j\<in> {1.. ?d}. \<exists>b\<in> set ?B. Ifm bbs ((?N (Add b (C j)))#bs) ?q))"
|
wenzelm@50313
|
1953 |
by (simp only: Inum.simps) blast
|
wenzelm@50313
|
1954 |
also have "\<dots> = ((\<exists>j\<in> {1.. ?d}. ?I j ?smq ) \<or>
|
wenzelm@50313
|
1955 |
(\<exists>j\<in> {1.. ?d}. \<exists>b\<in> set ?B. Ifm bbs ((?N (Add b (C j)))#bs) ?q))"
|
wenzelm@50313
|
1956 |
by (simp add: simpfm)
|
wenzelm@50313
|
1957 |
also have "\<dots> = ((\<exists>j\<in> set ?js. (\<lambda>j. ?I i (simpfm (subst0 (C j) ?smq))) j) \<or>
|
wenzelm@50313
|
1958 |
(\<exists>j\<in> set ?js. \<exists>b\<in> set ?B. Ifm bbs ((?N (Add b (C j)))#bs) ?q))"
|
krauss@41836
|
1959 |
by (simp only: simpfm subst0_I[OF qfmq] set_upto) auto
|
wenzelm@50313
|
1960 |
also have "\<dots> = (?I i (evaldjf (\<lambda>j. simpfm (subst0 (C j) ?smq)) ?js) \<or>
|
wenzelm@50313
|
1961 |
(\<exists>j\<in> set ?js. \<exists>b\<in> set ?B. ?I i (subst0 (Add b (C j)) ?q)))"
|
wenzelm@50313
|
1962 |
by (simp only: evaldjf_ex subst0_I[OF qfq])
|
wenzelm@50313
|
1963 |
also have "\<dots>= (?I i ?md \<or> (\<exists>(b,j) \<in> set ?Bjs. (\<lambda>(b,j). ?I i (simpfm (subst0 (Add b (C j)) ?q))) (b,j)))"
|
wenzelm@50313
|
1964 |
by (simp only: simpfm set_concat set_map concat_map_singleton UN_simps) blast
|
wenzelm@50313
|
1965 |
also have "\<dots> = (?I i ?md \<or> (?I i (evaldjf (\<lambda>(b,j). simpfm (subst0 (Add b (C j)) ?q)) ?Bjs)))"
|
wenzelm@50313
|
1966 |
by (simp only: evaldjf_ex[where bs="i#bs" and f="\<lambda>(b,j). simpfm (subst0 (Add b (C j)) ?q)" and ps="?Bjs"])
|
wenzelm@50313
|
1967 |
(auto simp add: split_def)
|
wenzelm@50313
|
1968 |
finally have mdqd: "?lhs = (?I i ?md \<or> ?I i ?qd)" by simp
|
chaieb@23274
|
1969 |
also have "\<dots> = (?I i (disj ?md ?qd))" by (simp add: disj)
|
wenzelm@50313
|
1970 |
also have "\<dots> = (Ifm bbs bs (decr (disj ?md ?qd)))" by (simp only: decr [OF mdqdb])
|
wenzelm@50313
|
1971 |
finally have mdqd2: "?lhs = (Ifm bbs bs (decr (disj ?md ?qd)))" .
|
wenzelm@50313
|
1972 |
{ assume mdT: "?md = T"
|
wenzelm@50313
|
1973 |
hence cT:"cooper p = T"
|
chaieb@23274
|
1974 |
by (simp only: cooper_def unit_def split_def Let_def if_True) simp
|
wenzelm@50313
|
1975 |
from mdT have lhs:"?lhs" using mdqd by simp
|
chaieb@23274
|
1976 |
from mdT have "?rhs" by (simp add: cooper_def unit_def split_def)
|
chaieb@23274
|
1977 |
with lhs cT have ?thesis by simp }
|
chaieb@17378
|
1978 |
moreover
|
wenzelm@50313
|
1979 |
{ assume mdT: "?md \<noteq> T" hence "cooper p = decr (disj ?md ?qd)"
|
wenzelm@50313
|
1980 |
by (simp only: cooper_def unit_def split_def Let_def if_False)
|
chaieb@23274
|
1981 |
with mdqd2 decr_qf[OF mdqdb] have ?thesis by simp }
|
chaieb@17378
|
1982 |
ultimately show ?thesis by blast
|
chaieb@17378
|
1983 |
qed
|
chaieb@17378
|
1984 |
|
haftmann@27456
|
1985 |
definition pa :: "fm \<Rightarrow> fm" where
|
haftmann@27456
|
1986 |
"pa p = qelim (prep p) cooper"
|
chaieb@17378
|
1987 |
|
chaieb@23274
|
1988 |
theorem mirqe: "(Ifm bbs bs (pa p) = Ifm bbs bs p) \<and> qfree (pa p)"
|
chaieb@23274
|
1989 |
using qelim_ci cooper prep by (auto simp add: pa_def)
|
chaieb@17378
|
1990 |
|
wenzelm@50313
|
1991 |
definition cooper_test :: "unit \<Rightarrow> fm"
|
wenzelm@50313
|
1992 |
where
|
wenzelm@50313
|
1993 |
"cooper_test u =
|
wenzelm@50313
|
1994 |
pa (E (A (Imp (Ge (Sub (Bound 0) (Bound 1)))
|
wenzelm@50313
|
1995 |
(E (E (Eq (Sub (Add (Mul 3 (Bound 1)) (Mul 5 (Bound 0))) (Bound 2))))))))"
|
chaieb@17378
|
1996 |
|
wenzelm@51272
|
1997 |
ML_val {* @{code cooper_test} () *}
|
haftmann@27456
|
1998 |
|
haftmann@51143
|
1999 |
(*code_reflect Cooper_Procedure
|
haftmann@36526
|
2000 |
functions pa
|
haftmann@51143
|
2001 |
file "~~/src/HOL/Tools/Qelim/cooper_procedure.ML"*)
|
haftmann@27456
|
2002 |
|
wenzelm@28290
|
2003 |
oracle linzqe_oracle = {*
|
haftmann@27456
|
2004 |
let
|
haftmann@27456
|
2005 |
|
haftmann@27456
|
2006 |
fun num_of_term vs (t as Free (xn, xT)) = (case AList.lookup (op =) vs t
|
haftmann@27456
|
2007 |
of NONE => error "Variable not found in the list!"
|
haftmann@51143
|
2008 |
| SOME n => @{code Bound} (@{code nat_of_integer} n))
|
haftmann@51143
|
2009 |
| num_of_term vs @{term "0::int"} = @{code C} (@{code int_of_integer} 0)
|
haftmann@51143
|
2010 |
| num_of_term vs @{term "1::int"} = @{code C} (@{code int_of_integer} 1)
|
haftmann@51143
|
2011 |
| num_of_term vs (@{term "numeral :: _ \<Rightarrow> int"} $ t) =
|
haftmann@51143
|
2012 |
@{code C} (@{code int_of_integer} (HOLogic.dest_num t))
|
haftmann@51143
|
2013 |
| num_of_term vs (@{term "neg_numeral :: _ \<Rightarrow> int"} $ t) =
|
haftmann@51143
|
2014 |
@{code C} (@{code int_of_integer} (~(HOLogic.dest_num t)))
|
haftmann@51143
|
2015 |
| num_of_term vs (Bound i) = @{code Bound} (@{code nat_of_integer} i)
|
haftmann@27456
|
2016 |
| num_of_term vs (@{term "uminus :: int \<Rightarrow> int"} $ t') = @{code Neg} (num_of_term vs t')
|
haftmann@27456
|
2017 |
| num_of_term vs (@{term "op + :: int \<Rightarrow> int \<Rightarrow> int"} $ t1 $ t2) =
|
haftmann@27456
|
2018 |
@{code Add} (num_of_term vs t1, num_of_term vs t2)
|
haftmann@27456
|
2019 |
| num_of_term vs (@{term "op - :: int \<Rightarrow> int \<Rightarrow> int"} $ t1 $ t2) =
|
haftmann@27456
|
2020 |
@{code Sub} (num_of_term vs t1, num_of_term vs t2)
|
haftmann@27456
|
2021 |
| num_of_term vs (@{term "op * :: int \<Rightarrow> int \<Rightarrow> int"} $ t1 $ t2) =
|
haftmann@27456
|
2022 |
(case try HOLogic.dest_number t1
|
haftmann@51143
|
2023 |
of SOME (_, i) => @{code Mul} (@{code int_of_integer} i, num_of_term vs t2)
|
haftmann@27456
|
2024 |
| NONE => (case try HOLogic.dest_number t2
|
haftmann@51143
|
2025 |
of SOME (_, i) => @{code Mul} (@{code int_of_integer} i, num_of_term vs t1)
|
haftmann@27456
|
2026 |
| NONE => error "num_of_term: unsupported multiplication"))
|
wenzelm@28264
|
2027 |
| num_of_term vs t = error ("num_of_term: unknown term " ^ Syntax.string_of_term @{context} t);
|
haftmann@27456
|
2028 |
|
haftmann@27456
|
2029 |
fun fm_of_term ps vs @{term True} = @{code T}
|
haftmann@27456
|
2030 |
| fm_of_term ps vs @{term False} = @{code F}
|
haftmann@27456
|
2031 |
| fm_of_term ps vs (@{term "op < :: int \<Rightarrow> int \<Rightarrow> bool"} $ t1 $ t2) =
|
haftmann@27456
|
2032 |
@{code Lt} (@{code Sub} (num_of_term vs t1, num_of_term vs t2))
|
haftmann@27456
|
2033 |
| fm_of_term ps vs (@{term "op \<le> :: int \<Rightarrow> int \<Rightarrow> bool"} $ t1 $ t2) =
|
haftmann@27456
|
2034 |
@{code Le} (@{code Sub} (num_of_term vs t1, num_of_term vs t2))
|
haftmann@27456
|
2035 |
| fm_of_term ps vs (@{term "op = :: int \<Rightarrow> int \<Rightarrow> bool"} $ t1 $ t2) =
|
wenzelm@50313
|
2036 |
@{code Eq} (@{code Sub} (num_of_term vs t1, num_of_term vs t2))
|
haftmann@27456
|
2037 |
| fm_of_term ps vs (@{term "op dvd :: int \<Rightarrow> int \<Rightarrow> bool"} $ t1 $ t2) =
|
haftmann@27456
|
2038 |
(case try HOLogic.dest_number t1
|
haftmann@51143
|
2039 |
of SOME (_, i) => @{code Dvd} (@{code int_of_integer} i, num_of_term vs t2)
|
haftmann@27456
|
2040 |
| NONE => error "num_of_term: unsupported dvd")
|
haftmann@27456
|
2041 |
| fm_of_term ps vs (@{term "op = :: bool \<Rightarrow> bool \<Rightarrow> bool"} $ t1 $ t2) =
|
haftmann@27456
|
2042 |
@{code Iff} (fm_of_term ps vs t1, fm_of_term ps vs t2)
|
haftmann@38795
|
2043 |
| fm_of_term ps vs (@{term HOL.conj} $ t1 $ t2) =
|
haftmann@27456
|
2044 |
@{code And} (fm_of_term ps vs t1, fm_of_term ps vs t2)
|
haftmann@38795
|
2045 |
| fm_of_term ps vs (@{term HOL.disj} $ t1 $ t2) =
|
haftmann@27456
|
2046 |
@{code Or} (fm_of_term ps vs t1, fm_of_term ps vs t2)
|
haftmann@38786
|
2047 |
| fm_of_term ps vs (@{term HOL.implies} $ t1 $ t2) =
|
haftmann@27456
|
2048 |
@{code Imp} (fm_of_term ps vs t1, fm_of_term ps vs t2)
|
haftmann@27456
|
2049 |
| fm_of_term ps vs (@{term "Not"} $ t') =
|
haftmann@27456
|
2050 |
@{code NOT} (fm_of_term ps vs t')
|
haftmann@38558
|
2051 |
| fm_of_term ps vs (Const (@{const_name Ex}, _) $ Abs (xn, xT, p)) =
|
haftmann@27456
|
2052 |
let
|
wenzelm@42284
|
2053 |
val (xn', p') = Syntax_Trans.variant_abs (xn, xT, p); (* FIXME !? *)
|
haftmann@27456
|
2054 |
val vs' = (Free (xn', xT), 0) :: map (fn (v, n) => (v, n + 1)) vs;
|
haftmann@27456
|
2055 |
in @{code E} (fm_of_term ps vs' p) end
|
haftmann@38558
|
2056 |
| fm_of_term ps vs (Const (@{const_name All}, _) $ Abs (xn, xT, p)) =
|
haftmann@27456
|
2057 |
let
|
wenzelm@42284
|
2058 |
val (xn', p') = Syntax_Trans.variant_abs (xn, xT, p); (* FIXME !? *)
|
haftmann@27456
|
2059 |
val vs' = (Free (xn', xT), 0) :: map (fn (v, n) => (v, n + 1)) vs;
|
haftmann@27456
|
2060 |
in @{code A} (fm_of_term ps vs' p) end
|
wenzelm@28264
|
2061 |
| fm_of_term ps vs t = error ("fm_of_term : unknown term " ^ Syntax.string_of_term @{context} t);
|
haftmann@23515
|
2062 |
|
haftmann@51143
|
2063 |
fun term_of_num vs (@{code C} i) = HOLogic.mk_number HOLogic.intT (@{code integer_of_int} i)
|
haftmann@51143
|
2064 |
| term_of_num vs (@{code Bound} n) =
|
haftmann@51143
|
2065 |
let
|
haftmann@51143
|
2066 |
val q = @{code integer_of_nat} n
|
haftmann@51143
|
2067 |
in fst (the (find_first (fn (_, m) => q = m) vs)) end
|
haftmann@27456
|
2068 |
| term_of_num vs (@{code Neg} t') = @{term "uminus :: int \<Rightarrow> int"} $ term_of_num vs t'
|
haftmann@27456
|
2069 |
| term_of_num vs (@{code Add} (t1, t2)) = @{term "op + :: int \<Rightarrow> int \<Rightarrow> int"} $
|
haftmann@27456
|
2070 |
term_of_num vs t1 $ term_of_num vs t2
|
haftmann@27456
|
2071 |
| term_of_num vs (@{code Sub} (t1, t2)) = @{term "op - :: int \<Rightarrow> int \<Rightarrow> int"} $
|
haftmann@27456
|
2072 |
term_of_num vs t1 $ term_of_num vs t2
|
haftmann@27456
|
2073 |
| term_of_num vs (@{code Mul} (i, t2)) = @{term "op * :: int \<Rightarrow> int \<Rightarrow> int"} $
|
haftmann@27456
|
2074 |
term_of_num vs (@{code C} i) $ term_of_num vs t2
|
haftmann@29788
|
2075 |
| term_of_num vs (@{code CN} (n, i, t)) = term_of_num vs (@{code Add} (@{code Mul} (i, @{code Bound} n), t));
|
haftmann@27456
|
2076 |
|
wenzelm@50313
|
2077 |
fun term_of_fm ps vs @{code T} = @{term True}
|
wenzelm@45740
|
2078 |
| term_of_fm ps vs @{code F} = @{term False}
|
haftmann@27456
|
2079 |
| term_of_fm ps vs (@{code Lt} t) =
|
haftmann@27456
|
2080 |
@{term "op < :: int \<Rightarrow> int \<Rightarrow> bool"} $ term_of_num vs t $ @{term "0::int"}
|
haftmann@27456
|
2081 |
| term_of_fm ps vs (@{code Le} t) =
|
haftmann@27456
|
2082 |
@{term "op \<le> :: int \<Rightarrow> int \<Rightarrow> bool"} $ term_of_num vs t $ @{term "0::int"}
|
haftmann@27456
|
2083 |
| term_of_fm ps vs (@{code Gt} t) =
|
haftmann@27456
|
2084 |
@{term "op < :: int \<Rightarrow> int \<Rightarrow> bool"} $ @{term "0::int"} $ term_of_num vs t
|
haftmann@27456
|
2085 |
| term_of_fm ps vs (@{code Ge} t) =
|
haftmann@27456
|
2086 |
@{term "op \<le> :: int \<Rightarrow> int \<Rightarrow> bool"} $ @{term "0::int"} $ term_of_num vs t
|
haftmann@27456
|
2087 |
| term_of_fm ps vs (@{code Eq} t) =
|
haftmann@27456
|
2088 |
@{term "op = :: int \<Rightarrow> int \<Rightarrow> bool"} $ term_of_num vs t $ @{term "0::int"}
|
haftmann@27456
|
2089 |
| term_of_fm ps vs (@{code NEq} t) =
|
haftmann@27456
|
2090 |
term_of_fm ps vs (@{code NOT} (@{code Eq} t))
|
haftmann@27456
|
2091 |
| term_of_fm ps vs (@{code Dvd} (i, t)) =
|
haftmann@27456
|
2092 |
@{term "op dvd :: int \<Rightarrow> int \<Rightarrow> bool"} $ term_of_num vs (@{code C} i) $ term_of_num vs t
|
haftmann@27456
|
2093 |
| term_of_fm ps vs (@{code NDvd} (i, t)) =
|
haftmann@27456
|
2094 |
term_of_fm ps vs (@{code NOT} (@{code Dvd} (i, t)))
|
haftmann@27456
|
2095 |
| term_of_fm ps vs (@{code NOT} t') =
|
haftmann@27456
|
2096 |
HOLogic.Not $ term_of_fm ps vs t'
|
haftmann@27456
|
2097 |
| term_of_fm ps vs (@{code And} (t1, t2)) =
|
haftmann@27456
|
2098 |
HOLogic.conj $ term_of_fm ps vs t1 $ term_of_fm ps vs t2
|
haftmann@27456
|
2099 |
| term_of_fm ps vs (@{code Or} (t1, t2)) =
|
haftmann@27456
|
2100 |
HOLogic.disj $ term_of_fm ps vs t1 $ term_of_fm ps vs t2
|
haftmann@27456
|
2101 |
| term_of_fm ps vs (@{code Imp} (t1, t2)) =
|
haftmann@27456
|
2102 |
HOLogic.imp $ term_of_fm ps vs t1 $ term_of_fm ps vs t2
|
haftmann@27456
|
2103 |
| term_of_fm ps vs (@{code Iff} (t1, t2)) =
|
haftmann@27456
|
2104 |
@{term "op = :: bool \<Rightarrow> bool \<Rightarrow> bool"} $ term_of_fm ps vs t1 $ term_of_fm ps vs t2
|
haftmann@51143
|
2105 |
| term_of_fm ps vs (@{code Closed} n) =
|
haftmann@51143
|
2106 |
let
|
haftmann@51143
|
2107 |
val q = @{code integer_of_nat} n
|
haftmann@51143
|
2108 |
in (fst o the) (find_first (fn (_, m) => m = q) ps) end
|
haftmann@29788
|
2109 |
| term_of_fm ps vs (@{code NClosed} n) = term_of_fm ps vs (@{code NOT} (@{code Closed} n));
|
haftmann@27456
|
2110 |
|
haftmann@27456
|
2111 |
fun term_bools acc t =
|
haftmann@27456
|
2112 |
let
|
haftmann@38795
|
2113 |
val is_op = member (op =) [@{term HOL.conj}, @{term HOL.disj}, @{term HOL.implies}, @{term "op = :: bool => _"},
|
haftmann@27456
|
2114 |
@{term "op = :: int => _"}, @{term "op < :: int => _"},
|
haftmann@27456
|
2115 |
@{term "op <= :: int => _"}, @{term "Not"}, @{term "All :: (int => _) => _"},
|
haftmann@27456
|
2116 |
@{term "Ex :: (int => _) => _"}, @{term "True"}, @{term "False"}]
|
wenzelm@50313
|
2117 |
fun is_ty t = not (fastype_of t = HOLogic.boolT)
|
haftmann@27456
|
2118 |
in case t
|
wenzelm@50313
|
2119 |
of (l as f $ a) $ b => if is_ty t orelse is_op t then term_bools (term_bools acc l)b
|
haftmann@27456
|
2120 |
else insert (op aconv) t acc
|
wenzelm@50313
|
2121 |
| f $ a => if is_ty t orelse is_op t then term_bools (term_bools acc f) a
|
haftmann@27456
|
2122 |
else insert (op aconv) t acc
|
wenzelm@42284
|
2123 |
| Abs p => term_bools acc (snd (Syntax_Trans.variant_abs p)) (* FIXME !? *)
|
haftmann@27456
|
2124 |
| _ => if is_ty t orelse is_op t then acc else insert (op aconv) t acc
|
haftmann@27456
|
2125 |
end;
|
haftmann@27456
|
2126 |
|
wenzelm@28290
|
2127 |
in fn ct =>
|
wenzelm@28290
|
2128 |
let
|
wenzelm@28290
|
2129 |
val thy = Thm.theory_of_cterm ct;
|
wenzelm@28290
|
2130 |
val t = Thm.term_of ct;
|
wenzelm@44121
|
2131 |
val fs = Misc_Legacy.term_frees t;
|
haftmann@27456
|
2132 |
val bs = term_bools [] t;
|
haftmann@33063
|
2133 |
val vs = map_index swap fs;
|
haftmann@33063
|
2134 |
val ps = map_index swap bs;
|
haftmann@27456
|
2135 |
val t' = (term_of_fm ps vs o @{code pa} o fm_of_term ps vs) t;
|
wenzelm@28290
|
2136 |
in (Thm.cterm_of thy o HOLogic.mk_Trueprop o HOLogic.mk_eq) (t, t') end
|
haftmann@27456
|
2137 |
end;
|
haftmann@27456
|
2138 |
*}
|
haftmann@27456
|
2139 |
|
wenzelm@48891
|
2140 |
ML_file "cooper_tac.ML"
|
wenzelm@47432
|
2141 |
|
wenzelm@47432
|
2142 |
method_setup cooper = {*
|
wenzelm@47432
|
2143 |
Args.mode "no_quantify" >>
|
wenzelm@47432
|
2144 |
(fn q => fn ctxt => SIMPLE_METHOD' (Cooper_Tac.linz_tac ctxt (not q)))
|
wenzelm@47432
|
2145 |
*} "decision procedure for linear integer arithmetic"
|
wenzelm@47432
|
2146 |
|
chaieb@17378
|
2147 |
|
haftmann@27456
|
2148 |
text {* Tests *}
|
haftmann@27456
|
2149 |
|
wenzelm@50313
|
2150 |
lemma "\<exists>(j::int). \<forall>x\<ge>j. (\<exists>a b. x = 3*a+5*b)"
|
haftmann@27456
|
2151 |
by cooper
|
chaieb@17378
|
2152 |
|
haftmann@27456
|
2153 |
lemma "ALL (x::int) >=8. EX i j. 5*i + 3*j = x"
|
haftmann@27456
|
2154 |
by cooper
|
haftmann@27456
|
2155 |
|
chaieb@23274
|
2156 |
theorem "(\<forall>(y::int). 3 dvd y) ==> \<forall>(x::int). b < x --> a \<le> x"
|
chaieb@23274
|
2157 |
by cooper
|
chaieb@17378
|
2158 |
|
chaieb@23274
|
2159 |
theorem "!! (y::int) (z::int) (n::int). 3 dvd z ==> 2 dvd (y::int) ==>
|
chaieb@23274
|
2160 |
(\<exists>(x::int). 2*x = y) & (\<exists>(k::int). 3*k = z)"
|
chaieb@23274
|
2161 |
by cooper
|
chaieb@23274
|
2162 |
|
chaieb@23274
|
2163 |
theorem "!! (y::int) (z::int) n. Suc(n::nat) < 6 ==> 3 dvd z ==>
|
chaieb@23274
|
2164 |
2 dvd (y::int) ==> (\<exists>(x::int). 2*x = y) & (\<exists>(k::int). 3*k = z)"
|
chaieb@23274
|
2165 |
by cooper
|
chaieb@23274
|
2166 |
|
chaieb@23274
|
2167 |
theorem "\<forall>(x::nat). \<exists>(y::nat). (0::nat) \<le> 5 --> y = 5 + x "
|
chaieb@23274
|
2168 |
by cooper
|
chaieb@17378
|
2169 |
|
haftmann@27456
|
2170 |
lemma "ALL (x::int) >=8. EX i j. 5*i + 3*j = x"
|
wenzelm@50313
|
2171 |
by cooper
|
haftmann@27456
|
2172 |
|
haftmann@27456
|
2173 |
lemma "ALL (y::int) (z::int) (n::int). 3 dvd z --> 2 dvd (y::int) --> (EX (x::int). 2*x = y) & (EX (k::int). 3*k = z)"
|
haftmann@27456
|
2174 |
by cooper
|
haftmann@27456
|
2175 |
|
haftmann@27456
|
2176 |
lemma "ALL(x::int) y. x < y --> 2 * x + 1 < 2 * y"
|
haftmann@27456
|
2177 |
by cooper
|
haftmann@27456
|
2178 |
|
haftmann@27456
|
2179 |
lemma "ALL(x::int) y. 2 * x + 1 ~= 2 * y"
|
haftmann@27456
|
2180 |
by cooper
|
haftmann@27456
|
2181 |
|
haftmann@27456
|
2182 |
lemma "EX(x::int) y. 0 < x & 0 <= y & 3 * x - 5 * y = 1"
|
haftmann@27456
|
2183 |
by cooper
|
haftmann@27456
|
2184 |
|
haftmann@27456
|
2185 |
lemma "~ (EX(x::int) (y::int) (z::int). 4*x + (-6::int)*y = 1)"
|
haftmann@27456
|
2186 |
by cooper
|
haftmann@27456
|
2187 |
|
haftmann@27456
|
2188 |
lemma "ALL(x::int). (2 dvd x) --> (EX(y::int). x = 2*y)"
|
haftmann@27456
|
2189 |
by cooper
|
haftmann@27456
|
2190 |
|
haftmann@27456
|
2191 |
lemma "ALL(x::int). (2 dvd x) = (EX(y::int). x = 2*y)"
|
haftmann@27456
|
2192 |
by cooper
|
haftmann@27456
|
2193 |
|
haftmann@27456
|
2194 |
lemma "ALL(x::int). ((2 dvd x) = (ALL(y::int). x ~= 2*y + 1))"
|
haftmann@27456
|
2195 |
by cooper
|
haftmann@27456
|
2196 |
|
haftmann@27456
|
2197 |
lemma "~ (ALL(x::int). ((2 dvd x) = (ALL(y::int). x ~= 2*y+1) | (EX(q::int) (u::int) i. 3*i + 2*q - u < 17) --> 0 < x | ((~ 3 dvd x) &(x + 8 = 0))))"
|
haftmann@27456
|
2198 |
by cooper
|
haftmann@27456
|
2199 |
|
wenzelm@50313
|
2200 |
lemma "~ (ALL(i::int). 4 <= i --> (EX x y. 0 <= x & 0 <= y & 3 * x + 5 * y = i))"
|
chaieb@23274
|
2201 |
by cooper
|
haftmann@27456
|
2202 |
|
haftmann@27456
|
2203 |
lemma "EX j. ALL (x::int) >= j. EX i j. 5*i + 3*j = x"
|
haftmann@27456
|
2204 |
by cooper
|
chaieb@17378
|
2205 |
|
chaieb@23274
|
2206 |
theorem "(\<forall>(y::int). 3 dvd y) ==> \<forall>(x::int). b < x --> a \<le> x"
|
chaieb@23274
|
2207 |
by cooper
|
chaieb@17378
|
2208 |
|
chaieb@23274
|
2209 |
theorem "!! (y::int) (z::int) (n::int). 3 dvd z ==> 2 dvd (y::int) ==>
|
chaieb@23274
|
2210 |
(\<exists>(x::int). 2*x = y) & (\<exists>(k::int). 3*k = z)"
|
chaieb@23274
|
2211 |
by cooper
|
chaieb@17378
|
2212 |
|
chaieb@23274
|
2213 |
theorem "!! (y::int) (z::int) n. Suc(n::nat) < 6 ==> 3 dvd z ==>
|
chaieb@23274
|
2214 |
2 dvd (y::int) ==> (\<exists>(x::int). 2*x = y) & (\<exists>(k::int). 3*k = z)"
|
chaieb@23274
|
2215 |
by cooper
|
chaieb@17378
|
2216 |
|
chaieb@23274
|
2217 |
theorem "\<forall>(x::nat). \<exists>(y::nat). (0::nat) \<le> 5 --> y = 5 + x "
|
chaieb@23274
|
2218 |
by cooper
|
chaieb@17378
|
2219 |
|
chaieb@23274
|
2220 |
theorem "\<forall>(x::nat). \<exists>(y::nat). y = 5 + x | x div 6 + 1= 2"
|
chaieb@23274
|
2221 |
by cooper
|
chaieb@17378
|
2222 |
|
chaieb@23274
|
2223 |
theorem "\<exists>(x::int). 0 < x"
|
chaieb@23274
|
2224 |
by cooper
|
chaieb@17378
|
2225 |
|
chaieb@23274
|
2226 |
theorem "\<forall>(x::int) y. x < y --> 2 * x + 1 < 2 * y"
|
chaieb@23274
|
2227 |
by cooper
|
wenzelm@50313
|
2228 |
|
chaieb@23274
|
2229 |
theorem "\<forall>(x::int) y. 2 * x + 1 \<noteq> 2 * y"
|
chaieb@23274
|
2230 |
by cooper
|
wenzelm@50313
|
2231 |
|
chaieb@23274
|
2232 |
theorem "\<exists>(x::int) y. 0 < x & 0 \<le> y & 3 * x - 5 * y = 1"
|
chaieb@23274
|
2233 |
by cooper
|
chaieb@17378
|
2234 |
|
chaieb@23274
|
2235 |
theorem "~ (\<exists>(x::int) (y::int) (z::int). 4*x + (-6::int)*y = 1)"
|
chaieb@23274
|
2236 |
by cooper
|
chaieb@17378
|
2237 |
|
chaieb@23274
|
2238 |
theorem "~ (\<exists>(x::int). False)"
|
chaieb@23274
|
2239 |
by cooper
|
chaieb@17378
|
2240 |
|
chaieb@23274
|
2241 |
theorem "\<forall>(x::int). (2 dvd x) --> (\<exists>(y::int). x = 2*y)"
|
wenzelm@50313
|
2242 |
by cooper
|
chaieb@23274
|
2243 |
|
chaieb@23274
|
2244 |
theorem "\<forall>(x::int). (2 dvd x) --> (\<exists>(y::int). x = 2*y)"
|
wenzelm@50313
|
2245 |
by cooper
|
chaieb@17378
|
2246 |
|
chaieb@23274
|
2247 |
theorem "\<forall>(x::int). (2 dvd x) = (\<exists>(y::int). x = 2*y)"
|
wenzelm@50313
|
2248 |
by cooper
|
chaieb@17378
|
2249 |
|
chaieb@23274
|
2250 |
theorem "\<forall>(x::int). ((2 dvd x) = (\<forall>(y::int). x \<noteq> 2*y + 1))"
|
wenzelm@50313
|
2251 |
by cooper
|
chaieb@17378
|
2252 |
|
wenzelm@50313
|
2253 |
theorem "~ (\<forall>(x::int).
|
wenzelm@50313
|
2254 |
((2 dvd x) = (\<forall>(y::int). x \<noteq> 2*y+1) |
|
chaieb@23274
|
2255 |
(\<exists>(q::int) (u::int) i. 3*i + 2*q - u < 17)
|
chaieb@23274
|
2256 |
--> 0 < x | ((~ 3 dvd x) &(x + 8 = 0))))"
|
chaieb@23274
|
2257 |
by cooper
|
wenzelm@50313
|
2258 |
|
chaieb@23274
|
2259 |
theorem "~ (\<forall>(i::int). 4 \<le> i --> (\<exists>x y. 0 \<le> x & 0 \<le> y & 3 * x + 5 * y = i))"
|
chaieb@23274
|
2260 |
by cooper
|
chaieb@17378
|
2261 |
|
chaieb@23274
|
2262 |
theorem "\<forall>(i::int). 8 \<le> i --> (\<exists>x y. 0 \<le> x & 0 \<le> y & 3 * x + 5 * y = i)"
|
chaieb@23274
|
2263 |
by cooper
|
chaieb@17378
|
2264 |
|
chaieb@23274
|
2265 |
theorem "\<exists>(j::int). \<forall>i. j \<le> i --> (\<exists>x y. 0 \<le> x & 0 \<le> y & 3 * x + 5 * y = i)"
|
chaieb@23274
|
2266 |
by cooper
|
chaieb@17378
|
2267 |
|
chaieb@23274
|
2268 |
theorem "~ (\<forall>j (i::int). j \<le> i --> (\<exists>x y. 0 \<le> x & 0 \<le> y & 3 * x + 5 * y = i))"
|
chaieb@23274
|
2269 |
by cooper
|
chaieb@17378
|
2270 |
|
chaieb@23274
|
2271 |
theorem "(\<exists>m::nat. n = 2 * m) --> (n + 1) div 2 = n div 2"
|
chaieb@23274
|
2272 |
by cooper
|
wenzelm@17388
|
2273 |
|
chaieb@17378
|
2274 |
end
|