src/HOL/Algebra/Congruence.thy
author ballarin
Fri Aug 01 18:10:52 2008 +0200 (2008-08-01)
changeset 27717 21bbd410ba04
parent 27701 ed7a2e0fab59
child 29237 e90d9d51106b
permissions -rw-r--r--
Generalised polynomial lemmas from cring to ring.
ballarin@27701
     1
(*
ballarin@27701
     2
  Title:  Algebra/Congruence.thy
ballarin@27701
     3
  Id:     $Id$
ballarin@27701
     4
  Author: Clemens Ballarin, started 3 January 2008
ballarin@27701
     5
  Copyright: Clemens Ballarin
ballarin@27701
     6
*)
ballarin@27701
     7
ballarin@27701
     8
theory Congruence imports Main begin
ballarin@27701
     9
ballarin@27701
    10
section {* Objects *}
ballarin@27701
    11
ballarin@27717
    12
subsection {* Structure with Carrier Set. *}
ballarin@27701
    13
ballarin@27701
    14
record 'a partial_object =
ballarin@27701
    15
  carrier :: "'a set"
ballarin@27701
    16
ballarin@27717
    17
ballarin@27717
    18
subsection {* Structure with Carrier and Equivalence Relation @{text eq} *}
ballarin@27701
    19
ballarin@27701
    20
record 'a eq_object = "'a partial_object" +
ballarin@27701
    21
  eq :: "'a \<Rightarrow> 'a \<Rightarrow> bool" (infixl ".=\<index>" 50)
ballarin@27701
    22
ballarin@27701
    23
constdefs (structure S)
ballarin@27701
    24
  elem :: "_ \<Rightarrow> 'a \<Rightarrow> 'a set \<Rightarrow> bool" (infixl ".\<in>\<index>" 50)
ballarin@27701
    25
  "x .\<in> A \<equiv> (\<exists>y \<in> A. x .= y)"
ballarin@27701
    26
ballarin@27701
    27
  set_eq :: "_ \<Rightarrow> 'a set \<Rightarrow> 'a set \<Rightarrow> bool" (infixl "{.=}\<index>" 50)
ballarin@27701
    28
  "A {.=} B == ((\<forall>x \<in> A. x .\<in> B) \<and> (\<forall>x \<in> B. x .\<in> A))"
ballarin@27701
    29
ballarin@27701
    30
  eq_class_of :: "_ \<Rightarrow> 'a \<Rightarrow> 'a set" ("class'_of\<index> _")
ballarin@27701
    31
  "class_of x == {y \<in> carrier S. x .= y}"
ballarin@27701
    32
ballarin@27701
    33
  eq_closure_of :: "_ \<Rightarrow> 'a set \<Rightarrow> 'a set" ("closure'_of\<index> _")
ballarin@27701
    34
  "closure_of A == {y \<in> carrier S. y .\<in> A}"
ballarin@27701
    35
ballarin@27701
    36
  eq_is_closed :: "_ \<Rightarrow> 'a set \<Rightarrow> bool" ("is'_closed\<index> _")
ballarin@27701
    37
  "is_closed A == (A \<subseteq> carrier S \<and> closure_of A = A)"
ballarin@27701
    38
ballarin@27701
    39
syntax
ballarin@27701
    40
  not_eq :: "_ \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> bool" (infixl ".\<noteq>\<index>" 50)
ballarin@27701
    41
  not_elem :: "_ \<Rightarrow> 'a \<Rightarrow> 'a set \<Rightarrow> bool" (infixl ".\<notin>\<index>" 50)
ballarin@27701
    42
  set_not_eq :: "_ \<Rightarrow> 'a set \<Rightarrow> 'a set \<Rightarrow> bool" (infixl "{.\<noteq>}\<index>" 50)
ballarin@27701
    43
ballarin@27701
    44
translations
ballarin@27701
    45
  "x .\<noteq>\<index> y" == "~(x .=\<index> y)"
ballarin@27701
    46
  "x .\<notin>\<index> A" == "~(x .\<in>\<index> A)"
ballarin@27701
    47
  "A {.\<noteq>}\<index> B" == "~(A {.=}\<index> B)"
ballarin@27701
    48
ballarin@27701
    49
locale equivalence =
ballarin@27701
    50
  fixes S (structure)
ballarin@27701
    51
  assumes refl [simp, intro]: "x \<in> carrier S \<Longrightarrow> x .= x"
ballarin@27701
    52
    and sym [sym]: "\<lbrakk> x .= y; x \<in> carrier S; y \<in> carrier S \<rbrakk> \<Longrightarrow> y .= x"
ballarin@27701
    53
    and trans [trans]: "\<lbrakk> x .= y; y .= z; x \<in> carrier S; y \<in> carrier S; z \<in> carrier S \<rbrakk> \<Longrightarrow> x .= z"
ballarin@27701
    54
ballarin@27717
    55
(* Lemmas by Stephan Hohe *)
ballarin@27717
    56
ballarin@27701
    57
lemma elemI:
ballarin@27701
    58
  fixes R (structure)
ballarin@27701
    59
  assumes "a' \<in> A" and "a .= a'"
ballarin@27701
    60
  shows "a .\<in> A"
ballarin@27701
    61
unfolding elem_def
ballarin@27701
    62
using assms
ballarin@27701
    63
by fast
ballarin@27701
    64
ballarin@27701
    65
lemma (in equivalence) elem_exact:
ballarin@27701
    66
  assumes "a \<in> carrier S" and "a \<in> A"
ballarin@27701
    67
  shows "a .\<in> A"
ballarin@27701
    68
using assms
ballarin@27701
    69
by (fast intro: elemI)
ballarin@27701
    70
ballarin@27701
    71
lemma elemE:
ballarin@27701
    72
  fixes S (structure)
ballarin@27701
    73
  assumes "a .\<in> A"
ballarin@27701
    74
    and "\<And>a'. \<lbrakk>a' \<in> A; a .= a'\<rbrakk> \<Longrightarrow> P"
ballarin@27701
    75
  shows "P"
ballarin@27701
    76
using assms
ballarin@27701
    77
unfolding elem_def
ballarin@27701
    78
by fast
ballarin@27701
    79
ballarin@27701
    80
lemma (in equivalence) elem_cong_l [trans]:
ballarin@27701
    81
  assumes cong: "a' .= a"
ballarin@27701
    82
    and a: "a .\<in> A"
ballarin@27701
    83
    and carr: "a \<in> carrier S"  "a' \<in> carrier S"
ballarin@27701
    84
    and Acarr: "A \<subseteq> carrier S"
ballarin@27701
    85
  shows "a' .\<in> A"
ballarin@27701
    86
using a
ballarin@27701
    87
apply (elim elemE, intro elemI)
ballarin@27701
    88
proof assumption
ballarin@27701
    89
  fix b
ballarin@27701
    90
  assume bA: "b \<in> A"
ballarin@27701
    91
  note [simp] = carr bA[THEN subsetD[OF Acarr]]
ballarin@27701
    92
  note cong
ballarin@27701
    93
  also assume "a .= b"
ballarin@27701
    94
  finally show "a' .= b" by simp
ballarin@27701
    95
qed
ballarin@27701
    96
ballarin@27701
    97
lemma (in equivalence) elem_subsetD:
ballarin@27701
    98
  assumes "A \<subseteq> B"
ballarin@27701
    99
    and aA: "a .\<in> A"
ballarin@27701
   100
  shows "a .\<in> B"
ballarin@27701
   101
using assms
ballarin@27701
   102
by (fast intro: elemI elim: elemE dest: subsetD)
ballarin@27701
   103
ballarin@27701
   104
lemma (in equivalence) mem_imp_elem [simp, intro]:
ballarin@27701
   105
  "[| x \<in> A; x \<in> carrier S |] ==> x .\<in> A"
ballarin@27701
   106
  unfolding elem_def by blast
ballarin@27701
   107
ballarin@27701
   108
lemma set_eqI:
ballarin@27701
   109
  fixes R (structure)
ballarin@27701
   110
  assumes ltr: "\<And>a. a \<in> A \<Longrightarrow> a .\<in> B"
ballarin@27701
   111
    and rtl: "\<And>b. b \<in> B \<Longrightarrow> b .\<in> A"
ballarin@27701
   112
  shows "A {.=} B"
ballarin@27701
   113
unfolding set_eq_def
ballarin@27701
   114
by (fast intro: ltr rtl)
ballarin@27701
   115
ballarin@27701
   116
lemma set_eqI2:
ballarin@27701
   117
  fixes R (structure)
ballarin@27701
   118
  assumes ltr: "\<And>a b. a \<in> A \<Longrightarrow> \<exists>b\<in>B. a .= b"
ballarin@27701
   119
    and rtl: "\<And>b. b \<in> B \<Longrightarrow> \<exists>a\<in>A. b .= a"
ballarin@27701
   120
  shows "A {.=} B"
ballarin@27701
   121
  by (intro set_eqI, unfold elem_def) (fast intro: ltr rtl)+
ballarin@27701
   122
ballarin@27701
   123
lemma set_eqD1:
ballarin@27701
   124
  fixes R (structure)
ballarin@27701
   125
  assumes AA': "A {.=} A'"
ballarin@27701
   126
    and "a \<in> A"
ballarin@27701
   127
  shows "\<exists>a'\<in>A'. a .= a'"
ballarin@27701
   128
using assms
ballarin@27701
   129
unfolding set_eq_def elem_def
ballarin@27701
   130
by fast
ballarin@27701
   131
ballarin@27701
   132
lemma set_eqD2:
ballarin@27701
   133
  fixes R (structure)
ballarin@27701
   134
  assumes AA': "A {.=} A'"
ballarin@27701
   135
    and "a' \<in> A'"
ballarin@27701
   136
  shows "\<exists>a\<in>A. a' .= a"
ballarin@27701
   137
using assms
ballarin@27701
   138
unfolding set_eq_def elem_def
ballarin@27701
   139
by fast
ballarin@27701
   140
ballarin@27701
   141
lemma set_eqE:
ballarin@27701
   142
  fixes R (structure)
ballarin@27701
   143
  assumes AB: "A {.=} B"
ballarin@27701
   144
    and r: "\<lbrakk>\<forall>a\<in>A. a .\<in> B; \<forall>b\<in>B. b .\<in> A\<rbrakk> \<Longrightarrow> P"
ballarin@27701
   145
  shows "P"
ballarin@27701
   146
using AB
ballarin@27701
   147
unfolding set_eq_def
ballarin@27701
   148
by (blast dest: r)
ballarin@27701
   149
ballarin@27701
   150
lemma set_eqE2:
ballarin@27701
   151
  fixes R (structure)
ballarin@27701
   152
  assumes AB: "A {.=} B"
ballarin@27701
   153
    and r: "\<lbrakk>\<forall>a\<in>A. (\<exists>b\<in>B. a .= b); \<forall>b\<in>B. (\<exists>a\<in>A. b .= a)\<rbrakk> \<Longrightarrow> P"
ballarin@27701
   154
  shows "P"
ballarin@27701
   155
using AB
ballarin@27701
   156
unfolding set_eq_def elem_def
ballarin@27701
   157
by (blast dest: r)
ballarin@27701
   158
ballarin@27701
   159
lemma set_eqE':
ballarin@27701
   160
  fixes R (structure)
ballarin@27701
   161
  assumes AB: "A {.=} B"
ballarin@27701
   162
    and aA: "a \<in> A" and bB: "b \<in> B"
ballarin@27701
   163
    and r: "\<And>a' b'. \<lbrakk>a' \<in> A; b .= a'; b' \<in> B; a .= b'\<rbrakk> \<Longrightarrow> P"
ballarin@27701
   164
  shows "P"
ballarin@27701
   165
proof -
ballarin@27701
   166
  from AB aA
ballarin@27701
   167
      have "\<exists>b'\<in>B. a .= b'" by (rule set_eqD1)
ballarin@27701
   168
  from this obtain b'
ballarin@27701
   169
      where b': "b' \<in> B" "a .= b'" by auto
ballarin@27701
   170
ballarin@27701
   171
  from AB bB
ballarin@27701
   172
      have "\<exists>a'\<in>A. b .= a'" by (rule set_eqD2)
ballarin@27701
   173
  from this obtain a'
ballarin@27701
   174
      where a': "a' \<in> A" "b .= a'" by auto
ballarin@27701
   175
ballarin@27701
   176
  from a' b'
ballarin@27701
   177
      show "P" by (rule r)
ballarin@27701
   178
qed
ballarin@27701
   179
ballarin@27701
   180
lemma (in equivalence) eq_elem_cong_r [trans]:
ballarin@27701
   181
  assumes a: "a .\<in> A"
ballarin@27701
   182
    and cong: "A {.=} A'"
ballarin@27701
   183
    and carr: "a \<in> carrier S"
ballarin@27701
   184
    and Carr: "A \<subseteq> carrier S" "A' \<subseteq> carrier S"
ballarin@27701
   185
  shows "a .\<in> A'"
ballarin@27701
   186
using a cong
ballarin@27701
   187
proof (elim elemE set_eqE)
ballarin@27701
   188
  fix b
ballarin@27701
   189
  assume bA: "b \<in> A"
ballarin@27701
   190
     and inA': "\<forall>b\<in>A. b .\<in> A'"
ballarin@27701
   191
  note [simp] = carr Carr Carr[THEN subsetD] bA
ballarin@27701
   192
  assume "a .= b"
ballarin@27701
   193
  also from bA inA'
ballarin@27701
   194
       have "b .\<in> A'" by fast
ballarin@27701
   195
  finally
ballarin@27701
   196
       show "a .\<in> A'" by simp
ballarin@27701
   197
qed
ballarin@27701
   198
ballarin@27701
   199
lemma (in equivalence) set_eq_sym [sym]:
ballarin@27701
   200
  assumes "A {.=} B"
ballarin@27701
   201
    and "A \<subseteq> carrier S" "B \<subseteq> carrier S"
ballarin@27701
   202
  shows "B {.=} A"
ballarin@27701
   203
using assms
ballarin@27701
   204
unfolding set_eq_def elem_def
ballarin@27701
   205
by fast
ballarin@27701
   206
ballarin@27701
   207
(* FIXME: the following two required in Isabelle 2008, not Isabelle 2007 *)
ballarin@27717
   208
(* alternatively, could declare lemmas [trans] = ssubst [where 'a = "'a set"] *)
ballarin@27701
   209
ballarin@27701
   210
lemma (in equivalence) equal_set_eq_trans [trans]:
ballarin@27701
   211
  assumes AB: "A = B" and BC: "B {.=} C"
ballarin@27701
   212
  shows "A {.=} C"
ballarin@27701
   213
  using AB BC by simp
ballarin@27701
   214
ballarin@27701
   215
lemma (in equivalence) set_eq_equal_trans [trans]:
ballarin@27701
   216
  assumes AB: "A {.=} B" and BC: "B = C"
ballarin@27701
   217
  shows "A {.=} C"
ballarin@27701
   218
  using AB BC by simp
ballarin@27701
   219
ballarin@27717
   220
ballarin@27701
   221
lemma (in equivalence) set_eq_trans [trans]:
ballarin@27701
   222
  assumes AB: "A {.=} B" and BC: "B {.=} C"
ballarin@27701
   223
    and carr: "A \<subseteq> carrier S"  "B \<subseteq> carrier S"  "C \<subseteq> carrier S"
ballarin@27701
   224
  shows "A {.=} C"
ballarin@27701
   225
proof (intro set_eqI)
ballarin@27701
   226
  fix a
ballarin@27701
   227
  assume aA: "a \<in> A"
ballarin@27701
   228
  with carr have "a \<in> carrier S" by fast
ballarin@27701
   229
  note [simp] = carr this
ballarin@27701
   230
ballarin@27701
   231
  from aA
ballarin@27701
   232
       have "a .\<in> A" by (simp add: elem_exact)
ballarin@27701
   233
  also note AB
ballarin@27701
   234
  also note BC
ballarin@27701
   235
  finally
ballarin@27701
   236
       show "a .\<in> C" by simp
ballarin@27701
   237
next
ballarin@27701
   238
  fix c
ballarin@27701
   239
  assume cC: "c \<in> C"
ballarin@27701
   240
  with carr have "c \<in> carrier S" by fast
ballarin@27701
   241
  note [simp] = carr this
ballarin@27701
   242
ballarin@27701
   243
  from cC
ballarin@27701
   244
       have "c .\<in> C" by (simp add: elem_exact)
ballarin@27701
   245
  also note BC[symmetric]
ballarin@27701
   246
  also note AB[symmetric]
ballarin@27701
   247
  finally
ballarin@27701
   248
       show "c .\<in> A" by simp
ballarin@27701
   249
qed
ballarin@27701
   250
ballarin@27701
   251
(* FIXME: generalise for insert *)
ballarin@27701
   252
ballarin@27701
   253
(*
ballarin@27701
   254
lemma (in equivalence) set_eq_insert:
ballarin@27701
   255
  assumes x: "x .= x'"
ballarin@27701
   256
    and carr: "x \<in> carrier S" "x' \<in> carrier S" "A \<subseteq> carrier S"
ballarin@27701
   257
  shows "insert x A {.=} insert x' A"
ballarin@27701
   258
  unfolding set_eq_def elem_def
ballarin@27701
   259
apply rule
ballarin@27701
   260
apply rule
ballarin@27701
   261
apply (case_tac "xa = x")
ballarin@27701
   262
using x apply fast
ballarin@27701
   263
apply (subgoal_tac "xa \<in> A") prefer 2 apply fast
ballarin@27701
   264
apply (rule_tac x=xa in bexI)
ballarin@27701
   265
using carr apply (rule_tac refl) apply auto [1]
ballarin@27701
   266
apply safe
ballarin@27701
   267
*)
ballarin@27701
   268
ballarin@27701
   269
lemma (in equivalence) set_eq_pairI:
ballarin@27701
   270
  assumes xx': "x .= x'"
ballarin@27701
   271
    and carr: "x \<in> carrier S" "x' \<in> carrier S" "y \<in> carrier S"
ballarin@27701
   272
  shows "{x, y} {.=} {x', y}"
ballarin@27701
   273
unfolding set_eq_def elem_def
ballarin@27701
   274
proof safe
ballarin@27701
   275
  have "x' \<in> {x', y}" by fast
ballarin@27701
   276
  with xx' show "\<exists>b\<in>{x', y}. x .= b" by fast
ballarin@27701
   277
next
ballarin@27701
   278
  have "y \<in> {x', y}" by fast
ballarin@27701
   279
  with carr show "\<exists>b\<in>{x', y}. y .= b" by fast
ballarin@27701
   280
next
ballarin@27701
   281
  have "x \<in> {x, y}" by fast
ballarin@27701
   282
  with xx'[symmetric] carr
ballarin@27701
   283
  show "\<exists>a\<in>{x, y}. x' .= a" by fast
ballarin@27701
   284
next
ballarin@27701
   285
  have "y \<in> {x, y}" by fast
ballarin@27701
   286
  with carr show "\<exists>a\<in>{x, y}. y .= a" by fast
ballarin@27701
   287
qed
ballarin@27701
   288
ballarin@27701
   289
lemma (in equivalence) is_closedI:
ballarin@27701
   290
  assumes closed: "!!x y. [| x .= y; x \<in> A; y \<in> carrier S |] ==> y \<in> A"
ballarin@27701
   291
    and S: "A \<subseteq> carrier S"
ballarin@27701
   292
  shows "is_closed A"
ballarin@27701
   293
  unfolding eq_is_closed_def eq_closure_of_def elem_def
ballarin@27701
   294
  using S
ballarin@27701
   295
  by (blast dest: closed sym)
ballarin@27701
   296
ballarin@27701
   297
lemma (in equivalence) closure_of_eq:
ballarin@27701
   298
  "[| x .= x'; A \<subseteq> carrier S; x \<in> closure_of A; x \<in> carrier S; x' \<in> carrier S |] ==> x' \<in> closure_of A"
ballarin@27701
   299
  unfolding eq_closure_of_def elem_def
ballarin@27701
   300
  by (blast intro: trans sym)
ballarin@27701
   301
ballarin@27701
   302
lemma (in equivalence) is_closed_eq [dest]:
ballarin@27701
   303
  "[| x .= x'; x \<in> A; is_closed A; x \<in> carrier S; x' \<in> carrier S |] ==> x' \<in> A"
ballarin@27701
   304
  unfolding eq_is_closed_def
ballarin@27701
   305
  using closure_of_eq [where A = A]
ballarin@27701
   306
  by simp
ballarin@27701
   307
ballarin@27701
   308
lemma (in equivalence) is_closed_eq_rev [dest]:
ballarin@27701
   309
  "[| x .= x'; x' \<in> A; is_closed A; x \<in> carrier S; x' \<in> carrier S |] ==> x \<in> A"
ballarin@27701
   310
  by (drule sym) (simp_all add: is_closed_eq)
ballarin@27701
   311
ballarin@27701
   312
lemma closure_of_closed [simp, intro]:
ballarin@27701
   313
  fixes S (structure)
ballarin@27701
   314
  shows "closure_of A \<subseteq> carrier S"
ballarin@27701
   315
unfolding eq_closure_of_def
ballarin@27701
   316
by fast
ballarin@27701
   317
ballarin@27701
   318
lemma closure_of_memI:
ballarin@27701
   319
  fixes S (structure)
ballarin@27701
   320
  assumes "a .\<in> A"
ballarin@27701
   321
    and "a \<in> carrier S"
ballarin@27701
   322
  shows "a \<in> closure_of A"
ballarin@27701
   323
unfolding eq_closure_of_def
ballarin@27701
   324
using assms
ballarin@27701
   325
by fast
ballarin@27701
   326
ballarin@27701
   327
lemma closure_ofI2:
ballarin@27701
   328
  fixes S (structure)
ballarin@27701
   329
  assumes "a .= a'"
ballarin@27701
   330
    and "a' \<in> A"
ballarin@27701
   331
    and "a \<in> carrier S"
ballarin@27701
   332
  shows "a \<in> closure_of A"
ballarin@27701
   333
unfolding eq_closure_of_def elem_def
ballarin@27701
   334
using assms
ballarin@27701
   335
by fast
ballarin@27701
   336
ballarin@27701
   337
lemma closure_of_memE:
ballarin@27701
   338
  fixes S (structure)
ballarin@27701
   339
  assumes p: "a \<in> closure_of A"
ballarin@27701
   340
    and r: "\<lbrakk>a \<in> carrier S; a .\<in> A\<rbrakk> \<Longrightarrow> P"
ballarin@27701
   341
  shows "P"
ballarin@27701
   342
proof -
ballarin@27701
   343
  from p
ballarin@27701
   344
      have acarr: "a \<in> carrier S"
ballarin@27701
   345
      and "a .\<in> A"
ballarin@27701
   346
      by (simp add: eq_closure_of_def)+
ballarin@27701
   347
  thus "P" by (rule r)
ballarin@27701
   348
qed
ballarin@27701
   349
ballarin@27701
   350
lemma closure_ofE2:
ballarin@27701
   351
  fixes S (structure)
ballarin@27701
   352
  assumes p: "a \<in> closure_of A"
ballarin@27701
   353
    and r: "\<And>a'. \<lbrakk>a \<in> carrier S; a' \<in> A; a .= a'\<rbrakk> \<Longrightarrow> P"
ballarin@27701
   354
  shows "P"
ballarin@27701
   355
proof -
ballarin@27701
   356
  from p have acarr: "a \<in> carrier S" by (simp add: eq_closure_of_def)
ballarin@27701
   357
ballarin@27701
   358
  from p have "\<exists>a'\<in>A. a .= a'" by (simp add: eq_closure_of_def elem_def)
ballarin@27701
   359
  from this obtain a'
ballarin@27701
   360
      where "a' \<in> A" and "a .= a'" by auto
ballarin@27701
   361
ballarin@27701
   362
  from acarr and this
ballarin@27701
   363
      show "P" by (rule r)
ballarin@27701
   364
qed
ballarin@27701
   365
ballarin@27701
   366
(*
ballarin@27701
   367
lemma (in equivalence) classes_consistent:
ballarin@27701
   368
  assumes Acarr: "A \<subseteq> carrier S"
ballarin@27701
   369
  shows "is_closed (closure_of A)"
ballarin@27701
   370
apply (blast intro: elemI elim elemE)
ballarin@27701
   371
using assms
ballarin@27701
   372
apply (intro is_closedI closure_of_memI, simp)
ballarin@27701
   373
 apply (elim elemE closure_of_memE)
ballarin@27701
   374
proof -
ballarin@27701
   375
  fix x a' a''
ballarin@27701
   376
  assume carr: "x \<in> carrier S" "a' \<in> carrier S"
ballarin@27701
   377
  assume a''A: "a'' \<in> A"
ballarin@27701
   378
  with Acarr have "a'' \<in> carrier S" by fast
ballarin@27701
   379
  note [simp] = carr this Acarr
ballarin@27701
   380
ballarin@27701
   381
  assume "x .= a'"
ballarin@27701
   382
  also assume "a' .= a''"
ballarin@27701
   383
  also from a''A
ballarin@27701
   384
       have "a'' .\<in> A" by (simp add: elem_exact)
ballarin@27701
   385
  finally show "x .\<in> A" by simp
ballarin@27701
   386
qed
ballarin@27701
   387
*)
ballarin@27701
   388
(*
ballarin@27701
   389
lemma (in equivalence) classes_small:
ballarin@27701
   390
  assumes "is_closed B"
ballarin@27701
   391
    and "A \<subseteq> B"
ballarin@27701
   392
  shows "closure_of A \<subseteq> B"
ballarin@27701
   393
using assms
ballarin@27701
   394
by (blast dest: is_closedD2 elem_subsetD elim: closure_of_memE)
ballarin@27701
   395
ballarin@27701
   396
lemma (in equivalence) classes_eq:
ballarin@27701
   397
  assumes "A \<subseteq> carrier S"
ballarin@27701
   398
  shows "A {.=} closure_of A"
ballarin@27701
   399
using assms
ballarin@27701
   400
by (blast intro: set_eqI elem_exact closure_of_memI elim: closure_of_memE)
ballarin@27701
   401
ballarin@27701
   402
lemma (in equivalence) complete_classes:
ballarin@27701
   403
  assumes c: "is_closed A"
ballarin@27701
   404
  shows "A = closure_of A"
ballarin@27701
   405
using assms
ballarin@27701
   406
by (blast intro: closure_of_memI elem_exact dest: is_closedD1 is_closedD2 closure_of_memE)
ballarin@27701
   407
*)
ballarin@27701
   408
ballarin@27701
   409
end