haftmann@37744
|
1 |
(* Title: HOL/Decision_Procs/commutative_ring_tac.ML
|
haftmann@37744
|
2 |
Author: Amine Chaieb
|
wenzelm@17516
|
3 |
|
wenzelm@17516
|
4 |
Tactic for solving equalities over commutative rings.
|
wenzelm@17516
|
5 |
*)
|
wenzelm@17516
|
6 |
|
haftmann@33356
|
7 |
signature COMMUTATIVE_RING_TAC =
|
wenzelm@17516
|
8 |
sig
|
haftmann@33356
|
9 |
val tac: Proof.context -> int -> tactic
|
wenzelm@17516
|
10 |
end
|
wenzelm@17516
|
11 |
|
haftmann@33356
|
12 |
structure Commutative_Ring_Tac: COMMUTATIVE_RING_TAC =
|
wenzelm@17516
|
13 |
struct
|
wenzelm@17516
|
14 |
|
wenzelm@17516
|
15 |
(* Zero and One of the commutative ring *)
|
haftmann@35267
|
16 |
fun cring_zero T = Const (@{const_name Groups.zero}, T);
|
haftmann@35267
|
17 |
fun cring_one T = Const (@{const_name Groups.one}, T);
|
wenzelm@17516
|
18 |
|
wenzelm@17516
|
19 |
(* reification functions *)
|
wenzelm@17516
|
20 |
(* add two polynom expressions *)
|
haftmann@33356
|
21 |
fun polT t = Type (@{type_name Commutative_Ring.pol}, [t]);
|
haftmann@33356
|
22 |
fun polexT t = Type (@{type_name Commutative_Ring.polex}, [t]);
|
wenzelm@17516
|
23 |
|
wenzelm@20623
|
24 |
(* pol *)
|
haftmann@33356
|
25 |
fun pol_Pc t = Const (@{const_name Commutative_Ring.pol.Pc}, t --> polT t);
|
haftmann@33356
|
26 |
fun pol_Pinj t = Const (@{const_name Commutative_Ring.pol.Pinj}, HOLogic.natT --> polT t --> polT t);
|
haftmann@33356
|
27 |
fun pol_PX t = Const (@{const_name Commutative_Ring.pol.PX}, polT t --> HOLogic.natT --> polT t --> polT t);
|
wenzelm@17516
|
28 |
|
wenzelm@17516
|
29 |
(* polex *)
|
haftmann@33356
|
30 |
fun polex_add t = Const (@{const_name Commutative_Ring.polex.Add}, polexT t --> polexT t --> polexT t);
|
haftmann@33356
|
31 |
fun polex_sub t = Const (@{const_name Commutative_Ring.polex.Sub}, polexT t --> polexT t --> polexT t);
|
haftmann@33356
|
32 |
fun polex_mul t = Const (@{const_name Commutative_Ring.polex.Mul}, polexT t --> polexT t --> polexT t);
|
haftmann@33356
|
33 |
fun polex_neg t = Const (@{const_name Commutative_Ring.polex.Neg}, polexT t --> polexT t);
|
haftmann@33356
|
34 |
fun polex_pol t = Const (@{const_name Commutative_Ring.polex.Pol}, polT t --> polexT t);
|
haftmann@33356
|
35 |
fun polex_pow t = Const (@{const_name Commutative_Ring.polex.Pow}, polexT t --> HOLogic.natT --> polexT t);
|
wenzelm@17516
|
36 |
|
wenzelm@17516
|
37 |
(* reification of polynoms : primitive cring expressions *)
|
haftmann@22950
|
38 |
fun reif_pol T vs (t as Free _) =
|
haftmann@22950
|
39 |
let
|
haftmann@22950
|
40 |
val one = @{term "1::nat"};
|
haftmann@31986
|
41 |
val i = find_index (fn t' => t' = t) vs
|
haftmann@22950
|
42 |
in if i = 0
|
haftmann@22950
|
43 |
then pol_PX T $ (pol_Pc T $ cring_one T)
|
haftmann@22950
|
44 |
$ one $ (pol_Pc T $ cring_zero T)
|
wenzelm@24630
|
45 |
else pol_Pinj T $ HOLogic.mk_nat i
|
haftmann@22950
|
46 |
$ (pol_PX T $ (pol_Pc T $ cring_one T)
|
haftmann@22950
|
47 |
$ one $ (pol_Pc T $ cring_zero T))
|
wenzelm@17516
|
48 |
end
|
haftmann@22950
|
49 |
| reif_pol T vs t = pol_Pc T $ t;
|
wenzelm@17516
|
50 |
|
wenzelm@17516
|
51 |
(* reification of polynom expressions *)
|
haftmann@35267
|
52 |
fun reif_polex T vs (Const (@{const_name Groups.plus}, _) $ a $ b) =
|
haftmann@22950
|
53 |
polex_add T $ reif_polex T vs a $ reif_polex T vs b
|
haftmann@35267
|
54 |
| reif_polex T vs (Const (@{const_name Groups.minus}, _) $ a $ b) =
|
haftmann@22950
|
55 |
polex_sub T $ reif_polex T vs a $ reif_polex T vs b
|
haftmann@35267
|
56 |
| reif_polex T vs (Const (@{const_name Groups.times}, _) $ a $ b) =
|
haftmann@22950
|
57 |
polex_mul T $ reif_polex T vs a $ reif_polex T vs b
|
haftmann@35267
|
58 |
| reif_polex T vs (Const (@{const_name Groups.uminus}, _) $ a) =
|
haftmann@22950
|
59 |
polex_neg T $ reif_polex T vs a
|
haftmann@24996
|
60 |
| reif_polex T vs (Const (@{const_name Power.power}, _) $ a $ n) =
|
haftmann@22950
|
61 |
polex_pow T $ reif_polex T vs a $ n
|
haftmann@22950
|
62 |
| reif_polex T vs t = polex_pol T $ reif_pol T vs t;
|
wenzelm@17516
|
63 |
|
wenzelm@17516
|
64 |
(* reification of the equation *)
|
haftmann@31021
|
65 |
val cr_sort = @{sort "comm_ring_1"};
|
haftmann@22950
|
66 |
|
haftmann@38864
|
67 |
fun reif_eq thy (eq as Const(@{const_name HOL.eq}, Type("fun", [T, _])) $ lhs $ rhs) =
|
haftmann@22950
|
68 |
if Sign.of_sort thy (T, cr_sort) then
|
haftmann@22950
|
69 |
let
|
wenzelm@44121
|
70 |
val fs = Misc_Legacy.term_frees eq;
|
haftmann@22950
|
71 |
val cvs = cterm_of thy (HOLogic.mk_list T fs);
|
haftmann@22950
|
72 |
val clhs = cterm_of thy (reif_polex T fs lhs);
|
haftmann@22950
|
73 |
val crhs = cterm_of thy (reif_polex T fs rhs);
|
haftmann@22950
|
74 |
val ca = ctyp_of thy T;
|
haftmann@22950
|
75 |
in (ca, cvs, clhs, crhs) end
|
haftmann@33356
|
76 |
else error ("reif_eq: not an equation over " ^ Syntax.string_of_sort_global thy cr_sort)
|
haftmann@33356
|
77 |
| reif_eq _ _ = error "reif_eq: not an equation";
|
wenzelm@17516
|
78 |
|
haftmann@22950
|
79 |
(* The cring tactic *)
|
wenzelm@17516
|
80 |
(* Attention: You have to make sure that no t^0 is in the goal!! *)
|
wenzelm@17516
|
81 |
(* Use simply rewriting t^0 = 1 *)
|
wenzelm@20623
|
82 |
val cring_simps =
|
haftmann@22950
|
83 |
[@{thm mkPX_def}, @{thm mkPinj_def}, @{thm sub_def}, @{thm power_add},
|
haftmann@22950
|
84 |
@{thm even_def}, @{thm pow_if}, sym OF [@{thm power_add}]];
|
wenzelm@17516
|
85 |
|
haftmann@33356
|
86 |
fun tac ctxt = SUBGOAL (fn (g, i) =>
|
wenzelm@20623
|
87 |
let
|
wenzelm@42361
|
88 |
val thy = Proof_Context.theory_of ctxt;
|
wenzelm@32149
|
89 |
val cring_ss = Simplifier.simpset_of ctxt (*FIXME really the full simpset!?*)
|
haftmann@22950
|
90 |
addsimps cring_simps;
|
wenzelm@20623
|
91 |
val (ca, cvs, clhs, crhs) = reif_eq thy (HOLogic.dest_Trueprop g)
|
wenzelm@20623
|
92 |
val norm_eq_th =
|
haftmann@22950
|
93 |
simplify cring_ss (instantiate' [SOME ca] [SOME clhs, SOME crhs, SOME cvs] @{thm norm_eq})
|
wenzelm@20623
|
94 |
in
|
wenzelm@46708
|
95 |
cut_tac norm_eq_th i
|
wenzelm@20623
|
96 |
THEN (simp_tac cring_ss i)
|
wenzelm@20623
|
97 |
THEN (simp_tac cring_ss i)
|
wenzelm@20623
|
98 |
end);
|
wenzelm@20623
|
99 |
|
wenzelm@17516
|
100 |
end;
|