src/HOL/Nitpick_Examples/Manual_Nits.thy
author hoelzl
Fri Mar 22 10:41:43 2013 +0100 (2013-03-22)
changeset 51474 1e9e68247ad1
parent 49834 b27bbb021df1
child 51523 97b5e8a1291c
permissions -rw-r--r--
generalize Bfun and Bseq to metric spaces; Bseq is an abbreviation for Bfun
blanchet@33197
     1
(*  Title:      HOL/Nitpick_Examples/Manual_Nits.thy
blanchet@33197
     2
    Author:     Jasmin Blanchette, TU Muenchen
blanchet@45035
     3
    Copyright   2009-2011
blanchet@33197
     4
blanchet@33197
     5
Examples from the Nitpick manual.
blanchet@33197
     6
*)
blanchet@33197
     7
blanchet@33197
     8
header {* Examples from the Nitpick Manual *}
blanchet@33197
     9
blanchet@37477
    10
(* The "expect" arguments to Nitpick in this theory and the other example
blanchet@37477
    11
   theories are there so that the example can also serve as a regression test
blanchet@37477
    12
   suite. *)
blanchet@37477
    13
blanchet@33197
    14
theory Manual_Nits
wenzelm@41413
    15
imports Main "~~/src/HOL/Library/Quotient_Product" RealDef
blanchet@33197
    16
begin
blanchet@33197
    17
blanchet@45053
    18
chapter {* 2. First Steps *}
blanchet@33197
    19
blanchet@46104
    20
nitpick_params [sat_solver = MiniSat_JNI, max_threads = 1, timeout = 240]
blanchet@33197
    21
blanchet@45053
    22
subsection {* 2.1. Propositional Logic *}
blanchet@33197
    23
blanchet@33197
    24
lemma "P \<longleftrightarrow> Q"
blanchet@35671
    25
nitpick [expect = genuine]
blanchet@33197
    26
apply auto
blanchet@35671
    27
nitpick [expect = genuine] 1
blanchet@35671
    28
nitpick [expect = genuine] 2
blanchet@33197
    29
oops
blanchet@33197
    30
blanchet@45053
    31
subsection {* 2.2. Type Variables *}
blanchet@33197
    32
blanchet@46104
    33
lemma "x \<in> A \<Longrightarrow> (THE y. y \<in> A) \<in> A"
blanchet@35671
    34
nitpick [verbose, expect = genuine]
blanchet@33197
    35
oops
blanchet@33197
    36
blanchet@45053
    37
subsection {* 2.3. Constants *}
blanchet@33197
    38
blanchet@46104
    39
lemma "x \<in> A \<Longrightarrow> (THE y. y \<in> A) \<in> A"
blanchet@35671
    40
nitpick [show_consts, expect = genuine]
blanchet@39362
    41
nitpick [dont_specialize, show_consts, expect = genuine]
blanchet@33197
    42
oops
blanchet@33197
    43
blanchet@46104
    44
lemma "\<exists>!x. x \<in> A \<Longrightarrow> (THE y. y \<in> A) \<in> A"
blanchet@35671
    45
nitpick [expect = none]
blanchet@42959
    46
nitpick [card 'a = 1\<emdash>50, expect = none]
blanchet@33197
    47
(* sledgehammer *)
blanchet@46104
    48
by (metis the_equality)
blanchet@33197
    49
blanchet@45053
    50
subsection {* 2.4. Skolemization *}
blanchet@33197
    51
blanchet@33197
    52
lemma "\<exists>g. \<forall>x. g (f x) = x \<Longrightarrow> \<forall>y. \<exists>x. y = f x"
blanchet@35671
    53
nitpick [expect = genuine]
blanchet@33197
    54
oops
blanchet@33197
    55
blanchet@33197
    56
lemma "\<exists>x. \<forall>f. f x = x"
blanchet@35671
    57
nitpick [expect = genuine]
blanchet@33197
    58
oops
blanchet@33197
    59
blanchet@33197
    60
lemma "refl r \<Longrightarrow> sym r"
blanchet@35671
    61
nitpick [expect = genuine]
blanchet@33197
    62
oops
blanchet@33197
    63
blanchet@45053
    64
subsection {* 2.5. Natural Numbers and Integers *}
blanchet@33197
    65
blanchet@33197
    66
lemma "\<lbrakk>i \<le> j; n \<le> (m\<Colon>int)\<rbrakk> \<Longrightarrow> i * n + j * m \<le> i * m + j * n"
blanchet@35671
    67
nitpick [expect = genuine]
blanchet@46104
    68
nitpick [binary_ints, bits = 16, expect = genuine]
blanchet@33197
    69
oops
blanchet@33197
    70
blanchet@33197
    71
lemma "\<forall>n. Suc n \<noteq> n \<Longrightarrow> P"
blanchet@42421
    72
nitpick [card nat = 100, check_potential, tac_timeout = 5, expect = genuine]
blanchet@33197
    73
oops
blanchet@33197
    74
blanchet@33197
    75
lemma "P Suc"
blanchet@35671
    76
nitpick [expect = none]
blanchet@33197
    77
oops
blanchet@33197
    78
blanchet@33197
    79
lemma "P (op +\<Colon>nat\<Rightarrow>nat\<Rightarrow>nat)"
blanchet@35671
    80
nitpick [card nat = 1, expect = genuine]
blanchet@35671
    81
nitpick [card nat = 2, expect = none]
blanchet@33197
    82
oops
blanchet@33197
    83
blanchet@45053
    84
subsection {* 2.6. Inductive Datatypes *}
blanchet@33197
    85
blanchet@33197
    86
lemma "hd (xs @ [y, y]) = hd xs"
blanchet@35671
    87
nitpick [expect = genuine]
blanchet@35671
    88
nitpick [show_consts, show_datatypes, expect = genuine]
blanchet@33197
    89
oops
blanchet@33197
    90
blanchet@33197
    91
lemma "\<lbrakk>length xs = 1; length ys = 1\<rbrakk> \<Longrightarrow> xs = ys"
blanchet@35671
    92
nitpick [show_datatypes, expect = genuine]
blanchet@33197
    93
oops
blanchet@33197
    94
blanchet@45053
    95
subsection {* 2.7. Typedefs, Records, Rationals, and Reals *}
blanchet@33197
    96
wenzelm@49812
    97
definition "three = {0\<Colon>nat, 1, 2}"
wenzelm@49834
    98
typedef three = three
wenzelm@49812
    99
  unfolding three_def by blast
blanchet@33197
   100
blanchet@33197
   101
definition A :: three where "A \<equiv> Abs_three 0"
blanchet@33197
   102
definition B :: three where "B \<equiv> Abs_three 1"
blanchet@33197
   103
definition C :: three where "C \<equiv> Abs_three 2"
blanchet@33197
   104
blanchet@46104
   105
lemma "\<lbrakk>A \<in> X; B \<in> X\<rbrakk> \<Longrightarrow> c \<in> X"
blanchet@35671
   106
nitpick [show_datatypes, expect = genuine]
blanchet@33197
   107
oops
blanchet@33197
   108
blanchet@35284
   109
fun my_int_rel where
blanchet@35284
   110
"my_int_rel (x, y) (u, v) = (x + v = u + y)"
blanchet@35284
   111
blanchet@35284
   112
quotient_type my_int = "nat \<times> nat" / my_int_rel
nipkow@39302
   113
by (auto simp add: equivp_def fun_eq_iff)
blanchet@35284
   114
blanchet@35284
   115
definition add_raw where
blanchet@35284
   116
"add_raw \<equiv> \<lambda>(x, y) (u, v). (x + (u\<Colon>nat), y + (v\<Colon>nat))"
blanchet@35284
   117
blanchet@35284
   118
quotient_definition "add\<Colon>my_int \<Rightarrow> my_int \<Rightarrow> my_int" is add_raw
kuncar@47092
   119
unfolding add_raw_def by auto
blanchet@35284
   120
blanchet@35284
   121
lemma "add x y = add x x"
blanchet@35671
   122
nitpick [show_datatypes, expect = genuine]
blanchet@35284
   123
oops
blanchet@35284
   124
blanchet@35711
   125
ML {*
blanchet@35712
   126
fun my_int_postproc _ _ _ T (Const _ $ (Const _ $ t1 $ t2)) =
blanchet@35712
   127
    HOLogic.mk_number T (snd (HOLogic.dest_number t1)
blanchet@35712
   128
                         - snd (HOLogic.dest_number t2))
blanchet@35712
   129
  | my_int_postproc _ _ _ _ t = t
blanchet@35711
   130
*}
blanchet@35711
   131
blanchet@38288
   132
declaration {*
blanchet@38284
   133
Nitpick_Model.register_term_postprocessor @{typ my_int} my_int_postproc
blanchet@38242
   134
*}
blanchet@35711
   135
blanchet@35711
   136
lemma "add x y = add x x"
blanchet@35711
   137
nitpick [show_datatypes]
blanchet@35711
   138
oops
blanchet@35711
   139
blanchet@33197
   140
record point =
blanchet@33197
   141
  Xcoord :: int
blanchet@33197
   142
  Ycoord :: int
blanchet@33197
   143
blanchet@33197
   144
lemma "Xcoord (p\<Colon>point) = Xcoord (q\<Colon>point)"
blanchet@35671
   145
nitpick [show_datatypes, expect = genuine]
blanchet@33197
   146
oops
blanchet@33197
   147
blanchet@33197
   148
lemma "4 * x + 3 * (y\<Colon>real) \<noteq> 1 / 2"
blanchet@35671
   149
nitpick [show_datatypes, expect = genuine]
blanchet@33197
   150
oops
blanchet@33197
   151
blanchet@45053
   152
subsection {* 2.8. Inductive and Coinductive Predicates *}
blanchet@33197
   153
blanchet@33197
   154
inductive even where
blanchet@33197
   155
"even 0" |
blanchet@33197
   156
"even n \<Longrightarrow> even (Suc (Suc n))"
blanchet@33197
   157
blanchet@33197
   158
lemma "\<exists>n. even n \<and> even (Suc n)"
blanchet@35710
   159
nitpick [card nat = 50, unary_ints, verbose, expect = potential]
blanchet@33197
   160
oops
blanchet@33197
   161
blanchet@35710
   162
lemma "\<exists>n \<le> 49. even n \<and> even (Suc n)"
blanchet@38184
   163
nitpick [card nat = 50, unary_ints, expect = genuine]
blanchet@33197
   164
oops
blanchet@33197
   165
blanchet@33197
   166
inductive even' where
blanchet@33197
   167
"even' (0\<Colon>nat)" |
blanchet@33197
   168
"even' 2" |
blanchet@33197
   169
"\<lbrakk>even' m; even' n\<rbrakk> \<Longrightarrow> even' (m + n)"
blanchet@33197
   170
blanchet@33197
   171
lemma "\<exists>n \<in> {0, 2, 4, 6, 8}. \<not> even' n"
blanchet@35671
   172
nitpick [card nat = 10, unary_ints, verbose, show_consts, expect = genuine]
blanchet@33197
   173
oops
blanchet@33197
   174
blanchet@33197
   175
lemma "even' (n - 2) \<Longrightarrow> even' n"
blanchet@35671
   176
nitpick [card nat = 10, show_consts, expect = genuine]
blanchet@33197
   177
oops
blanchet@33197
   178
blanchet@33197
   179
coinductive nats where
blanchet@33197
   180
"nats (x\<Colon>nat) \<Longrightarrow> nats x"
blanchet@33197
   181
haftmann@45970
   182
lemma "nats = (\<lambda>n. n \<in> {0, 1, 2, 3, 4})"
blanchet@35671
   183
nitpick [card nat = 10, show_consts, expect = genuine]
blanchet@33197
   184
oops
blanchet@33197
   185
blanchet@33197
   186
inductive odd where
blanchet@33197
   187
"odd 1" |
blanchet@33197
   188
"\<lbrakk>odd m; even n\<rbrakk> \<Longrightarrow> odd (m + n)"
blanchet@33197
   189
blanchet@33197
   190
lemma "odd n \<Longrightarrow> odd (n - 2)"
blanchet@46105
   191
nitpick [card nat = 4, show_consts, expect = genuine]
blanchet@33197
   192
oops
blanchet@33197
   193
blanchet@45053
   194
subsection {* 2.9. Coinductive Datatypes *}
blanchet@33197
   195
blanchet@35665
   196
(* Lazy lists are defined in Andreas Lochbihler's "Coinductive" AFP entry. Since
blanchet@38184
   197
   we cannot rely on its presence, we expediently provide our own
blanchet@38184
   198
   axiomatization. The examples also work unchanged with Lochbihler's
blanchet@38184
   199
   "Coinductive_List" theory. *)
blanchet@35665
   200
blanchet@46106
   201
(* BEGIN LAZY LIST SETUP *)
wenzelm@45694
   202
definition "llist = (UNIV\<Colon>('a list + (nat \<Rightarrow> 'a)) set)"
wenzelm@45694
   203
wenzelm@49834
   204
typedef 'a llist = "llist\<Colon>('a list + (nat \<Rightarrow> 'a)) set"
wenzelm@45694
   205
unfolding llist_def by auto
blanchet@35665
   206
blanchet@35671
   207
definition LNil where
blanchet@35671
   208
"LNil = Abs_llist (Inl [])"
blanchet@35665
   209
definition LCons where
blanchet@35665
   210
"LCons y ys = Abs_llist (case Rep_llist ys of
blanchet@35665
   211
                           Inl ys' \<Rightarrow> Inl (y # ys')
blanchet@35665
   212
                         | Inr f \<Rightarrow> Inr (\<lambda>n. case n of 0 \<Rightarrow> y | Suc m \<Rightarrow> f m))"
blanchet@35665
   213
blanchet@35665
   214
axiomatization iterates :: "('a \<Rightarrow> 'a) \<Rightarrow> 'a \<Rightarrow> 'a llist"
blanchet@35665
   215
blanchet@35665
   216
lemma iterates_def [nitpick_simp]:
blanchet@35665
   217
"iterates f a = LCons a (iterates f (f a))"
blanchet@35665
   218
sorry
blanchet@35665
   219
blanchet@38288
   220
declaration {*
blanchet@38284
   221
Nitpick_HOL.register_codatatype @{typ "'a llist"} ""
blanchet@35665
   222
    (map dest_Const [@{term LNil}, @{term LCons}])
blanchet@35665
   223
*}
blanchet@46106
   224
(* END LAZY LIST SETUP *)
blanchet@35665
   225
blanchet@33197
   226
lemma "xs \<noteq> LCons a xs"
blanchet@35671
   227
nitpick [expect = genuine]
blanchet@33197
   228
oops
blanchet@33197
   229
blanchet@33197
   230
lemma "\<lbrakk>xs = LCons a xs; ys = iterates (\<lambda>b. a) b\<rbrakk> \<Longrightarrow> xs = ys"
blanchet@35671
   231
nitpick [verbose, expect = genuine]
blanchet@33197
   232
oops
blanchet@33197
   233
blanchet@33197
   234
lemma "\<lbrakk>xs = LCons a xs; ys = LCons a ys\<rbrakk> \<Longrightarrow> xs = ys"
blanchet@35671
   235
nitpick [bisim_depth = -1, show_datatypes, expect = quasi_genuine]
blanchet@42959
   236
nitpick [card = 1\<emdash>5, expect = none]
blanchet@33197
   237
sorry
blanchet@33197
   238
blanchet@45053
   239
subsection {* 2.10. Boxing *}
blanchet@33197
   240
blanchet@33197
   241
datatype tm = Var nat | Lam tm | App tm tm
blanchet@33197
   242
blanchet@33197
   243
primrec lift where
blanchet@33197
   244
"lift (Var j) k = Var (if j < k then j else j + 1)" |
blanchet@33197
   245
"lift (Lam t) k = Lam (lift t (k + 1))" |
blanchet@33197
   246
"lift (App t u) k = App (lift t k) (lift u k)"
blanchet@33197
   247
blanchet@33197
   248
primrec loose where
blanchet@33197
   249
"loose (Var j) k = (j \<ge> k)" |
blanchet@33197
   250
"loose (Lam t) k = loose t (Suc k)" |
blanchet@33197
   251
"loose (App t u) k = (loose t k \<or> loose u k)"
blanchet@33197
   252
blanchet@33197
   253
primrec subst\<^isub>1 where
blanchet@33197
   254
"subst\<^isub>1 \<sigma> (Var j) = \<sigma> j" |
blanchet@33197
   255
"subst\<^isub>1 \<sigma> (Lam t) =
blanchet@33197
   256
 Lam (subst\<^isub>1 (\<lambda>n. case n of 0 \<Rightarrow> Var 0 | Suc m \<Rightarrow> lift (\<sigma> m) 1) t)" |
blanchet@33197
   257
"subst\<^isub>1 \<sigma> (App t u) = App (subst\<^isub>1 \<sigma> t) (subst\<^isub>1 \<sigma> u)"
blanchet@33197
   258
blanchet@33197
   259
lemma "\<not> loose t 0 \<Longrightarrow> subst\<^isub>1 \<sigma> t = t"
blanchet@35671
   260
nitpick [verbose, expect = genuine]
blanchet@35671
   261
nitpick [eval = "subst\<^isub>1 \<sigma> t", expect = genuine]
blanchet@35671
   262
(* nitpick [dont_box, expect = unknown] *)
blanchet@33197
   263
oops
blanchet@33197
   264
blanchet@33197
   265
primrec subst\<^isub>2 where
blanchet@33197
   266
"subst\<^isub>2 \<sigma> (Var j) = \<sigma> j" |
blanchet@33197
   267
"subst\<^isub>2 \<sigma> (Lam t) =
blanchet@33197
   268
 Lam (subst\<^isub>2 (\<lambda>n. case n of 0 \<Rightarrow> Var 0 | Suc m \<Rightarrow> lift (\<sigma> m) 0) t)" |
blanchet@33197
   269
"subst\<^isub>2 \<sigma> (App t u) = App (subst\<^isub>2 \<sigma> t) (subst\<^isub>2 \<sigma> u)"
blanchet@33197
   270
blanchet@33197
   271
lemma "\<not> loose t 0 \<Longrightarrow> subst\<^isub>2 \<sigma> t = t"
blanchet@42959
   272
nitpick [card = 1\<emdash>5, expect = none]
blanchet@33197
   273
sorry
blanchet@33197
   274
blanchet@45053
   275
subsection {* 2.11. Scope Monotonicity *}
blanchet@33197
   276
blanchet@33197
   277
lemma "length xs = length ys \<Longrightarrow> rev (zip xs ys) = zip xs (rev ys)"
blanchet@35671
   278
nitpick [verbose, expect = genuine]
blanchet@33197
   279
oops
blanchet@33197
   280
blanchet@33197
   281
lemma "\<exists>g. \<forall>x\<Colon>'b. g (f x) = x \<Longrightarrow> \<forall>y\<Colon>'a. \<exists>x. y = f x"
blanchet@35671
   282
nitpick [mono, expect = none]
blanchet@35671
   283
nitpick [expect = genuine]
blanchet@33197
   284
oops
blanchet@33197
   285
blanchet@45053
   286
subsection {* 2.12. Inductive Properties *}
blanchet@34982
   287
blanchet@34982
   288
inductive_set reach where
blanchet@34982
   289
"(4\<Colon>nat) \<in> reach" |
blanchet@34982
   290
"n \<in> reach \<Longrightarrow> n < 4 \<Longrightarrow> 3 * n + 1 \<in> reach" |
blanchet@34982
   291
"n \<in> reach \<Longrightarrow> n + 2 \<in> reach"
blanchet@34982
   292
blanchet@34982
   293
lemma "n \<in> reach \<Longrightarrow> 2 dvd n"
blanchet@38184
   294
(* nitpick *)
blanchet@34982
   295
apply (induct set: reach)
blanchet@34982
   296
  apply auto
blanchet@42959
   297
 nitpick [card = 1\<emdash>4, bits = 1\<emdash>4, expect = none]
blanchet@34982
   298
 apply (thin_tac "n \<in> reach")
blanchet@35671
   299
 nitpick [expect = genuine]
blanchet@34982
   300
oops
blanchet@34982
   301
blanchet@34982
   302
lemma "n \<in> reach \<Longrightarrow> 2 dvd n \<and> n \<noteq> 0"
blanchet@38184
   303
(* nitpick *)
blanchet@34982
   304
apply (induct set: reach)
blanchet@34982
   305
  apply auto
blanchet@42959
   306
 nitpick [card = 1\<emdash>4, bits = 1\<emdash>4, expect = none]
blanchet@34982
   307
 apply (thin_tac "n \<in> reach")
blanchet@35671
   308
 nitpick [expect = genuine]
blanchet@34982
   309
oops
blanchet@34982
   310
blanchet@34982
   311
lemma "n \<in> reach \<Longrightarrow> 2 dvd n \<and> n \<ge> 4"
blanchet@34982
   312
by (induct set: reach) arith+
blanchet@34982
   313
blanchet@34982
   314
datatype 'a bin_tree = Leaf 'a | Branch "'a bin_tree" "'a bin_tree"
blanchet@34982
   315
blanchet@34982
   316
primrec labels where
blanchet@34982
   317
"labels (Leaf a) = {a}" |
blanchet@34982
   318
"labels (Branch t u) = labels t \<union> labels u"
blanchet@34982
   319
blanchet@34982
   320
primrec swap where
blanchet@34982
   321
"swap (Leaf c) a b =
blanchet@34982
   322
 (if c = a then Leaf b else if c = b then Leaf a else Leaf c)" |
blanchet@34982
   323
"swap (Branch t u) a b = Branch (swap t a b) (swap u a b)"
blanchet@34982
   324
blanchet@35180
   325
lemma "{a, b} \<subseteq> labels t \<Longrightarrow> labels (swap t a b) = labels t"
blanchet@35671
   326
(* nitpick *)
blanchet@34982
   327
proof (induct t)
blanchet@34982
   328
  case Leaf thus ?case by simp
blanchet@34982
   329
next
blanchet@34982
   330
  case (Branch t u) thus ?case
blanchet@35671
   331
  (* nitpick *)
blanchet@35671
   332
  nitpick [non_std, show_all, expect = genuine]
blanchet@34982
   333
oops
blanchet@34982
   334
blanchet@34982
   335
lemma "labels (swap t a b) =
blanchet@34982
   336
       (if a \<in> labels t then
blanchet@34982
   337
          if b \<in> labels t then labels t else (labels t - {a}) \<union> {b}
blanchet@34982
   338
        else
blanchet@34982
   339
          if b \<in> labels t then (labels t - {b}) \<union> {a} else labels t)"
blanchet@35309
   340
(* nitpick *)
blanchet@34982
   341
proof (induct t)
blanchet@34982
   342
  case Leaf thus ?case by simp
blanchet@34982
   343
next
blanchet@34982
   344
  case (Branch t u) thus ?case
blanchet@42959
   345
  nitpick [non_std, card = 1\<emdash>4, expect = none]
blanchet@34982
   346
  by auto
blanchet@34982
   347
qed
blanchet@34982
   348
blanchet@45053
   349
section {* 3. Case Studies *}
blanchet@33197
   350
blanchet@36268
   351
nitpick_params [max_potential = 0]
blanchet@33197
   352
blanchet@45053
   353
subsection {* 3.1. A Context-Free Grammar *}
blanchet@33197
   354
blanchet@33197
   355
datatype alphabet = a | b
blanchet@33197
   356
blanchet@33197
   357
inductive_set S\<^isub>1 and A\<^isub>1 and B\<^isub>1 where
blanchet@33197
   358
  "[] \<in> S\<^isub>1"
blanchet@33197
   359
| "w \<in> A\<^isub>1 \<Longrightarrow> b # w \<in> S\<^isub>1"
blanchet@33197
   360
| "w \<in> B\<^isub>1 \<Longrightarrow> a # w \<in> S\<^isub>1"
blanchet@33197
   361
| "w \<in> S\<^isub>1 \<Longrightarrow> a # w \<in> A\<^isub>1"
blanchet@33197
   362
| "w \<in> S\<^isub>1 \<Longrightarrow> b # w \<in> S\<^isub>1"
blanchet@33197
   363
| "\<lbrakk>v \<in> B\<^isub>1; v \<in> B\<^isub>1\<rbrakk> \<Longrightarrow> a # v @ w \<in> B\<^isub>1"
blanchet@33197
   364
blanchet@33197
   365
theorem S\<^isub>1_sound:
blanchet@33197
   366
"w \<in> S\<^isub>1 \<longrightarrow> length [x \<leftarrow> w. x = a] = length [x \<leftarrow> w. x = b]"
blanchet@35671
   367
nitpick [expect = genuine]
blanchet@33197
   368
oops
blanchet@33197
   369
blanchet@33197
   370
inductive_set S\<^isub>2 and A\<^isub>2 and B\<^isub>2 where
blanchet@33197
   371
  "[] \<in> S\<^isub>2"
blanchet@33197
   372
| "w \<in> A\<^isub>2 \<Longrightarrow> b # w \<in> S\<^isub>2"
blanchet@33197
   373
| "w \<in> B\<^isub>2 \<Longrightarrow> a # w \<in> S\<^isub>2"
blanchet@33197
   374
| "w \<in> S\<^isub>2 \<Longrightarrow> a # w \<in> A\<^isub>2"
blanchet@33197
   375
| "w \<in> S\<^isub>2 \<Longrightarrow> b # w \<in> B\<^isub>2"
blanchet@33197
   376
| "\<lbrakk>v \<in> B\<^isub>2; v \<in> B\<^isub>2\<rbrakk> \<Longrightarrow> a # v @ w \<in> B\<^isub>2"
blanchet@33197
   377
blanchet@33197
   378
theorem S\<^isub>2_sound:
blanchet@33197
   379
"w \<in> S\<^isub>2 \<longrightarrow> length [x \<leftarrow> w. x = a] = length [x \<leftarrow> w. x = b]"
blanchet@35671
   380
nitpick [expect = genuine]
blanchet@33197
   381
oops
blanchet@33197
   382
blanchet@33197
   383
inductive_set S\<^isub>3 and A\<^isub>3 and B\<^isub>3 where
blanchet@33197
   384
  "[] \<in> S\<^isub>3"
blanchet@33197
   385
| "w \<in> A\<^isub>3 \<Longrightarrow> b # w \<in> S\<^isub>3"
blanchet@33197
   386
| "w \<in> B\<^isub>3 \<Longrightarrow> a # w \<in> S\<^isub>3"
blanchet@33197
   387
| "w \<in> S\<^isub>3 \<Longrightarrow> a # w \<in> A\<^isub>3"
blanchet@33197
   388
| "w \<in> S\<^isub>3 \<Longrightarrow> b # w \<in> B\<^isub>3"
blanchet@33197
   389
| "\<lbrakk>v \<in> B\<^isub>3; w \<in> B\<^isub>3\<rbrakk> \<Longrightarrow> a # v @ w \<in> B\<^isub>3"
blanchet@33197
   390
blanchet@33197
   391
theorem S\<^isub>3_sound:
blanchet@33197
   392
"w \<in> S\<^isub>3 \<longrightarrow> length [x \<leftarrow> w. x = a] = length [x \<leftarrow> w. x = b]"
blanchet@42959
   393
nitpick [card = 1\<emdash>5, expect = none]
blanchet@33197
   394
sorry
blanchet@33197
   395
blanchet@33197
   396
theorem S\<^isub>3_complete:
blanchet@33197
   397
"length [x \<leftarrow> w. x = a] = length [x \<leftarrow> w. x = b] \<longrightarrow> w \<in> S\<^isub>3"
blanchet@35671
   398
nitpick [expect = genuine]
blanchet@33197
   399
oops
blanchet@33197
   400
blanchet@33197
   401
inductive_set S\<^isub>4 and A\<^isub>4 and B\<^isub>4 where
blanchet@33197
   402
  "[] \<in> S\<^isub>4"
blanchet@33197
   403
| "w \<in> A\<^isub>4 \<Longrightarrow> b # w \<in> S\<^isub>4"
blanchet@33197
   404
| "w \<in> B\<^isub>4 \<Longrightarrow> a # w \<in> S\<^isub>4"
blanchet@33197
   405
| "w \<in> S\<^isub>4 \<Longrightarrow> a # w \<in> A\<^isub>4"
blanchet@33197
   406
| "\<lbrakk>v \<in> A\<^isub>4; w \<in> A\<^isub>4\<rbrakk> \<Longrightarrow> b # v @ w \<in> A\<^isub>4"
blanchet@33197
   407
| "w \<in> S\<^isub>4 \<Longrightarrow> b # w \<in> B\<^isub>4"
blanchet@33197
   408
| "\<lbrakk>v \<in> B\<^isub>4; w \<in> B\<^isub>4\<rbrakk> \<Longrightarrow> a # v @ w \<in> B\<^isub>4"
blanchet@33197
   409
blanchet@33197
   410
theorem S\<^isub>4_sound:
blanchet@33197
   411
"w \<in> S\<^isub>4 \<longrightarrow> length [x \<leftarrow> w. x = a] = length [x \<leftarrow> w. x = b]"
blanchet@42959
   412
nitpick [card = 1\<emdash>5, expect = none]
blanchet@33197
   413
sorry
blanchet@33197
   414
blanchet@33197
   415
theorem S\<^isub>4_complete:
blanchet@33197
   416
"length [x \<leftarrow> w. x = a] = length [x \<leftarrow> w. x = b] \<longrightarrow> w \<in> S\<^isub>4"
blanchet@42959
   417
nitpick [card = 1\<emdash>5, expect = none]
blanchet@33197
   418
sorry
blanchet@33197
   419
blanchet@33197
   420
theorem S\<^isub>4_A\<^isub>4_B\<^isub>4_sound_and_complete:
blanchet@33197
   421
"w \<in> S\<^isub>4 \<longleftrightarrow> length [x \<leftarrow> w. x = a] = length [x \<leftarrow> w. x = b]"
blanchet@33197
   422
"w \<in> A\<^isub>4 \<longleftrightarrow> length [x \<leftarrow> w. x = a] = length [x \<leftarrow> w. x = b] + 1"
blanchet@33197
   423
"w \<in> B\<^isub>4 \<longleftrightarrow> length [x \<leftarrow> w. x = b] = length [x \<leftarrow> w. x = a] + 1"
blanchet@42959
   424
nitpick [card = 1\<emdash>5, expect = none]
blanchet@33197
   425
sorry
blanchet@33197
   426
blanchet@45053
   427
subsection {* 3.2. AA Trees *}
blanchet@33197
   428
blanchet@34982
   429
datatype 'a aa_tree = \<Lambda> | N "'a\<Colon>linorder" nat "'a aa_tree" "'a aa_tree"
blanchet@33197
   430
blanchet@33197
   431
primrec data where
blanchet@33197
   432
"data \<Lambda> = undefined" |
blanchet@33197
   433
"data (N x _ _ _) = x"
blanchet@33197
   434
blanchet@33197
   435
primrec dataset where
blanchet@33197
   436
"dataset \<Lambda> = {}" |
blanchet@33197
   437
"dataset (N x _ t u) = {x} \<union> dataset t \<union> dataset u"
blanchet@33197
   438
blanchet@33197
   439
primrec level where
blanchet@33197
   440
"level \<Lambda> = 0" |
blanchet@33197
   441
"level (N _ k _ _) = k"
blanchet@33197
   442
blanchet@33197
   443
primrec left where
blanchet@33197
   444
"left \<Lambda> = \<Lambda>" |
blanchet@33197
   445
"left (N _ _ t\<^isub>1 _) = t\<^isub>1"
blanchet@33197
   446
blanchet@33197
   447
primrec right where
blanchet@33197
   448
"right \<Lambda> = \<Lambda>" |
blanchet@33197
   449
"right (N _ _ _ t\<^isub>2) = t\<^isub>2"
blanchet@33197
   450
blanchet@33197
   451
fun wf where
blanchet@33197
   452
"wf \<Lambda> = True" |
blanchet@33197
   453
"wf (N _ k t u) =
blanchet@33197
   454
 (if t = \<Lambda> then
blanchet@33197
   455
    k = 1 \<and> (u = \<Lambda> \<or> (level u = 1 \<and> left u = \<Lambda> \<and> right u = \<Lambda>))
blanchet@33197
   456
  else
blanchet@33197
   457
    wf t \<and> wf u \<and> u \<noteq> \<Lambda> \<and> level t < k \<and> level u \<le> k \<and> level (right u) < k)"
blanchet@33197
   458
blanchet@33197
   459
fun skew where
blanchet@33197
   460
"skew \<Lambda> = \<Lambda>" |
blanchet@33197
   461
"skew (N x k t u) =
blanchet@33197
   462
 (if t \<noteq> \<Lambda> \<and> k = level t then
blanchet@33197
   463
    N (data t) k (left t) (N x k (right t) u)
blanchet@33197
   464
  else
blanchet@33197
   465
    N x k t u)"
blanchet@33197
   466
blanchet@33197
   467
fun split where
blanchet@33197
   468
"split \<Lambda> = \<Lambda>" |
blanchet@33197
   469
"split (N x k t u) =
blanchet@33197
   470
 (if u \<noteq> \<Lambda> \<and> k = level (right u) then
blanchet@33197
   471
    N (data u) (Suc k) (N x k t (left u)) (right u)
blanchet@33197
   472
  else
blanchet@33197
   473
    N x k t u)"
blanchet@33197
   474
blanchet@33197
   475
theorem dataset_skew_split:
blanchet@33197
   476
"dataset (skew t) = dataset t"
blanchet@33197
   477
"dataset (split t) = dataset t"
blanchet@42959
   478
nitpick [card = 1\<emdash>5, expect = none]
blanchet@33197
   479
sorry
blanchet@33197
   480
blanchet@33197
   481
theorem wf_skew_split:
blanchet@33197
   482
"wf t \<Longrightarrow> skew t = t"
blanchet@33197
   483
"wf t \<Longrightarrow> split t = t"
blanchet@42959
   484
nitpick [card = 1\<emdash>5, expect = none]
blanchet@33197
   485
sorry
blanchet@33197
   486
blanchet@33197
   487
primrec insort\<^isub>1 where
blanchet@33197
   488
"insort\<^isub>1 \<Lambda> x = N x 1 \<Lambda> \<Lambda>" |
blanchet@33197
   489
"insort\<^isub>1 (N y k t u) x =
blanchet@33197
   490
 (* (split \<circ> skew) *) (N y k (if x < y then insort\<^isub>1 t x else t)
blanchet@33197
   491
                             (if x > y then insort\<^isub>1 u x else u))"
blanchet@33197
   492
blanchet@33197
   493
theorem wf_insort\<^isub>1: "wf t \<Longrightarrow> wf (insort\<^isub>1 t x)"
blanchet@35671
   494
nitpick [expect = genuine]
blanchet@33197
   495
oops
blanchet@33197
   496
blanchet@33197
   497
theorem wf_insort\<^isub>1_nat: "wf t \<Longrightarrow> wf (insort\<^isub>1 t (x\<Colon>nat))"
blanchet@35671
   498
nitpick [eval = "insort\<^isub>1 t x", expect = genuine]
blanchet@33197
   499
oops
blanchet@33197
   500
blanchet@33197
   501
primrec insort\<^isub>2 where
blanchet@33197
   502
"insort\<^isub>2 \<Lambda> x = N x 1 \<Lambda> \<Lambda>" |
blanchet@33197
   503
"insort\<^isub>2 (N y k t u) x =
blanchet@33197
   504
 (split \<circ> skew) (N y k (if x < y then insort\<^isub>2 t x else t)
blanchet@33197
   505
                       (if x > y then insort\<^isub>2 u x else u))"
blanchet@33197
   506
blanchet@33197
   507
theorem wf_insort\<^isub>2: "wf t \<Longrightarrow> wf (insort\<^isub>2 t x)"
blanchet@42959
   508
nitpick [card = 1\<emdash>5, expect = none]
blanchet@33197
   509
sorry
blanchet@33197
   510
blanchet@33197
   511
theorem dataset_insort\<^isub>2: "dataset (insort\<^isub>2 t x) = {x} \<union> dataset t"
blanchet@42959
   512
nitpick [card = 1\<emdash>5, expect = none]
blanchet@33197
   513
sorry
blanchet@33197
   514
blanchet@33197
   515
end