src/HOL/Tools/datatype_rep_proofs.ML
author berghofe
Mon Jan 24 17:59:48 2005 +0100 (2005-01-24)
changeset 15457 1fbd4aba46e3
parent 15391 797ed46d724b
child 15531 08c8dad8e399
permissions -rw-r--r--
Adapted to modified interface of PureThy.get_thm(s).
berghofe@5177
     1
(*  Title:      HOL/Tools/datatype_rep_proofs.ML
berghofe@5177
     2
    ID:         $Id$
wenzelm@11539
     3
    Author:     Stefan Berghofer, TU Muenchen
berghofe@5177
     4
berghofe@5177
     5
Definitional introduction of datatypes
berghofe@5177
     6
Proof of characteristic theorems:
berghofe@5177
     7
berghofe@5177
     8
 - injectivity of constructors
berghofe@7228
     9
 - distinctness of constructors
berghofe@5177
    10
 - induction theorem
berghofe@5177
    11
berghofe@5177
    12
*)
berghofe@5177
    13
berghofe@5177
    14
signature DATATYPE_REP_PROOFS =
berghofe@5177
    15
sig
berghofe@5661
    16
  val representation_proofs : bool -> DatatypeAux.datatype_info Symtab.table ->
berghofe@13641
    17
    string list -> DatatypeAux.descr list -> (string * sort) list ->
berghofe@13641
    18
      (string * mixfix) list -> (string * mixfix) list list -> theory attribute
berghofe@13641
    19
        -> theory -> theory * thm list list * thm list list * thm list list *
berghofe@13641
    20
          DatatypeAux.simproc_dist list * thm
berghofe@5177
    21
end;
berghofe@5177
    22
berghofe@5177
    23
structure DatatypeRepProofs : DATATYPE_REP_PROOFS =
berghofe@5177
    24
struct
berghofe@5177
    25
berghofe@5177
    26
open DatatypeAux;
berghofe@5177
    27
berghofe@5177
    28
val (_ $ (_ $ (_ $ (distinct_f $ _) $ _))) = hd (prems_of distinct_lemma);
berghofe@5177
    29
wenzelm@11435
    30
wenzelm@11435
    31
(** theory context references **)
berghofe@5177
    32
wenzelm@11435
    33
val f_myinv_f = thm "f_myinv_f";
wenzelm@11435
    34
val myinv_f_f = thm "myinv_f_f";
wenzelm@11435
    35
berghofe@5177
    36
berghofe@5177
    37
fun exh_thm_of (dt_info : datatype_info Symtab.table) tname =
berghofe@5177
    38
  #exhaustion (the (Symtab.lookup (dt_info, tname)));
berghofe@5177
    39
berghofe@5177
    40
(******************************************************************************)
berghofe@5177
    41
berghofe@5661
    42
fun representation_proofs flat_names (dt_info : datatype_info Symtab.table)
wenzelm@8436
    43
      new_type_names descr sorts types_syntax constr_syntax case_names_induct thy =
berghofe@5177
    44
  let
wenzelm@12922
    45
    val Datatype_thy =
wenzelm@12922
    46
      if PureThy.get_name thy = "Datatype" then thy
wenzelm@12922
    47
      else theory "Datatype";
wenzelm@11957
    48
    val node_name = "Datatype_Universe.node";
wenzelm@11957
    49
    val In0_name = "Datatype_Universe.In0";
wenzelm@11957
    50
    val In1_name = "Datatype_Universe.In1";
wenzelm@11957
    51
    val Scons_name = "Datatype_Universe.Scons";
wenzelm@11957
    52
    val Leaf_name = "Datatype_Universe.Leaf";
wenzelm@11957
    53
    val Numb_name = "Datatype_Universe.Numb";
wenzelm@11957
    54
    val Lim_name = "Datatype_Universe.Lim";
berghofe@13641
    55
    val Suml_name = "Datatype.Suml";
berghofe@13641
    56
    val Sumr_name = "Datatype.Sumr";
berghofe@7015
    57
berghofe@13641
    58
    val [In0_inject, In1_inject, Scons_inject, Leaf_inject,
berghofe@13641
    59
         In0_eq, In1_eq, In0_not_In1, In1_not_In0,
berghofe@15457
    60
         Lim_inject, Suml_inject, Sumr_inject] = map (get_thm Datatype_thy o rpair None)
berghofe@13641
    61
        ["In0_inject", "In1_inject", "Scons_inject", "Leaf_inject",
berghofe@13641
    62
         "In0_eq", "In1_eq", "In0_not_In1", "In1_not_In0",
berghofe@13641
    63
         "Lim_inject", "Suml_inject", "Sumr_inject"];
berghofe@5177
    64
berghofe@5177
    65
    val descr' = flat descr;
berghofe@5177
    66
berghofe@5661
    67
    val big_name = space_implode "_" new_type_names;
berghofe@5661
    68
    val thy1 = add_path flat_names big_name thy;
berghofe@5661
    69
    val big_rec_name = big_name ^ "_rep_set";
wenzelm@6394
    70
    val rep_set_names = map (Sign.full_name (Theory.sign_of thy1))
berghofe@5177
    71
      (if length descr' = 1 then [big_rec_name] else
berghofe@5177
    72
        (map ((curry (op ^) (big_rec_name ^ "_")) o string_of_int)
berghofe@5177
    73
          (1 upto (length descr'))));
berghofe@5177
    74
berghofe@5661
    75
    val tyvars = map (fn (_, (_, Ts, _)) => map dest_DtTFree Ts) (hd descr);
berghofe@5661
    76
    val leafTs' = get_nonrec_types descr' sorts;
berghofe@7015
    77
    val branchTs = get_branching_types descr' sorts;
berghofe@7015
    78
    val branchT = if null branchTs then HOLogic.unitT
berghofe@7015
    79
      else fold_bal (fn (T, U) => Type ("+", [T, U])) branchTs;
berghofe@13641
    80
    val arities = get_arities descr' \ 0;
berghofe@7015
    81
    val unneeded_vars = hd tyvars \\ foldr add_typ_tfree_names (leafTs' @ branchTs, []);
berghofe@5661
    82
    val leafTs = leafTs' @ (map (fn n => TFree (n, the (assoc (sorts, n)))) unneeded_vars);
berghofe@5177
    83
    val recTs = get_rec_types descr' sorts;
berghofe@5177
    84
    val newTs = take (length (hd descr), recTs);
berghofe@5177
    85
    val oldTs = drop (length (hd descr), recTs);
berghofe@5177
    86
    val sumT = if null leafTs then HOLogic.unitT
berghofe@5177
    87
      else fold_bal (fn (T, U) => Type ("+", [T, U])) leafTs;
berghofe@7015
    88
    val Univ_elT = HOLogic.mk_setT (Type (node_name, [sumT, branchT]));
berghofe@5177
    89
    val UnivT = HOLogic.mk_setT Univ_elT;
berghofe@5177
    90
berghofe@5177
    91
    val In0 = Const (In0_name, Univ_elT --> Univ_elT);
berghofe@5177
    92
    val In1 = Const (In1_name, Univ_elT --> Univ_elT);
berghofe@5177
    93
    val Leaf = Const (Leaf_name, sumT --> Univ_elT);
berghofe@7015
    94
    val Lim = Const (Lim_name, (branchT --> Univ_elT) --> Univ_elT);
berghofe@5177
    95
berghofe@5177
    96
    (* make injections needed for embedding types in leaves *)
berghofe@5177
    97
berghofe@5177
    98
    fun mk_inj T' x =
berghofe@5177
    99
      let
berghofe@5177
   100
        fun mk_inj' T n i =
berghofe@5177
   101
          if n = 1 then x else
berghofe@5177
   102
          let val n2 = n div 2;
berghofe@5177
   103
              val Type (_, [T1, T2]) = T
berghofe@5177
   104
          in
berghofe@5177
   105
            if i <= n2 then
paulson@15391
   106
              Const ("Sum_Type.Inl", T1 --> T) $ (mk_inj' T1 n2 i)
berghofe@5177
   107
            else
paulson@15391
   108
              Const ("Sum_Type.Inr", T2 --> T) $ (mk_inj' T2 (n - n2) (i - n2))
berghofe@5177
   109
          end
berghofe@5177
   110
      in mk_inj' sumT (length leafTs) (1 + find_index_eq T' leafTs)
berghofe@5177
   111
      end;
berghofe@5177
   112
berghofe@5177
   113
    (* make injections for constructors *)
berghofe@5177
   114
wenzelm@7704
   115
    fun mk_univ_inj ts = access_bal (fn t => In0 $ t, fn t => In1 $ t, if ts = [] then
berghofe@5177
   116
        Const ("arbitrary", Univ_elT)
berghofe@5177
   117
      else
berghofe@5177
   118
        foldr1 (HOLogic.mk_binop Scons_name) ts);
berghofe@5177
   119
berghofe@7015
   120
    (* function spaces *)
berghofe@7015
   121
berghofe@7015
   122
    fun mk_fun_inj T' x =
berghofe@7015
   123
      let
berghofe@7015
   124
        fun mk_inj T n i =
berghofe@7015
   125
          if n = 1 then x else
berghofe@7015
   126
          let
berghofe@7015
   127
            val n2 = n div 2;
berghofe@7015
   128
            val Type (_, [T1, T2]) = T;
berghofe@13641
   129
            fun mkT U = (U --> Univ_elT) --> T --> Univ_elT
berghofe@7015
   130
          in
berghofe@13641
   131
            if i <= n2 then Const (Suml_name, mkT T1) $ mk_inj T1 n2 i
berghofe@13641
   132
            else Const (Sumr_name, mkT T2) $ mk_inj T2 (n - n2) (i - n2)
berghofe@7015
   133
          end
berghofe@7015
   134
      in mk_inj branchT (length branchTs) (1 + find_index_eq T' branchTs)
berghofe@7015
   135
      end;
berghofe@7015
   136
berghofe@13641
   137
    val mk_lim = foldr (fn (T, t) => Lim $ mk_fun_inj T (Abs ("x", T, t)));
berghofe@13641
   138
berghofe@5177
   139
    (************** generate introduction rules for representing set **********)
berghofe@5177
   140
wenzelm@6427
   141
    val _ = message "Constructing representing sets ...";
berghofe@5177
   142
berghofe@5177
   143
    (* make introduction rule for a single constructor *)
berghofe@5177
   144
berghofe@5177
   145
    fun make_intr s n (i, (_, cargs)) =
berghofe@5177
   146
      let
berghofe@13641
   147
        fun mk_prem (dt, (j, prems, ts)) = (case strip_dtyp dt of
berghofe@13641
   148
            (dts, DtRec k) =>
berghofe@13641
   149
              let
berghofe@13641
   150
                val Ts = map (typ_of_dtyp descr' sorts) dts;
berghofe@13641
   151
                val free_t =
berghofe@13641
   152
                  app_bnds (mk_Free "x" (Ts ---> Univ_elT) j) (length Ts)
berghofe@13641
   153
              in (j + 1, list_all (map (pair "x") Ts,
berghofe@13641
   154
                  HOLogic.mk_Trueprop (HOLogic.mk_mem (free_t,
berghofe@13641
   155
                    Const (nth_elem (k, rep_set_names), UnivT)))) :: prems,
berghofe@13641
   156
                mk_lim (Ts, free_t) :: ts)
berghofe@5177
   157
              end
berghofe@13641
   158
          | _ =>
berghofe@5177
   159
              let val T = typ_of_dtyp descr' sorts dt
berghofe@5177
   160
              in (j + 1, prems, (Leaf $ mk_inj T (mk_Free "x" T j))::ts)
berghofe@13641
   161
              end);
berghofe@5177
   162
berghofe@5177
   163
        val (_, prems, ts) = foldr mk_prem (cargs, (1, [], []));
berghofe@5177
   164
        val concl = HOLogic.mk_Trueprop (HOLogic.mk_mem
berghofe@5177
   165
          (mk_univ_inj ts n i, Const (s, UnivT)))
berghofe@13641
   166
      in Logic.list_implies (prems, concl)
berghofe@5177
   167
      end;
berghofe@5177
   168
berghofe@5177
   169
    val consts = map (fn s => Const (s, UnivT)) rep_set_names;
berghofe@5177
   170
berghofe@5177
   171
    val intr_ts = flat (map (fn ((_, (_, _, constrs)), rep_set_name) =>
berghofe@5177
   172
      map (make_intr rep_set_name (length constrs))
berghofe@5177
   173
        ((1 upto (length constrs)) ~~ constrs)) (descr' ~~ rep_set_names));
berghofe@5177
   174
berghofe@5177
   175
    val (thy2, {raw_induct = rep_induct, intrs = rep_intrs, ...}) =
berghofe@5661
   176
      setmp InductivePackage.quiet_mode (!quiet_mode)
berghofe@5661
   177
        (InductivePackage.add_inductive_i false true big_rec_name false true false
berghofe@13641
   178
           consts (map (fn x => (("", x), [])) intr_ts) []) thy1;
berghofe@5177
   179
berghofe@5177
   180
    (********************************* typedef ********************************)
berghofe@5177
   181
berghofe@5661
   182
    val thy3 = add_path flat_names big_name (foldl (fn (thy, ((((name, mx), tvs), c), name')) =>
wenzelm@5696
   183
      setmp TypedefPackage.quiet_mode true
wenzelm@11827
   184
        (TypedefPackage.add_typedef_i false (Some name') (name, tvs, mx) c None
wenzelm@11827
   185
          (rtac exI 1 THEN
wenzelm@11827
   186
            QUIET_BREADTH_FIRST (has_fewer_prems 1)
berghofe@13641
   187
            (resolve_tac rep_intrs 1))) thy |> #1)
berghofe@7015
   188
              (parent_path flat_names thy2, types_syntax ~~ tyvars ~~
berghofe@7015
   189
                (take (length newTs, consts)) ~~ new_type_names));
berghofe@5177
   190
berghofe@5177
   191
    (*********************** definition of constructors ***********************)
berghofe@5177
   192
berghofe@5177
   193
    val big_rep_name = (space_implode "_" new_type_names) ^ "_Rep_";
berghofe@5177
   194
    val rep_names = map (curry op ^ "Rep_") new_type_names;
berghofe@5177
   195
    val rep_names' = map (fn i => big_rep_name ^ (string_of_int i))
berghofe@5177
   196
      (1 upto (length (flat (tl descr))));
wenzelm@6394
   197
    val all_rep_names = map (Sign.intern_const (Theory.sign_of thy3)) rep_names @
wenzelm@6394
   198
      map (Sign.full_name (Theory.sign_of thy3)) rep_names';
berghofe@5177
   199
berghofe@5177
   200
    (* isomorphism declarations *)
berghofe@5177
   201
berghofe@5177
   202
    val iso_decls = map (fn (T, s) => (s, T --> Univ_elT, NoSyn))
berghofe@5177
   203
      (oldTs ~~ rep_names');
berghofe@5177
   204
berghofe@5177
   205
    (* constructor definitions *)
berghofe@5177
   206
berghofe@5177
   207
    fun make_constr_def tname T n ((thy, defs, eqns, i), ((cname, cargs), (cname', mx))) =
berghofe@5177
   208
      let
berghofe@5177
   209
        fun constr_arg (dt, (j, l_args, r_args)) =
berghofe@5177
   210
          let val T = typ_of_dtyp descr' sorts dt;
berghofe@5177
   211
              val free_t = mk_Free "x" T j
berghofe@13641
   212
          in (case (strip_dtyp dt, strip_type T) of
berghofe@13641
   213
              ((_, DtRec m), (Us, U)) => (j + 1, free_t :: l_args, mk_lim (Us,
berghofe@13641
   214
                Const (nth_elem (m, all_rep_names), U --> Univ_elT) $
berghofe@13641
   215
                  app_bnds free_t (length Us)) :: r_args)
berghofe@5177
   216
            | _ => (j + 1, free_t::l_args, (Leaf $ mk_inj T free_t)::r_args))
berghofe@5177
   217
          end;
berghofe@5177
   218
berghofe@5177
   219
        val (_, l_args, r_args) = foldr constr_arg (cargs, (1, [], []));
berghofe@5177
   220
        val constrT = (map (typ_of_dtyp descr' sorts) cargs) ---> T;
wenzelm@6394
   221
        val abs_name = Sign.intern_const (Theory.sign_of thy) ("Abs_" ^ tname);
wenzelm@6394
   222
        val rep_name = Sign.intern_const (Theory.sign_of thy) ("Rep_" ^ tname);
berghofe@5177
   223
        val lhs = list_comb (Const (cname, constrT), l_args);
berghofe@5177
   224
        val rhs = mk_univ_inj r_args n i;
berghofe@5177
   225
        val def = equals T $ lhs $ (Const (abs_name, Univ_elT --> T) $ rhs);
berghofe@5177
   226
        val def_name = (Sign.base_name cname) ^ "_def";
berghofe@5177
   227
        val eqn = HOLogic.mk_Trueprop (HOLogic.mk_eq
berghofe@5177
   228
          (Const (rep_name, T --> Univ_elT) $ lhs, rhs));
wenzelm@8436
   229
        val (thy', [def_thm]) = thy |>
berghofe@5177
   230
          Theory.add_consts_i [(cname', constrT, mx)] |>
wenzelm@9315
   231
          (PureThy.add_defs_i false o map Thm.no_attributes) [(def_name, def)];
berghofe@5177
   232
wenzelm@8436
   233
      in (thy', defs @ [def_thm], eqns @ [eqn], i + 1) end;
berghofe@5177
   234
berghofe@5177
   235
    (* constructor definitions for datatype *)
berghofe@5177
   236
berghofe@5177
   237
    fun dt_constr_defs ((thy, defs, eqns, rep_congs, dist_lemmas),
berghofe@5177
   238
        ((((_, (_, _, constrs)), tname), T), constr_syntax)) =
berghofe@5177
   239
      let
berghofe@5177
   240
        val _ $ (_ $ (cong_f $ _) $ _) = concl_of arg_cong;
wenzelm@6394
   241
        val sg = Theory.sign_of thy;
berghofe@5177
   242
        val rep_const = cterm_of sg
berghofe@5177
   243
          (Const (Sign.intern_const sg ("Rep_" ^ tname), T --> Univ_elT));
berghofe@7015
   244
        val cong' = standard (cterm_instantiate [(cterm_of sg cong_f, rep_const)] arg_cong);
berghofe@7015
   245
        val dist = standard (cterm_instantiate [(cterm_of sg distinct_f, rep_const)] distinct_lemma);
berghofe@5177
   246
        val (thy', defs', eqns', _) = foldl ((make_constr_def tname T) (length constrs))
berghofe@5661
   247
          ((add_path flat_names tname thy, defs, [], 1), constrs ~~ constr_syntax)
berghofe@5177
   248
      in
berghofe@5661
   249
        (parent_path flat_names thy', defs', eqns @ [eqns'],
berghofe@5177
   250
          rep_congs @ [cong'], dist_lemmas @ [dist])
berghofe@5177
   251
      end;
berghofe@5177
   252
berghofe@5177
   253
    val (thy4, constr_defs, constr_rep_eqns, rep_congs, dist_lemmas) = foldl dt_constr_defs
berghofe@5661
   254
      ((thy3 |> Theory.add_consts_i iso_decls |> parent_path flat_names, [], [], [], []),
berghofe@5177
   255
        hd descr ~~ new_type_names ~~ newTs ~~ constr_syntax);
berghofe@5177
   256
berghofe@5177
   257
    (*********** isomorphisms for new types (introduced by typedef) ***********)
berghofe@5177
   258
wenzelm@6427
   259
    val _ = message "Proving isomorphism properties ...";
berghofe@5177
   260
berghofe@5177
   261
    (* get axioms from theory *)
berghofe@5177
   262
berghofe@5177
   263
    val newT_iso_axms = map (fn s =>
berghofe@15457
   264
      (get_thm thy4 ("Abs_" ^ s ^ "_inverse", None),
berghofe@15457
   265
       get_thm thy4 ("Rep_" ^ s ^ "_inverse", None),
berghofe@15457
   266
       get_thm thy4 ("Rep_" ^ s, None))) new_type_names;
berghofe@5177
   267
berghofe@5177
   268
    (*------------------------------------------------*)
berghofe@5177
   269
    (* prove additional theorems:                     *)
berghofe@5177
   270
    (*  inj_on dt_Abs_i rep_set_i  and  inj dt_Rep_i  *)
berghofe@5177
   271
    (*------------------------------------------------*)
berghofe@5177
   272
berghofe@5177
   273
    fun prove_newT_iso_inj_thm (((s, (thm1, thm2, _)), T), rep_set_name) =
berghofe@5177
   274
      let
wenzelm@6394
   275
        val sg = Theory.sign_of thy4;
berghofe@5177
   276
        val RepT = T --> Univ_elT;
berghofe@5177
   277
        val Rep_name = Sign.intern_const sg ("Rep_" ^ s);
berghofe@5177
   278
        val AbsT = Univ_elT --> T;
berghofe@5177
   279
        val Abs_name = Sign.intern_const sg ("Abs_" ^ s);
berghofe@5177
   280
paulson@6171
   281
        val inj_Abs_thm = 
paulson@6171
   282
	    prove_goalw_cterm [] 
paulson@6171
   283
	      (cterm_of sg
paulson@6171
   284
	       (HOLogic.mk_Trueprop 
wenzelm@11435
   285
		(Const ("Fun.inj_on", [AbsT, UnivT] ---> HOLogic.boolT) $
paulson@6171
   286
		 Const (Abs_name, AbsT) $ Const (rep_set_name, UnivT))))
berghofe@5177
   287
              (fn _ => [rtac inj_on_inverseI 1, etac thm1 1]);
berghofe@5177
   288
paulson@6171
   289
        val setT = HOLogic.mk_setT T
paulson@6171
   290
paulson@6171
   291
        val inj_Rep_thm =
paulson@6171
   292
	    prove_goalw_cterm []
paulson@6171
   293
	      (cterm_of sg
paulson@6171
   294
	       (HOLogic.mk_Trueprop
wenzelm@11435
   295
		(Const ("Fun.inj_on", [RepT, setT] ---> HOLogic.boolT) $
wenzelm@11435
   296
		 Const (Rep_name, RepT) $ Const ("UNIV", setT))))
berghofe@5177
   297
              (fn _ => [rtac inj_inverseI 1, rtac thm2 1])
berghofe@5177
   298
paulson@6171
   299
      in (inj_Abs_thm, inj_Rep_thm) end;
berghofe@5177
   300
berghofe@5177
   301
    val newT_iso_inj_thms = map prove_newT_iso_inj_thm
berghofe@5177
   302
      (new_type_names ~~ newT_iso_axms ~~ newTs ~~
berghofe@5177
   303
        take (length newTs, rep_set_names));
berghofe@5177
   304
berghofe@5177
   305
    (********* isomorphisms between existing types and "unfolded" types *******)
berghofe@5177
   306
berghofe@5177
   307
    (*---------------------------------------------------------------------*)
berghofe@5177
   308
    (* isomorphisms are defined using primrec-combinators:                 *)
berghofe@5177
   309
    (* generate appropriate functions for instantiating primrec-combinator *)
berghofe@5177
   310
    (*                                                                     *)
berghofe@13641
   311
    (*   e.g.  dt_Rep_i = list_rec ... (%h t y. In1 (Scons (Leaf h) y))    *)
berghofe@5177
   312
    (*                                                                     *)
berghofe@5177
   313
    (* also generate characteristic equations for isomorphisms             *)
berghofe@5177
   314
    (*                                                                     *)
berghofe@13641
   315
    (*   e.g.  dt_Rep_i (cons h t) = In1 (Scons (dt_Rep_j h) (dt_Rep_i t)) *)
berghofe@5177
   316
    (*---------------------------------------------------------------------*)
berghofe@5177
   317
berghofe@5177
   318
    fun make_iso_def k ks n ((fs, eqns, i), (cname, cargs)) =
berghofe@5177
   319
      let
berghofe@5177
   320
        val argTs = map (typ_of_dtyp descr' sorts) cargs;
berghofe@5177
   321
        val T = nth_elem (k, recTs);
berghofe@5177
   322
        val rep_name = nth_elem (k, all_rep_names);
berghofe@5177
   323
        val rep_const = Const (rep_name, T --> Univ_elT);
berghofe@5177
   324
        val constr = Const (cname, argTs ---> T);
berghofe@5177
   325
berghofe@7015
   326
        fun process_arg ks' ((i2, i2', ts, Ts), dt) =
berghofe@13641
   327
          let
berghofe@13641
   328
            val T' = typ_of_dtyp descr' sorts dt;
berghofe@13641
   329
            val (Us, U) = strip_type T'
berghofe@13641
   330
          in (case strip_dtyp dt of
berghofe@13641
   331
              (_, DtRec j) => if j mem ks' then
berghofe@13641
   332
                  (i2 + 1, i2' + 1, ts @ [mk_lim (Us, app_bnds
berghofe@13641
   333
                     (mk_Free "y" (Us ---> Univ_elT) i2') (length Us))],
berghofe@13641
   334
                   Ts @ [Us ---> Univ_elT])
berghofe@5177
   335
                else
berghofe@13641
   336
                  (i2 + 1, i2', ts @ [mk_lim (Us,
berghofe@13641
   337
                     Const (nth_elem (j, all_rep_names), U --> Univ_elT) $
berghofe@13641
   338
                       app_bnds (mk_Free "x" T' i2) (length Us))], Ts)
berghofe@7015
   339
            | _ => (i2 + 1, i2', ts @ [Leaf $ mk_inj T' (mk_Free "x" T' i2)], Ts))
berghofe@5177
   340
          end;
berghofe@5177
   341
berghofe@7015
   342
        val (i2, i2', ts, Ts) = foldl (process_arg ks) ((1, 1, [], []), cargs);
berghofe@5177
   343
        val xs = map (uncurry (mk_Free "x")) (argTs ~~ (1 upto (i2 - 1)));
berghofe@7015
   344
        val ys = map (uncurry (mk_Free "y")) (Ts ~~ (1 upto (i2' - 1)));
berghofe@5177
   345
        val f = list_abs_free (map dest_Free (xs @ ys), mk_univ_inj ts n i);
berghofe@5177
   346
berghofe@7015
   347
        val (_, _, ts', _) = foldl (process_arg []) ((1, 1, [], []), cargs);
berghofe@5177
   348
        val eqn = HOLogic.mk_Trueprop (HOLogic.mk_eq
berghofe@5177
   349
          (rep_const $ list_comb (constr, xs), mk_univ_inj ts' n i))
berghofe@5177
   350
berghofe@5177
   351
      in (fs @ [f], eqns @ [eqn], i + 1) end;
berghofe@5177
   352
berghofe@5177
   353
    (* define isomorphisms for all mutually recursive datatypes in list ds *)
berghofe@5177
   354
berghofe@5177
   355
    fun make_iso_defs (ds, (thy, char_thms)) =
berghofe@5177
   356
      let
berghofe@5177
   357
        val ks = map fst ds;
berghofe@5177
   358
        val (_, (tname, _, _)) = hd ds;
berghofe@5177
   359
        val {rec_rewrites, rec_names, ...} = the (Symtab.lookup (dt_info, tname));
berghofe@5177
   360
berghofe@5177
   361
        fun process_dt ((fs, eqns, isos), (k, (tname, _, constrs))) =
berghofe@5177
   362
          let
berghofe@5177
   363
            val (fs', eqns', _) = foldl (make_iso_def k ks (length constrs))
berghofe@5177
   364
              ((fs, eqns, 1), constrs);
berghofe@5177
   365
            val iso = (nth_elem (k, recTs), nth_elem (k, all_rep_names))
berghofe@5177
   366
          in (fs', eqns', isos @ [iso]) end;
berghofe@5177
   367
        
berghofe@5177
   368
        val (fs, eqns, isos) = foldl process_dt (([], [], []), ds);
berghofe@5177
   369
        val fTs = map fastype_of fs;
berghofe@5177
   370
        val defs = map (fn (rec_name, (T, iso_name)) => ((Sign.base_name iso_name) ^ "_def",
berghofe@5177
   371
          equals (T --> Univ_elT) $ Const (iso_name, T --> Univ_elT) $
berghofe@5177
   372
            list_comb (Const (rec_name, fTs @ [T] ---> Univ_elT), fs))) (rec_names ~~ isos);
wenzelm@9315
   373
        val (thy', def_thms) = (PureThy.add_defs_i false o map Thm.no_attributes) defs thy;
berghofe@5177
   374
berghofe@5177
   375
        (* prove characteristic equations *)
berghofe@5177
   376
oheimb@5553
   377
        val rewrites = def_thms @ (map mk_meta_eq rec_rewrites);
berghofe@5177
   378
        val char_thms' = map (fn eqn => prove_goalw_cterm rewrites
wenzelm@6394
   379
          (cterm_of (Theory.sign_of thy') eqn) (fn _ => [rtac refl 1])) eqns;
berghofe@5177
   380
berghofe@5177
   381
      in (thy', char_thms' @ char_thms) end;
berghofe@5177
   382
berghofe@5661
   383
    val (thy5, iso_char_thms) = foldr make_iso_defs
berghofe@5661
   384
      (tl descr, (add_path flat_names big_name thy4, []));
berghofe@5177
   385
berghofe@5177
   386
    (* prove isomorphism properties *)
berghofe@5177
   387
berghofe@7015
   388
    fun mk_funs_inv thm =
berghofe@7015
   389
      let
berghofe@13641
   390
        val {sign, prop, ...} = rep_thm thm;
berghofe@13641
   391
        val (_ $ (_ $ (Const (_, Type (_, [U, _])) $ _ $ S)) $
berghofe@13641
   392
          (_ $ (_ $ (r $ (a $ _)) $ _)), _) = Type.freeze_thaw prop;
berghofe@13641
   393
        val used = add_term_tfree_names (a, []);
berghofe@13641
   394
berghofe@13641
   395
        fun mk_thm i =
berghofe@13641
   396
          let
berghofe@13641
   397
            val Ts = map (TFree o rpair HOLogic.typeS)
berghofe@13641
   398
              (variantlist (replicate i "'t", used));
berghofe@13641
   399
            val f = Free ("f", Ts ---> U)
berghofe@13641
   400
          in prove_goalw_cterm [] (cterm_of sign (Logic.mk_implies
berghofe@13641
   401
            (HOLogic.mk_Trueprop (HOLogic.list_all
berghofe@13641
   402
               (map (pair "x") Ts, HOLogic.mk_mem (app_bnds f i, S))),
berghofe@13641
   403
             HOLogic.mk_Trueprop (HOLogic.mk_eq (list_abs (map (pair "x") Ts,
berghofe@13641
   404
               r $ (a $ app_bnds f i)), f))))) (fn prems =>
berghofe@13641
   405
                 [cut_facts_tac prems 1, REPEAT (rtac ext 1),
berghofe@13641
   406
                  REPEAT (etac allE 1), rtac thm 1, atac 1])
berghofe@13641
   407
          end
berghofe@13641
   408
      in map (fn r => r RS subst) (thm :: map mk_thm arities) end;
berghofe@7015
   409
berghofe@5177
   410
    (* prove  inj dt_Rep_i  and  dt_Rep_i x : dt_rep_set_i *)
berghofe@5177
   411
berghofe@5177
   412
    fun prove_iso_thms (ds, (inj_thms, elem_thms)) =
berghofe@5177
   413
      let
berghofe@5177
   414
        val (_, (tname, _, _)) = hd ds;
berghofe@5177
   415
        val {induction, ...} = the (Symtab.lookup (dt_info, tname));
berghofe@5177
   416
berghofe@5177
   417
        fun mk_ind_concl (i, _) =
berghofe@5177
   418
          let
berghofe@5177
   419
            val T = nth_elem (i, recTs);
berghofe@5177
   420
            val Rep_t = Const (nth_elem (i, all_rep_names), T --> Univ_elT);
berghofe@5177
   421
            val rep_set_name = nth_elem (i, rep_set_names)
berghofe@5177
   422
          in (HOLogic.all_const T $ Abs ("y", T, HOLogic.imp $
berghofe@5177
   423
                HOLogic.mk_eq (Rep_t $ mk_Free "x" T i, Rep_t $ Bound 0) $
berghofe@5177
   424
                  HOLogic.mk_eq (mk_Free "x" T i, Bound 0)),
berghofe@5177
   425
              HOLogic.mk_mem (Rep_t $ mk_Free "x" T i, Const (rep_set_name, UnivT)))
berghofe@5177
   426
          end;
berghofe@5177
   427
berghofe@5177
   428
        val (ind_concl1, ind_concl2) = ListPair.unzip (map mk_ind_concl ds);
berghofe@5177
   429
oheimb@5553
   430
        val rewrites = map mk_meta_eq iso_char_thms;
berghofe@13641
   431
        val inj_thms' = map (fn r => r RS injD)
berghofe@13641
   432
          (map snd newT_iso_inj_thms @ inj_thms);
berghofe@5177
   433
wenzelm@6394
   434
        val inj_thm = prove_goalw_cterm [] (cterm_of (Theory.sign_of thy5)
berghofe@5177
   435
          (HOLogic.mk_Trueprop (mk_conj ind_concl1))) (fn _ =>
berghofe@11951
   436
            [(indtac induction THEN_ALL_NEW ObjectLogic.atomize_tac) 1,
berghofe@5177
   437
             REPEAT (EVERY
berghofe@5177
   438
               [rtac allI 1, rtac impI 1,
berghofe@5177
   439
                exh_tac (exh_thm_of dt_info) 1,
berghofe@5177
   440
                REPEAT (EVERY
berghofe@5177
   441
                  [hyp_subst_tac 1,
berghofe@5177
   442
                   rewrite_goals_tac rewrites,
berghofe@5177
   443
                   REPEAT (dresolve_tac [In0_inject, In1_inject] 1),
berghofe@5177
   444
                   (eresolve_tac [In0_not_In1 RS notE, In1_not_In0 RS notE] 1)
berghofe@5177
   445
                   ORELSE (EVERY
berghofe@13641
   446
                     [REPEAT (eresolve_tac (Scons_inject ::
berghofe@13641
   447
                        map make_elim [Leaf_inject, Inl_inject, Inr_inject]) 1),
berghofe@13641
   448
                      REPEAT (cong_tac 1), rtac refl 1,
berghofe@13641
   449
                      REPEAT (atac 1 ORELSE (EVERY
berghofe@13641
   450
                        [REPEAT (rtac ext 1),
berghofe@13641
   451
                         REPEAT (eresolve_tac (mp :: allE ::
berghofe@13641
   452
                           map make_elim (Suml_inject :: Sumr_inject ::
berghofe@13641
   453
                             Lim_inject :: fun_cong :: inj_thms')) 1),
berghofe@13641
   454
                         atac 1]))])])])]);
berghofe@5177
   455
paulson@6171
   456
        val inj_thms'' = map (fn r => r RS datatype_injI)
paulson@6171
   457
                             (split_conj_thm inj_thm);
berghofe@5177
   458
paulson@6171
   459
        val elem_thm = 
paulson@6171
   460
	    prove_goalw_cterm []
wenzelm@6394
   461
	      (cterm_of (Theory.sign_of thy5)
paulson@6171
   462
	       (HOLogic.mk_Trueprop (mk_conj ind_concl2)))
paulson@6171
   463
	      (fn _ =>
berghofe@11951
   464
	       [(indtac induction THEN_ALL_NEW ObjectLogic.atomize_tac) 1,
berghofe@13641
   465
		rewrite_goals_tac rewrites,
berghofe@13641
   466
		REPEAT ((resolve_tac rep_intrs THEN_ALL_NEW
berghofe@13641
   467
                  ((REPEAT o etac allE) THEN' ares_tac elem_thms)) 1)]);
berghofe@5177
   468
berghofe@11471
   469
      in (inj_thms'' @ inj_thms, elem_thms @ (split_conj_thm elem_thm))
berghofe@11471
   470
      end;
berghofe@11471
   471
berghofe@11471
   472
    val (iso_inj_thms_unfolded, iso_elem_thms) = foldr prove_iso_thms
berghofe@11471
   473
      (tl descr, ([], map #3 newT_iso_axms));
berghofe@11471
   474
    val iso_inj_thms = map snd newT_iso_inj_thms @ iso_inj_thms_unfolded;
berghofe@11471
   475
berghofe@11471
   476
    (* prove  x : dt_rep_set_i --> x : range dt_Rep_i *)
berghofe@11471
   477
berghofe@11471
   478
    fun mk_iso_t (((set_name, iso_name), i), T) =
berghofe@11471
   479
      let val isoT = T --> Univ_elT
berghofe@11471
   480
      in HOLogic.imp $ 
berghofe@11471
   481
        HOLogic.mk_mem (mk_Free "x" Univ_elT i, Const (set_name, UnivT)) $
berghofe@11471
   482
          (if i < length newTs then Const ("True", HOLogic.boolT)
berghofe@11471
   483
           else HOLogic.mk_mem (mk_Free "x" Univ_elT i,
berghofe@11471
   484
             Const ("image", [isoT, HOLogic.mk_setT T] ---> UnivT) $
berghofe@11471
   485
               Const (iso_name, isoT) $ Const ("UNIV", HOLogic.mk_setT T)))
berghofe@5177
   486
      end;
berghofe@5177
   487
berghofe@11471
   488
    val iso_t = HOLogic.mk_Trueprop (mk_conj (map mk_iso_t
berghofe@11471
   489
      (rep_set_names ~~ all_rep_names ~~ (0 upto (length descr' - 1)) ~~ recTs)));
berghofe@11471
   490
berghofe@11471
   491
    (* all the theorems are proved by one single simultaneous induction *)
berghofe@11471
   492
berghofe@13641
   493
    val range_eqs = map (fn r => mk_meta_eq (r RS range_ex1_eq))
berghofe@13641
   494
      iso_inj_thms_unfolded;
berghofe@13641
   495
berghofe@11471
   496
    val iso_thms = if length descr = 1 then [] else
berghofe@11471
   497
      drop (length newTs, split_conj_thm
berghofe@11471
   498
        (prove_goalw_cterm [] (cterm_of (Theory.sign_of thy5) iso_t) (fn _ =>
berghofe@13641
   499
           [(indtac rep_induct THEN_ALL_NEW ObjectLogic.atomize_tac) 1,
berghofe@11471
   500
            REPEAT (rtac TrueI 1),
berghofe@13641
   501
            rewrite_goals_tac (mk_meta_eq choice_eq ::
berghofe@13641
   502
              symmetric (mk_meta_eq expand_fun_eq) :: range_eqs),
berghofe@13641
   503
            rewrite_goals_tac (map symmetric range_eqs),
berghofe@11471
   504
            REPEAT (EVERY
berghofe@13641
   505
              [REPEAT (eresolve_tac ([rangeE, ex1_implies_ex RS exE] @
berghofe@13641
   506
                 flat (map (mk_funs_inv o #1) newT_iso_axms)) 1),
berghofe@11471
   507
               TRY (hyp_subst_tac 1),
berghofe@11471
   508
               rtac (sym RS range_eqI) 1,
berghofe@11471
   509
               resolve_tac iso_char_thms 1])])));
wenzelm@11435
   510
wenzelm@11435
   511
    val Abs_inverse_thms' =
wenzelm@11435
   512
      map #1 newT_iso_axms @
berghofe@11471
   513
      map2 (fn (r_inj, r) => f_myinv_f OF [r_inj, r RS mp])
berghofe@11471
   514
        (iso_inj_thms_unfolded, iso_thms);
wenzelm@11435
   515
berghofe@13641
   516
    val Abs_inverse_thms = flat (map mk_funs_inv Abs_inverse_thms');
berghofe@5177
   517
berghofe@5177
   518
    (******************* freeness theorems for constructors *******************)
berghofe@5177
   519
wenzelm@6427
   520
    val _ = message "Proving freeness of constructors ...";
berghofe@5177
   521
berghofe@5177
   522
    (* prove theorem  Rep_i (Constr_j ...) = Inj_j ...  *)
berghofe@5177
   523
    
berghofe@5177
   524
    fun prove_constr_rep_thm eqn =
berghofe@5177
   525
      let
berghofe@5177
   526
        val inj_thms = map (fn (r, _) => r RS inj_onD) newT_iso_inj_thms;
berghofe@7015
   527
        val rewrites = o_def :: constr_defs @ (map (mk_meta_eq o #2) newT_iso_axms)
wenzelm@6394
   528
      in prove_goalw_cterm [] (cterm_of (Theory.sign_of thy5) eqn) (fn _ =>
berghofe@5177
   529
        [resolve_tac inj_thms 1,
berghofe@5177
   530
         rewrite_goals_tac rewrites,
berghofe@5177
   531
         rtac refl 1,
berghofe@5177
   532
         resolve_tac rep_intrs 2,
berghofe@13641
   533
         REPEAT (resolve_tac iso_elem_thms 1)])
berghofe@5177
   534
      end;
berghofe@5177
   535
berghofe@5177
   536
    (*--------------------------------------------------------------*)
berghofe@5177
   537
    (* constr_rep_thms and rep_congs are used to prove distinctness *)
berghofe@7015
   538
    (* of constructors.                                             *)
berghofe@5177
   539
    (*--------------------------------------------------------------*)
berghofe@5177
   540
berghofe@5177
   541
    val constr_rep_thms = map (map prove_constr_rep_thm) constr_rep_eqns;
berghofe@5177
   542
berghofe@5177
   543
    val dist_rewrites = map (fn (rep_thms, dist_lemma) =>
berghofe@5177
   544
      dist_lemma::(rep_thms @ [In0_eq, In1_eq, In0_not_In1, In1_not_In0]))
berghofe@5177
   545
        (constr_rep_thms ~~ dist_lemmas);
berghofe@5177
   546
berghofe@7015
   547
    fun prove_distinct_thms (_, []) = []
berghofe@7015
   548
      | prove_distinct_thms (dist_rewrites', t::_::ts) =
berghofe@7015
   549
          let
berghofe@7015
   550
            val dist_thm = prove_goalw_cterm [] (cterm_of (Theory.sign_of thy5) t) (fn _ =>
berghofe@7015
   551
              [simp_tac (HOL_ss addsimps dist_rewrites') 1])
berghofe@7015
   552
          in dist_thm::(standard (dist_thm RS not_sym))::
berghofe@7015
   553
            (prove_distinct_thms (dist_rewrites', ts))
berghofe@7015
   554
          end;
berghofe@7015
   555
berghofe@7015
   556
    val distinct_thms = map prove_distinct_thms (dist_rewrites ~~
berghofe@7015
   557
      DatatypeProp.make_distincts new_type_names descr sorts thy5);
berghofe@7015
   558
berghofe@7015
   559
    val simproc_dists = map (fn ((((_, (_, _, constrs)), rep_thms), congr), dists) =>
berghofe@7015
   560
      if length constrs < !DatatypeProp.dtK then FewConstrs dists
berghofe@7015
   561
      else ManyConstrs (congr, HOL_basic_ss addsimps rep_thms)) (hd descr ~~
berghofe@7015
   562
        constr_rep_thms ~~ rep_congs ~~ distinct_thms);
berghofe@7015
   563
berghofe@5177
   564
    (* prove injectivity of constructors *)
berghofe@5177
   565
berghofe@5177
   566
    fun prove_constr_inj_thm rep_thms t =
berghofe@13641
   567
      let val inj_thms = Scons_inject :: (map make_elim
berghofe@5177
   568
        ((map (fn r => r RS injD) iso_inj_thms) @
berghofe@13641
   569
          [In0_inject, In1_inject, Leaf_inject, Inl_inject, Inr_inject,
berghofe@13641
   570
           Lim_inject, Suml_inject, Sumr_inject]))
wenzelm@6394
   571
      in prove_goalw_cterm [] (cterm_of (Theory.sign_of thy5) t) (fn _ =>
berghofe@5177
   572
        [rtac iffI 1,
berghofe@5177
   573
         REPEAT (etac conjE 2), hyp_subst_tac 2, rtac refl 2,
berghofe@5177
   574
         dresolve_tac rep_congs 1, dtac box_equals 1,
berghofe@13641
   575
         REPEAT (resolve_tac rep_thms 1),
berghofe@5177
   576
         REPEAT (eresolve_tac inj_thms 1),
berghofe@13641
   577
         REPEAT (ares_tac [conjI] 1 ORELSE (EVERY [REPEAT (rtac ext 1),
berghofe@13641
   578
           REPEAT (eresolve_tac (make_elim fun_cong :: inj_thms) 1),
berghofe@13641
   579
           atac 1]))])
berghofe@5177
   580
      end;
berghofe@5177
   581
berghofe@5177
   582
    val constr_inject = map (fn (ts, thms) => map (prove_constr_inj_thm thms) ts)
berghofe@5177
   583
      ((DatatypeProp.make_injs descr sorts) ~~ constr_rep_thms);
berghofe@5177
   584
berghofe@8479
   585
    val (thy6, (constr_inject', distinct_thms'))= thy5 |> parent_path flat_names |>
berghofe@8479
   586
      store_thmss "inject" new_type_names constr_inject |>>>
berghofe@8479
   587
      store_thmss "distinct" new_type_names distinct_thms;
berghofe@5177
   588
berghofe@5177
   589
    (*************************** induction theorem ****************************)
berghofe@5177
   590
wenzelm@6427
   591
    val _ = message "Proving induction rule for datatypes ...";
berghofe@5177
   592
berghofe@5177
   593
    val Rep_inverse_thms = (map (fn (_, iso, _) => iso RS subst) newT_iso_axms) @
berghofe@11471
   594
      (map (fn r => r RS myinv_f_f RS subst) iso_inj_thms_unfolded);
berghofe@11471
   595
    val Rep_inverse_thms' = map (fn r => r RS myinv_f_f) iso_inj_thms_unfolded;
berghofe@5177
   596
berghofe@5177
   597
    fun mk_indrule_lemma ((prems, concls), ((i, _), T)) =
berghofe@5177
   598
      let
berghofe@5177
   599
        val Rep_t = Const (nth_elem (i, all_rep_names), T --> Univ_elT) $
berghofe@5177
   600
          mk_Free "x" T i;
berghofe@5177
   601
berghofe@5177
   602
        val Abs_t = if i < length newTs then
wenzelm@6394
   603
            Const (Sign.intern_const (Theory.sign_of thy6)
berghofe@5177
   604
              ("Abs_" ^ (nth_elem (i, new_type_names))), Univ_elT --> T)
wenzelm@11435
   605
          else Const ("Inductive.myinv", [T --> Univ_elT, Univ_elT] ---> T) $
berghofe@5177
   606
            Const (nth_elem (i, all_rep_names), T --> Univ_elT)
berghofe@5177
   607
berghofe@5177
   608
      in (prems @ [HOLogic.imp $ HOLogic.mk_mem (Rep_t,
berghofe@5177
   609
            Const (nth_elem (i, rep_set_names), UnivT)) $
berghofe@5177
   610
              (mk_Free "P" (T --> HOLogic.boolT) (i + 1) $ (Abs_t $ Rep_t))],
berghofe@5177
   611
          concls @ [mk_Free "P" (T --> HOLogic.boolT) (i + 1) $ mk_Free "x" T i])
berghofe@5177
   612
      end;
berghofe@5177
   613
berghofe@5177
   614
    val (indrule_lemma_prems, indrule_lemma_concls) =
berghofe@5177
   615
      foldl mk_indrule_lemma (([], []), (descr' ~~ recTs));
berghofe@5177
   616
wenzelm@6394
   617
    val cert = cterm_of (Theory.sign_of thy6);
berghofe@5177
   618
berghofe@5177
   619
    val indrule_lemma = prove_goalw_cterm [] (cert
berghofe@5177
   620
      (Logic.mk_implies
berghofe@5177
   621
        (HOLogic.mk_Trueprop (mk_conj indrule_lemma_prems),
berghofe@5177
   622
         HOLogic.mk_Trueprop (mk_conj indrule_lemma_concls)))) (fn prems =>
berghofe@5177
   623
           [cut_facts_tac prems 1, REPEAT (etac conjE 1),
berghofe@5177
   624
            REPEAT (EVERY
berghofe@5177
   625
              [TRY (rtac conjI 1), resolve_tac Rep_inverse_thms 1,
berghofe@5177
   626
               etac mp 1, resolve_tac iso_elem_thms 1])]);
berghofe@5177
   627
wenzelm@8305
   628
    val Ps = map head_of (HOLogic.dest_conj (HOLogic.dest_Trueprop (concl_of indrule_lemma)));
berghofe@5177
   629
    val frees = if length Ps = 1 then [Free ("P", snd (dest_Var (hd Ps)))] else
berghofe@5177
   630
      map (Free o apfst fst o dest_Var) Ps;
berghofe@5177
   631
    val indrule_lemma' = cterm_instantiate (map cert Ps ~~ map cert frees) indrule_lemma;
berghofe@5177
   632
berghofe@13340
   633
    val dt_induct = prove_goalw_cterm [] (cert
berghofe@5177
   634
      (DatatypeProp.make_ind descr sorts)) (fn prems =>
berghofe@13641
   635
        [rtac indrule_lemma' 1,
berghofe@13641
   636
         (indtac rep_induct THEN_ALL_NEW ObjectLogic.atomize_tac) 1,
berghofe@5177
   637
         EVERY (map (fn (prem, r) => (EVERY
berghofe@13641
   638
           [REPEAT (eresolve_tac Abs_inverse_thms 1),
berghofe@5177
   639
            simp_tac (HOL_basic_ss addsimps ((symmetric r)::Rep_inverse_thms')) 1,
berghofe@13641
   640
            DEPTH_SOLVE_1 (ares_tac [prem] 1 ORELSE etac allE 1)]))
berghofe@7015
   641
                (prems ~~ (constr_defs @ (map mk_meta_eq iso_char_thms))))]);
berghofe@5177
   642
wenzelm@8436
   643
    val (thy7, [dt_induct']) = thy6 |>
berghofe@5661
   644
      Theory.add_path big_name |>
berghofe@13340
   645
      PureThy.add_thms [(("induct", dt_induct), [case_names_induct])] |>>
berghofe@5661
   646
      Theory.parent_path;
berghofe@5177
   647
berghofe@8479
   648
  in (thy7, constr_inject', distinct_thms', dist_rewrites, simproc_dists, dt_induct')
berghofe@5177
   649
  end;
berghofe@5177
   650
berghofe@5177
   651
end;