src/HOL/simpdata.ML
author wenzelm
Mon Sep 04 21:19:27 2000 +0200 (2000-09-04)
changeset 9832 2092298f7421
parent 9801 5e7c4a45d8bb
child 9851 e22db9397e17
permissions -rw-r--r--
added safe_mk_meta_eq;
clasohm@1465
     1
(*  Title:      HOL/simpdata.ML
clasohm@923
     2
    ID:         $Id$
clasohm@1465
     3
    Author:     Tobias Nipkow
clasohm@923
     4
    Copyright   1991  University of Cambridge
clasohm@923
     5
oheimb@5304
     6
Instantiation of the generic simplifier for HOL.
clasohm@923
     7
*)
clasohm@923
     8
paulson@1984
     9
section "Simplifier";
paulson@1984
    10
wenzelm@9713
    11
(*** Addition of rules to simpsets and clasets simultaneously ***)      (* FIXME move to Provers/clasimp.ML? *)
paulson@1984
    12
berghofe@5190
    13
infix 4 addIffs delIffs;
berghofe@5190
    14
wenzelm@9713
    15
(*Takes UNCONDITIONAL theorems of the form A<->B to
wenzelm@9713
    16
        the Safe Intr     rule B==>A and
paulson@2031
    17
        the Safe Destruct rule A==>B.
paulson@1984
    18
  Also ~A goes to the Safe Elim rule A ==> ?R
paulson@1984
    19
  Failing other cases, A is added as a Safe Intr rule*)
paulson@1984
    20
local
paulson@1984
    21
  val iff_const = HOLogic.eq_const HOLogic.boolT;
paulson@1984
    22
wenzelm@9713
    23
  fun addIff ((cla, simp), th) =
berghofe@5190
    24
      (case HOLogic.dest_Trueprop (#prop (rep_thm th)) of
berghofe@5190
    25
                (Const("Not", _) $ A) =>
berghofe@5190
    26
                    cla addSEs [zero_var_indexes (th RS notE)]
paulson@2031
    27
              | (con $ _ $ _) =>
berghofe@5190
    28
                    if con = iff_const
wenzelm@9713
    29
                    then cla addSIs [zero_var_indexes (th RS iffD2)]
berghofe@5190
    30
                              addSDs [zero_var_indexes (th RS iffD1)]
berghofe@5190
    31
                    else  cla addSIs [th]
berghofe@5190
    32
              | _ => cla addSIs [th],
berghofe@5190
    33
       simp addsimps [th])
wenzelm@9713
    34
      handle TERM _ => error ("AddIffs: theorem must be unconditional\n" ^
berghofe@5190
    35
                         string_of_thm th);
paulson@1984
    36
wenzelm@9713
    37
  fun delIff ((cla, simp), th) =
berghofe@5190
    38
      (case HOLogic.dest_Trueprop (#prop (rep_thm th)) of
wenzelm@9713
    39
           (Const ("Not", _) $ A) =>
wenzelm@9713
    40
               cla delrules [zero_var_indexes (th RS notE)]
wenzelm@9713
    41
         | (con $ _ $ _) =>
wenzelm@9713
    42
               if con = iff_const
wenzelm@9713
    43
               then cla delrules
wenzelm@9713
    44
                        [zero_var_indexes (th RS iffD2),
wenzelm@9713
    45
                         cla_make_elim (zero_var_indexes (th RS iffD1))]
wenzelm@9713
    46
               else cla delrules [th]
wenzelm@9713
    47
         | _ => cla delrules [th],
berghofe@5190
    48
       simp delsimps [th])
wenzelm@9713
    49
      handle TERM _ => (warning("DelIffs: ignoring conditional theorem\n" ^
wenzelm@9713
    50
                                string_of_thm th); (cla, simp));
berghofe@5190
    51
berghofe@5190
    52
  fun store_clasimp (cla, simp) = (claset_ref () := cla; simpset_ref () := simp)
paulson@1984
    53
in
berghofe@5190
    54
val op addIffs = foldl addIff;
berghofe@5190
    55
val op delIffs = foldl delIff;
berghofe@5190
    56
fun AddIffs thms = store_clasimp ((claset (), simpset ()) addIffs thms);
berghofe@5190
    57
fun DelIffs thms = store_clasimp ((claset (), simpset ()) delIffs thms);
paulson@1984
    58
end;
paulson@1984
    59
oheimb@5304
    60
wenzelm@7357
    61
val [prem] = goal (the_context ()) "x==y ==> x=y";
paulson@7031
    62
by (rewtac prem);
paulson@7031
    63
by (rtac refl 1);
paulson@7031
    64
qed "meta_eq_to_obj_eq";
nipkow@4640
    65
oheimb@9023
    66
Goal "(%s. f s) = f";
oheimb@9023
    67
br refl 1;
oheimb@9023
    68
qed "eta_contract_eq";
oheimb@9023
    69
clasohm@923
    70
local
clasohm@923
    71
wenzelm@7357
    72
  fun prover s = prove_goal (the_context ()) s (fn _ => [(Blast_tac 1)]);
clasohm@923
    73
nipkow@2134
    74
in
nipkow@2134
    75
oheimb@5552
    76
(*Make meta-equalities.  The operator below is Trueprop*)
oheimb@5552
    77
nipkow@6128
    78
fun mk_meta_eq r = r RS eq_reflection;
wenzelm@9832
    79
fun safe_mk_meta_eq r = mk_meta_eq r handle Thm.THM _ => r;
nipkow@6128
    80
nipkow@6128
    81
val Eq_TrueI  = mk_meta_eq(prover  "P --> (P = True)"  RS mp);
nipkow@6128
    82
val Eq_FalseI = mk_meta_eq(prover "~P --> (P = False)" RS mp);
oheimb@5304
    83
nipkow@6128
    84
fun mk_eq th = case concl_of th of
nipkow@6128
    85
        Const("==",_)$_$_       => th
nipkow@6128
    86
    |   _$(Const("op =",_)$_$_) => mk_meta_eq th
nipkow@6128
    87
    |   _$(Const("Not",_)$_)    => th RS Eq_FalseI
nipkow@6128
    88
    |   _                       => th RS Eq_TrueI;
nipkow@6128
    89
(* last 2 lines requires all formulae to be of the from Trueprop(.) *)
oheimb@5304
    90
nipkow@6128
    91
fun mk_eq_True r = Some(r RS meta_eq_to_obj_eq RS Eq_TrueI);
oheimb@5552
    92
wenzelm@9713
    93
(*Congruence rules for = (instead of ==)*)
nipkow@6128
    94
fun mk_meta_cong rl =
nipkow@6128
    95
  standard(mk_meta_eq(replicate (nprems_of rl) meta_eq_to_obj_eq MRS rl))
nipkow@6128
    96
  handle THM _ =>
nipkow@6128
    97
  error("Premises and conclusion of congruence rules must be =-equalities");
nipkow@3896
    98
nipkow@5975
    99
val not_not = prover "(~ ~ P) = P";
clasohm@923
   100
nipkow@5975
   101
val simp_thms = [not_not] @ map prover
paulson@2082
   102
 [ "(x=x) = True",
nipkow@5975
   103
   "(~True) = False", "(~False) = True",
paulson@2082
   104
   "(~P) ~= P", "P ~= (~P)", "(P ~= Q) = (P = (~Q))",
nipkow@4640
   105
   "(True=P) = P", "(P=True) = P", "(False=P) = (~P)", "(P=False) = (~P)",
wenzelm@9713
   106
   "(True --> P) = P", "(False --> P) = True",
paulson@2082
   107
   "(P --> True) = True", "(P --> P) = True",
paulson@2082
   108
   "(P --> False) = (~P)", "(P --> ~P) = (~P)",
wenzelm@9713
   109
   "(P & True) = P", "(True & P) = P",
nipkow@2800
   110
   "(P & False) = False", "(False & P) = False",
nipkow@2800
   111
   "(P & P) = P", "(P & (P & Q)) = (P & Q)",
paulson@3913
   112
   "(P & ~P) = False",    "(~P & P) = False",
wenzelm@9713
   113
   "(P | True) = True", "(True | P) = True",
nipkow@2800
   114
   "(P | False) = P", "(False | P) = P",
nipkow@2800
   115
   "(P | P) = P", "(P | (P | Q)) = (P | Q)",
paulson@3913
   116
   "(P | ~P) = True",    "(~P | P) = True",
paulson@2082
   117
   "((~P) = (~Q)) = (P=Q)",
wenzelm@9713
   118
   "(!x. P) = P", "(? x. P) = P", "? x. x=t", "? x. t=x",
paulson@4351
   119
(*two needed for the one-point-rule quantifier simplification procs*)
wenzelm@9713
   120
   "(? x. x=t & P(x)) = P(t)",          (*essential for termination!!*)
paulson@4351
   121
   "(! x. t=x --> P(x)) = P(t)" ];      (*covers a stray case*)
clasohm@923
   122
paulson@1922
   123
val imp_cong = impI RSN
wenzelm@7357
   124
    (2, prove_goal (the_context ()) "(P=P')--> (P'--> (Q=Q'))--> ((P-->Q) = (P'-->Q'))"
paulson@7031
   125
        (fn _=> [(Blast_tac 1)]) RS mp RS mp);
paulson@1922
   126
paulson@1948
   127
(*Miniscoping: pushing in existential quantifiers*)
wenzelm@7648
   128
val ex_simps = map prover
wenzelm@3842
   129
                ["(EX x. P x & Q)   = ((EX x. P x) & Q)",
wenzelm@3842
   130
                 "(EX x. P & Q x)   = (P & (EX x. Q x))",
wenzelm@3842
   131
                 "(EX x. P x | Q)   = ((EX x. P x) | Q)",
wenzelm@3842
   132
                 "(EX x. P | Q x)   = (P | (EX x. Q x))",
wenzelm@3842
   133
                 "(EX x. P x --> Q) = ((ALL x. P x) --> Q)",
wenzelm@3842
   134
                 "(EX x. P --> Q x) = (P --> (EX x. Q x))"];
paulson@1948
   135
paulson@1948
   136
(*Miniscoping: pushing in universal quantifiers*)
paulson@1948
   137
val all_simps = map prover
wenzelm@3842
   138
                ["(ALL x. P x & Q)   = ((ALL x. P x) & Q)",
wenzelm@3842
   139
                 "(ALL x. P & Q x)   = (P & (ALL x. Q x))",
wenzelm@3842
   140
                 "(ALL x. P x | Q)   = ((ALL x. P x) | Q)",
wenzelm@3842
   141
                 "(ALL x. P | Q x)   = (P | (ALL x. Q x))",
wenzelm@3842
   142
                 "(ALL x. P x --> Q) = ((EX x. P x) --> Q)",
wenzelm@3842
   143
                 "(ALL x. P --> Q x) = (P --> (ALL x. Q x))"];
paulson@1948
   144
clasohm@923
   145
paulson@2022
   146
(* elimination of existential quantifiers in assumptions *)
clasohm@923
   147
clasohm@923
   148
val ex_all_equiv =
wenzelm@7357
   149
  let val lemma1 = prove_goal (the_context ())
clasohm@923
   150
        "(? x. P(x) ==> PROP Q) ==> (!!x. P(x) ==> PROP Q)"
clasohm@923
   151
        (fn prems => [resolve_tac prems 1, etac exI 1]);
wenzelm@7357
   152
      val lemma2 = prove_goalw (the_context ()) [Ex_def]
clasohm@923
   153
        "(!!x. P(x) ==> PROP Q) ==> (? x. P(x) ==> PROP Q)"
paulson@7031
   154
        (fn prems => [(REPEAT(resolve_tac prems 1))])
clasohm@923
   155
  in equal_intr lemma1 lemma2 end;
clasohm@923
   156
clasohm@923
   157
end;
clasohm@923
   158
wenzelm@7648
   159
bind_thms ("ex_simps", ex_simps);
wenzelm@7648
   160
bind_thms ("all_simps", all_simps);
berghofe@7711
   161
bind_thm ("not_not", not_not);
wenzelm@7648
   162
nipkow@3654
   163
(* Elimination of True from asumptions: *)
nipkow@3654
   164
wenzelm@7357
   165
val True_implies_equals = prove_goal (the_context ())
nipkow@3654
   166
 "(True ==> PROP P) == PROP P"
paulson@7031
   167
(fn _ => [rtac equal_intr_rule 1, atac 2,
nipkow@3654
   168
          METAHYPS (fn prems => resolve_tac prems 1) 1,
nipkow@3654
   169
          rtac TrueI 1]);
nipkow@3654
   170
wenzelm@7357
   171
fun prove nm thm  = qed_goal nm (the_context ()) thm (fn _ => [(Blast_tac 1)]);
clasohm@923
   172
paulson@9511
   173
prove "eq_commute" "(a=b) = (b=a)";
paulson@7623
   174
prove "eq_left_commute" "(P=(Q=R)) = (Q=(P=R))";
paulson@7623
   175
prove "eq_assoc" "((P=Q)=R) = (P=(Q=R))";
paulson@7623
   176
val eq_ac = [eq_commute, eq_left_commute, eq_assoc];
paulson@7623
   177
paulson@9511
   178
prove "neq_commute" "(a~=b) = (b~=a)";
paulson@9511
   179
clasohm@923
   180
prove "conj_commute" "(P&Q) = (Q&P)";
clasohm@923
   181
prove "conj_left_commute" "(P&(Q&R)) = (Q&(P&R))";
clasohm@923
   182
val conj_comms = [conj_commute, conj_left_commute];
nipkow@2134
   183
prove "conj_assoc" "((P&Q)&R) = (P&(Q&R))";
clasohm@923
   184
paulson@1922
   185
prove "disj_commute" "(P|Q) = (Q|P)";
paulson@1922
   186
prove "disj_left_commute" "(P|(Q|R)) = (Q|(P|R))";
paulson@1922
   187
val disj_comms = [disj_commute, disj_left_commute];
nipkow@2134
   188
prove "disj_assoc" "((P|Q)|R) = (P|(Q|R))";
paulson@1922
   189
clasohm@923
   190
prove "conj_disj_distribL" "(P&(Q|R)) = (P&Q | P&R)";
clasohm@923
   191
prove "conj_disj_distribR" "((P|Q)&R) = (P&R | Q&R)";
nipkow@1485
   192
paulson@1892
   193
prove "disj_conj_distribL" "(P|(Q&R)) = ((P|Q) & (P|R))";
paulson@1892
   194
prove "disj_conj_distribR" "((P&Q)|R) = ((P|R) & (Q|R))";
paulson@1892
   195
nipkow@2134
   196
prove "imp_conjR" "(P --> (Q&R)) = ((P-->Q) & (P-->R))";
nipkow@2134
   197
prove "imp_conjL" "((P&Q) -->R)  = (P --> (Q --> R))";
nipkow@2134
   198
prove "imp_disjL" "((P|Q) --> R) = ((P-->R)&(Q-->R))";
paulson@1892
   199
paulson@3448
   200
(*These two are specialized, but imp_disj_not1 is useful in Auth/Yahalom.ML*)
paulson@8114
   201
prove "imp_disj_not1" "(P --> Q | R) = (~Q --> P --> R)";
paulson@8114
   202
prove "imp_disj_not2" "(P --> Q | R) = (~R --> P --> Q)";
paulson@3448
   203
paulson@3904
   204
prove "imp_disj1" "((P-->Q)|R) = (P--> Q|R)";
paulson@3904
   205
prove "imp_disj2" "(Q|(P-->R)) = (P--> Q|R)";
paulson@3904
   206
nipkow@1485
   207
prove "de_Morgan_disj" "(~(P | Q)) = (~P & ~Q)";
nipkow@1485
   208
prove "de_Morgan_conj" "(~(P & Q)) = (~P | ~Q)";
paulson@3446
   209
prove "not_imp" "(~(P --> Q)) = (P & ~Q)";
paulson@1922
   210
prove "not_iff" "(P~=Q) = (P = (~Q))";
oheimb@4743
   211
prove "disj_not1" "(~P | Q) = (P --> Q)";
oheimb@4743
   212
prove "disj_not2" "(P | ~Q) = (Q --> P)"; (* changes orientation :-( *)
nipkow@5975
   213
prove "imp_conv_disj" "(P --> Q) = ((~P) | Q)";
nipkow@5975
   214
nipkow@5975
   215
prove "iff_conv_conj_imp" "(P = Q) = ((P --> Q) & (Q --> P))";
nipkow@5975
   216
nipkow@1485
   217
wenzelm@9713
   218
(*Avoids duplication of subgoals after split_if, when the true and false
wenzelm@9713
   219
  cases boil down to the same thing.*)
nipkow@2134
   220
prove "cases_simp" "((P --> Q) & (~P --> Q)) = Q";
nipkow@2134
   221
wenzelm@3842
   222
prove "not_all" "(~ (! x. P(x))) = (? x.~P(x))";
paulson@1922
   223
prove "imp_all" "((! x. P x) --> Q) = (? x. P x --> Q)";
wenzelm@3842
   224
prove "not_ex"  "(~ (? x. P(x))) = (! x.~P(x))";
paulson@1922
   225
prove "imp_ex" "((? x. P x) --> Q) = (! x. P x --> Q)";
oheimb@1660
   226
nipkow@1655
   227
prove "ex_disj_distrib" "(? x. P(x) | Q(x)) = ((? x. P(x)) | (? x. Q(x)))";
nipkow@1655
   228
prove "all_conj_distrib" "(!x. P(x) & Q(x)) = ((! x. P(x)) & (! x. Q(x)))";
nipkow@1655
   229
nipkow@2134
   230
(* '&' congruence rule: not included by default!
nipkow@2134
   231
   May slow rewrite proofs down by as much as 50% *)
nipkow@2134
   232
wenzelm@9713
   233
let val th = prove_goal (the_context ())
nipkow@2134
   234
                "(P=P')--> (P'--> (Q=Q'))--> ((P&Q) = (P'&Q'))"
paulson@7031
   235
                (fn _=> [(Blast_tac 1)])
nipkow@2134
   236
in  bind_thm("conj_cong",standard (impI RSN (2, th RS mp RS mp)))  end;
nipkow@2134
   237
wenzelm@9713
   238
let val th = prove_goal (the_context ())
nipkow@2134
   239
                "(Q=Q')--> (Q'--> (P=P'))--> ((P&Q) = (P'&Q'))"
paulson@7031
   240
                (fn _=> [(Blast_tac 1)])
nipkow@2134
   241
in  bind_thm("rev_conj_cong",standard (impI RSN (2, th RS mp RS mp)))  end;
nipkow@2134
   242
nipkow@2134
   243
(* '|' congruence rule: not included by default! *)
nipkow@2134
   244
wenzelm@9713
   245
let val th = prove_goal (the_context ())
nipkow@2134
   246
                "(P=P')--> (~P'--> (Q=Q'))--> ((P|Q) = (P'|Q'))"
paulson@7031
   247
                (fn _=> [(Blast_tac 1)])
nipkow@2134
   248
in  bind_thm("disj_cong",standard (impI RSN (2, th RS mp RS mp)))  end;
nipkow@2134
   249
nipkow@2134
   250
prove "eq_sym_conv" "(x=y) = (y=x)";
nipkow@2134
   251
paulson@5278
   252
paulson@5278
   253
(** if-then-else rules **)
paulson@5278
   254
paulson@7031
   255
Goalw [if_def] "(if True then x else y) = x";
paulson@7031
   256
by (Blast_tac 1);
paulson@7031
   257
qed "if_True";
nipkow@2134
   258
paulson@7031
   259
Goalw [if_def] "(if False then x else y) = y";
paulson@7031
   260
by (Blast_tac 1);
paulson@7031
   261
qed "if_False";
nipkow@2134
   262
paulson@7127
   263
Goalw [if_def] "P ==> (if P then x else y) = x";
paulson@7031
   264
by (Blast_tac 1);
paulson@7031
   265
qed "if_P";
oheimb@5304
   266
paulson@7127
   267
Goalw [if_def] "~P ==> (if P then x else y) = y";
paulson@7031
   268
by (Blast_tac 1);
paulson@7031
   269
qed "if_not_P";
nipkow@2134
   270
paulson@7031
   271
Goal "P(if Q then x else y) = ((Q --> P(x)) & (~Q --> P(y)))";
paulson@7031
   272
by (res_inst_tac [("Q","Q")] (excluded_middle RS disjE) 1);
paulson@7031
   273
by (stac if_P 2);
paulson@7031
   274
by (stac if_not_P 1);
paulson@7031
   275
by (ALLGOALS (Blast_tac));
paulson@7031
   276
qed "split_if";
paulson@7031
   277
paulson@7031
   278
Goal "P(if Q then x else y) = (~((Q & ~P x) | (~Q & ~P y)))";
paulson@7031
   279
by (stac split_if 1);
paulson@7031
   280
by (Blast_tac 1);
paulson@7031
   281
qed "split_if_asm";
nipkow@2134
   282
wenzelm@9384
   283
bind_thms ("if_splits", [split_if, split_if_asm]);
wenzelm@9384
   284
paulson@7031
   285
Goal "(if c then x else x) = x";
paulson@7031
   286
by (stac split_if 1);
paulson@7031
   287
by (Blast_tac 1);
paulson@7031
   288
qed "if_cancel";
oheimb@5304
   289
paulson@7031
   290
Goal "(if x = y then y else x) = x";
paulson@7031
   291
by (stac split_if 1);
paulson@7031
   292
by (Blast_tac 1);
paulson@7031
   293
qed "if_eq_cancel";
oheimb@5304
   294
paulson@4769
   295
(*This form is useful for expanding IFs on the RIGHT of the ==> symbol*)
paulson@7127
   296
Goal "(if P then Q else R) = ((P-->Q) & (~P-->R))";
paulson@7031
   297
by (rtac split_if 1);
paulson@7031
   298
qed "if_bool_eq_conj";
paulson@4769
   299
paulson@4769
   300
(*And this form is useful for expanding IFs on the LEFT*)
paulson@7031
   301
Goal "(if P then Q else R) = ((P&Q) | (~P&R))";
paulson@7031
   302
by (stac split_if 1);
paulson@7031
   303
by (Blast_tac 1);
paulson@7031
   304
qed "if_bool_eq_disj";
nipkow@2134
   305
paulson@4351
   306
paulson@4351
   307
(*** make simplification procedures for quantifier elimination ***)
paulson@4351
   308
paulson@4351
   309
structure Quantifier1 = Quantifier1Fun(
paulson@4351
   310
struct
paulson@4351
   311
  (*abstract syntax*)
paulson@4351
   312
  fun dest_eq((c as Const("op =",_)) $ s $ t) = Some(c,s,t)
paulson@4351
   313
    | dest_eq _ = None;
paulson@4351
   314
  fun dest_conj((c as Const("op &",_)) $ s $ t) = Some(c,s,t)
paulson@4351
   315
    | dest_conj _ = None;
paulson@4351
   316
  val conj = HOLogic.conj
paulson@4351
   317
  val imp  = HOLogic.imp
paulson@4351
   318
  (*rules*)
paulson@4351
   319
  val iff_reflection = eq_reflection
paulson@4351
   320
  val iffI = iffI
paulson@4351
   321
  val sym  = sym
paulson@4351
   322
  val conjI= conjI
paulson@4351
   323
  val conjE= conjE
paulson@4351
   324
  val impI = impI
paulson@4351
   325
  val impE = impE
paulson@4351
   326
  val mp   = mp
paulson@4351
   327
  val exI  = exI
paulson@4351
   328
  val exE  = exE
paulson@4351
   329
  val allI = allI
paulson@4351
   330
  val allE = allE
paulson@4351
   331
end);
paulson@4351
   332
nipkow@4320
   333
local
nipkow@4320
   334
val ex_pattern =
wenzelm@7357
   335
  Thm.read_cterm (Theory.sign_of (the_context ())) ("EX x. P(x) & Q(x)",HOLogic.boolT)
paulson@3913
   336
nipkow@4320
   337
val all_pattern =
wenzelm@7357
   338
  Thm.read_cterm (Theory.sign_of (the_context ())) ("ALL x. P(x) & P'(x) --> Q(x)",HOLogic.boolT)
nipkow@4320
   339
nipkow@4320
   340
in
nipkow@4320
   341
val defEX_regroup =
nipkow@4320
   342
  mk_simproc "defined EX" [ex_pattern] Quantifier1.rearrange_ex;
nipkow@4320
   343
val defALL_regroup =
nipkow@4320
   344
  mk_simproc "defined ALL" [all_pattern] Quantifier1.rearrange_all;
nipkow@4320
   345
end;
paulson@3913
   346
paulson@4351
   347
paulson@4351
   348
(*** Case splitting ***)
paulson@3913
   349
oheimb@5304
   350
structure SplitterData =
oheimb@5304
   351
  struct
oheimb@5304
   352
  structure Simplifier = Simplifier
oheimb@5552
   353
  val mk_eq          = mk_eq
oheimb@5304
   354
  val meta_eq_to_iff = meta_eq_to_obj_eq
oheimb@5304
   355
  val iffD           = iffD2
oheimb@5304
   356
  val disjE          = disjE
oheimb@5304
   357
  val conjE          = conjE
oheimb@5304
   358
  val exE            = exE
oheimb@5304
   359
  val contrapos      = contrapos
oheimb@5304
   360
  val contrapos2     = contrapos2
oheimb@5304
   361
  val notnotD        = notnotD
oheimb@5304
   362
  end;
nipkow@4681
   363
oheimb@5304
   364
structure Splitter = SplitterFun(SplitterData);
oheimb@2263
   365
oheimb@5304
   366
val split_tac        = Splitter.split_tac;
oheimb@5304
   367
val split_inside_tac = Splitter.split_inside_tac;
oheimb@5304
   368
val split_asm_tac    = Splitter.split_asm_tac;
oheimb@5307
   369
val op addsplits     = Splitter.addsplits;
oheimb@5307
   370
val op delsplits     = Splitter.delsplits;
oheimb@5304
   371
val Addsplits        = Splitter.Addsplits;
oheimb@5304
   372
val Delsplits        = Splitter.Delsplits;
oheimb@4718
   373
nipkow@2134
   374
(*In general it seems wrong to add distributive laws by default: they
nipkow@2134
   375
  might cause exponential blow-up.  But imp_disjL has been in for a while
wenzelm@9713
   376
  and cannot be removed without affecting existing proofs.  Moreover,
nipkow@2134
   377
  rewriting by "(P|Q --> R) = ((P-->R)&(Q-->R))" might be justified on the
nipkow@2134
   378
  grounds that it allows simplification of R in the two cases.*)
nipkow@2134
   379
oheimb@5304
   380
fun gen_all th = forall_elim_vars (#maxidx(rep_thm th)+1) th;
oheimb@5304
   381
nipkow@2134
   382
val mksimps_pairs =
nipkow@2134
   383
  [("op -->", [mp]), ("op &", [conjunct1,conjunct2]),
nipkow@2134
   384
   ("All", [spec]), ("True", []), ("False", []),
paulson@4769
   385
   ("If", [if_bool_eq_conj RS iffD1])];
nipkow@1758
   386
oheimb@5552
   387
(* ###FIXME: move to Provers/simplifier.ML
oheimb@5304
   388
val mk_atomize:      (string * thm list) list -> thm -> thm list
oheimb@5304
   389
*)
oheimb@5552
   390
(* ###FIXME: move to Provers/simplifier.ML *)
oheimb@5304
   391
fun mk_atomize pairs =
oheimb@5304
   392
  let fun atoms th =
oheimb@5304
   393
        (case concl_of th of
oheimb@5304
   394
           Const("Trueprop",_) $ p =>
oheimb@5304
   395
             (case head_of p of
oheimb@5304
   396
                Const(a,_) =>
oheimb@5304
   397
                  (case assoc(pairs,a) of
oheimb@5304
   398
                     Some(rls) => flat (map atoms ([th] RL rls))
oheimb@5304
   399
                   | None => [th])
oheimb@5304
   400
              | _ => [th])
oheimb@5304
   401
         | _ => [th])
oheimb@5304
   402
  in atoms end;
oheimb@5304
   403
oheimb@5552
   404
fun mksimps pairs = (map mk_eq o mk_atomize pairs o gen_all);
oheimb@5304
   405
nipkow@7570
   406
fun unsafe_solver_tac prems =
nipkow@7570
   407
  FIRST'[resolve_tac(reflexive_thm::TrueI::refl::prems), atac, etac FalseE];
nipkow@7570
   408
val unsafe_solver = mk_solver "HOL unsafe" unsafe_solver_tac;
nipkow@7570
   409
oheimb@2636
   410
(*No premature instantiation of variables during simplification*)
nipkow@7570
   411
fun safe_solver_tac prems =
nipkow@7570
   412
  FIRST'[match_tac(reflexive_thm::TrueI::refl::prems),
nipkow@7570
   413
         eq_assume_tac, ematch_tac [FalseE]];
nipkow@7570
   414
val safe_solver = mk_solver "HOL safe" safe_solver_tac;
oheimb@2443
   415
wenzelm@9713
   416
val HOL_basic_ss =
wenzelm@9713
   417
  empty_ss setsubgoaler asm_simp_tac
wenzelm@9713
   418
    setSSolver safe_solver
wenzelm@9713
   419
    setSolver unsafe_solver
wenzelm@9713
   420
    setmksimps (mksimps mksimps_pairs)
wenzelm@9713
   421
    setmkeqTrue mk_eq_True
wenzelm@9713
   422
    setmkcong mk_meta_cong;
oheimb@2443
   423
wenzelm@9713
   424
val HOL_ss =
wenzelm@9713
   425
    HOL_basic_ss addsimps
paulson@3446
   426
     ([triv_forall_equality, (* prunes params *)
nipkow@3654
   427
       True_implies_equals, (* prune asms `True' *)
oheimb@9023
   428
       eta_contract_eq, (* prunes eta-expansions *)
oheimb@4718
   429
       if_True, if_False, if_cancel, if_eq_cancel,
oheimb@5304
   430
       imp_disjL, conj_assoc, disj_assoc,
paulson@3904
   431
       de_Morgan_conj, de_Morgan_disj, imp_disj1, imp_disj2, not_imp,
paulson@8955
   432
       disj_not1, not_all, not_ex, cases_simp, Eps_eq, Eps_sym_eq,
paulson@8955
   433
       thm"plus_ac0.zero", thm"plus_ac0_zero_right"]
paulson@3446
   434
     @ ex_simps @ all_simps @ simp_thms)
nipkow@4032
   435
     addsimprocs [defALL_regroup,defEX_regroup]
wenzelm@4744
   436
     addcongs [imp_cong]
nipkow@4830
   437
     addsplits [split_if];
paulson@2082
   438
paulson@6293
   439
(*Simplifies x assuming c and y assuming ~c*)
paulson@6293
   440
val prems = Goalw [if_def]
paulson@6293
   441
  "[| b=c; c ==> x=u; ~c ==> y=v |] ==> \
paulson@6293
   442
\  (if b then x else y) = (if c then u else v)";
paulson@6293
   443
by (asm_simp_tac (HOL_ss addsimps prems) 1);
paulson@6293
   444
qed "if_cong";
paulson@6293
   445
paulson@7127
   446
(*Prevents simplification of x and y: faster and allows the execution
paulson@7127
   447
  of functional programs. NOW THE DEFAULT.*)
paulson@7031
   448
Goal "b=c ==> (if b then x else y) = (if c then x else y)";
paulson@7031
   449
by (etac arg_cong 1);
paulson@7031
   450
qed "if_weak_cong";
paulson@6293
   451
paulson@6293
   452
(*Prevents simplification of t: much faster*)
paulson@7031
   453
Goal "a = b ==> (let x=a in t(x)) = (let x=b in t(x))";
paulson@7031
   454
by (etac arg_cong 1);
paulson@7031
   455
qed "let_weak_cong";
paulson@6293
   456
paulson@7031
   457
Goal "f(if c then x else y) = (if c then f x else f y)";
paulson@7031
   458
by (simp_tac (HOL_ss setloop (split_tac [split_if])) 1);
paulson@7031
   459
qed "if_distrib";
nipkow@1655
   460
paulson@4327
   461
(*For expand_case_tac*)
paulson@7584
   462
val prems = Goal "[| P ==> Q(True); ~P ==> Q(False) |] ==> Q(P)";
paulson@2948
   463
by (case_tac "P" 1);
paulson@2948
   464
by (ALLGOALS (asm_simp_tac (HOL_ss addsimps prems)));
paulson@7584
   465
qed "expand_case";
paulson@2948
   466
paulson@4327
   467
(*Used in Auth proofs.  Typically P contains Vars that become instantiated
paulson@4327
   468
  during unification.*)
paulson@2948
   469
fun expand_case_tac P i =
paulson@2948
   470
    res_inst_tac [("P",P)] expand_case i THEN
wenzelm@9713
   471
    Simp_tac (i+1) THEN
paulson@2948
   472
    Simp_tac i;
paulson@2948
   473
paulson@7584
   474
(*This lemma restricts the effect of the rewrite rule u=v to the left-hand
paulson@7584
   475
  side of an equality.  Used in {Integ,Real}/simproc.ML*)
paulson@7584
   476
Goal "x=y ==> (x=z) = (y=z)";
paulson@7584
   477
by (asm_simp_tac HOL_ss 1);
paulson@7584
   478
qed "restrict_to_left";
paulson@2948
   479
wenzelm@7357
   480
(* default simpset *)
wenzelm@9713
   481
val simpsetup =
wenzelm@9713
   482
  [fn thy => (simpset_ref_of thy := HOL_ss addcongs [if_weak_cong]; thy)];
berghofe@3615
   483
nipkow@9736
   484
(*** conversion of -->/! into ==>/!! ***)
nipkow@9736
   485
nipkow@9736
   486
local
nipkow@9736
   487
  val rules = [symmetric(thm"all_eq"),symmetric(thm"imp_eq"),Drule.norm_hhf_eq]
nipkow@9736
   488
  val ss = HOL_basic_ss addsimps rules
nipkow@9736
   489
in
nipkow@9736
   490
nipkow@9736
   491
val rulify = zero_var_indexes o strip_shyps_warning o forall_elim_vars_safe o simplify ss;
nipkow@9736
   492
nipkow@9736
   493
fun qed_spec_mp name = ThmDatabase.ml_store_thm(name, rulify(result()));
nipkow@9736
   494
nipkow@9736
   495
fun qed_goal_spec_mp name thy s p = 
nipkow@9736
   496
	bind_thm (name, rulify (prove_goal thy s p));
nipkow@9736
   497
nipkow@9736
   498
fun qed_goalw_spec_mp name thy defs s p = 
nipkow@9736
   499
	bind_thm (name, rulify (prove_goalw thy defs s p));
nipkow@9736
   500
nipkow@9736
   501
end;
nipkow@9736
   502
nipkow@9736
   503
local
nipkow@9736
   504
nipkow@9736
   505
fun gen_rulify x =
nipkow@9736
   506
  Attrib.no_args (Drule.rule_attribute (fn _ => rulify)) x;
nipkow@9736
   507
nipkow@9736
   508
in
nipkow@9736
   509
nipkow@9736
   510
val attrib_setup =
nipkow@9736
   511
 [Attrib.add_attributes
nipkow@9736
   512
  [("rulify", (gen_rulify, gen_rulify), "put theorem into standard rule form")]];
nipkow@9736
   513
nipkow@9736
   514
end;
oheimb@4652
   515
wenzelm@5219
   516
(*** integration of simplifier with classical reasoner ***)
oheimb@2636
   517
wenzelm@5219
   518
structure Clasimp = ClasimpFun
wenzelm@8473
   519
 (structure Simplifier = Simplifier and Splitter = Splitter
wenzelm@8473
   520
   and Classical  = Classical and Blast = Blast);
oheimb@4652
   521
open Clasimp;
oheimb@2636
   522
oheimb@2636
   523
val HOL_css = (HOL_cs, HOL_ss);
nipkow@5975
   524
nipkow@5975
   525
wenzelm@8641
   526
(* "iff" attribute *)
wenzelm@8641
   527
wenzelm@8641
   528
val iff_add_global = Clasimp.change_global_css (op addIffs);
wenzelm@9801
   529
val iff_del_global = Clasimp.change_global_css (op delIffs);
wenzelm@8641
   530
val iff_add_local = Clasimp.change_local_css (op addIffs);
wenzelm@9801
   531
val iff_del_local = Clasimp.change_local_css (op delIffs);
wenzelm@8641
   532
wenzelm@8641
   533
val iff_attrib_setup =
wenzelm@9801
   534
 [Attrib.add_attributes
wenzelm@9801
   535
  [("iff", (Attrib.add_del_args iff_add_global iff_del_global,
wenzelm@9801
   536
    Attrib.add_del_args iff_add_local iff_del_local),
wenzelm@9801
   537
    "declare simplifier / classical rules")]];
wenzelm@8641
   538
wenzelm@8641
   539
wenzelm@8641
   540
nipkow@5975
   541
(*** A general refutation procedure ***)
wenzelm@9713
   542
nipkow@5975
   543
(* Parameters:
nipkow@5975
   544
nipkow@5975
   545
   test: term -> bool
nipkow@5975
   546
   tests if a term is at all relevant to the refutation proof;
nipkow@5975
   547
   if not, then it can be discarded. Can improve performance,
nipkow@5975
   548
   esp. if disjunctions can be discarded (no case distinction needed!).
nipkow@5975
   549
nipkow@5975
   550
   prep_tac: int -> tactic
nipkow@5975
   551
   A preparation tactic to be applied to the goal once all relevant premises
nipkow@5975
   552
   have been moved to the conclusion.
nipkow@5975
   553
nipkow@5975
   554
   ref_tac: int -> tactic
nipkow@5975
   555
   the actual refutation tactic. Should be able to deal with goals
nipkow@5975
   556
   [| A1; ...; An |] ==> False
nipkow@5975
   557
   where the Ai are atomic, i.e. no top-level &, | or ?
nipkow@5975
   558
*)
nipkow@5975
   559
nipkow@5975
   560
fun refute_tac test prep_tac ref_tac =
nipkow@5975
   561
  let val nnf_simps =
nipkow@5975
   562
        [imp_conv_disj,iff_conv_conj_imp,de_Morgan_disj,de_Morgan_conj,
nipkow@5975
   563
         not_all,not_ex,not_not];
nipkow@5975
   564
      val nnf_simpset =
nipkow@5975
   565
        empty_ss setmkeqTrue mk_eq_True
nipkow@5975
   566
                 setmksimps (mksimps mksimps_pairs)
nipkow@5975
   567
                 addsimps nnf_simps;
nipkow@5975
   568
      val prem_nnf_tac = full_simp_tac nnf_simpset;
nipkow@5975
   569
nipkow@5975
   570
      val refute_prems_tac =
nipkow@5975
   571
        REPEAT(eresolve_tac [conjE, exE] 1 ORELSE
nipkow@5975
   572
               filter_prems_tac test 1 ORELSE
paulson@6301
   573
               etac disjE 1) THEN
nipkow@5975
   574
        ref_tac 1;
nipkow@5975
   575
  in EVERY'[TRY o filter_prems_tac test,
nipkow@6128
   576
            DETERM o REPEAT o etac rev_mp, prep_tac, rtac ccontr, prem_nnf_tac,
nipkow@5975
   577
            SELECT_GOAL (DEPTH_SOLVE refute_prems_tac)]
nipkow@5975
   578
  end;