src/HOL/Tools/inductive_package.ML
author wenzelm
Mon Jul 03 11:13:08 2000 +0200 (2000-07-03)
changeset 9235 1f734dc2e526
parent 9201 435fef035d7f
child 9298 7d9b562a750b
permissions -rw-r--r--
previde 'defs' field for quick_and_dirty;
berghofe@5094
     1
(*  Title:      HOL/Tools/inductive_package.ML
berghofe@5094
     2
    ID:         $Id$
berghofe@5094
     3
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
berghofe@5094
     4
                Stefan Berghofer,   TU Muenchen
berghofe@5094
     5
    Copyright   1994  University of Cambridge
berghofe@5094
     6
                1998  TU Muenchen     
berghofe@5094
     7
wenzelm@6424
     8
(Co)Inductive Definition module for HOL.
berghofe@5094
     9
berghofe@5094
    10
Features:
wenzelm@6424
    11
  * least or greatest fixedpoints
wenzelm@6424
    12
  * user-specified product and sum constructions
wenzelm@6424
    13
  * mutually recursive definitions
wenzelm@6424
    14
  * definitions involving arbitrary monotone operators
wenzelm@6424
    15
  * automatically proves introduction and elimination rules
berghofe@5094
    16
wenzelm@6424
    17
The recursive sets must *already* be declared as constants in the
wenzelm@6424
    18
current theory!
berghofe@5094
    19
berghofe@5094
    20
  Introduction rules have the form
wenzelm@8316
    21
  [| ti:M(Sj), ..., P(x), ... |] ==> t: Sk
berghofe@5094
    22
  where M is some monotone operator (usually the identity)
berghofe@5094
    23
  P(x) is any side condition on the free variables
berghofe@5094
    24
  ti, t are any terms
berghofe@5094
    25
  Sj, Sk are two of the sets being defined in mutual recursion
berghofe@5094
    26
wenzelm@6424
    27
Sums are used only for mutual recursion.  Products are used only to
wenzelm@6424
    28
derive "streamlined" induction rules for relations.
berghofe@5094
    29
*)
berghofe@5094
    30
berghofe@5094
    31
signature INDUCTIVE_PACKAGE =
berghofe@5094
    32
sig
wenzelm@6424
    33
  val quiet_mode: bool ref
berghofe@7020
    34
  val unify_consts: Sign.sg -> term list -> term list -> term list * term list
berghofe@9116
    35
  val get_inductive: theory -> string -> ({names: string list, coind: bool} *
berghofe@9116
    36
    {defs: thm list, elims: thm list, raw_induct: thm, induct: thm,
berghofe@9116
    37
     intrs: thm list, mk_cases: string -> thm, mono: thm, unfold: thm}) option
wenzelm@6437
    38
  val print_inductives: theory -> unit
berghofe@7710
    39
  val mono_add_global: theory attribute
berghofe@7710
    40
  val mono_del_global: theory attribute
berghofe@7710
    41
  val get_monos: theory -> thm list
wenzelm@6424
    42
  val add_inductive_i: bool -> bool -> bstring -> bool -> bool -> bool -> term list ->
wenzelm@6521
    43
    theory attribute list -> ((bstring * term) * theory attribute list) list ->
wenzelm@6521
    44
      thm list -> thm list -> theory -> theory *
wenzelm@6424
    45
      {defs: thm list, elims: thm list, raw_induct: thm, induct: thm,
wenzelm@6437
    46
       intrs: thm list, mk_cases: string -> thm, mono: thm, unfold: thm}
wenzelm@6521
    47
  val add_inductive: bool -> bool -> string list -> Args.src list ->
wenzelm@6521
    48
    ((bstring * string) * Args.src list) list -> (xstring * Args.src list) list ->
wenzelm@6521
    49
      (xstring * Args.src list) list -> theory -> theory *
wenzelm@6424
    50
      {defs: thm list, elims: thm list, raw_induct: thm, induct: thm,
wenzelm@6437
    51
       intrs: thm list, mk_cases: string -> thm, mono: thm, unfold: thm}
wenzelm@7107
    52
  val inductive_cases: (((bstring * Args.src list) * xstring) * string list) * Comment.text
wenzelm@7107
    53
    -> theory -> theory
wenzelm@7107
    54
  val inductive_cases_i: (((bstring * theory attribute list) * string) * term list) * Comment.text
wenzelm@7107
    55
    -> theory -> theory
wenzelm@6437
    56
  val setup: (theory -> theory) list
berghofe@5094
    57
end;
berghofe@5094
    58
wenzelm@6424
    59
structure InductivePackage: INDUCTIVE_PACKAGE =
berghofe@5094
    60
struct
berghofe@5094
    61
berghofe@7710
    62
(*** theory data ***)
berghofe@7710
    63
berghofe@7710
    64
(* data kind 'HOL/inductive' *)
berghofe@7710
    65
berghofe@7710
    66
type inductive_info =
berghofe@7710
    67
  {names: string list, coind: bool} * {defs: thm list, elims: thm list, raw_induct: thm,
berghofe@7710
    68
    induct: thm, intrs: thm list, mk_cases: string -> thm, mono: thm, unfold: thm};
berghofe@7710
    69
berghofe@7710
    70
structure InductiveArgs =
berghofe@7710
    71
struct
berghofe@7710
    72
  val name = "HOL/inductive";
berghofe@7710
    73
  type T = inductive_info Symtab.table * thm list;
berghofe@7710
    74
berghofe@7710
    75
  val empty = (Symtab.empty, []);
berghofe@7710
    76
  val copy = I;
berghofe@7710
    77
  val prep_ext = I;
berghofe@7710
    78
  fun merge ((tab1, monos1), (tab2, monos2)) = (Symtab.merge (K true) (tab1, tab2),
berghofe@7710
    79
    Library.generic_merge Thm.eq_thm I I monos1 monos2);
berghofe@7710
    80
berghofe@7710
    81
  fun print sg (tab, monos) =
wenzelm@8720
    82
    [Pretty.strs ("(co)inductives:" :: map #1 (Sign.cond_extern_table sg Sign.constK tab)),
wenzelm@8720
    83
     Pretty.big_list "monotonicity rules:" (map Display.pretty_thm monos)]
wenzelm@8720
    84
    |> Pretty.chunks |> Pretty.writeln;
berghofe@7710
    85
end;
berghofe@7710
    86
berghofe@7710
    87
structure InductiveData = TheoryDataFun(InductiveArgs);
berghofe@7710
    88
val print_inductives = InductiveData.print;
berghofe@7710
    89
berghofe@7710
    90
berghofe@7710
    91
(* get and put data *)
berghofe@7710
    92
berghofe@9116
    93
fun get_inductive thy name = Symtab.lookup (fst (InductiveData.get thy), name);
berghofe@7710
    94
berghofe@7710
    95
fun put_inductives names info thy =
berghofe@7710
    96
  let
berghofe@7710
    97
    fun upd ((tab, monos), name) = (Symtab.update_new ((name, info), tab), monos);
berghofe@7710
    98
    val tab_monos = foldl upd (InductiveData.get thy, names)
berghofe@7710
    99
      handle Symtab.DUP name => error ("Duplicate definition of (co)inductive set " ^ quote name);
berghofe@7710
   100
  in InductiveData.put tab_monos thy end;
berghofe@7710
   101
wenzelm@8277
   102
berghofe@7710
   103
berghofe@7710
   104
(** monotonicity rules **)
berghofe@7710
   105
wenzelm@8277
   106
val get_monos = snd o InductiveData.get;
wenzelm@8277
   107
fun put_monos thms thy = InductiveData.put (fst (InductiveData.get thy), thms) thy;
wenzelm@8277
   108
berghofe@7710
   109
fun mk_mono thm =
berghofe@7710
   110
  let
berghofe@7710
   111
    fun eq2mono thm' = [standard (thm' RS (thm' RS eq_to_mono))] @
berghofe@7710
   112
      (case concl_of thm of
berghofe@7710
   113
          (_ $ (_ $ (Const ("Not", _) $ _) $ _)) => []
berghofe@7710
   114
        | _ => [standard (thm' RS (thm' RS eq_to_mono2))]);
berghofe@7710
   115
    val concl = concl_of thm
berghofe@7710
   116
  in
berghofe@7710
   117
    if Logic.is_equals concl then
berghofe@7710
   118
      eq2mono (thm RS meta_eq_to_obj_eq)
berghofe@7710
   119
    else if can (HOLogic.dest_eq o HOLogic.dest_Trueprop) concl then
berghofe@7710
   120
      eq2mono thm
berghofe@7710
   121
    else [thm]
berghofe@7710
   122
  end;
berghofe@7710
   123
wenzelm@8634
   124
wenzelm@8634
   125
(* attributes *)
berghofe@7710
   126
berghofe@7710
   127
local
berghofe@7710
   128
berghofe@7710
   129
fun map_rules_global f thy = put_monos (f (get_monos thy)) thy;
berghofe@7710
   130
berghofe@7710
   131
fun add_mono thm rules = Library.gen_union Thm.eq_thm (mk_mono thm, rules);
berghofe@7710
   132
fun del_mono thm rules = Library.gen_rems Thm.eq_thm (rules, mk_mono thm);
berghofe@7710
   133
berghofe@7710
   134
fun mk_att f g (x, thm) = (f (g thm) x, thm);
berghofe@7710
   135
berghofe@7710
   136
in
wenzelm@8634
   137
  val mono_add_global = mk_att map_rules_global add_mono;
wenzelm@8634
   138
  val mono_del_global = mk_att map_rules_global del_mono;
berghofe@7710
   139
end;
berghofe@7710
   140
berghofe@7710
   141
val mono_attr =
wenzelm@8634
   142
 (Attrib.add_del_args mono_add_global mono_del_global,
wenzelm@8634
   143
  Attrib.add_del_args Attrib.undef_local_attribute Attrib.undef_local_attribute);
berghofe@7710
   144
berghofe@7710
   145
wenzelm@7107
   146
wenzelm@6424
   147
(** utilities **)
wenzelm@6424
   148
wenzelm@6424
   149
(* messages *)
wenzelm@6424
   150
berghofe@5662
   151
val quiet_mode = ref false;
berghofe@5662
   152
fun message s = if !quiet_mode then () else writeln s;
berghofe@5662
   153
wenzelm@6424
   154
fun coind_prefix true = "co"
wenzelm@6424
   155
  | coind_prefix false = "";
wenzelm@6424
   156
wenzelm@6424
   157
berghofe@7020
   158
(* the following code ensures that each recursive set *)
berghofe@7020
   159
(* always has the same type in all introduction rules *)
berghofe@7020
   160
berghofe@7020
   161
fun unify_consts sign cs intr_ts =
berghofe@7020
   162
  (let
berghofe@7020
   163
    val {tsig, ...} = Sign.rep_sg sign;
berghofe@7020
   164
    val add_term_consts_2 =
berghofe@7020
   165
      foldl_aterms (fn (cs, Const c) => c ins cs | (cs, _) => cs);
berghofe@7020
   166
    fun varify (t, (i, ts)) =
berghofe@7020
   167
      let val t' = map_term_types (incr_tvar (i + 1)) (Type.varify (t, []))
berghofe@7020
   168
      in (maxidx_of_term t', t'::ts) end;
berghofe@7020
   169
    val (i, cs') = foldr varify (cs, (~1, []));
berghofe@7020
   170
    val (i', intr_ts') = foldr varify (intr_ts, (i, []));
berghofe@7020
   171
    val rec_consts = foldl add_term_consts_2 ([], cs');
berghofe@7020
   172
    val intr_consts = foldl add_term_consts_2 ([], intr_ts');
berghofe@7020
   173
    fun unify (env, (cname, cT)) =
berghofe@7020
   174
      let val consts = map snd (filter (fn c => fst c = cname) intr_consts)
berghofe@7020
   175
      in foldl (fn ((env', j'), Tp) => (Type.unify tsig j' env' Tp))
berghofe@7020
   176
          (env, (replicate (length consts) cT) ~~ consts)
berghofe@7020
   177
      end;
berghofe@8410
   178
    val (env, _) = foldl unify ((Vartab.empty, i'), rec_consts);
berghofe@8410
   179
    fun typ_subst_TVars_2 env T = let val T' = typ_subst_TVars_Vartab env T
berghofe@7020
   180
      in if T = T' then T else typ_subst_TVars_2 env T' end;
berghofe@7020
   181
    val subst = fst o Type.freeze_thaw o
berghofe@7020
   182
      (map_term_types (typ_subst_TVars_2 env))
berghofe@7020
   183
berghofe@7020
   184
  in (map subst cs', map subst intr_ts')
berghofe@7020
   185
  end) handle Type.TUNIFY =>
berghofe@7020
   186
    (warning "Occurrences of recursive constant have non-unifiable types"; (cs, intr_ts));
berghofe@7020
   187
berghofe@7020
   188
wenzelm@6424
   189
(* misc *)
wenzelm@6424
   190
berghofe@5094
   191
val Const _ $ (vimage_f $ _) $ _ = HOLogic.dest_Trueprop (concl_of vimageD);
berghofe@5094
   192
wenzelm@6394
   193
val vimage_name = Sign.intern_const (Theory.sign_of Vimage.thy) "op -``";
wenzelm@6394
   194
val mono_name = Sign.intern_const (Theory.sign_of Ord.thy) "mono";
berghofe@5094
   195
berghofe@5094
   196
(* make injections needed in mutually recursive definitions *)
berghofe@5094
   197
berghofe@5094
   198
fun mk_inj cs sumT c x =
berghofe@5094
   199
  let
berghofe@5094
   200
    fun mk_inj' T n i =
berghofe@5094
   201
      if n = 1 then x else
berghofe@5094
   202
      let val n2 = n div 2;
berghofe@5094
   203
          val Type (_, [T1, T2]) = T
berghofe@5094
   204
      in
berghofe@5094
   205
        if i <= n2 then
berghofe@5094
   206
          Const ("Inl", T1 --> T) $ (mk_inj' T1 n2 i)
berghofe@5094
   207
        else
berghofe@5094
   208
          Const ("Inr", T2 --> T) $ (mk_inj' T2 (n - n2) (i - n2))
berghofe@5094
   209
      end
berghofe@5094
   210
  in mk_inj' sumT (length cs) (1 + find_index_eq c cs)
berghofe@5094
   211
  end;
berghofe@5094
   212
berghofe@5094
   213
(* make "vimage" terms for selecting out components of mutually rec.def. *)
berghofe@5094
   214
berghofe@5094
   215
fun mk_vimage cs sumT t c = if length cs < 2 then t else
berghofe@5094
   216
  let
berghofe@5094
   217
    val cT = HOLogic.dest_setT (fastype_of c);
berghofe@5094
   218
    val vimageT = [cT --> sumT, HOLogic.mk_setT sumT] ---> HOLogic.mk_setT cT
berghofe@5094
   219
  in
berghofe@5094
   220
    Const (vimage_name, vimageT) $
berghofe@5094
   221
      Abs ("y", cT, mk_inj cs sumT c (Bound 0)) $ t
berghofe@5094
   222
  end;
berghofe@5094
   223
wenzelm@6424
   224
wenzelm@6424
   225
wenzelm@6424
   226
(** well-formedness checks **)
berghofe@5094
   227
berghofe@5094
   228
fun err_in_rule sign t msg = error ("Ill-formed introduction rule\n" ^
berghofe@5094
   229
  (Sign.string_of_term sign t) ^ "\n" ^ msg);
berghofe@5094
   230
berghofe@5094
   231
fun err_in_prem sign t p msg = error ("Ill-formed premise\n" ^
berghofe@5094
   232
  (Sign.string_of_term sign p) ^ "\nin introduction rule\n" ^
berghofe@5094
   233
  (Sign.string_of_term sign t) ^ "\n" ^ msg);
berghofe@5094
   234
berghofe@5094
   235
val msg1 = "Conclusion of introduction rule must have form\
berghofe@5094
   236
          \ ' t : S_i '";
berghofe@7710
   237
val msg2 = "Non-atomic premise";
berghofe@5094
   238
val msg3 = "Recursion term on left of member symbol";
berghofe@5094
   239
berghofe@5094
   240
fun check_rule sign cs r =
berghofe@5094
   241
  let
berghofe@7710
   242
    fun check_prem prem = if can HOLogic.dest_Trueprop prem then ()
berghofe@7710
   243
      else err_in_prem sign r prem msg2;
berghofe@5094
   244
berghofe@7710
   245
  in (case HOLogic.dest_Trueprop (Logic.strip_imp_concl r) of
berghofe@7710
   246
        (Const ("op :", _) $ t $ u) =>
berghofe@7710
   247
          if u mem cs then
berghofe@7710
   248
            if exists (Logic.occs o (rpair t)) cs then
berghofe@7710
   249
              err_in_rule sign r msg3
berghofe@7710
   250
            else
berghofe@7710
   251
              seq check_prem (Logic.strip_imp_prems r)
berghofe@5094
   252
          else err_in_rule sign r msg1
berghofe@5094
   253
      | _ => err_in_rule sign r msg1)
berghofe@5094
   254
  end;
berghofe@5094
   255
berghofe@7020
   256
fun try' f msg sign t = (case (try f t) of
berghofe@7020
   257
      Some x => x
berghofe@7020
   258
    | None => error (msg ^ Sign.string_of_term sign t));
berghofe@5094
   259
wenzelm@6424
   260
berghofe@5094
   261
wenzelm@6424
   262
(*** properties of (co)inductive sets ***)
wenzelm@6424
   263
wenzelm@6424
   264
(** elimination rules **)
berghofe@5094
   265
wenzelm@8375
   266
fun mk_elims cs cTs params intr_ts intr_names =
berghofe@5094
   267
  let
berghofe@5094
   268
    val used = foldr add_term_names (intr_ts, []);
berghofe@5094
   269
    val [aname, pname] = variantlist (["a", "P"], used);
berghofe@5094
   270
    val P = HOLogic.mk_Trueprop (Free (pname, HOLogic.boolT));
berghofe@5094
   271
berghofe@5094
   272
    fun dest_intr r =
berghofe@5094
   273
      let val Const ("op :", _) $ t $ u =
berghofe@5094
   274
        HOLogic.dest_Trueprop (Logic.strip_imp_concl r)
berghofe@5094
   275
      in (u, t, Logic.strip_imp_prems r) end;
berghofe@5094
   276
wenzelm@8380
   277
    val intrs = map dest_intr intr_ts ~~ intr_names;
berghofe@5094
   278
berghofe@5094
   279
    fun mk_elim (c, T) =
berghofe@5094
   280
      let
berghofe@5094
   281
        val a = Free (aname, T);
berghofe@5094
   282
berghofe@5094
   283
        fun mk_elim_prem (_, t, ts) =
berghofe@5094
   284
          list_all_free (map dest_Free ((foldr add_term_frees (t::ts, [])) \\ params),
berghofe@5094
   285
            Logic.list_implies (HOLogic.mk_Trueprop (HOLogic.mk_eq (a, t)) :: ts, P));
wenzelm@8375
   286
        val c_intrs = (filter (equal c o #1 o #1) intrs);
berghofe@5094
   287
      in
wenzelm@8375
   288
        (Logic.list_implies (HOLogic.mk_Trueprop (HOLogic.mk_mem (a, c)) ::
wenzelm@8375
   289
          map mk_elim_prem (map #1 c_intrs), P), map #2 c_intrs)
berghofe@5094
   290
      end
berghofe@5094
   291
  in
berghofe@5094
   292
    map mk_elim (cs ~~ cTs)
berghofe@5094
   293
  end;
berghofe@5094
   294
        
wenzelm@6424
   295
wenzelm@6424
   296
wenzelm@6424
   297
(** premises and conclusions of induction rules **)
berghofe@5094
   298
berghofe@5094
   299
fun mk_indrule cs cTs params intr_ts =
berghofe@5094
   300
  let
berghofe@5094
   301
    val used = foldr add_term_names (intr_ts, []);
berghofe@5094
   302
berghofe@5094
   303
    (* predicates for induction rule *)
berghofe@5094
   304
berghofe@5094
   305
    val preds = map Free (variantlist (if length cs < 2 then ["P"] else
berghofe@5094
   306
      map (fn i => "P" ^ string_of_int i) (1 upto length cs), used) ~~
berghofe@5094
   307
        map (fn T => T --> HOLogic.boolT) cTs);
berghofe@5094
   308
berghofe@5094
   309
    (* transform an introduction rule into a premise for induction rule *)
berghofe@5094
   310
berghofe@5094
   311
    fun mk_ind_prem r =
berghofe@5094
   312
      let
berghofe@5094
   313
        val frees = map dest_Free ((add_term_frees (r, [])) \\ params);
berghofe@5094
   314
berghofe@7710
   315
        val pred_of = curry (Library.gen_assoc (op aconv)) (cs ~~ preds);
berghofe@5094
   316
berghofe@7710
   317
        fun subst (s as ((m as Const ("op :", T)) $ t $ u)) =
berghofe@7710
   318
              (case pred_of u of
berghofe@7710
   319
                  None => (m $ fst (subst t) $ fst (subst u), None)
berghofe@7710
   320
                | Some P => (HOLogic.conj $ s $ (P $ t), Some (s, P $ t)))
berghofe@7710
   321
          | subst s =
berghofe@7710
   322
              (case pred_of s of
berghofe@7710
   323
                  Some P => (HOLogic.mk_binop "op Int"
berghofe@7710
   324
                    (s, HOLogic.Collect_const (HOLogic.dest_setT
berghofe@7710
   325
                      (fastype_of s)) $ P), None)
berghofe@7710
   326
                | None => (case s of
berghofe@7710
   327
                     (t $ u) => (fst (subst t) $ fst (subst u), None)
berghofe@7710
   328
                   | (Abs (a, T, t)) => (Abs (a, T, fst (subst t)), None)
berghofe@7710
   329
                   | _ => (s, None)));
berghofe@7710
   330
berghofe@7710
   331
        fun mk_prem (s, prems) = (case subst s of
berghofe@7710
   332
              (_, Some (t, u)) => t :: u :: prems
berghofe@7710
   333
            | (t, _) => t :: prems);
berghofe@7710
   334
          
berghofe@5094
   335
        val Const ("op :", _) $ t $ u =
berghofe@5094
   336
          HOLogic.dest_Trueprop (Logic.strip_imp_concl r)
berghofe@5094
   337
berghofe@5094
   338
      in list_all_free (frees,
berghofe@7710
   339
           Logic.list_implies (map HOLogic.mk_Trueprop (foldr mk_prem
berghofe@5094
   340
             (map HOLogic.dest_Trueprop (Logic.strip_imp_prems r), [])),
berghofe@7710
   341
               HOLogic.mk_Trueprop (the (pred_of u) $ t)))
berghofe@5094
   342
      end;
berghofe@5094
   343
berghofe@5094
   344
    val ind_prems = map mk_ind_prem intr_ts;
berghofe@5094
   345
berghofe@5094
   346
    (* make conclusions for induction rules *)
berghofe@5094
   347
berghofe@5094
   348
    fun mk_ind_concl ((c, P), (ts, x)) =
berghofe@5094
   349
      let val T = HOLogic.dest_setT (fastype_of c);
berghofe@5094
   350
          val Ts = HOLogic.prodT_factors T;
berghofe@5094
   351
          val (frees, x') = foldr (fn (T', (fs, s)) =>
berghofe@5094
   352
            ((Free (s, T'))::fs, bump_string s)) (Ts, ([], x));
berghofe@5094
   353
          val tuple = HOLogic.mk_tuple T frees;
berghofe@5094
   354
      in ((HOLogic.mk_binop "op -->"
berghofe@5094
   355
        (HOLogic.mk_mem (tuple, c), P $ tuple))::ts, x')
berghofe@5094
   356
      end;
berghofe@5094
   357
berghofe@7710
   358
    val mutual_ind_concl = HOLogic.mk_Trueprop (foldr1 HOLogic.mk_conj
berghofe@5094
   359
        (fst (foldr mk_ind_concl (cs ~~ preds, ([], "xa")))))
berghofe@5094
   360
berghofe@5094
   361
  in (preds, ind_prems, mutual_ind_concl)
berghofe@5094
   362
  end;
berghofe@5094
   363
wenzelm@6424
   364
berghofe@5094
   365
wenzelm@8316
   366
(** prepare cases and induct rules **)
wenzelm@8316
   367
wenzelm@8316
   368
(*
wenzelm@8316
   369
  transform mutual rule:
wenzelm@8316
   370
    HH ==> (x1:A1 --> P1 x1) & ... & (xn:An --> Pn xn)
wenzelm@8316
   371
  into i-th projection:
wenzelm@8316
   372
    xi:Ai ==> HH ==> Pi xi
wenzelm@8316
   373
*)
wenzelm@8316
   374
wenzelm@8316
   375
fun project_rules [name] rule = [(name, rule)]
wenzelm@8316
   376
  | project_rules names mutual_rule =
wenzelm@8316
   377
      let
wenzelm@8316
   378
        val n = length names;
wenzelm@8316
   379
        fun proj i =
wenzelm@8316
   380
          (if i < n then (fn th => th RS conjunct1) else I)
wenzelm@8316
   381
            (Library.funpow (i - 1) (fn th => th RS conjunct2) mutual_rule)
wenzelm@8316
   382
            RS mp |> Thm.permute_prems 0 ~1 |> Drule.standard;
wenzelm@8316
   383
      in names ~~ map proj (1 upto n) end;
wenzelm@8316
   384
wenzelm@8375
   385
fun add_cases_induct no_elim no_ind names elims induct induct_cases =
wenzelm@8316
   386
  let
wenzelm@8375
   387
    fun cases_spec (name, elim) = (("", elim), [InductMethod.cases_set_global name]);
wenzelm@8375
   388
    val cases_specs = if no_elim then [] else map2 cases_spec (names, elims);
wenzelm@8316
   389
wenzelm@8375
   390
    fun induct_spec (name, th) =
wenzelm@8380
   391
      (("", th), [RuleCases.case_names induct_cases, InductMethod.induct_set_global name]);
wenzelm@8401
   392
    val induct_specs = if no_ind then [] else map induct_spec (project_rules names induct);
wenzelm@8433
   393
  in #1 o PureThy.add_thms (cases_specs @ induct_specs) end;
wenzelm@8316
   394
wenzelm@8316
   395
wenzelm@8316
   396
wenzelm@6424
   397
(*** proofs for (co)inductive sets ***)
wenzelm@6424
   398
wenzelm@6424
   399
(** prove monotonicity **)
berghofe@5094
   400
berghofe@5094
   401
fun prove_mono setT fp_fun monos thy =
berghofe@5094
   402
  let
wenzelm@6427
   403
    val _ = message "  Proving monotonicity ...";
berghofe@5094
   404
wenzelm@6394
   405
    val mono = prove_goalw_cterm [] (cterm_of (Theory.sign_of thy) (HOLogic.mk_Trueprop
berghofe@5094
   406
      (Const (mono_name, (setT --> setT) --> HOLogic.boolT) $ fp_fun)))
berghofe@7710
   407
        (fn _ => [rtac monoI 1, REPEAT (ares_tac (get_monos thy @ flat (map mk_mono monos)) 1)])
berghofe@5094
   408
berghofe@5094
   409
  in mono end;
berghofe@5094
   410
wenzelm@6424
   411
wenzelm@6424
   412
wenzelm@6424
   413
(** prove introduction rules **)
berghofe@5094
   414
berghofe@5094
   415
fun prove_intrs coind mono fp_def intr_ts con_defs rec_sets_defs thy =
berghofe@5094
   416
  let
wenzelm@6427
   417
    val _ = message "  Proving the introduction rules ...";
berghofe@5094
   418
berghofe@5094
   419
    val unfold = standard (mono RS (fp_def RS
berghofe@5094
   420
      (if coind then def_gfp_Tarski else def_lfp_Tarski)));
berghofe@5094
   421
berghofe@5094
   422
    fun select_disj 1 1 = []
berghofe@5094
   423
      | select_disj _ 1 = [rtac disjI1]
berghofe@5094
   424
      | select_disj n i = (rtac disjI2)::(select_disj (n - 1) (i - 1));
berghofe@5094
   425
berghofe@5094
   426
    val intrs = map (fn (i, intr) => prove_goalw_cterm rec_sets_defs
wenzelm@6394
   427
      (cterm_of (Theory.sign_of thy) intr) (fn prems =>
berghofe@5094
   428
       [(*insert prems and underlying sets*)
berghofe@5094
   429
       cut_facts_tac prems 1,
berghofe@5094
   430
       stac unfold 1,
berghofe@5094
   431
       REPEAT (resolve_tac [vimageI2, CollectI] 1),
berghofe@5094
   432
       (*Now 1-2 subgoals: the disjunction, perhaps equality.*)
berghofe@5094
   433
       EVERY1 (select_disj (length intr_ts) i),
berghofe@5094
   434
       (*Not ares_tac, since refl must be tried before any equality assumptions;
berghofe@5094
   435
         backtracking may occur if the premises have extra variables!*)
berghofe@5094
   436
       DEPTH_SOLVE_1 (resolve_tac [refl,exI,conjI] 1 APPEND assume_tac 1),
berghofe@5094
   437
       (*Now solve the equations like Inl 0 = Inl ?b2*)
berghofe@5094
   438
       rewrite_goals_tac con_defs,
berghofe@5094
   439
       REPEAT (rtac refl 1)])) (1 upto (length intr_ts) ~~ intr_ts)
berghofe@5094
   440
berghofe@5094
   441
  in (intrs, unfold) end;
berghofe@5094
   442
wenzelm@6424
   443
wenzelm@6424
   444
wenzelm@6424
   445
(** prove elimination rules **)
berghofe@5094
   446
wenzelm@8375
   447
fun prove_elims cs cTs params intr_ts intr_names unfold rec_sets_defs thy =
berghofe@5094
   448
  let
wenzelm@6427
   449
    val _ = message "  Proving the elimination rules ...";
berghofe@5094
   450
berghofe@7710
   451
    val rules1 = [CollectE, disjE, make_elim vimageD, exE];
berghofe@7710
   452
    val rules2 = [conjE, Inl_neq_Inr, Inr_neq_Inl] @
berghofe@5094
   453
      map make_elim [Inl_inject, Inr_inject];
wenzelm@8375
   454
  in
wenzelm@8375
   455
    map (fn (t, cases) => prove_goalw_cterm rec_sets_defs
wenzelm@6394
   456
      (cterm_of (Theory.sign_of thy) t) (fn prems =>
berghofe@5094
   457
        [cut_facts_tac [hd prems] 1,
berghofe@5094
   458
         dtac (unfold RS subst) 1,
berghofe@5094
   459
         REPEAT (FIRSTGOAL (eresolve_tac rules1)),
berghofe@5094
   460
         REPEAT (FIRSTGOAL (eresolve_tac rules2)),
berghofe@5094
   461
         EVERY (map (fn prem =>
wenzelm@8375
   462
           DEPTH_SOLVE_1 (ares_tac [prem, conjI] 1)) (tl prems))])
wenzelm@8375
   463
      |> RuleCases.name cases)
wenzelm@8375
   464
      (mk_elims cs cTs params intr_ts intr_names)
wenzelm@8375
   465
  end;
berghofe@5094
   466
wenzelm@6424
   467
berghofe@5094
   468
(** derivation of simplified elimination rules **)
berghofe@5094
   469
berghofe@5094
   470
(*Applies freeness of the given constructors, which *must* be unfolded by
berghofe@5094
   471
  the given defs.  Cannot simply use the local con_defs because con_defs=[] 
berghofe@5094
   472
  for inference systems.
berghofe@5094
   473
 *)
berghofe@5094
   474
wenzelm@7107
   475
(*cprop should have the form t:Si where Si is an inductive set*)
wenzelm@8336
   476
fun mk_cases_i solved elims ss cprop =
wenzelm@7107
   477
  let
wenzelm@7107
   478
    val prem = Thm.assume cprop;
wenzelm@8336
   479
    val tac = if solved then InductMethod.con_elim_solved_tac else InductMethod.con_elim_tac;
wenzelm@8336
   480
    fun mk_elim rl = Drule.standard (Tactic.rule_by_tactic (tac ss) (prem RS rl));
wenzelm@7107
   481
  in
wenzelm@7107
   482
    (case get_first (try mk_elim) elims of
wenzelm@7107
   483
      Some r => r
wenzelm@7107
   484
    | None => error (Pretty.string_of (Pretty.block
wenzelm@7107
   485
        [Pretty.str "mk_cases: proposition not of form 't : S_i'", Pretty.fbrk,
wenzelm@7107
   486
          Display.pretty_cterm cprop])))
wenzelm@7107
   487
  end;
wenzelm@7107
   488
paulson@6141
   489
fun mk_cases elims s =
wenzelm@8336
   490
  mk_cases_i false elims (simpset()) (Thm.read_cterm (Thm.sign_of_thm (hd elims)) (s, propT));
wenzelm@7107
   491
wenzelm@7107
   492
wenzelm@7107
   493
(* inductive_cases(_i) *)
wenzelm@7107
   494
wenzelm@7107
   495
fun gen_inductive_cases prep_att prep_const prep_prop
wenzelm@7107
   496
    ((((name, raw_atts), raw_set), raw_props), comment) thy =
berghofe@9116
   497
  let val sign = Theory.sign_of thy;
berghofe@9116
   498
  in (case get_inductive thy (prep_const sign raw_set) of
berghofe@9116
   499
      None => error ("Unknown (co)inductive set " ^ quote name)
berghofe@9116
   500
    | Some (_, {elims, ...}) =>
berghofe@9116
   501
        let
berghofe@9116
   502
          val atts = map (prep_att thy) raw_atts;
berghofe@9116
   503
          val cprops = map
berghofe@9116
   504
            (Thm.cterm_of sign o prep_prop (ProofContext.init thy)) raw_props;
berghofe@9116
   505
          val thms = map
berghofe@9116
   506
            (mk_cases_i true elims (Simplifier.simpset_of thy)) cprops;
berghofe@9116
   507
        in
berghofe@9116
   508
          thy |> IsarThy.have_theorems_i
wenzelm@9201
   509
            [(((name, atts), map Thm.no_attributes thms), comment)]
berghofe@9116
   510
        end)
berghofe@5094
   511
  end;
berghofe@5094
   512
wenzelm@7107
   513
val inductive_cases =
wenzelm@7107
   514
  gen_inductive_cases Attrib.global_attribute Sign.intern_const ProofContext.read_prop;
wenzelm@7107
   515
wenzelm@7107
   516
val inductive_cases_i = gen_inductive_cases (K I) (K I) ProofContext.cert_prop;
wenzelm@7107
   517
wenzelm@6424
   518
wenzelm@6424
   519
wenzelm@6424
   520
(** prove induction rule **)
berghofe@5094
   521
berghofe@5094
   522
fun prove_indrule cs cTs sumT rec_const params intr_ts mono
berghofe@5094
   523
    fp_def rec_sets_defs thy =
berghofe@5094
   524
  let
wenzelm@6427
   525
    val _ = message "  Proving the induction rule ...";
berghofe@5094
   526
wenzelm@6394
   527
    val sign = Theory.sign_of thy;
berghofe@5094
   528
berghofe@7293
   529
    val sum_case_rewrites = (case ThyInfo.lookup_theory "Datatype" of
berghofe@7293
   530
        None => []
berghofe@7293
   531
      | Some thy' => map mk_meta_eq (PureThy.get_thms thy' "sum.cases"));
berghofe@7293
   532
berghofe@5094
   533
    val (preds, ind_prems, mutual_ind_concl) = mk_indrule cs cTs params intr_ts;
berghofe@5094
   534
berghofe@5094
   535
    (* make predicate for instantiation of abstract induction rule *)
berghofe@5094
   536
berghofe@5094
   537
    fun mk_ind_pred _ [P] = P
berghofe@5094
   538
      | mk_ind_pred T Ps =
berghofe@5094
   539
         let val n = (length Ps) div 2;
berghofe@5094
   540
             val Type (_, [T1, T2]) = T
berghofe@7293
   541
         in Const ("Datatype.sum.sum_case",
berghofe@5094
   542
           [T1 --> HOLogic.boolT, T2 --> HOLogic.boolT, T] ---> HOLogic.boolT) $
berghofe@5094
   543
             mk_ind_pred T1 (take (n, Ps)) $ mk_ind_pred T2 (drop (n, Ps))
berghofe@5094
   544
         end;
berghofe@5094
   545
berghofe@5094
   546
    val ind_pred = mk_ind_pred sumT preds;
berghofe@5094
   547
berghofe@5094
   548
    val ind_concl = HOLogic.mk_Trueprop
berghofe@5094
   549
      (HOLogic.all_const sumT $ Abs ("x", sumT, HOLogic.mk_binop "op -->"
berghofe@5094
   550
        (HOLogic.mk_mem (Bound 0, rec_const), ind_pred $ Bound 0)));
berghofe@5094
   551
berghofe@5094
   552
    (* simplification rules for vimage and Collect *)
berghofe@5094
   553
berghofe@5094
   554
    val vimage_simps = if length cs < 2 then [] else
berghofe@5094
   555
      map (fn c => prove_goalw_cterm [] (cterm_of sign
berghofe@5094
   556
        (HOLogic.mk_Trueprop (HOLogic.mk_eq
berghofe@5094
   557
          (mk_vimage cs sumT (HOLogic.Collect_const sumT $ ind_pred) c,
berghofe@5094
   558
           HOLogic.Collect_const (HOLogic.dest_setT (fastype_of c)) $
berghofe@5094
   559
             nth_elem (find_index_eq c cs, preds)))))
berghofe@7293
   560
        (fn _ => [rtac vimage_Collect 1, rewrite_goals_tac sum_case_rewrites,
berghofe@5094
   561
          rtac refl 1])) cs;
berghofe@5094
   562
berghofe@5094
   563
    val induct = prove_goalw_cterm [] (cterm_of sign
berghofe@5094
   564
      (Logic.list_implies (ind_prems, ind_concl))) (fn prems =>
berghofe@5094
   565
        [rtac (impI RS allI) 1,
berghofe@5094
   566
         DETERM (etac (mono RS (fp_def RS def_induct)) 1),
berghofe@7710
   567
         rewrite_goals_tac (map mk_meta_eq (vimage_Int::Int_Collect::vimage_simps)),
berghofe@5094
   568
         fold_goals_tac rec_sets_defs,
berghofe@5094
   569
         (*This CollectE and disjE separates out the introduction rules*)
berghofe@7710
   570
         REPEAT (FIRSTGOAL (eresolve_tac [CollectE, disjE, exE])),
berghofe@5094
   571
         (*Now break down the individual cases.  No disjE here in case
berghofe@5094
   572
           some premise involves disjunction.*)
berghofe@7710
   573
         REPEAT (FIRSTGOAL (etac conjE ORELSE' hyp_subst_tac)),
berghofe@7293
   574
         rewrite_goals_tac sum_case_rewrites,
berghofe@5094
   575
         EVERY (map (fn prem =>
berghofe@5149
   576
           DEPTH_SOLVE_1 (ares_tac [prem, conjI, refl] 1)) prems)]);
berghofe@5094
   577
berghofe@5094
   578
    val lemma = prove_goalw_cterm rec_sets_defs (cterm_of sign
berghofe@5094
   579
      (Logic.mk_implies (ind_concl, mutual_ind_concl))) (fn prems =>
berghofe@5094
   580
        [cut_facts_tac prems 1,
berghofe@5094
   581
         REPEAT (EVERY
berghofe@5094
   582
           [REPEAT (resolve_tac [conjI, impI] 1),
berghofe@5094
   583
            TRY (dtac vimageD 1), etac allE 1, dtac mp 1, atac 1,
berghofe@7293
   584
            rewrite_goals_tac sum_case_rewrites,
berghofe@5094
   585
            atac 1])])
berghofe@5094
   586
berghofe@5094
   587
  in standard (split_rule (induct RS lemma))
berghofe@5094
   588
  end;
berghofe@5094
   589
wenzelm@6424
   590
wenzelm@6424
   591
wenzelm@6424
   592
(*** specification of (co)inductive sets ****)
wenzelm@6424
   593
wenzelm@6424
   594
(** definitional introduction of (co)inductive sets **)
berghofe@5094
   595
berghofe@9072
   596
fun mk_ind_def declare_consts alt_name coind cs intr_ts monos con_defs thy
berghofe@9072
   597
      params paramTs cTs cnames =
berghofe@5094
   598
  let
berghofe@5094
   599
    val sumT = fold_bal (fn (T, U) => Type ("+", [T, U])) cTs;
berghofe@5094
   600
    val setT = HOLogic.mk_setT sumT;
berghofe@5094
   601
wenzelm@6394
   602
    val fp_name = if coind then Sign.intern_const (Theory.sign_of Gfp.thy) "gfp"
wenzelm@6394
   603
      else Sign.intern_const (Theory.sign_of Lfp.thy) "lfp";
berghofe@5094
   604
berghofe@5149
   605
    val used = foldr add_term_names (intr_ts, []);
berghofe@5149
   606
    val [sname, xname] = variantlist (["S", "x"], used);
berghofe@5149
   607
berghofe@5094
   608
    (* transform an introduction rule into a conjunction  *)
berghofe@5094
   609
    (*   [| t : ... S_i ... ; ... |] ==> u : S_j          *)
berghofe@5094
   610
    (* is transformed into                                *)
berghofe@5094
   611
    (*   x = Inj_j u & t : ... Inj_i -`` S ... & ...      *)
berghofe@5094
   612
berghofe@5094
   613
    fun transform_rule r =
berghofe@5094
   614
      let
berghofe@5094
   615
        val frees = map dest_Free ((add_term_frees (r, [])) \\ params);
berghofe@5149
   616
        val subst = subst_free
berghofe@5149
   617
          (cs ~~ (map (mk_vimage cs sumT (Free (sname, setT))) cs));
berghofe@5094
   618
        val Const ("op :", _) $ t $ u =
berghofe@5094
   619
          HOLogic.dest_Trueprop (Logic.strip_imp_concl r)
berghofe@5094
   620
berghofe@5094
   621
      in foldr (fn ((x, T), P) => HOLogic.mk_exists (x, T, P))
berghofe@7710
   622
        (frees, foldr1 HOLogic.mk_conj
berghofe@5149
   623
          (((HOLogic.eq_const sumT) $ Free (xname, sumT) $ (mk_inj cs sumT u t))::
berghofe@5094
   624
            (map (subst o HOLogic.dest_Trueprop)
berghofe@5094
   625
              (Logic.strip_imp_prems r))))
berghofe@5094
   626
      end
berghofe@5094
   627
berghofe@5094
   628
    (* make a disjunction of all introduction rules *)
berghofe@5094
   629
berghofe@5149
   630
    val fp_fun = absfree (sname, setT, (HOLogic.Collect_const sumT) $
berghofe@7710
   631
      absfree (xname, sumT, foldr1 HOLogic.mk_disj (map transform_rule intr_ts)));
berghofe@5094
   632
berghofe@5094
   633
    (* add definiton of recursive sets to theory *)
berghofe@5094
   634
berghofe@5094
   635
    val rec_name = if alt_name = "" then space_implode "_" cnames else alt_name;
wenzelm@6394
   636
    val full_rec_name = Sign.full_name (Theory.sign_of thy) rec_name;
berghofe@5094
   637
berghofe@5094
   638
    val rec_const = list_comb
berghofe@5094
   639
      (Const (full_rec_name, paramTs ---> setT), params);
berghofe@5094
   640
berghofe@5094
   641
    val fp_def_term = Logic.mk_equals (rec_const,
berghofe@5094
   642
      Const (fp_name, (setT --> setT) --> setT) $ fp_fun)
berghofe@5094
   643
berghofe@5094
   644
    val def_terms = fp_def_term :: (if length cs < 2 then [] else
berghofe@5094
   645
      map (fn c => Logic.mk_equals (c, mk_vimage cs sumT rec_const c)) cs);
berghofe@5094
   646
wenzelm@8433
   647
    val (thy', [fp_def :: rec_sets_defs]) =
wenzelm@8433
   648
      thy
wenzelm@8433
   649
      |> (if declare_consts then
wenzelm@8433
   650
          Theory.add_consts_i (map (fn (c, n) =>
wenzelm@8433
   651
            (n, paramTs ---> fastype_of c, NoSyn)) (cs ~~ cnames))
wenzelm@8433
   652
          else I)
wenzelm@8433
   653
      |> (if length cs < 2 then I
wenzelm@8433
   654
          else Theory.add_consts_i [(rec_name, paramTs ---> setT, NoSyn)])
wenzelm@8433
   655
      |> Theory.add_path rec_name
wenzelm@8433
   656
      |> PureThy.add_defss_i [(("defs", def_terms), [])];
berghofe@5094
   657
berghofe@9072
   658
    val mono = prove_mono setT fp_fun monos thy'
berghofe@5094
   659
berghofe@9072
   660
  in
berghofe@9072
   661
    (thy', mono, fp_def, rec_sets_defs, rec_const, sumT) 
berghofe@9072
   662
  end;
berghofe@5094
   663
berghofe@9072
   664
fun add_ind_def verbose declare_consts alt_name coind no_elim no_ind cs
berghofe@9072
   665
    atts intros monos con_defs thy params paramTs cTs cnames induct_cases =
berghofe@9072
   666
  let
berghofe@9072
   667
    val _ = if verbose then message ("Proofs for " ^ coind_prefix coind ^ "inductive set(s) " ^
berghofe@9072
   668
      commas_quote cnames) else ();
berghofe@9072
   669
berghofe@9072
   670
    val ((intr_names, intr_ts), intr_atts) = apfst split_list (split_list intros);
berghofe@9072
   671
berghofe@9072
   672
    val (thy', mono, fp_def, rec_sets_defs, rec_const, sumT) =
berghofe@9072
   673
      mk_ind_def declare_consts alt_name coind cs intr_ts monos con_defs thy
berghofe@9072
   674
        params paramTs cTs cnames;
berghofe@9072
   675
berghofe@5094
   676
    val (intrs, unfold) = prove_intrs coind mono fp_def intr_ts con_defs
berghofe@5094
   677
      rec_sets_defs thy';
berghofe@5094
   678
    val elims = if no_elim then [] else
wenzelm@8375
   679
      prove_elims cs cTs params intr_ts intr_names unfold rec_sets_defs thy';
wenzelm@8312
   680
    val raw_induct = if no_ind then Drule.asm_rl else
berghofe@5094
   681
      if coind then standard (rule_by_tactic
oheimb@5553
   682
        (rewrite_tac [mk_meta_eq vimage_Un] THEN
berghofe@5094
   683
          fold_tac rec_sets_defs) (mono RS (fp_def RS def_Collect_coinduct)))
berghofe@5094
   684
      else
berghofe@5094
   685
        prove_indrule cs cTs sumT rec_const params intr_ts mono fp_def
berghofe@5094
   686
          rec_sets_defs thy';
berghofe@5108
   687
    val induct = if coind orelse no_ind orelse length cs > 1 then raw_induct
berghofe@5094
   688
      else standard (raw_induct RSN (2, rev_mp));
berghofe@5094
   689
wenzelm@8433
   690
    val (thy'', [intrs']) =
wenzelm@8433
   691
      thy'
wenzelm@6521
   692
      |> PureThy.add_thmss [(("intrs", intrs), atts)]
wenzelm@8433
   693
      |>> (#1 o PureThy.add_thms ((intr_names ~~ intrs) ~~ intr_atts))
wenzelm@8433
   694
      |>> (if no_elim then I else #1 o PureThy.add_thmss [(("elims", elims), [])])
wenzelm@8433
   695
      |>> (if no_ind then I else #1 o PureThy.add_thms
wenzelm@8401
   696
        [((coind_prefix coind ^ "induct", induct), [RuleCases.case_names induct_cases])])
wenzelm@8433
   697
      |>> Theory.parent_path;
wenzelm@8312
   698
    val elims' = if no_elim then elims else PureThy.get_thms thy'' "elims";  (* FIXME improve *)
wenzelm@8312
   699
    val induct' = if no_ind then induct else PureThy.get_thm thy'' (coind_prefix coind ^ "induct");  (* FIXME improve *)
berghofe@5094
   700
  in (thy'',
berghofe@5094
   701
    {defs = fp_def::rec_sets_defs,
berghofe@5094
   702
     mono = mono,
berghofe@5094
   703
     unfold = unfold,
wenzelm@7798
   704
     intrs = intrs',
wenzelm@7798
   705
     elims = elims',
wenzelm@7798
   706
     mk_cases = mk_cases elims',
berghofe@5094
   707
     raw_induct = raw_induct,
wenzelm@7798
   708
     induct = induct'})
berghofe@5094
   709
  end;
berghofe@5094
   710
wenzelm@6424
   711
wenzelm@6424
   712
wenzelm@6424
   713
(** axiomatic introduction of (co)inductive sets **)
berghofe@5094
   714
berghofe@5094
   715
fun add_ind_axm verbose declare_consts alt_name coind no_elim no_ind cs
wenzelm@8401
   716
    atts intros monos con_defs thy params paramTs cTs cnames induct_cases =
berghofe@5094
   717
  let
berghofe@9072
   718
    val _ = message (coind_prefix coind ^ "inductive set(s) " ^ commas_quote cnames);
berghofe@5094
   719
wenzelm@6424
   720
    val ((intr_names, intr_ts), intr_atts) = apfst split_list (split_list intros);
wenzelm@9235
   721
    val (thy', _, fp_def, rec_sets_defs, _, _) =
berghofe@9072
   722
      mk_ind_def declare_consts alt_name coind cs intr_ts monos con_defs thy
berghofe@9072
   723
        params paramTs cTs cnames;
wenzelm@8375
   724
    val (elim_ts, elim_cases) = Library.split_list (mk_elims cs cTs params intr_ts intr_names);
berghofe@5094
   725
    val (_, ind_prems, mutual_ind_concl) = mk_indrule cs cTs params intr_ts;
berghofe@5094
   726
    val ind_t = Logic.list_implies (ind_prems, mutual_ind_concl);
berghofe@5094
   727
    
berghofe@9072
   728
    val thy'' =
berghofe@9072
   729
      thy'
wenzelm@8433
   730
      |> (#1 o PureThy.add_axiomss_i [(("intrs", intr_ts), atts), (("raw_elims", elim_ts), [])])
berghofe@7710
   731
      |> (if coind then I else
wenzelm@8433
   732
            #1 o PureThy.add_axioms_i [(("raw_induct", ind_t), [apsnd (standard o split_rule)])]);
berghofe@5094
   733
berghofe@9072
   734
    val intrs = PureThy.get_thms thy'' "intrs";
wenzelm@8375
   735
    val elims = map2 (fn (th, cases) => RuleCases.name cases th)
berghofe@9072
   736
      (PureThy.get_thms thy'' "raw_elims", elim_cases);
berghofe@9072
   737
    val raw_induct = if coind then Drule.asm_rl else PureThy.get_thm thy'' "raw_induct";
berghofe@5094
   738
    val induct = if coind orelse length cs > 1 then raw_induct
berghofe@5094
   739
      else standard (raw_induct RSN (2, rev_mp));
berghofe@5094
   740
berghofe@9072
   741
    val (thy''', ([elims'], intrs')) =
berghofe@9072
   742
      thy''
wenzelm@8375
   743
      |> PureThy.add_thmss [(("elims", elims), [])]
wenzelm@8433
   744
      |>> (if coind then I
wenzelm@8433
   745
          else #1 o PureThy.add_thms [(("induct", induct), [RuleCases.case_names induct_cases])])
wenzelm@8433
   746
      |>>> PureThy.add_thms ((intr_names ~~ intrs) ~~ intr_atts)
wenzelm@8433
   747
      |>> Theory.parent_path;
berghofe@9072
   748
    val induct' = if coind then raw_induct else PureThy.get_thm thy''' "induct";
berghofe@9072
   749
  in (thy''',
wenzelm@9235
   750
    {defs = fp_def :: rec_sets_defs,
wenzelm@8312
   751
     mono = Drule.asm_rl,
wenzelm@8312
   752
     unfold = Drule.asm_rl,
wenzelm@8433
   753
     intrs = intrs',
wenzelm@8433
   754
     elims = elims',
wenzelm@8433
   755
     mk_cases = mk_cases elims',
berghofe@5094
   756
     raw_induct = raw_induct,
wenzelm@7798
   757
     induct = induct'})
berghofe@5094
   758
  end;
berghofe@5094
   759
wenzelm@6424
   760
wenzelm@6424
   761
wenzelm@6424
   762
(** introduction of (co)inductive sets **)
berghofe@5094
   763
berghofe@5094
   764
fun add_inductive_i verbose declare_consts alt_name coind no_elim no_ind cs
wenzelm@6521
   765
    atts intros monos con_defs thy =
berghofe@5094
   766
  let
wenzelm@6424
   767
    val _ = Theory.requires thy "Inductive" (coind_prefix coind ^ "inductive definitions");
wenzelm@6394
   768
    val sign = Theory.sign_of thy;
berghofe@5094
   769
berghofe@5094
   770
    (*parameters should agree for all mutually recursive components*)
berghofe@5094
   771
    val (_, params) = strip_comb (hd cs);
berghofe@5094
   772
    val paramTs = map (try' (snd o dest_Free) "Parameter in recursive\
berghofe@5094
   773
      \ component is not a free variable: " sign) params;
berghofe@5094
   774
berghofe@5094
   775
    val cTs = map (try' (HOLogic.dest_setT o fastype_of)
berghofe@5094
   776
      "Recursive component not of type set: " sign) cs;
berghofe@5094
   777
wenzelm@6437
   778
    val full_cnames = map (try' (fst o dest_Const o head_of)
berghofe@5094
   779
      "Recursive set not previously declared as constant: " sign) cs;
wenzelm@6437
   780
    val cnames = map Sign.base_name full_cnames;
berghofe@5094
   781
wenzelm@6424
   782
    val _ = seq (check_rule sign cs o snd o fst) intros;
wenzelm@8401
   783
    val induct_cases = map (#1 o #1) intros;
wenzelm@6437
   784
wenzelm@6437
   785
    val (thy1, result) =
wenzelm@6437
   786
      (if ! quick_and_dirty then add_ind_axm else add_ind_def)
wenzelm@6521
   787
        verbose declare_consts alt_name coind no_elim no_ind cs atts intros monos
wenzelm@8401
   788
        con_defs thy params paramTs cTs cnames induct_cases;
wenzelm@8307
   789
    val thy2 = thy1
wenzelm@8307
   790
      |> put_inductives full_cnames ({names = full_cnames, coind = coind}, result)
wenzelm@8401
   791
      |> add_cases_induct no_elim (no_ind orelse coind) full_cnames
wenzelm@8401
   792
          (#elims result) (#induct result) induct_cases;
wenzelm@6437
   793
  in (thy2, result) end;
berghofe@5094
   794
wenzelm@6424
   795
berghofe@5094
   796
wenzelm@6424
   797
(** external interface **)
wenzelm@6424
   798
wenzelm@6521
   799
fun add_inductive verbose coind c_strings srcs intro_srcs raw_monos raw_con_defs thy =
berghofe@5094
   800
  let
wenzelm@6394
   801
    val sign = Theory.sign_of thy;
wenzelm@8100
   802
    val cs = map (term_of o Thm.read_cterm sign o rpair HOLogic.termT) c_strings;
wenzelm@6424
   803
wenzelm@6521
   804
    val atts = map (Attrib.global_attribute thy) srcs;
wenzelm@6424
   805
    val intr_names = map (fst o fst) intro_srcs;
berghofe@7710
   806
    val intr_ts = map (term_of o Thm.read_cterm sign o rpair propT o snd o fst) intro_srcs;
wenzelm@6424
   807
    val intr_atts = map (map (Attrib.global_attribute thy) o snd) intro_srcs;
berghofe@7020
   808
    val (cs', intr_ts') = unify_consts sign cs intr_ts;
berghofe@5094
   809
wenzelm@6424
   810
    val ((thy', con_defs), monos) = thy
wenzelm@6424
   811
      |> IsarThy.apply_theorems raw_monos
wenzelm@6424
   812
      |> apfst (IsarThy.apply_theorems raw_con_defs);
wenzelm@6424
   813
  in
berghofe@7020
   814
    add_inductive_i verbose false "" coind false false cs'
berghofe@7020
   815
      atts ((intr_names ~~ intr_ts') ~~ intr_atts) monos con_defs thy'
berghofe@5094
   816
  end;
berghofe@5094
   817
wenzelm@6424
   818
wenzelm@6424
   819
wenzelm@6437
   820
(** package setup **)
wenzelm@6437
   821
wenzelm@6437
   822
(* setup theory *)
wenzelm@6437
   823
wenzelm@8634
   824
val setup =
wenzelm@8634
   825
 [InductiveData.init,
wenzelm@8634
   826
  Attrib.add_attributes [("mono", mono_attr, "monotonicity rule")]];
wenzelm@6437
   827
wenzelm@6437
   828
wenzelm@6437
   829
(* outer syntax *)
wenzelm@6424
   830
wenzelm@6723
   831
local structure P = OuterParse and K = OuterSyntax.Keyword in
wenzelm@6424
   832
wenzelm@6521
   833
fun mk_ind coind (((sets, (atts, intrs)), monos), con_defs) =
wenzelm@6723
   834
  #1 o add_inductive true coind sets atts (map P.triple_swap intrs) monos con_defs;
wenzelm@6424
   835
wenzelm@6424
   836
fun ind_decl coind =
wenzelm@6729
   837
  (Scan.repeat1 P.term --| P.marg_comment) --
wenzelm@6729
   838
  (P.$$$ "intrs" |--
wenzelm@7152
   839
    P.!!! (P.opt_attribs -- Scan.repeat1 (P.opt_thm_name ":" -- P.prop --| P.marg_comment))) --
wenzelm@6729
   840
  Scan.optional (P.$$$ "monos" |-- P.!!! P.xthms1 --| P.marg_comment) [] --
wenzelm@6729
   841
  Scan.optional (P.$$$ "con_defs" |-- P.!!! P.xthms1 --| P.marg_comment) []
wenzelm@6424
   842
  >> (Toplevel.theory o mk_ind coind);
wenzelm@6424
   843
wenzelm@6723
   844
val inductiveP =
wenzelm@6723
   845
  OuterSyntax.command "inductive" "define inductive sets" K.thy_decl (ind_decl false);
wenzelm@6723
   846
wenzelm@6723
   847
val coinductiveP =
wenzelm@6723
   848
  OuterSyntax.command "coinductive" "define coinductive sets" K.thy_decl (ind_decl true);
wenzelm@6424
   849
wenzelm@7107
   850
wenzelm@7107
   851
val ind_cases =
wenzelm@7107
   852
  P.opt_thm_name "=" -- P.xname --| P.$$$ ":" -- Scan.repeat1 P.prop -- P.marg_comment
wenzelm@7107
   853
  >> (Toplevel.theory o inductive_cases);
wenzelm@7107
   854
wenzelm@7107
   855
val inductive_casesP =
wenzelm@7107
   856
  OuterSyntax.command "inductive_cases" "create simplified instances of elimination rules"
wenzelm@7107
   857
    K.thy_decl ind_cases;
wenzelm@7107
   858
wenzelm@6424
   859
val _ = OuterSyntax.add_keywords ["intrs", "monos", "con_defs"];
wenzelm@7107
   860
val _ = OuterSyntax.add_parsers [inductiveP, coinductiveP, inductive_casesP];
wenzelm@6424
   861
berghofe@5094
   862
end;
wenzelm@6424
   863
wenzelm@6424
   864
wenzelm@6424
   865
end;