src/HOL/Real/HahnBanach/README.html
author wenzelm
Wed Sep 29 15:35:09 1999 +0200 (1999-09-29)
changeset 7655 21b7b0fd41bd
child 7927 b50446a33c16
permissions -rw-r--r--
The Hahn-Banach theorem for real vectorspaces;
wenzelm@7655
     1
<HTML><HEAD><TITLE>HOL/Real/HahnBanach/README</TITLE></HEAD><BODY>
wenzelm@7655
     2
wenzelm@7655
     3
<H3> The Hahn-Banach theorem for real vectorspaces (Isabelle/Isar).</H3>
wenzelm@7655
     4
wenzelm@7655
     5
Author:     Gertrud Bauer, Technische Universit&auml;t M&uuml;nchen<P>
wenzelm@7655
     6
wenzelm@7655
     7
This directory contains the proof of the Hahn-Banach theorem for real vectorspaces,
wenzelm@7655
     8
following H. Heuser, Funktionalanalysis, p. 228 -232.
wenzelm@7655
     9
The Hahn-Banach theorem is one of the fundamental theorems of functioal analysis.
wenzelm@7655
    10
It is a conclusion of Zorn's lemma.<P>
wenzelm@7655
    11
wenzelm@7655
    12
Two different formaulations of the theorem are presented, one for general real vectorspaces
wenzelm@7655
    13
and its application to normed vectorspaces. <P>
wenzelm@7655
    14
wenzelm@7655
    15
The theorem says, that every continous linearform, defined on arbitrary subspaces
wenzelm@7655
    16
(not only one-dimensional subspaces), can be extended to a continous linearform on
wenzelm@7655
    17
the whole vectorspace.
wenzelm@7655
    18
wenzelm@7655
    19
wenzelm@7655
    20
<HR>
wenzelm@7655
    21
wenzelm@7655
    22
<ADDRESS>
wenzelm@7655
    23
<A NAME="bauerg@in.tum.de" HREF="mailto:bauerg@in.tum.de">bauerg@in.tum.de</A>
wenzelm@7655
    24
</ADDRESS>
wenzelm@7655
    25
wenzelm@7655
    26
</BODY></HTML>
wenzelm@7655
    27