src/HOL/Integ/presburger.ML
author chaieb
Mon Jun 14 16:46:48 2004 +0200 (2004-06-14)
changeset 14941 1edb674e0c33
parent 14920 a7525235e20f
child 14981 e73f8140af78
permissions -rw-r--r--
Oracle corrected
berghofe@13876
     1
(*  Title:      HOL/Integ/presburger.ML
berghofe@13876
     2
    ID:         $Id$
berghofe@13876
     3
    Author:     Amine Chaieb and Stefan Berghofer, TU Muenchen
berghofe@13876
     4
    License:    GPL (GNU GENERAL PUBLIC LICENSE)
berghofe@13876
     5
berghofe@13876
     6
Tactic for solving arithmetical Goals in Presburger Arithmetic
berghofe@13876
     7
*)
berghofe@13876
     8
chaieb@14811
     9
(* This version of presburger deals with occurences of functional symbols in the subgoal and abstract over them to try to prove the more general formula. It then resolves with the subgoal. To enable this feature call the procedure with the parameter abs
chaieb@14758
    10
*)
chaieb@14758
    11
berghofe@13876
    12
signature PRESBURGER = 
berghofe@13876
    13
sig
chaieb@14758
    14
 val presburger_tac : bool -> bool -> int -> tactic
chaieb@14758
    15
 val presburger_method : bool -> bool -> int -> Proof.method
berghofe@13876
    16
 val setup : (theory -> theory) list
berghofe@13876
    17
 val trace : bool ref
berghofe@13876
    18
end;
berghofe@13876
    19
berghofe@13876
    20
structure Presburger: PRESBURGER =
berghofe@13876
    21
struct
berghofe@13876
    22
berghofe@13876
    23
val trace = ref false;
berghofe@13876
    24
fun trace_msg s = if !trace then tracing s else ();
berghofe@13876
    25
berghofe@13876
    26
(*-----------------------------------------------------------------*)
berghofe@13876
    27
(*cooper_pp: provefunction for the one-exstance quantifier elimination*)
berghofe@13876
    28
(* Here still only one problem : The proof for the arithmetical transformations done on the dvd atomic formulae*)
berghofe@13876
    29
(*-----------------------------------------------------------------*)
berghofe@13876
    30
chaieb@14941
    31
chaieb@14941
    32
(* Invoking the oracle *)
chaieb@14941
    33
chaieb@14941
    34
fun pres_oracle sg t = 
chaieb@14941
    35
  invoke_oracle (the_context()) "presburger_oracle" 
chaieb@14941
    36
     (sg, CooperDec.COOPER_ORACLE t) ;
chaieb@14941
    37
berghofe@14801
    38
val presburger_ss = simpset_of (theory "Presburger");
berghofe@14801
    39
chaieb@14758
    40
fun cooper_pp sg (fm as e$Abs(xn,xT,p)) = 
berghofe@13876
    41
  let val (xn1,p1) = variant_abs (xn,xT,p)
chaieb@14758
    42
  in (CooperProof.cooper_prv sg (Free (xn1, xT)) p1) end;
berghofe@13876
    43
berghofe@13876
    44
fun mnnf_pp sg fm = CooperProof.proof_of_cnnf sg fm
berghofe@13876
    45
  (CooperProof.proof_of_evalc sg);
berghofe@13876
    46
chaieb@14758
    47
fun tmproof_of_int_qelim sg fm =
chaieb@14758
    48
  Qelim.tproof_of_mlift_qelim sg CooperDec.is_arith_rel
berghofe@13876
    49
    (CooperProof.proof_of_linform sg) (mnnf_pp sg) (cooper_pp sg) fm;
berghofe@13876
    50
chaieb@14758
    51
berghofe@13876
    52
(* Theorems to be used in this tactic*)
berghofe@13876
    53
berghofe@13876
    54
val zdvd_int = thm "zdvd_int";
berghofe@13876
    55
val zdiff_int_split = thm "zdiff_int_split";
berghofe@13876
    56
val all_nat = thm "all_nat";
berghofe@13876
    57
val ex_nat = thm "ex_nat";
berghofe@13876
    58
val number_of1 = thm "number_of1";
berghofe@13876
    59
val number_of2 = thm "number_of2";
berghofe@13876
    60
val split_zdiv = thm "split_zdiv";
berghofe@13876
    61
val split_zmod = thm "split_zmod";
berghofe@13876
    62
val mod_div_equality' = thm "mod_div_equality'";
berghofe@13876
    63
val split_div' = thm "split_div'";
berghofe@13876
    64
val Suc_plus1 = thm "Suc_plus1";
berghofe@13876
    65
val imp_le_cong = thm "imp_le_cong";
berghofe@13876
    66
val conj_le_cong = thm "conj_le_cong";
berghofe@13876
    67
berghofe@13876
    68
(* extract all the constants in a term*)
berghofe@13876
    69
fun add_term_typed_consts (Const (c, T), cs) = (c,T) ins cs
berghofe@13876
    70
  | add_term_typed_consts (t $ u, cs) =
berghofe@13876
    71
      add_term_typed_consts (t, add_term_typed_consts (u, cs))
berghofe@13876
    72
  | add_term_typed_consts (Abs (_, _, t), cs) = add_term_typed_consts (t, cs)
berghofe@13876
    73
  | add_term_typed_consts (_, cs) = cs;
berghofe@13876
    74
berghofe@13876
    75
fun term_typed_consts t = add_term_typed_consts(t,[]);
berghofe@13876
    76
berghofe@13876
    77
(* Some Types*)
berghofe@13876
    78
val bT = HOLogic.boolT;
berghofe@13876
    79
val iT = HOLogic.intT;
berghofe@13876
    80
val binT = HOLogic.binT;
berghofe@13876
    81
val nT = HOLogic.natT;
berghofe@13876
    82
berghofe@13876
    83
(* Allowed Consts in formulae for presburger tactic*)
berghofe@13876
    84
berghofe@13876
    85
val allowed_consts =
berghofe@13876
    86
  [("All", (iT --> bT) --> bT),
berghofe@13876
    87
   ("Ex", (iT --> bT) --> bT),
berghofe@13876
    88
   ("All", (nT --> bT) --> bT),
berghofe@13876
    89
   ("Ex", (nT --> bT) --> bT),
berghofe@13876
    90
berghofe@13876
    91
   ("op &", bT --> bT --> bT),
berghofe@13876
    92
   ("op |", bT --> bT --> bT),
berghofe@13876
    93
   ("op -->", bT --> bT --> bT),
berghofe@13876
    94
   ("op =", bT --> bT --> bT),
berghofe@13876
    95
   ("Not", bT --> bT),
berghofe@13876
    96
berghofe@13876
    97
   ("op <=", iT --> iT --> bT),
berghofe@13876
    98
   ("op =", iT --> iT --> bT),
berghofe@13876
    99
   ("op <", iT --> iT --> bT),
berghofe@13876
   100
   ("Divides.op dvd", iT --> iT --> bT),
berghofe@13876
   101
   ("Divides.op div", iT --> iT --> iT),
berghofe@13876
   102
   ("Divides.op mod", iT --> iT --> iT),
berghofe@13876
   103
   ("op +", iT --> iT --> iT),
berghofe@13876
   104
   ("op -", iT --> iT --> iT),
berghofe@13876
   105
   ("op *", iT --> iT --> iT), 
berghofe@13876
   106
   ("HOL.abs", iT --> iT),
berghofe@13876
   107
   ("uminus", iT --> iT),
berghofe@14801
   108
   ("HOL.max", iT --> iT --> iT),
berghofe@14801
   109
   ("HOL.min", iT --> iT --> iT),
berghofe@13876
   110
berghofe@13876
   111
   ("op <=", nT --> nT --> bT),
berghofe@13876
   112
   ("op =", nT --> nT --> bT),
berghofe@13876
   113
   ("op <", nT --> nT --> bT),
berghofe@13876
   114
   ("Divides.op dvd", nT --> nT --> bT),
berghofe@13876
   115
   ("Divides.op div", nT --> nT --> nT),
berghofe@13876
   116
   ("Divides.op mod", nT --> nT --> nT),
berghofe@13876
   117
   ("op +", nT --> nT --> nT),
berghofe@13876
   118
   ("op -", nT --> nT --> nT),
berghofe@13876
   119
   ("op *", nT --> nT --> nT), 
berghofe@13876
   120
   ("Suc", nT --> nT),
berghofe@14801
   121
   ("HOL.max", nT --> nT --> nT),
berghofe@14801
   122
   ("HOL.min", nT --> nT --> nT),
berghofe@13876
   123
berghofe@13876
   124
   ("Numeral.bin.Bit", binT --> bT --> binT),
berghofe@13876
   125
   ("Numeral.bin.Pls", binT),
berghofe@13876
   126
   ("Numeral.bin.Min", binT),
berghofe@13876
   127
   ("Numeral.number_of", binT --> iT),
berghofe@13876
   128
   ("Numeral.number_of", binT --> nT),
berghofe@13876
   129
   ("0", nT),
berghofe@13876
   130
   ("0", iT),
berghofe@13876
   131
   ("1", nT),
berghofe@13876
   132
   ("1", iT),
berghofe@13876
   133
   ("False", bT),
berghofe@13876
   134
   ("True", bT)];
berghofe@13876
   135
berghofe@13876
   136
(* Preparation of the formula to be sent to the Integer quantifier *)
berghofe@13876
   137
(* elimination procedure                                           *)
berghofe@13876
   138
(* Transforms meta implications and meta quantifiers to object     *)
berghofe@13876
   139
(* implications and object quantifiers                             *)
berghofe@13876
   140
chaieb@14758
   141
chaieb@14758
   142
(*==================================*)
chaieb@14758
   143
(* Abstracting on subterms  ========*)
chaieb@14758
   144
(*==================================*)
chaieb@14758
   145
(* Returns occurences of terms that are function application of type int or nat*)
chaieb@14758
   146
chaieb@14758
   147
fun getfuncs fm = case strip_comb fm of
chaieb@14758
   148
    (Free (_, T), ts as _ :: _) =>
chaieb@14758
   149
      if body_type T mem [iT, nT] 
chaieb@14758
   150
         andalso not (ts = []) andalso forall (null o loose_bnos) ts 
chaieb@14758
   151
      then [fm]
chaieb@14758
   152
      else foldl op union ([], map getfuncs ts)
chaieb@14758
   153
  | (Var (_, T), ts as _ :: _) =>
chaieb@14758
   154
      if body_type T mem [iT, nT] 
chaieb@14758
   155
         andalso not (ts = []) andalso forall (null o loose_bnos) ts then [fm]
chaieb@14758
   156
      else foldl op union ([], map getfuncs ts)
chaieb@14758
   157
  | (Const (s, T), ts) =>
chaieb@14758
   158
      if (s, T) mem allowed_consts orelse not (body_type T mem [iT, nT])
chaieb@14758
   159
      then foldl op union ([], map getfuncs ts)
chaieb@14758
   160
      else [fm]
chaieb@14758
   161
  | (Abs (s, T, t), _) => getfuncs t
chaieb@14758
   162
  | _ => [];
chaieb@14758
   163
chaieb@14758
   164
chaieb@14758
   165
fun abstract_pres sg fm = 
chaieb@14758
   166
  foldr (fn (t, u) =>
chaieb@14758
   167
      let val T = fastype_of t
chaieb@14758
   168
      in all T $ Abs ("x", T, abstract_over (t, u)) end)
chaieb@14758
   169
         (getfuncs fm, fm);
chaieb@14758
   170
chaieb@14758
   171
chaieb@14758
   172
chaieb@14758
   173
(* hasfuncs_on_bounds dont care of the type of the functions applied!
chaieb@14758
   174
 It returns true if there is a subterm coresponding to the application of
chaieb@14758
   175
 a function on a bounded variable.
chaieb@14758
   176
chaieb@14758
   177
 Function applications are allowed only for well predefined functions a 
chaieb@14758
   178
 consts*)
chaieb@14758
   179
chaieb@14758
   180
fun has_free_funcs fm  = case strip_comb fm of
chaieb@14758
   181
    (Free (_, T), ts as _ :: _) => 
chaieb@14758
   182
      if (body_type T mem [iT,nT]) andalso (not (T mem [iT,nT]))
chaieb@14758
   183
      then true
chaieb@14758
   184
      else exists (fn x => x) (map has_free_funcs ts)
chaieb@14758
   185
  | (Var (_, T), ts as _ :: _) =>
chaieb@14758
   186
      if (body_type T mem [iT,nT]) andalso not (T mem [iT,nT])
chaieb@14758
   187
      then true
chaieb@14758
   188
      else exists (fn x => x) (map has_free_funcs ts)
chaieb@14758
   189
  | (Const (s, T), ts) =>  exists (fn x => x) (map has_free_funcs ts)
chaieb@14758
   190
  | (Abs (s, T, t), _) => has_free_funcs t
chaieb@14758
   191
  |_ => false;
chaieb@14758
   192
chaieb@14758
   193
chaieb@14758
   194
(*returns true if the formula is relevant for presburger arithmetic tactic
chaieb@14758
   195
The constants occuring in term t should be a subset of the allowed_consts
chaieb@14758
   196
 There also should be no occurences of application of functions on bounded 
chaieb@14758
   197
 variables. Whenever this function will be used, it will be ensured that t 
chaieb@14758
   198
 will not contain subterms with function symbols that could have been 
chaieb@14758
   199
 abstracted over.*)
chaieb@14758
   200
 
chaieb@14758
   201
fun relevant ps t = (term_typed_consts t) subset allowed_consts andalso 
chaieb@14758
   202
  map (fn i => snd (nth_elem (i, ps))) (loose_bnos t) @
chaieb@14758
   203
  map (snd o dest_Free) (term_frees t) @ map (snd o dest_Var) (term_vars t)
chaieb@14758
   204
  subset [iT, nT]
chaieb@14758
   205
  andalso not (has_free_funcs t);
chaieb@14758
   206
chaieb@14758
   207
chaieb@14758
   208
fun prepare_for_presburger sg q fm = 
berghofe@13876
   209
  let
berghofe@13876
   210
    val ps = Logic.strip_params fm
berghofe@13876
   211
    val hs = map HOLogic.dest_Trueprop (Logic.strip_assums_hyp fm)
berghofe@13876
   212
    val c = HOLogic.dest_Trueprop (Logic.strip_assums_concl fm)
chaieb@14758
   213
    val _ = if relevant (rev ps) c then () 
chaieb@14758
   214
               else  (trace_msg ("Conclusion is not a presburger term:\n" ^
chaieb@14758
   215
             Sign.string_of_term sg c); raise CooperDec.COOPER)
berghofe@13876
   216
    fun mk_all ((s, T), (P,n)) =
berghofe@13876
   217
      if 0 mem loose_bnos P then
berghofe@13876
   218
        (HOLogic.all_const T $ Abs (s, T, P), n)
berghofe@13876
   219
      else (incr_boundvars ~1 P, n-1)
berghofe@13876
   220
    fun mk_all2 (v, t) = HOLogic.all_const (fastype_of v) $ lambda v t;
berghofe@14130
   221
    val (rhs,irhs) = partition (relevant (rev ps)) hs
berghofe@13876
   222
    val np = length ps
berghofe@13876
   223
    val (fm',np) =  foldr (fn ((x, T), (fm,n)) => mk_all ((x, T), (fm,n)))
berghofe@13876
   224
      (ps,(foldr HOLogic.mk_imp (rhs, c), np))
berghofe@13876
   225
    val (vs, _) = partition (fn t => q orelse (type_of t) = nT)
berghofe@13876
   226
      (term_frees fm' @ term_vars fm');
berghofe@13876
   227
    val fm2 = foldr mk_all2 (vs, fm')
berghofe@13876
   228
  in (fm2, np + length vs, length rhs) end;
berghofe@13876
   229
berghofe@13876
   230
(*Object quantifier to meta --*)
berghofe@13876
   231
fun spec_step n th = if (n=0) then th else (spec_step (n-1) th) RS spec ;
berghofe@13876
   232
berghofe@13876
   233
(* object implication to meta---*)
berghofe@13876
   234
fun mp_step n th = if (n=0) then th else (mp_step (n-1) th) RS mp;
berghofe@13876
   235
berghofe@13876
   236
(* the presburger tactic*)
chaieb@14758
   237
chaieb@14758
   238
(* Parameters : q = flag for quantify ofer free variables ; 
chaieb@14758
   239
                a = flag for abstracting over function occurences
chaieb@14758
   240
                i = subgoal  *)
chaieb@14758
   241
chaieb@14758
   242
fun presburger_tac q a i = ObjectLogic.atomize_tac i THEN (fn st =>
berghofe@13876
   243
  let
chaieb@14758
   244
    val g = BasisLibrary.List.nth (prems_of st, i - 1)
chaieb@14758
   245
    val sg = sign_of_thm st
chaieb@14758
   246
    (* The Abstraction step *)
chaieb@14758
   247
    val g' = if a then abstract_pres sg g else g
berghofe@13876
   248
    (* Transform the term*)
chaieb@14758
   249
    val (t,np,nh) = prepare_for_presburger sg q g'
berghofe@13876
   250
    (* Some simpsets for dealing with mod div abs and nat*)
berghofe@13876
   251
    val simpset0 = HOL_basic_ss
berghofe@13876
   252
      addsimps [mod_div_equality', Suc_plus1]
berghofe@13997
   253
      addsplits [split_zdiv, split_zmod, split_div', split_min, split_max]
berghofe@13876
   254
    (* Simp rules for changing (n::int) to int n *)
berghofe@13876
   255
    val simpset1 = HOL_basic_ss
berghofe@13876
   256
      addsimps [nat_number_of_def, zdvd_int] @ map (fn r => r RS sym)
berghofe@13876
   257
        [int_int_eq, zle_int, zless_int, zadd_int, zmult_int]
berghofe@13876
   258
      addsplits [zdiff_int_split]
berghofe@13876
   259
    (*simp rules for elimination of int n*)
berghofe@13876
   260
berghofe@13876
   261
    val simpset2 = HOL_basic_ss
berghofe@13876
   262
      addsimps [nat_0_le, all_nat, ex_nat, number_of1, number_of2, int_0, int_1]
berghofe@13876
   263
      addcongs [conj_le_cong, imp_le_cong]
berghofe@13876
   264
    (* simp rules for elimination of abs *)
paulson@14353
   265
    val simpset3 = HOL_basic_ss addsplits [abs_split]
berghofe@13876
   266
    val ct = cterm_of sg (HOLogic.mk_Trueprop t)
berghofe@13876
   267
    (* Theorem for the nat --> int transformation *)
berghofe@13876
   268
    val pre_thm = Seq.hd (EVERY
chaieb@14758
   269
      [simp_tac simpset0 1,
chaieb@14758
   270
       TRY (simp_tac simpset1 1), TRY (simp_tac simpset2 1),
berghofe@14801
   271
       TRY (simp_tac simpset3 1), TRY (simp_tac presburger_ss 1)]
berghofe@13876
   272
      (trivial ct))
chaieb@14758
   273
    fun assm_tac i = REPEAT_DETERM_N nh (assume_tac i)
berghofe@13876
   274
    (* The result of the quantifier elimination *)
berghofe@13876
   275
    val (th, tac) = case (prop_of pre_thm) of
berghofe@13876
   276
        Const ("==>", _) $ (Const ("Trueprop", _) $ t1) $ _ =>
chaieb@14920
   277
    let val pth = 
chaieb@14920
   278
          (* If quick_and_dirty then run without proof generation as oracle*)
chaieb@14920
   279
             if !quick_and_dirty 
chaieb@14941
   280
             then pres_oracle sg (Pattern.eta_long [] t1)
chaieb@14941
   281
(*
chaieb@14941
   282
assume (cterm_of sg 
chaieb@14920
   283
	       (HOLogic.mk_Trueprop(HOLogic.mk_eq(t1,CooperDec.integer_qelim (Pattern.eta_long [] t1)))))
chaieb@14941
   284
*)
chaieb@14920
   285
	     else tmproof_of_int_qelim sg (Pattern.eta_long [] t1)
chaieb@14920
   286
    in 
berghofe@13876
   287
          (trace_msg ("calling procedure with term:\n" ^
berghofe@13876
   288
             Sign.string_of_term sg t1);
chaieb@14920
   289
           ((pth RS iffD2) RS pre_thm,
berghofe@13876
   290
            assm_tac (i + 1) THEN (if q then I else TRY) (rtac TrueI i)))
chaieb@14920
   291
    end
berghofe@13876
   292
      | _ => (pre_thm, assm_tac i)
chaieb@14758
   293
  in (rtac (((mp_step nh) o (spec_step np)) th) i 
chaieb@14758
   294
      THEN tac) st
berghofe@14130
   295
  end handle Subscript => no_tac st | CooperDec.COOPER => no_tac st);
berghofe@13876
   296
berghofe@13876
   297
fun presburger_args meth =
chaieb@14758
   298
 let val parse_flag = 
chaieb@14758
   299
         Args.$$$ "no_quantify" >> K (apfst (K false))
chaieb@14811
   300
      || Args.$$$ "abs" >> K (apsnd (K true));
chaieb@14758
   301
 in
chaieb@14758
   302
   Method.simple_args 
wenzelm@14882
   303
  (Scan.optional (Args.$$$ "(" |-- Scan.repeat1 parse_flag --| Args.$$$ ")") [] >>
chaieb@14811
   304
    curry (foldl op |>) (true, false))
chaieb@14758
   305
    (fn (q,a) => fn _ => meth q a 1)
chaieb@14758
   306
  end;
berghofe@13876
   307
chaieb@14758
   308
fun presburger_method q a i = Method.METHOD (fn facts =>
chaieb@14758
   309
  Method.insert_tac facts 1 THEN presburger_tac q a i)
berghofe@13876
   310
berghofe@13876
   311
val setup =
berghofe@13876
   312
  [Method.add_method ("presburger",
berghofe@13876
   313
     presburger_args presburger_method,
berghofe@13876
   314
     "decision procedure for Presburger arithmetic"),
berghofe@13876
   315
   ArithTheoryData.map (fn {splits, inj_consts, discrete, presburger} =>
berghofe@13876
   316
     {splits = splits, inj_consts = inj_consts, discrete = discrete,
chaieb@14811
   317
      presburger = Some (presburger_tac true false)})];
berghofe@13876
   318
berghofe@13876
   319
end;
berghofe@13876
   320
chaieb@14920
   321
val presburger_tac = Presburger.presburger_tac true false;