src/HOL/Decision_Procs/cooper_tac.ML
author hoelzl
Fri Mar 22 10:41:43 2013 +0100 (2013-03-22)
changeset 51474 1e9e68247ad1
parent 47432 e1576d13e933
child 51717 9e7d1c139569
permissions -rw-r--r--
generalize Bfun and Bseq to metric spaces; Bseq is an abbreviation for Bfun
hoelzl@30439
     1
(*  Title:      HOL/Decision_Procs/cooper_tac.ML
haftmann@29788
     2
    Author:     Amine Chaieb, TU Muenchen
haftmann@29788
     3
*)
haftmann@29788
     4
wenzelm@31240
     5
signature COOPER_TAC =
wenzelm@31240
     6
sig
wenzelm@32740
     7
  val trace: bool Unsynchronized.ref
wenzelm@31240
     8
  val linz_tac: Proof.context -> bool -> int -> tactic
wenzelm@31240
     9
end
wenzelm@31240
    10
wenzelm@31240
    11
structure Cooper_Tac: COOPER_TAC =
chaieb@23274
    12
struct
chaieb@23274
    13
wenzelm@32740
    14
val trace = Unsynchronized.ref false;
chaieb@23274
    15
fun trace_msg s = if !trace then tracing s else ();
chaieb@23274
    16
chaieb@23274
    17
val cooper_ss = @{simpset};
chaieb@23274
    18
chaieb@23274
    19
val nT = HOLogic.natT;
huffman@47108
    20
val comp_arith = @{thms simp_thms}
chaieb@23274
    21
haftmann@27651
    22
val zdvd_int = @{thm zdvd_int};
haftmann@27651
    23
val zdiff_int_split = @{thm zdiff_int_split};
haftmann@27651
    24
val all_nat = @{thm all_nat};
haftmann@27651
    25
val ex_nat = @{thm ex_nat};
haftmann@27651
    26
val split_zdiv = @{thm split_zdiv};
haftmann@27651
    27
val split_zmod = @{thm split_zmod};
haftmann@27651
    28
val mod_div_equality' = @{thm mod_div_equality'};
haftmann@27651
    29
val split_div' = @{thm split_div'};
nipkow@31790
    30
val Suc_eq_plus1 = @{thm Suc_eq_plus1};
haftmann@27651
    31
val imp_le_cong = @{thm imp_le_cong};
haftmann@27651
    32
val conj_le_cong = @{thm conj_le_cong};
nipkow@30034
    33
val mod_add_left_eq = @{thm mod_add_left_eq} RS sym;
nipkow@30034
    34
val mod_add_right_eq = @{thm mod_add_right_eq} RS sym;
nipkow@30224
    35
val mod_add_eq = @{thm mod_add_eq} RS sym;
haftmann@27651
    36
val nat_div_add_eq = @{thm div_add1_eq} RS sym;
haftmann@27651
    37
val int_div_add_eq = @{thm zdiv_zadd1_eq} RS sym;
chaieb@23274
    38
wenzelm@31240
    39
fun prepare_for_linz q fm =
chaieb@23274
    40
  let
chaieb@23274
    41
    val ps = Logic.strip_params fm
chaieb@23274
    42
    val hs = map HOLogic.dest_Trueprop (Logic.strip_assums_hyp fm)
chaieb@23274
    43
    val c = HOLogic.dest_Trueprop (Logic.strip_assums_concl fm)
chaieb@23274
    44
    fun mk_all ((s, T), (P,n)) =
wenzelm@42083
    45
      if Term.is_dependent P then
chaieb@23274
    46
        (HOLogic.all_const T $ Abs (s, T, P), n)
chaieb@23274
    47
      else (incr_boundvars ~1 P, n-1)
chaieb@23274
    48
    fun mk_all2 (v, t) = HOLogic.all_const (fastype_of v) $ lambda v t;
haftmann@27651
    49
    val rhs = hs
chaieb@23274
    50
    val np = length ps
wenzelm@33004
    51
    val (fm',np) = List.foldr (fn ((x, T), (fm,n)) => mk_all ((x, T), (fm,n)))
wenzelm@33004
    52
      (List.foldr HOLogic.mk_imp c rhs, np) ps
chaieb@23274
    53
    val (vs, _) = List.partition (fn t => q orelse (type_of t) = nT)
wenzelm@44121
    54
      (Misc_Legacy.term_frees fm' @ Misc_Legacy.term_vars fm');
wenzelm@33004
    55
    val fm2 = List.foldr mk_all2 fm' vs
chaieb@23274
    56
  in (fm2, np + length vs, length rhs) end;
chaieb@23274
    57
chaieb@23274
    58
(*Object quantifier to meta --*)
chaieb@23274
    59
fun spec_step n th = if (n=0) then th else (spec_step (n-1) th) RS spec ;
chaieb@23274
    60
chaieb@23274
    61
(* object implication to meta---*)
chaieb@23274
    62
fun mp_step n th = if (n=0) then th else (mp_step (n-1) th) RS mp;
chaieb@23274
    63
chaieb@23274
    64
wenzelm@42368
    65
fun linz_tac ctxt q = Object_Logic.atomize_prems_tac THEN' SUBGOAL (fn (g, i) =>
chaieb@23274
    66
  let
wenzelm@42361
    67
    val thy = Proof_Context.theory_of ctxt
chaieb@23274
    68
    (* Transform the term*)
chaieb@23274
    69
    val (t,np,nh) = prepare_for_linz q g
chaieb@23274
    70
    (* Some simpsets for dealing with mod div abs and nat*)
wenzelm@31240
    71
    val mod_div_simpset = HOL_basic_ss
wenzelm@32960
    72
      addsimps [refl,mod_add_eq, mod_add_left_eq,
wenzelm@32960
    73
          mod_add_right_eq,
wenzelm@32960
    74
          nat_div_add_eq, int_div_add_eq,
huffman@47142
    75
          @{thm mod_self},
huffman@47142
    76
          @{thm div_by_0}, @{thm mod_by_0}, @{thm div_0}, @{thm mod_0},
huffman@47142
    77
          @{thm div_by_1}, @{thm mod_by_1}, @{thm div_1}, @{thm mod_1},
wenzelm@32960
    78
          Suc_eq_plus1]
wenzelm@32960
    79
      addsimps @{thms add_ac}
wenzelm@43594
    80
      addsimprocs [@{simproc cancel_div_mod_nat}, @{simproc cancel_div_mod_int}]
chaieb@23274
    81
    val simpset0 = HOL_basic_ss
nipkow@31790
    82
      addsimps [mod_div_equality', Suc_eq_plus1]
chaieb@23274
    83
      addsimps comp_arith
wenzelm@45620
    84
      |> fold Splitter.add_split
wenzelm@45620
    85
          [split_zdiv, split_zmod, split_div', @{thm "split_min"}, @{thm "split_max"}]
chaieb@23274
    86
    (* Simp rules for changing (n::int) to int n *)
chaieb@23274
    87
    val simpset1 = HOL_basic_ss
huffman@47108
    88
      addsimps [zdvd_int] @ map (fn r => r RS sym)
huffman@47108
    89
        [@{thm int_numeral}, @{thm int_int_eq}, @{thm zle_int}, @{thm zless_int}, @{thm zadd_int}, @{thm zmult_int}]
wenzelm@45620
    90
      |> Splitter.add_split zdiff_int_split
chaieb@23274
    91
    (*simp rules for elimination of int n*)
chaieb@23274
    92
chaieb@23274
    93
    val simpset2 = HOL_basic_ss
huffman@47108
    94
      addsimps [@{thm nat_0_le}, @{thm all_nat}, @{thm ex_nat}, @{thm zero_le_numeral}, @{thm order_refl}(* FIXME: necessary? *), @{thm int_0}, @{thm int_1}]
wenzelm@45620
    95
      |> fold Simplifier.add_cong [@{thm conj_le_cong}, @{thm imp_le_cong}]
chaieb@23274
    96
    (* simp rules for elimination of abs *)
wenzelm@45620
    97
    val simpset3 = HOL_basic_ss |> Splitter.add_split @{thm abs_split}
chaieb@23274
    98
    val ct = cterm_of thy (HOLogic.mk_Trueprop t)
chaieb@23274
    99
    (* Theorem for the nat --> int transformation *)
chaieb@23274
   100
    val pre_thm = Seq.hd (EVERY
chaieb@23274
   101
      [simp_tac mod_div_simpset 1, simp_tac simpset0 1,
chaieb@23274
   102
       TRY (simp_tac simpset1 1), TRY (simp_tac simpset2 1),
chaieb@23274
   103
       TRY (simp_tac simpset3 1), TRY (simp_tac cooper_ss 1)]
wenzelm@36945
   104
      (Thm.trivial ct))
chaieb@23274
   105
    fun assm_tac i = REPEAT_DETERM_N nh (assume_tac i)
chaieb@23274
   106
    (* The result of the quantifier elimination *)
chaieb@23274
   107
    val (th, tac) = case (prop_of pre_thm) of
haftmann@38558
   108
        Const ("==>", _) $ (Const (@{const_name Trueprop}, _) $ t1) $ _ =>
wenzelm@28290
   109
    let val pth = linzqe_oracle (cterm_of thy (Pattern.eta_long [] t1))
wenzelm@31240
   110
    in
chaieb@23274
   111
          ((pth RS iffD2) RS pre_thm,
chaieb@23274
   112
            assm_tac (i + 1) THEN (if q then I else TRY) (rtac TrueI i))
chaieb@23274
   113
    end
chaieb@23274
   114
      | _ => (pre_thm, assm_tac i)
wenzelm@42368
   115
  in rtac (((mp_step nh) o (spec_step np)) th) i THEN tac end);
chaieb@23274
   116
wenzelm@23590
   117
end