src/HOL/Fun.thy
author hoelzl
Thu Sep 02 10:36:45 2010 +0200 (2010-09-02)
changeset 39074 211e4f6aad63
parent 38620 b40524b74f77
child 39075 a18e5946d63c
permissions -rw-r--r--
bij <--> bij_betw
clasohm@1475
     1
(*  Title:      HOL/Fun.thy
clasohm@1475
     2
    Author:     Tobias Nipkow, Cambridge University Computer Laboratory
clasohm@923
     3
    Copyright   1994  University of Cambridge
huffman@18154
     4
*)
clasohm@923
     5
huffman@18154
     6
header {* Notions about functions *}
clasohm@923
     7
paulson@15510
     8
theory Fun
haftmann@32139
     9
imports Complete_Lattice
nipkow@15131
    10
begin
nipkow@2912
    11
haftmann@26147
    12
text{*As a simplification rule, it replaces all function equalities by
haftmann@26147
    13
  first-order equalities.*}
haftmann@26147
    14
lemma expand_fun_eq: "f = g \<longleftrightarrow> (\<forall>x. f x = g x)"
haftmann@26147
    15
apply (rule iffI)
haftmann@26147
    16
apply (simp (no_asm_simp))
haftmann@26147
    17
apply (rule ext)
haftmann@26147
    18
apply (simp (no_asm_simp))
haftmann@26147
    19
done
oheimb@5305
    20
haftmann@26147
    21
lemma apply_inverse:
haftmann@26357
    22
  "f x = u \<Longrightarrow> (\<And>x. P x \<Longrightarrow> g (f x) = x) \<Longrightarrow> P x \<Longrightarrow> x = g u"
haftmann@26147
    23
  by auto
nipkow@2912
    24
wenzelm@12258
    25
haftmann@26147
    26
subsection {* The Identity Function @{text id} *}
paulson@6171
    27
haftmann@22744
    28
definition
haftmann@22744
    29
  id :: "'a \<Rightarrow> 'a"
haftmann@22744
    30
where
haftmann@22744
    31
  "id = (\<lambda>x. x)"
nipkow@13910
    32
haftmann@26147
    33
lemma id_apply [simp]: "id x = x"
haftmann@26147
    34
  by (simp add: id_def)
haftmann@26147
    35
haftmann@26147
    36
lemma image_ident [simp]: "(%x. x) ` Y = Y"
haftmann@26147
    37
by blast
haftmann@26147
    38
haftmann@26147
    39
lemma image_id [simp]: "id ` Y = Y"
haftmann@26147
    40
by (simp add: id_def)
haftmann@26147
    41
haftmann@26147
    42
lemma vimage_ident [simp]: "(%x. x) -` Y = Y"
haftmann@26147
    43
by blast
haftmann@26147
    44
haftmann@26147
    45
lemma vimage_id [simp]: "id -` A = A"
haftmann@26147
    46
by (simp add: id_def)
haftmann@26147
    47
haftmann@26147
    48
haftmann@26147
    49
subsection {* The Composition Operator @{text "f \<circ> g"} *}
haftmann@26147
    50
haftmann@22744
    51
definition
haftmann@22744
    52
  comp :: "('b \<Rightarrow> 'c) \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> 'a \<Rightarrow> 'c" (infixl "o" 55)
haftmann@22744
    53
where
haftmann@22744
    54
  "f o g = (\<lambda>x. f (g x))"
oheimb@11123
    55
wenzelm@21210
    56
notation (xsymbols)
wenzelm@19656
    57
  comp  (infixl "\<circ>" 55)
wenzelm@19656
    58
wenzelm@21210
    59
notation (HTML output)
wenzelm@19656
    60
  comp  (infixl "\<circ>" 55)
wenzelm@19656
    61
paulson@13585
    62
text{*compatibility*}
paulson@13585
    63
lemmas o_def = comp_def
nipkow@2912
    64
paulson@13585
    65
lemma o_apply [simp]: "(f o g) x = f (g x)"
paulson@13585
    66
by (simp add: comp_def)
paulson@13585
    67
paulson@13585
    68
lemma o_assoc: "f o (g o h) = f o g o h"
paulson@13585
    69
by (simp add: comp_def)
paulson@13585
    70
paulson@13585
    71
lemma id_o [simp]: "id o g = g"
paulson@13585
    72
by (simp add: comp_def)
paulson@13585
    73
paulson@13585
    74
lemma o_id [simp]: "f o id = f"
paulson@13585
    75
by (simp add: comp_def)
paulson@13585
    76
haftmann@34150
    77
lemma o_eq_dest:
haftmann@34150
    78
  "a o b = c o d \<Longrightarrow> a (b v) = c (d v)"
haftmann@34150
    79
  by (simp only: o_def) (fact fun_cong)
haftmann@34150
    80
haftmann@34150
    81
lemma o_eq_elim:
haftmann@34150
    82
  "a o b = c o d \<Longrightarrow> ((\<And>v. a (b v) = c (d v)) \<Longrightarrow> R) \<Longrightarrow> R"
haftmann@34150
    83
  by (erule meta_mp) (fact o_eq_dest) 
haftmann@34150
    84
paulson@13585
    85
lemma image_compose: "(f o g) ` r = f`(g`r)"
paulson@13585
    86
by (simp add: comp_def, blast)
paulson@13585
    87
paulson@33044
    88
lemma vimage_compose: "(g \<circ> f) -` x = f -` (g -` x)"
paulson@33044
    89
  by auto
paulson@33044
    90
paulson@13585
    91
lemma UN_o: "UNION A (g o f) = UNION (f`A) g"
paulson@13585
    92
by (unfold comp_def, blast)
paulson@13585
    93
paulson@13585
    94
haftmann@26588
    95
subsection {* The Forward Composition Operator @{text fcomp} *}
haftmann@26357
    96
haftmann@26357
    97
definition
haftmann@37751
    98
  fcomp :: "('a \<Rightarrow> 'b) \<Rightarrow> ('b \<Rightarrow> 'c) \<Rightarrow> 'a \<Rightarrow> 'c" (infixl "\<circ>>" 60)
haftmann@26357
    99
where
haftmann@37751
   100
  "f \<circ>> g = (\<lambda>x. g (f x))"
haftmann@26357
   101
haftmann@37751
   102
lemma fcomp_apply [simp]:  "(f \<circ>> g) x = g (f x)"
haftmann@26357
   103
  by (simp add: fcomp_def)
haftmann@26357
   104
haftmann@37751
   105
lemma fcomp_assoc: "(f \<circ>> g) \<circ>> h = f \<circ>> (g \<circ>> h)"
haftmann@26357
   106
  by (simp add: fcomp_def)
haftmann@26357
   107
haftmann@37751
   108
lemma id_fcomp [simp]: "id \<circ>> g = g"
haftmann@26357
   109
  by (simp add: fcomp_def)
haftmann@26357
   110
haftmann@37751
   111
lemma fcomp_id [simp]: "f \<circ>> id = f"
haftmann@26357
   112
  by (simp add: fcomp_def)
haftmann@26357
   113
haftmann@31202
   114
code_const fcomp
haftmann@31202
   115
  (Eval infixl 1 "#>")
haftmann@31202
   116
haftmann@37751
   117
no_notation fcomp (infixl "\<circ>>" 60)
haftmann@26588
   118
haftmann@26357
   119
haftmann@26147
   120
subsection {* Injectivity and Surjectivity *}
haftmann@26147
   121
haftmann@35416
   122
definition
haftmann@35416
   123
  inj_on :: "['a => 'b, 'a set] => bool" where
haftmann@35416
   124
  -- "injective"
haftmann@26147
   125
  "inj_on f A == ! x:A. ! y:A. f(x)=f(y) --> x=y"
haftmann@26147
   126
haftmann@26147
   127
text{*A common special case: functions injective over the entire domain type.*}
haftmann@26147
   128
haftmann@26147
   129
abbreviation
haftmann@26147
   130
  "inj f == inj_on f UNIV"
paulson@13585
   131
haftmann@26147
   132
definition
haftmann@26147
   133
  bij_betw :: "('a => 'b) => 'a set => 'b set => bool" where -- "bijective"
haftmann@37767
   134
  "bij_betw f A B \<longleftrightarrow> inj_on f A & f ` A = B"
haftmann@26147
   135
haftmann@35416
   136
definition
haftmann@35416
   137
  surj :: "('a => 'b) => bool" where
haftmann@35416
   138
  -- "surjective"
haftmann@26147
   139
  "surj f == ! y. ? x. y=f(x)"
paulson@13585
   140
haftmann@35416
   141
definition
haftmann@35416
   142
  bij :: "('a => 'b) => bool" where
haftmann@35416
   143
  -- "bijective"
haftmann@26147
   144
  "bij f == inj f & surj f"
haftmann@26147
   145
haftmann@26147
   146
lemma injI:
haftmann@26147
   147
  assumes "\<And>x y. f x = f y \<Longrightarrow> x = y"
haftmann@26147
   148
  shows "inj f"
haftmann@26147
   149
  using assms unfolding inj_on_def by auto
paulson@13585
   150
haftmann@31775
   151
text{*For Proofs in @{text "Tools/Datatype/datatype_rep_proofs"}*}
paulson@13585
   152
lemma datatype_injI:
paulson@13585
   153
    "(!! x. ALL y. f(x) = f(y) --> x=y) ==> inj(f)"
paulson@13585
   154
by (simp add: inj_on_def)
paulson@13585
   155
berghofe@13637
   156
theorem range_ex1_eq: "inj f \<Longrightarrow> b : range f = (EX! x. b = f x)"
berghofe@13637
   157
  by (unfold inj_on_def, blast)
berghofe@13637
   158
paulson@13585
   159
lemma injD: "[| inj(f); f(x) = f(y) |] ==> x=y"
paulson@13585
   160
by (simp add: inj_on_def)
paulson@13585
   161
nipkow@32988
   162
lemma inj_on_eq_iff: "inj_on f A ==> x:A ==> y:A ==> (f(x) = f(y)) = (x=y)"
paulson@13585
   163
by (force simp add: inj_on_def)
paulson@13585
   164
haftmann@38620
   165
lemma inj_comp:
haftmann@38620
   166
  "inj f \<Longrightarrow> inj g \<Longrightarrow> inj (f \<circ> g)"
haftmann@38620
   167
  by (simp add: inj_on_def)
haftmann@38620
   168
haftmann@38620
   169
lemma inj_fun: "inj f \<Longrightarrow> inj (\<lambda>x y. f x)"
haftmann@38620
   170
  by (simp add: inj_on_def expand_fun_eq)
haftmann@38620
   171
nipkow@32988
   172
lemma inj_eq: "inj f ==> (f(x) = f(y)) = (x=y)"
nipkow@32988
   173
by (simp add: inj_on_eq_iff)
nipkow@32988
   174
haftmann@26147
   175
lemma inj_on_id[simp]: "inj_on id A"
haftmann@26147
   176
  by (simp add: inj_on_def) 
paulson@13585
   177
haftmann@26147
   178
lemma inj_on_id2[simp]: "inj_on (%x. x) A"
haftmann@26147
   179
by (simp add: inj_on_def) 
haftmann@26147
   180
haftmann@26147
   181
lemma surj_id[simp]: "surj id"
haftmann@26147
   182
by (simp add: surj_def) 
haftmann@26147
   183
haftmann@26147
   184
lemma bij_id[simp]: "bij id"
krauss@34209
   185
by (simp add: bij_def)
paulson@13585
   186
paulson@13585
   187
lemma inj_onI:
paulson@13585
   188
    "(!! x y. [|  x:A;  y:A;  f(x) = f(y) |] ==> x=y) ==> inj_on f A"
paulson@13585
   189
by (simp add: inj_on_def)
paulson@13585
   190
paulson@13585
   191
lemma inj_on_inverseI: "(!!x. x:A ==> g(f(x)) = x) ==> inj_on f A"
paulson@13585
   192
by (auto dest:  arg_cong [of concl: g] simp add: inj_on_def)
paulson@13585
   193
paulson@13585
   194
lemma inj_onD: "[| inj_on f A;  f(x)=f(y);  x:A;  y:A |] ==> x=y"
paulson@13585
   195
by (unfold inj_on_def, blast)
paulson@13585
   196
paulson@13585
   197
lemma inj_on_iff: "[| inj_on f A;  x:A;  y:A |] ==> (f(x)=f(y)) = (x=y)"
paulson@13585
   198
by (blast dest!: inj_onD)
paulson@13585
   199
paulson@13585
   200
lemma comp_inj_on:
paulson@13585
   201
     "[| inj_on f A;  inj_on g (f`A) |] ==> inj_on (g o f) A"
paulson@13585
   202
by (simp add: comp_def inj_on_def)
paulson@13585
   203
nipkow@15303
   204
lemma inj_on_imageI: "inj_on (g o f) A \<Longrightarrow> inj_on g (f ` A)"
nipkow@15303
   205
apply(simp add:inj_on_def image_def)
nipkow@15303
   206
apply blast
nipkow@15303
   207
done
nipkow@15303
   208
nipkow@15439
   209
lemma inj_on_image_iff: "\<lbrakk> ALL x:A. ALL y:A. (g(f x) = g(f y)) = (g x = g y);
nipkow@15439
   210
  inj_on f A \<rbrakk> \<Longrightarrow> inj_on g (f ` A) = inj_on g A"
nipkow@15439
   211
apply(unfold inj_on_def)
nipkow@15439
   212
apply blast
nipkow@15439
   213
done
nipkow@15439
   214
paulson@13585
   215
lemma inj_on_contraD: "[| inj_on f A;  ~x=y;  x:A;  y:A |] ==> ~ f(x)=f(y)"
paulson@13585
   216
by (unfold inj_on_def, blast)
wenzelm@12258
   217
paulson@13585
   218
lemma inj_singleton: "inj (%s. {s})"
paulson@13585
   219
by (simp add: inj_on_def)
paulson@13585
   220
nipkow@15111
   221
lemma inj_on_empty[iff]: "inj_on f {}"
nipkow@15111
   222
by(simp add: inj_on_def)
nipkow@15111
   223
nipkow@15303
   224
lemma subset_inj_on: "[| inj_on f B; A <= B |] ==> inj_on f A"
paulson@13585
   225
by (unfold inj_on_def, blast)
paulson@13585
   226
nipkow@15111
   227
lemma inj_on_Un:
nipkow@15111
   228
 "inj_on f (A Un B) =
nipkow@15111
   229
  (inj_on f A & inj_on f B & f`(A-B) Int f`(B-A) = {})"
nipkow@15111
   230
apply(unfold inj_on_def)
nipkow@15111
   231
apply (blast intro:sym)
nipkow@15111
   232
done
nipkow@15111
   233
nipkow@15111
   234
lemma inj_on_insert[iff]:
nipkow@15111
   235
  "inj_on f (insert a A) = (inj_on f A & f a ~: f`(A-{a}))"
nipkow@15111
   236
apply(unfold inj_on_def)
nipkow@15111
   237
apply (blast intro:sym)
nipkow@15111
   238
done
nipkow@15111
   239
nipkow@15111
   240
lemma inj_on_diff: "inj_on f A ==> inj_on f (A-B)"
nipkow@15111
   241
apply(unfold inj_on_def)
nipkow@15111
   242
apply (blast)
nipkow@15111
   243
done
nipkow@15111
   244
paulson@13585
   245
lemma surjI: "(!! x. g(f x) = x) ==> surj g"
paulson@13585
   246
apply (simp add: surj_def)
paulson@13585
   247
apply (blast intro: sym)
paulson@13585
   248
done
paulson@13585
   249
paulson@13585
   250
lemma surj_range: "surj f ==> range f = UNIV"
paulson@13585
   251
by (auto simp add: surj_def)
paulson@13585
   252
paulson@13585
   253
lemma surjD: "surj f ==> EX x. y = f x"
paulson@13585
   254
by (simp add: surj_def)
paulson@13585
   255
paulson@13585
   256
lemma surjE: "surj f ==> (!!x. y = f x ==> C) ==> C"
paulson@13585
   257
by (simp add: surj_def, blast)
paulson@13585
   258
paulson@13585
   259
lemma comp_surj: "[| surj f;  surj g |] ==> surj (g o f)"
paulson@13585
   260
apply (simp add: comp_def surj_def, clarify)
paulson@13585
   261
apply (drule_tac x = y in spec, clarify)
paulson@13585
   262
apply (drule_tac x = x in spec, blast)
paulson@13585
   263
done
paulson@13585
   264
hoelzl@39074
   265
lemma surj_range_iff: "surj f \<longleftrightarrow> range f = UNIV"
hoelzl@39074
   266
  unfolding expand_set_eq image_iff surj_def by auto
hoelzl@39074
   267
hoelzl@39074
   268
lemma bij_betw_imp_surj: "bij_betw f A UNIV \<Longrightarrow> surj f"
hoelzl@39074
   269
  unfolding bij_betw_def surj_range_iff by auto
hoelzl@39074
   270
hoelzl@39074
   271
lemma bij_eq_bij_betw: "bij f \<longleftrightarrow> bij_betw f UNIV UNIV"
hoelzl@39074
   272
  unfolding bij_def surj_range_iff bij_betw_def ..
hoelzl@39074
   273
paulson@13585
   274
lemma bijI: "[| inj f; surj f |] ==> bij f"
paulson@13585
   275
by (simp add: bij_def)
paulson@13585
   276
paulson@13585
   277
lemma bij_is_inj: "bij f ==> inj f"
paulson@13585
   278
by (simp add: bij_def)
paulson@13585
   279
paulson@13585
   280
lemma bij_is_surj: "bij f ==> surj f"
paulson@13585
   281
by (simp add: bij_def)
paulson@13585
   282
nipkow@26105
   283
lemma bij_betw_imp_inj_on: "bij_betw f A B \<Longrightarrow> inj_on f A"
nipkow@26105
   284
by (simp add: bij_betw_def)
nipkow@26105
   285
nipkow@32337
   286
lemma bij_comp: "bij f \<Longrightarrow> bij g \<Longrightarrow> bij (g o f)"
nipkow@32337
   287
by(fastsimp intro: comp_inj_on comp_surj simp: bij_def surj_range)
nipkow@32337
   288
nipkow@31438
   289
lemma bij_betw_trans:
nipkow@31438
   290
  "bij_betw f A B \<Longrightarrow> bij_betw g B C \<Longrightarrow> bij_betw (g o f) A C"
nipkow@31438
   291
by(auto simp add:bij_betw_def comp_inj_on)
nipkow@31438
   292
nipkow@26105
   293
lemma bij_betw_inv: assumes "bij_betw f A B" shows "EX g. bij_betw g B A"
nipkow@26105
   294
proof -
nipkow@26105
   295
  have i: "inj_on f A" and s: "f ` A = B"
nipkow@26105
   296
    using assms by(auto simp:bij_betw_def)
nipkow@26105
   297
  let ?P = "%b a. a:A \<and> f a = b" let ?g = "%b. The (?P b)"
nipkow@26105
   298
  { fix a b assume P: "?P b a"
nipkow@26105
   299
    hence ex1: "\<exists>a. ?P b a" using s unfolding image_def by blast
nipkow@26105
   300
    hence uex1: "\<exists>!a. ?P b a" by(blast dest:inj_onD[OF i])
nipkow@26105
   301
    hence " ?g b = a" using the1_equality[OF uex1, OF P] P by simp
nipkow@26105
   302
  } note g = this
nipkow@26105
   303
  have "inj_on ?g B"
nipkow@26105
   304
  proof(rule inj_onI)
nipkow@26105
   305
    fix x y assume "x:B" "y:B" "?g x = ?g y"
nipkow@26105
   306
    from s `x:B` obtain a1 where a1: "?P x a1" unfolding image_def by blast
nipkow@26105
   307
    from s `y:B` obtain a2 where a2: "?P y a2" unfolding image_def by blast
nipkow@26105
   308
    from g[OF a1] a1 g[OF a2] a2 `?g x = ?g y` show "x=y" by simp
nipkow@26105
   309
  qed
nipkow@26105
   310
  moreover have "?g ` B = A"
nipkow@26105
   311
  proof(auto simp:image_def)
nipkow@26105
   312
    fix b assume "b:B"
nipkow@26105
   313
    with s obtain a where P: "?P b a" unfolding image_def by blast
nipkow@26105
   314
    thus "?g b \<in> A" using g[OF P] by auto
nipkow@26105
   315
  next
nipkow@26105
   316
    fix a assume "a:A"
nipkow@26105
   317
    then obtain b where P: "?P b a" using s unfolding image_def by blast
nipkow@26105
   318
    then have "b:B" using s unfolding image_def by blast
nipkow@26105
   319
    with g[OF P] show "\<exists>b\<in>B. a = ?g b" by blast
nipkow@26105
   320
  qed
nipkow@26105
   321
  ultimately show ?thesis by(auto simp:bij_betw_def)
nipkow@26105
   322
qed
nipkow@26105
   323
paulson@13585
   324
lemma surj_image_vimage_eq: "surj f ==> f ` (f -` A) = A"
paulson@13585
   325
by (simp add: surj_range)
paulson@13585
   326
paulson@13585
   327
lemma inj_vimage_image_eq: "inj f ==> f -` (f ` A) = A"
paulson@13585
   328
by (simp add: inj_on_def, blast)
paulson@13585
   329
paulson@13585
   330
lemma vimage_subsetD: "surj f ==> f -` B <= A ==> B <= f ` A"
paulson@13585
   331
apply (unfold surj_def)
paulson@13585
   332
apply (blast intro: sym)
paulson@13585
   333
done
paulson@13585
   334
paulson@13585
   335
lemma vimage_subsetI: "inj f ==> B <= f ` A ==> f -` B <= A"
paulson@13585
   336
by (unfold inj_on_def, blast)
paulson@13585
   337
paulson@13585
   338
lemma vimage_subset_eq: "bij f ==> (f -` B <= A) = (B <= f ` A)"
paulson@13585
   339
apply (unfold bij_def)
paulson@13585
   340
apply (blast del: subsetI intro: vimage_subsetI vimage_subsetD)
paulson@13585
   341
done
paulson@13585
   342
nipkow@31438
   343
lemma inj_on_Un_image_eq_iff: "inj_on f (A \<union> B) \<Longrightarrow> f ` A = f ` B \<longleftrightarrow> A = B"
nipkow@31438
   344
by(blast dest: inj_onD)
nipkow@31438
   345
paulson@13585
   346
lemma inj_on_image_Int:
paulson@13585
   347
   "[| inj_on f C;  A<=C;  B<=C |] ==> f`(A Int B) = f`A Int f`B"
paulson@13585
   348
apply (simp add: inj_on_def, blast)
paulson@13585
   349
done
paulson@13585
   350
paulson@13585
   351
lemma inj_on_image_set_diff:
paulson@13585
   352
   "[| inj_on f C;  A<=C;  B<=C |] ==> f`(A-B) = f`A - f`B"
paulson@13585
   353
apply (simp add: inj_on_def, blast)
paulson@13585
   354
done
paulson@13585
   355
paulson@13585
   356
lemma image_Int: "inj f ==> f`(A Int B) = f`A Int f`B"
paulson@13585
   357
by (simp add: inj_on_def, blast)
paulson@13585
   358
paulson@13585
   359
lemma image_set_diff: "inj f ==> f`(A-B) = f`A - f`B"
paulson@13585
   360
by (simp add: inj_on_def, blast)
paulson@13585
   361
paulson@13585
   362
lemma inj_image_mem_iff: "inj f ==> (f a : f`A) = (a : A)"
paulson@13585
   363
by (blast dest: injD)
paulson@13585
   364
paulson@13585
   365
lemma inj_image_subset_iff: "inj f ==> (f`A <= f`B) = (A<=B)"
paulson@13585
   366
by (simp add: inj_on_def, blast)
paulson@13585
   367
paulson@13585
   368
lemma inj_image_eq_iff: "inj f ==> (f`A = f`B) = (A = B)"
paulson@13585
   369
by (blast dest: injD)
paulson@13585
   370
paulson@13585
   371
(*injectivity's required.  Left-to-right inclusion holds even if A is empty*)
paulson@13585
   372
lemma image_INT:
paulson@13585
   373
   "[| inj_on f C;  ALL x:A. B x <= C;  j:A |]
paulson@13585
   374
    ==> f ` (INTER A B) = (INT x:A. f ` B x)"
paulson@13585
   375
apply (simp add: inj_on_def, blast)
paulson@13585
   376
done
paulson@13585
   377
paulson@13585
   378
(*Compare with image_INT: no use of inj_on, and if f is surjective then
paulson@13585
   379
  it doesn't matter whether A is empty*)
paulson@13585
   380
lemma bij_image_INT: "bij f ==> f ` (INTER A B) = (INT x:A. f ` B x)"
paulson@13585
   381
apply (simp add: bij_def)
paulson@13585
   382
apply (simp add: inj_on_def surj_def, blast)
paulson@13585
   383
done
paulson@13585
   384
paulson@13585
   385
lemma surj_Compl_image_subset: "surj f ==> -(f`A) <= f`(-A)"
paulson@13585
   386
by (auto simp add: surj_def)
paulson@13585
   387
paulson@13585
   388
lemma inj_image_Compl_subset: "inj f ==> f`(-A) <= -(f`A)"
paulson@13585
   389
by (auto simp add: inj_on_def)
paulson@5852
   390
paulson@13585
   391
lemma bij_image_Compl_eq: "bij f ==> f`(-A) = -(f`A)"
paulson@13585
   392
apply (simp add: bij_def)
paulson@13585
   393
apply (rule equalityI)
paulson@13585
   394
apply (simp_all (no_asm_simp) add: inj_image_Compl_subset surj_Compl_image_subset)
paulson@13585
   395
done
paulson@13585
   396
hoelzl@35584
   397
lemma (in ordered_ab_group_add) inj_uminus[simp, intro]: "inj_on uminus A"
hoelzl@35580
   398
  by (auto intro!: inj_onI)
paulson@13585
   399
hoelzl@35584
   400
lemma (in linorder) strict_mono_imp_inj_on: "strict_mono f \<Longrightarrow> inj_on f A"
hoelzl@35584
   401
  by (auto intro!: inj_onI dest: strict_mono_eq)
hoelzl@35584
   402
paulson@13585
   403
subsection{*Function Updating*}
paulson@13585
   404
haftmann@35416
   405
definition
haftmann@35416
   406
  fun_upd :: "('a => 'b) => 'a => 'b => ('a => 'b)" where
haftmann@26147
   407
  "fun_upd f a b == % x. if x=a then b else f x"
haftmann@26147
   408
haftmann@26147
   409
nonterminals
haftmann@26147
   410
  updbinds updbind
haftmann@26147
   411
syntax
haftmann@26147
   412
  "_updbind" :: "['a, 'a] => updbind"             ("(2_ :=/ _)")
haftmann@26147
   413
  ""         :: "updbind => updbinds"             ("_")
haftmann@26147
   414
  "_updbinds":: "[updbind, updbinds] => updbinds" ("_,/ _")
wenzelm@35115
   415
  "_Update"  :: "['a, updbinds] => 'a"            ("_/'((_)')" [1000, 0] 900)
haftmann@26147
   416
haftmann@26147
   417
translations
wenzelm@35115
   418
  "_Update f (_updbinds b bs)" == "_Update (_Update f b) bs"
wenzelm@35115
   419
  "f(x:=y)" == "CONST fun_upd f x y"
haftmann@26147
   420
haftmann@26147
   421
(* Hint: to define the sum of two functions (or maps), use sum_case.
haftmann@26147
   422
         A nice infix syntax could be defined (in Datatype.thy or below) by
wenzelm@35115
   423
notation
wenzelm@35115
   424
  sum_case  (infixr "'(+')"80)
haftmann@26147
   425
*)
haftmann@26147
   426
paulson@13585
   427
lemma fun_upd_idem_iff: "(f(x:=y) = f) = (f x = y)"
paulson@13585
   428
apply (simp add: fun_upd_def, safe)
paulson@13585
   429
apply (erule subst)
paulson@13585
   430
apply (rule_tac [2] ext, auto)
paulson@13585
   431
done
paulson@13585
   432
paulson@13585
   433
(* f x = y ==> f(x:=y) = f *)
paulson@13585
   434
lemmas fun_upd_idem = fun_upd_idem_iff [THEN iffD2, standard]
paulson@13585
   435
paulson@13585
   436
(* f(x := f x) = f *)
paulson@17084
   437
lemmas fun_upd_triv = refl [THEN fun_upd_idem]
paulson@17084
   438
declare fun_upd_triv [iff]
paulson@13585
   439
paulson@13585
   440
lemma fun_upd_apply [simp]: "(f(x:=y))z = (if z=x then y else f z)"
paulson@17084
   441
by (simp add: fun_upd_def)
paulson@13585
   442
paulson@13585
   443
(* fun_upd_apply supersedes these two,   but they are useful
paulson@13585
   444
   if fun_upd_apply is intentionally removed from the simpset *)
paulson@13585
   445
lemma fun_upd_same: "(f(x:=y)) x = y"
paulson@13585
   446
by simp
paulson@13585
   447
paulson@13585
   448
lemma fun_upd_other: "z~=x ==> (f(x:=y)) z = f z"
paulson@13585
   449
by simp
paulson@13585
   450
paulson@13585
   451
lemma fun_upd_upd [simp]: "f(x:=y,x:=z) = f(x:=z)"
paulson@13585
   452
by (simp add: expand_fun_eq)
paulson@13585
   453
paulson@13585
   454
lemma fun_upd_twist: "a ~= c ==> (m(a:=b))(c:=d) = (m(c:=d))(a:=b)"
paulson@13585
   455
by (rule ext, auto)
paulson@13585
   456
nipkow@15303
   457
lemma inj_on_fun_updI: "\<lbrakk> inj_on f A; y \<notin> f`A \<rbrakk> \<Longrightarrow> inj_on (f(x:=y)) A"
krauss@34209
   458
by (fastsimp simp:inj_on_def image_def)
nipkow@15303
   459
paulson@15510
   460
lemma fun_upd_image:
paulson@15510
   461
     "f(x:=y) ` A = (if x \<in> A then insert y (f ` (A-{x})) else f ` A)"
paulson@15510
   462
by auto
paulson@15510
   463
nipkow@31080
   464
lemma fun_upd_comp: "f \<circ> (g(x := y)) = (f \<circ> g)(x := f y)"
krauss@34209
   465
by (auto intro: ext)
nipkow@31080
   466
haftmann@26147
   467
haftmann@26147
   468
subsection {* @{text override_on} *}
haftmann@26147
   469
haftmann@26147
   470
definition
haftmann@26147
   471
  override_on :: "('a \<Rightarrow> 'b) \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> 'a set \<Rightarrow> 'a \<Rightarrow> 'b"
haftmann@26147
   472
where
haftmann@26147
   473
  "override_on f g A = (\<lambda>a. if a \<in> A then g a else f a)"
nipkow@13910
   474
nipkow@15691
   475
lemma override_on_emptyset[simp]: "override_on f g {} = f"
nipkow@15691
   476
by(simp add:override_on_def)
nipkow@13910
   477
nipkow@15691
   478
lemma override_on_apply_notin[simp]: "a ~: A ==> (override_on f g A) a = f a"
nipkow@15691
   479
by(simp add:override_on_def)
nipkow@13910
   480
nipkow@15691
   481
lemma override_on_apply_in[simp]: "a : A ==> (override_on f g A) a = g a"
nipkow@15691
   482
by(simp add:override_on_def)
nipkow@13910
   483
haftmann@26147
   484
haftmann@26147
   485
subsection {* @{text swap} *}
paulson@15510
   486
haftmann@22744
   487
definition
haftmann@22744
   488
  swap :: "'a \<Rightarrow> 'a \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> ('a \<Rightarrow> 'b)"
haftmann@22744
   489
where
haftmann@22744
   490
  "swap a b f = f (a := f b, b:= f a)"
paulson@15510
   491
huffman@34101
   492
lemma swap_self [simp]: "swap a a f = f"
nipkow@15691
   493
by (simp add: swap_def)
paulson@15510
   494
paulson@15510
   495
lemma swap_commute: "swap a b f = swap b a f"
paulson@15510
   496
by (rule ext, simp add: fun_upd_def swap_def)
paulson@15510
   497
paulson@15510
   498
lemma swap_nilpotent [simp]: "swap a b (swap a b f) = f"
paulson@15510
   499
by (rule ext, simp add: fun_upd_def swap_def)
paulson@15510
   500
huffman@34145
   501
lemma swap_triple:
huffman@34145
   502
  assumes "a \<noteq> c" and "b \<noteq> c"
huffman@34145
   503
  shows "swap a b (swap b c (swap a b f)) = swap a c f"
huffman@34145
   504
  using assms by (simp add: expand_fun_eq swap_def)
huffman@34145
   505
huffman@34101
   506
lemma comp_swap: "f \<circ> swap a b g = swap a b (f \<circ> g)"
huffman@34101
   507
by (rule ext, simp add: fun_upd_def swap_def)
huffman@34101
   508
paulson@15510
   509
lemma inj_on_imp_inj_on_swap:
haftmann@22744
   510
  "[|inj_on f A; a \<in> A; b \<in> A|] ==> inj_on (swap a b f) A"
paulson@15510
   511
by (simp add: inj_on_def swap_def, blast)
paulson@15510
   512
paulson@15510
   513
lemma inj_on_swap_iff [simp]:
paulson@15510
   514
  assumes A: "a \<in> A" "b \<in> A" shows "inj_on (swap a b f) A = inj_on f A"
paulson@15510
   515
proof 
paulson@15510
   516
  assume "inj_on (swap a b f) A"
paulson@15510
   517
  with A have "inj_on (swap a b (swap a b f)) A" 
nipkow@17589
   518
    by (iprover intro: inj_on_imp_inj_on_swap) 
paulson@15510
   519
  thus "inj_on f A" by simp 
paulson@15510
   520
next
paulson@15510
   521
  assume "inj_on f A"
krauss@34209
   522
  with A show "inj_on (swap a b f) A" by (iprover intro: inj_on_imp_inj_on_swap)
paulson@15510
   523
qed
paulson@15510
   524
paulson@15510
   525
lemma surj_imp_surj_swap: "surj f ==> surj (swap a b f)"
paulson@15510
   526
apply (simp add: surj_def swap_def, clarify)
wenzelm@27125
   527
apply (case_tac "y = f b", blast)
wenzelm@27125
   528
apply (case_tac "y = f a", auto)
paulson@15510
   529
done
paulson@15510
   530
paulson@15510
   531
lemma surj_swap_iff [simp]: "surj (swap a b f) = surj f"
paulson@15510
   532
proof 
paulson@15510
   533
  assume "surj (swap a b f)"
paulson@15510
   534
  hence "surj (swap a b (swap a b f))" by (rule surj_imp_surj_swap) 
paulson@15510
   535
  thus "surj f" by simp 
paulson@15510
   536
next
paulson@15510
   537
  assume "surj f"
paulson@15510
   538
  thus "surj (swap a b f)" by (rule surj_imp_surj_swap) 
paulson@15510
   539
qed
paulson@15510
   540
paulson@15510
   541
lemma bij_swap_iff: "bij (swap a b f) = bij f"
paulson@15510
   542
by (simp add: bij_def)
haftmann@21547
   543
wenzelm@36176
   544
hide_const (open) swap
haftmann@21547
   545
haftmann@31949
   546
haftmann@31949
   547
subsection {* Inversion of injective functions *}
haftmann@31949
   548
nipkow@33057
   549
definition the_inv_into :: "'a set => ('a => 'b) => ('b => 'a)" where
nipkow@33057
   550
"the_inv_into A f == %x. THE y. y : A & f y = x"
nipkow@32961
   551
nipkow@33057
   552
lemma the_inv_into_f_f:
nipkow@33057
   553
  "[| inj_on f A;  x : A |] ==> the_inv_into A f (f x) = x"
nipkow@33057
   554
apply (simp add: the_inv_into_def inj_on_def)
krauss@34209
   555
apply blast
nipkow@32961
   556
done
nipkow@32961
   557
nipkow@33057
   558
lemma f_the_inv_into_f:
nipkow@33057
   559
  "inj_on f A ==> y : f`A  ==> f (the_inv_into A f y) = y"
nipkow@33057
   560
apply (simp add: the_inv_into_def)
nipkow@32961
   561
apply (rule the1I2)
nipkow@32961
   562
 apply(blast dest: inj_onD)
nipkow@32961
   563
apply blast
nipkow@32961
   564
done
nipkow@32961
   565
nipkow@33057
   566
lemma the_inv_into_into:
nipkow@33057
   567
  "[| inj_on f A; x : f ` A; A <= B |] ==> the_inv_into A f x : B"
nipkow@33057
   568
apply (simp add: the_inv_into_def)
nipkow@32961
   569
apply (rule the1I2)
nipkow@32961
   570
 apply(blast dest: inj_onD)
nipkow@32961
   571
apply blast
nipkow@32961
   572
done
nipkow@32961
   573
nipkow@33057
   574
lemma the_inv_into_onto[simp]:
nipkow@33057
   575
  "inj_on f A ==> the_inv_into A f ` (f ` A) = A"
nipkow@33057
   576
by (fast intro:the_inv_into_into the_inv_into_f_f[symmetric])
nipkow@32961
   577
nipkow@33057
   578
lemma the_inv_into_f_eq:
nipkow@33057
   579
  "[| inj_on f A; f x = y; x : A |] ==> the_inv_into A f y = x"
nipkow@32961
   580
  apply (erule subst)
nipkow@33057
   581
  apply (erule the_inv_into_f_f, assumption)
nipkow@32961
   582
  done
nipkow@32961
   583
nipkow@33057
   584
lemma the_inv_into_comp:
nipkow@32961
   585
  "[| inj_on f (g ` A); inj_on g A; x : f ` g ` A |] ==>
nipkow@33057
   586
  the_inv_into A (f o g) x = (the_inv_into A g o the_inv_into (g ` A) f) x"
nipkow@33057
   587
apply (rule the_inv_into_f_eq)
nipkow@32961
   588
  apply (fast intro: comp_inj_on)
nipkow@33057
   589
 apply (simp add: f_the_inv_into_f the_inv_into_into)
nipkow@33057
   590
apply (simp add: the_inv_into_into)
nipkow@32961
   591
done
nipkow@32961
   592
nipkow@33057
   593
lemma inj_on_the_inv_into:
nipkow@33057
   594
  "inj_on f A \<Longrightarrow> inj_on (the_inv_into A f) (f ` A)"
nipkow@33057
   595
by (auto intro: inj_onI simp: image_def the_inv_into_f_f)
nipkow@32961
   596
nipkow@33057
   597
lemma bij_betw_the_inv_into:
nipkow@33057
   598
  "bij_betw f A B \<Longrightarrow> bij_betw (the_inv_into A f) B A"
nipkow@33057
   599
by (auto simp add: bij_betw_def inj_on_the_inv_into the_inv_into_into)
nipkow@32961
   600
berghofe@32998
   601
abbreviation the_inv :: "('a \<Rightarrow> 'b) \<Rightarrow> ('b \<Rightarrow> 'a)" where
nipkow@33057
   602
  "the_inv f \<equiv> the_inv_into UNIV f"
berghofe@32998
   603
berghofe@32998
   604
lemma the_inv_f_f:
berghofe@32998
   605
  assumes "inj f"
berghofe@32998
   606
  shows "the_inv f (f x) = x" using assms UNIV_I
nipkow@33057
   607
  by (rule the_inv_into_f_f)
berghofe@32998
   608
haftmann@31949
   609
haftmann@22845
   610
subsection {* Proof tool setup *} 
haftmann@22845
   611
haftmann@22845
   612
text {* simplifies terms of the form
haftmann@22845
   613
  f(...,x:=y,...,x:=z,...) to f(...,x:=z,...) *}
haftmann@22845
   614
wenzelm@24017
   615
simproc_setup fun_upd2 ("f(v := w, x := y)") = {* fn _ =>
haftmann@22845
   616
let
haftmann@22845
   617
  fun gen_fun_upd NONE T _ _ = NONE
wenzelm@24017
   618
    | gen_fun_upd (SOME f) T x y = SOME (Const (@{const_name fun_upd}, T) $ f $ x $ y)
haftmann@22845
   619
  fun dest_fun_T1 (Type (_, T :: Ts)) = T
haftmann@22845
   620
  fun find_double (t as Const (@{const_name fun_upd},T) $ f $ x $ y) =
haftmann@22845
   621
    let
haftmann@22845
   622
      fun find (Const (@{const_name fun_upd},T) $ g $ v $ w) =
haftmann@22845
   623
            if v aconv x then SOME g else gen_fun_upd (find g) T v w
haftmann@22845
   624
        | find t = NONE
haftmann@22845
   625
    in (dest_fun_T1 T, gen_fun_upd (find f) T x y) end
wenzelm@24017
   626
wenzelm@24017
   627
  fun proc ss ct =
wenzelm@24017
   628
    let
wenzelm@24017
   629
      val ctxt = Simplifier.the_context ss
wenzelm@24017
   630
      val t = Thm.term_of ct
wenzelm@24017
   631
    in
wenzelm@24017
   632
      case find_double t of
wenzelm@24017
   633
        (T, NONE) => NONE
wenzelm@24017
   634
      | (T, SOME rhs) =>
wenzelm@27330
   635
          SOME (Goal.prove ctxt [] [] (Logic.mk_equals (t, rhs))
wenzelm@24017
   636
            (fn _ =>
wenzelm@24017
   637
              rtac eq_reflection 1 THEN
wenzelm@24017
   638
              rtac ext 1 THEN
wenzelm@24017
   639
              simp_tac (Simplifier.inherit_context ss @{simpset}) 1))
wenzelm@24017
   640
    end
wenzelm@24017
   641
in proc end
haftmann@22845
   642
*}
haftmann@22845
   643
haftmann@22845
   644
haftmann@21870
   645
subsection {* Code generator setup *}
haftmann@21870
   646
berghofe@25886
   647
types_code
berghofe@25886
   648
  "fun"  ("(_ ->/ _)")
berghofe@25886
   649
attach (term_of) {*
berghofe@25886
   650
fun term_of_fun_type _ aT _ bT _ = Free ("<function>", aT --> bT);
berghofe@25886
   651
*}
berghofe@25886
   652
attach (test) {*
berghofe@25886
   653
fun gen_fun_type aF aT bG bT i =
berghofe@25886
   654
  let
wenzelm@32740
   655
    val tab = Unsynchronized.ref [];
berghofe@25886
   656
    fun mk_upd (x, (_, y)) t = Const ("Fun.fun_upd",
berghofe@25886
   657
      (aT --> bT) --> aT --> bT --> aT --> bT) $ t $ aF x $ y ()
berghofe@25886
   658
  in
berghofe@25886
   659
    (fn x =>
berghofe@25886
   660
       case AList.lookup op = (!tab) x of
berghofe@25886
   661
         NONE =>
berghofe@25886
   662
           let val p as (y, _) = bG i
berghofe@25886
   663
           in (tab := (x, p) :: !tab; y) end
berghofe@25886
   664
       | SOME (y, _) => y,
berghofe@28711
   665
     fn () => Basics.fold mk_upd (!tab) (Const ("HOL.undefined", aT --> bT)))
berghofe@25886
   666
  end;
berghofe@25886
   667
*}
berghofe@25886
   668
haftmann@21870
   669
code_const "op \<circ>"
haftmann@21870
   670
  (SML infixl 5 "o")
haftmann@21870
   671
  (Haskell infixr 9 ".")
haftmann@21870
   672
haftmann@21906
   673
code_const "id"
haftmann@21906
   674
  (Haskell "id")
haftmann@21906
   675
nipkow@2912
   676
end