src/HOL/Nat.thy
author haftmann
Thu Oct 31 11:44:20 2013 +0100 (2013-10-31)
changeset 54222 24874b4024d1
parent 54147 97a8ff4e4ac9
child 54223 85705ba18add
permissions -rw-r--r--
generalised lemma
clasohm@923
     1
(*  Title:      HOL/Nat.thy
wenzelm@21243
     2
    Author:     Tobias Nipkow and Lawrence C Paulson and Markus Wenzel
clasohm@923
     3
wenzelm@9436
     4
Type "nat" is a linear order, and a datatype; arithmetic operators + -
haftmann@30496
     5
and * (for div and mod, see theory Divides).
clasohm@923
     6
*)
clasohm@923
     7
berghofe@13449
     8
header {* Natural numbers *}
berghofe@13449
     9
nipkow@15131
    10
theory Nat
haftmann@35121
    11
imports Inductive Typedef Fun Fields
nipkow@15131
    12
begin
berghofe@13449
    13
wenzelm@48891
    14
ML_file "~~/src/Tools/rat.ML"
wenzelm@48891
    15
ML_file "Tools/arith_data.ML"
wenzelm@48891
    16
ML_file "~~/src/Provers/Arith/fast_lin_arith.ML"
wenzelm@48891
    17
wenzelm@48891
    18
berghofe@13449
    19
subsection {* Type @{text ind} *}
berghofe@13449
    20
berghofe@13449
    21
typedecl ind
berghofe@13449
    22
haftmann@44325
    23
axiomatization Zero_Rep :: ind and Suc_Rep :: "ind => ind" where
berghofe@13449
    24
  -- {* the axiom of infinity in 2 parts *}
krauss@34208
    25
  Suc_Rep_inject:       "Suc_Rep x = Suc_Rep y ==> x = y" and
paulson@14267
    26
  Suc_Rep_not_Zero_Rep: "Suc_Rep x \<noteq> Zero_Rep"
wenzelm@19573
    27
berghofe@13449
    28
subsection {* Type nat *}
berghofe@13449
    29
berghofe@13449
    30
text {* Type definition *}
berghofe@13449
    31
haftmann@44325
    32
inductive Nat :: "ind \<Rightarrow> bool" where
haftmann@44325
    33
  Zero_RepI: "Nat Zero_Rep"
haftmann@44325
    34
| Suc_RepI: "Nat i \<Longrightarrow> Nat (Suc_Rep i)"
berghofe@13449
    35
wenzelm@49834
    36
typedef nat = "{n. Nat n}"
wenzelm@45696
    37
  morphisms Rep_Nat Abs_Nat
haftmann@44278
    38
  using Nat.Zero_RepI by auto
haftmann@44278
    39
haftmann@44278
    40
lemma Nat_Rep_Nat:
haftmann@44278
    41
  "Nat (Rep_Nat n)"
haftmann@44278
    42
  using Rep_Nat by simp
berghofe@13449
    43
haftmann@44278
    44
lemma Nat_Abs_Nat_inverse:
haftmann@44278
    45
  "Nat n \<Longrightarrow> Rep_Nat (Abs_Nat n) = n"
haftmann@44278
    46
  using Abs_Nat_inverse by simp
haftmann@44278
    47
haftmann@44278
    48
lemma Nat_Abs_Nat_inject:
haftmann@44278
    49
  "Nat n \<Longrightarrow> Nat m \<Longrightarrow> Abs_Nat n = Abs_Nat m \<longleftrightarrow> n = m"
haftmann@44278
    50
  using Abs_Nat_inject by simp
berghofe@13449
    51
haftmann@25510
    52
instantiation nat :: zero
haftmann@25510
    53
begin
haftmann@25510
    54
haftmann@37767
    55
definition Zero_nat_def:
haftmann@25510
    56
  "0 = Abs_Nat Zero_Rep"
haftmann@25510
    57
haftmann@25510
    58
instance ..
haftmann@25510
    59
haftmann@25510
    60
end
haftmann@24995
    61
haftmann@44278
    62
definition Suc :: "nat \<Rightarrow> nat" where
haftmann@44278
    63
  "Suc n = Abs_Nat (Suc_Rep (Rep_Nat n))"
haftmann@44278
    64
haftmann@27104
    65
lemma Suc_not_Zero: "Suc m \<noteq> 0"
haftmann@44278
    66
  by (simp add: Zero_nat_def Suc_def Suc_RepI Zero_RepI Nat_Abs_Nat_inject Suc_Rep_not_Zero_Rep Nat_Rep_Nat)
berghofe@13449
    67
haftmann@27104
    68
lemma Zero_not_Suc: "0 \<noteq> Suc m"
berghofe@13449
    69
  by (rule not_sym, rule Suc_not_Zero not_sym)
berghofe@13449
    70
krauss@34208
    71
lemma Suc_Rep_inject': "Suc_Rep x = Suc_Rep y \<longleftrightarrow> x = y"
krauss@34208
    72
  by (rule iffI, rule Suc_Rep_inject) simp_all
krauss@34208
    73
haftmann@27104
    74
rep_datatype "0 \<Colon> nat" Suc
wenzelm@27129
    75
  apply (unfold Zero_nat_def Suc_def)
haftmann@44278
    76
  apply (rule Rep_Nat_inverse [THEN subst]) -- {* types force good instantiation *}
haftmann@44278
    77
   apply (erule Nat_Rep_Nat [THEN Nat.induct])
haftmann@44278
    78
   apply (iprover elim: Nat_Abs_Nat_inverse [THEN subst])
haftmann@44278
    79
    apply (simp_all add: Nat_Abs_Nat_inject Nat_Rep_Nat
haftmann@44278
    80
      Suc_RepI Zero_RepI Suc_Rep_not_Zero_Rep
haftmann@44278
    81
      Suc_Rep_not_Zero_Rep [symmetric]
krauss@34208
    82
      Suc_Rep_inject' Rep_Nat_inject)
wenzelm@27129
    83
  done
berghofe@13449
    84
haftmann@27104
    85
lemma nat_induct [case_names 0 Suc, induct type: nat]:
haftmann@30686
    86
  -- {* for backward compatibility -- names of variables differ *}
haftmann@27104
    87
  fixes n
haftmann@27104
    88
  assumes "P 0"
haftmann@27104
    89
    and "\<And>n. P n \<Longrightarrow> P (Suc n)"
haftmann@27104
    90
  shows "P n"
haftmann@32772
    91
  using assms by (rule nat.induct)
haftmann@21411
    92
haftmann@21411
    93
declare nat.exhaust [case_names 0 Suc, cases type: nat]
berghofe@13449
    94
wenzelm@21672
    95
lemmas nat_rec_0 = nat.recs(1)
wenzelm@21672
    96
  and nat_rec_Suc = nat.recs(2)
wenzelm@21672
    97
wenzelm@21672
    98
lemmas nat_case_0 = nat.cases(1)
wenzelm@21672
    99
  and nat_case_Suc = nat.cases(2)
haftmann@27104
   100
   
haftmann@24995
   101
haftmann@24995
   102
text {* Injectiveness and distinctness lemmas *}
haftmann@24995
   103
haftmann@27104
   104
lemma inj_Suc[simp]: "inj_on Suc N"
haftmann@27104
   105
  by (simp add: inj_on_def)
haftmann@27104
   106
haftmann@26072
   107
lemma Suc_neq_Zero: "Suc m = 0 \<Longrightarrow> R"
nipkow@25162
   108
by (rule notE, rule Suc_not_Zero)
haftmann@24995
   109
haftmann@26072
   110
lemma Zero_neq_Suc: "0 = Suc m \<Longrightarrow> R"
nipkow@25162
   111
by (rule Suc_neq_Zero, erule sym)
haftmann@24995
   112
haftmann@26072
   113
lemma Suc_inject: "Suc x = Suc y \<Longrightarrow> x = y"
nipkow@25162
   114
by (rule inj_Suc [THEN injD])
haftmann@24995
   115
paulson@14267
   116
lemma n_not_Suc_n: "n \<noteq> Suc n"
nipkow@25162
   117
by (induct n) simp_all
berghofe@13449
   118
haftmann@26072
   119
lemma Suc_n_not_n: "Suc n \<noteq> n"
nipkow@25162
   120
by (rule not_sym, rule n_not_Suc_n)
berghofe@13449
   121
berghofe@13449
   122
text {* A special form of induction for reasoning
berghofe@13449
   123
  about @{term "m < n"} and @{term "m - n"} *}
berghofe@13449
   124
haftmann@26072
   125
lemma diff_induct: "(!!x. P x 0) ==> (!!y. P 0 (Suc y)) ==>
berghofe@13449
   126
    (!!x y. P x y ==> P (Suc x) (Suc y)) ==> P m n"
paulson@14208
   127
  apply (rule_tac x = m in spec)
paulson@15251
   128
  apply (induct n)
berghofe@13449
   129
  prefer 2
berghofe@13449
   130
  apply (rule allI)
nipkow@17589
   131
  apply (induct_tac x, iprover+)
berghofe@13449
   132
  done
berghofe@13449
   133
haftmann@24995
   134
haftmann@24995
   135
subsection {* Arithmetic operators *}
haftmann@24995
   136
haftmann@49388
   137
instantiation nat :: comm_monoid_diff
haftmann@25571
   138
begin
haftmann@24995
   139
haftmann@44325
   140
primrec plus_nat where
haftmann@25571
   141
  add_0:      "0 + n = (n\<Colon>nat)"
haftmann@44325
   142
| add_Suc:  "Suc m + n = Suc (m + n)"
haftmann@24995
   143
haftmann@26072
   144
lemma add_0_right [simp]: "m + 0 = (m::nat)"
haftmann@26072
   145
  by (induct m) simp_all
haftmann@26072
   146
haftmann@26072
   147
lemma add_Suc_right [simp]: "m + Suc n = Suc (m + n)"
haftmann@26072
   148
  by (induct m) simp_all
haftmann@26072
   149
haftmann@28514
   150
declare add_0 [code]
haftmann@28514
   151
haftmann@26072
   152
lemma add_Suc_shift [code]: "Suc m + n = m + Suc n"
haftmann@26072
   153
  by simp
haftmann@26072
   154
haftmann@44325
   155
primrec minus_nat where
haftmann@39793
   156
  diff_0 [code]: "m - 0 = (m\<Colon>nat)"
haftmann@39793
   157
| diff_Suc: "m - Suc n = (case m - n of 0 => 0 | Suc k => k)"
haftmann@24995
   158
haftmann@28514
   159
declare diff_Suc [simp del]
haftmann@26072
   160
haftmann@26072
   161
lemma diff_0_eq_0 [simp, code]: "0 - n = (0::nat)"
haftmann@26072
   162
  by (induct n) (simp_all add: diff_Suc)
haftmann@26072
   163
haftmann@26072
   164
lemma diff_Suc_Suc [simp, code]: "Suc m - Suc n = m - n"
haftmann@26072
   165
  by (induct n) (simp_all add: diff_Suc)
haftmann@26072
   166
haftmann@26072
   167
instance proof
haftmann@26072
   168
  fix n m q :: nat
haftmann@26072
   169
  show "(n + m) + q = n + (m + q)" by (induct n) simp_all
haftmann@26072
   170
  show "n + m = m + n" by (induct n) simp_all
haftmann@26072
   171
  show "0 + n = n" by simp
haftmann@49388
   172
  show "n - 0 = n" by simp
haftmann@49388
   173
  show "0 - n = 0" by simp
haftmann@49388
   174
  show "(q + n) - (q + m) = n - m" by (induct q) simp_all
haftmann@49388
   175
  show "n - m - q = n - (m + q)" by (induct q) (simp_all add: diff_Suc)
haftmann@26072
   176
qed
haftmann@26072
   177
haftmann@26072
   178
end
haftmann@26072
   179
wenzelm@36176
   180
hide_fact (open) add_0 add_0_right diff_0
haftmann@35047
   181
haftmann@26072
   182
instantiation nat :: comm_semiring_1_cancel
haftmann@26072
   183
begin
haftmann@26072
   184
haftmann@26072
   185
definition
huffman@47108
   186
  One_nat_def [simp]: "1 = Suc 0"
haftmann@26072
   187
haftmann@44325
   188
primrec times_nat where
haftmann@25571
   189
  mult_0:     "0 * n = (0\<Colon>nat)"
haftmann@44325
   190
| mult_Suc: "Suc m * n = n + (m * n)"
haftmann@25571
   191
haftmann@26072
   192
lemma mult_0_right [simp]: "(m::nat) * 0 = 0"
haftmann@26072
   193
  by (induct m) simp_all
haftmann@26072
   194
haftmann@26072
   195
lemma mult_Suc_right [simp]: "m * Suc n = m + (m * n)"
haftmann@26072
   196
  by (induct m) (simp_all add: add_left_commute)
haftmann@26072
   197
haftmann@26072
   198
lemma add_mult_distrib: "(m + n) * k = (m * k) + ((n * k)::nat)"
haftmann@26072
   199
  by (induct m) (simp_all add: add_assoc)
haftmann@26072
   200
haftmann@26072
   201
instance proof
haftmann@26072
   202
  fix n m q :: nat
huffman@30079
   203
  show "0 \<noteq> (1::nat)" unfolding One_nat_def by simp
huffman@30079
   204
  show "1 * n = n" unfolding One_nat_def by simp
haftmann@26072
   205
  show "n * m = m * n" by (induct n) simp_all
haftmann@26072
   206
  show "(n * m) * q = n * (m * q)" by (induct n) (simp_all add: add_mult_distrib)
haftmann@26072
   207
  show "(n + m) * q = n * q + m * q" by (rule add_mult_distrib)
haftmann@26072
   208
  assume "n + m = n + q" thus "m = q" by (induct n) simp_all
haftmann@26072
   209
qed
haftmann@25571
   210
haftmann@25571
   211
end
haftmann@24995
   212
haftmann@26072
   213
subsubsection {* Addition *}
haftmann@26072
   214
haftmann@26072
   215
lemma nat_add_assoc: "(m + n) + k = m + ((n + k)::nat)"
haftmann@26072
   216
  by (rule add_assoc)
haftmann@26072
   217
haftmann@26072
   218
lemma nat_add_commute: "m + n = n + (m::nat)"
haftmann@26072
   219
  by (rule add_commute)
haftmann@26072
   220
haftmann@26072
   221
lemma nat_add_left_commute: "x + (y + z) = y + ((x + z)::nat)"
haftmann@26072
   222
  by (rule add_left_commute)
haftmann@26072
   223
haftmann@26072
   224
lemma nat_add_left_cancel [simp]: "(k + m = k + n) = (m = (n::nat))"
haftmann@26072
   225
  by (rule add_left_cancel)
haftmann@26072
   226
haftmann@26072
   227
lemma nat_add_right_cancel [simp]: "(m + k = n + k) = (m=(n::nat))"
haftmann@26072
   228
  by (rule add_right_cancel)
haftmann@26072
   229
haftmann@26072
   230
text {* Reasoning about @{text "m + 0 = 0"}, etc. *}
haftmann@26072
   231
haftmann@26072
   232
lemma add_is_0 [iff]:
haftmann@26072
   233
  fixes m n :: nat
haftmann@26072
   234
  shows "(m + n = 0) = (m = 0 & n = 0)"
haftmann@26072
   235
  by (cases m) simp_all
haftmann@26072
   236
haftmann@26072
   237
lemma add_is_1:
haftmann@26072
   238
  "(m+n= Suc 0) = (m= Suc 0 & n=0 | m=0 & n= Suc 0)"
haftmann@26072
   239
  by (cases m) simp_all
haftmann@26072
   240
haftmann@26072
   241
lemma one_is_add:
haftmann@26072
   242
  "(Suc 0 = m + n) = (m = Suc 0 & n = 0 | m = 0 & n = Suc 0)"
haftmann@26072
   243
  by (rule trans, rule eq_commute, rule add_is_1)
haftmann@26072
   244
haftmann@26072
   245
lemma add_eq_self_zero:
haftmann@26072
   246
  fixes m n :: nat
haftmann@26072
   247
  shows "m + n = m \<Longrightarrow> n = 0"
haftmann@26072
   248
  by (induct m) simp_all
haftmann@26072
   249
haftmann@26072
   250
lemma inj_on_add_nat[simp]: "inj_on (%n::nat. n+k) N"
haftmann@26072
   251
  apply (induct k)
haftmann@26072
   252
   apply simp
haftmann@26072
   253
  apply(drule comp_inj_on[OF _ inj_Suc])
haftmann@26072
   254
  apply (simp add:o_def)
haftmann@26072
   255
  done
haftmann@26072
   256
huffman@47208
   257
lemma Suc_eq_plus1: "Suc n = n + 1"
huffman@47208
   258
  unfolding One_nat_def by simp
huffman@47208
   259
huffman@47208
   260
lemma Suc_eq_plus1_left: "Suc n = 1 + n"
huffman@47208
   261
  unfolding One_nat_def by simp
huffman@47208
   262
haftmann@26072
   263
haftmann@26072
   264
subsubsection {* Difference *}
haftmann@26072
   265
haftmann@26072
   266
lemma diff_self_eq_0 [simp]: "(m\<Colon>nat) - m = 0"
haftmann@26072
   267
  by (induct m) simp_all
haftmann@26072
   268
haftmann@26072
   269
lemma diff_diff_left: "(i::nat) - j - k = i - (j + k)"
haftmann@26072
   270
  by (induct i j rule: diff_induct) simp_all
haftmann@26072
   271
haftmann@26072
   272
lemma Suc_diff_diff [simp]: "(Suc m - n) - Suc k = m - n - k"
haftmann@26072
   273
  by (simp add: diff_diff_left)
haftmann@26072
   274
haftmann@26072
   275
lemma diff_commute: "(i::nat) - j - k = i - k - j"
haftmann@26072
   276
  by (simp add: diff_diff_left add_commute)
haftmann@26072
   277
haftmann@26072
   278
lemma diff_add_inverse: "(n + m) - n = (m::nat)"
haftmann@26072
   279
  by (induct n) simp_all
haftmann@26072
   280
haftmann@26072
   281
lemma diff_add_inverse2: "(m + n) - n = (m::nat)"
haftmann@26072
   282
  by (simp add: diff_add_inverse add_commute [of m n])
haftmann@26072
   283
haftmann@26072
   284
lemma diff_cancel: "(k + m) - (k + n) = m - (n::nat)"
haftmann@26072
   285
  by (induct k) simp_all
haftmann@26072
   286
haftmann@26072
   287
lemma diff_cancel2: "(m + k) - (n + k) = m - (n::nat)"
haftmann@26072
   288
  by (simp add: diff_cancel add_commute)
haftmann@26072
   289
haftmann@26072
   290
lemma diff_add_0: "n - (n + m) = (0::nat)"
haftmann@26072
   291
  by (induct n) simp_all
haftmann@26072
   292
huffman@30093
   293
lemma diff_Suc_1 [simp]: "Suc n - 1 = n"
huffman@30093
   294
  unfolding One_nat_def by simp
huffman@30093
   295
haftmann@26072
   296
text {* Difference distributes over multiplication *}
haftmann@26072
   297
haftmann@26072
   298
lemma diff_mult_distrib: "((m::nat) - n) * k = (m * k) - (n * k)"
haftmann@26072
   299
by (induct m n rule: diff_induct) (simp_all add: diff_cancel)
haftmann@26072
   300
haftmann@26072
   301
lemma diff_mult_distrib2: "k * ((m::nat) - n) = (k * m) - (k * n)"
haftmann@26072
   302
by (simp add: diff_mult_distrib mult_commute [of k])
haftmann@26072
   303
  -- {* NOT added as rewrites, since sometimes they are used from right-to-left *}
haftmann@26072
   304
haftmann@26072
   305
haftmann@26072
   306
subsubsection {* Multiplication *}
haftmann@26072
   307
haftmann@26072
   308
lemma nat_mult_assoc: "(m * n) * k = m * ((n * k)::nat)"
haftmann@26072
   309
  by (rule mult_assoc)
haftmann@26072
   310
haftmann@26072
   311
lemma nat_mult_commute: "m * n = n * (m::nat)"
haftmann@26072
   312
  by (rule mult_commute)
haftmann@26072
   313
haftmann@26072
   314
lemma add_mult_distrib2: "k * (m + n) = (k * m) + ((k * n)::nat)"
webertj@49962
   315
  by (rule distrib_left)
haftmann@26072
   316
haftmann@26072
   317
lemma mult_is_0 [simp]: "((m::nat) * n = 0) = (m=0 | n=0)"
haftmann@26072
   318
  by (induct m) auto
haftmann@26072
   319
haftmann@26072
   320
lemmas nat_distrib =
haftmann@26072
   321
  add_mult_distrib add_mult_distrib2 diff_mult_distrib diff_mult_distrib2
haftmann@26072
   322
huffman@30079
   323
lemma mult_eq_1_iff [simp]: "(m * n = Suc 0) = (m = Suc 0 & n = Suc 0)"
haftmann@26072
   324
  apply (induct m)
haftmann@26072
   325
   apply simp
haftmann@26072
   326
  apply (induct n)
haftmann@26072
   327
   apply auto
haftmann@26072
   328
  done
haftmann@26072
   329
blanchet@54147
   330
lemma one_eq_mult_iff [simp]: "(Suc 0 = m * n) = (m = Suc 0 & n = Suc 0)"
haftmann@26072
   331
  apply (rule trans)
nipkow@44890
   332
  apply (rule_tac [2] mult_eq_1_iff, fastforce)
haftmann@26072
   333
  done
haftmann@26072
   334
huffman@30079
   335
lemma nat_mult_eq_1_iff [simp]: "m * n = (1::nat) \<longleftrightarrow> m = 1 \<and> n = 1"
huffman@30079
   336
  unfolding One_nat_def by (rule mult_eq_1_iff)
huffman@30079
   337
huffman@30079
   338
lemma nat_1_eq_mult_iff [simp]: "(1::nat) = m * n \<longleftrightarrow> m = 1 \<and> n = 1"
huffman@30079
   339
  unfolding One_nat_def by (rule one_eq_mult_iff)
huffman@30079
   340
haftmann@26072
   341
lemma mult_cancel1 [simp]: "(k * m = k * n) = (m = n | (k = (0::nat)))"
haftmann@26072
   342
proof -
haftmann@26072
   343
  have "k \<noteq> 0 \<Longrightarrow> k * m = k * n \<Longrightarrow> m = n"
haftmann@26072
   344
  proof (induct n arbitrary: m)
haftmann@26072
   345
    case 0 then show "m = 0" by simp
haftmann@26072
   346
  next
haftmann@26072
   347
    case (Suc n) then show "m = Suc n"
haftmann@26072
   348
      by (cases m) (simp_all add: eq_commute [of "0"])
haftmann@26072
   349
  qed
haftmann@26072
   350
  then show ?thesis by auto
haftmann@26072
   351
qed
haftmann@26072
   352
haftmann@26072
   353
lemma mult_cancel2 [simp]: "(m * k = n * k) = (m = n | (k = (0::nat)))"
haftmann@26072
   354
  by (simp add: mult_commute)
haftmann@26072
   355
haftmann@26072
   356
lemma Suc_mult_cancel1: "(Suc k * m = Suc k * n) = (m = n)"
haftmann@26072
   357
  by (subst mult_cancel1) simp
haftmann@26072
   358
haftmann@24995
   359
haftmann@24995
   360
subsection {* Orders on @{typ nat} *}
haftmann@24995
   361
haftmann@26072
   362
subsubsection {* Operation definition *}
haftmann@24995
   363
haftmann@26072
   364
instantiation nat :: linorder
haftmann@25510
   365
begin
haftmann@25510
   366
haftmann@26072
   367
primrec less_eq_nat where
haftmann@26072
   368
  "(0\<Colon>nat) \<le> n \<longleftrightarrow> True"
haftmann@44325
   369
| "Suc m \<le> n \<longleftrightarrow> (case n of 0 \<Rightarrow> False | Suc n \<Rightarrow> m \<le> n)"
haftmann@26072
   370
haftmann@28514
   371
declare less_eq_nat.simps [simp del]
haftmann@26072
   372
lemma [code]: "(0\<Colon>nat) \<le> n \<longleftrightarrow> True" by (simp add: less_eq_nat.simps)
haftmann@26072
   373
lemma le0 [iff]: "0 \<le> (n\<Colon>nat)" by (simp add: less_eq_nat.simps)
haftmann@26072
   374
haftmann@26072
   375
definition less_nat where
haftmann@28514
   376
  less_eq_Suc_le: "n < m \<longleftrightarrow> Suc n \<le> m"
haftmann@26072
   377
haftmann@26072
   378
lemma Suc_le_mono [iff]: "Suc n \<le> Suc m \<longleftrightarrow> n \<le> m"
haftmann@26072
   379
  by (simp add: less_eq_nat.simps(2))
haftmann@26072
   380
haftmann@26072
   381
lemma Suc_le_eq [code]: "Suc m \<le> n \<longleftrightarrow> m < n"
haftmann@26072
   382
  unfolding less_eq_Suc_le ..
haftmann@26072
   383
haftmann@26072
   384
lemma le_0_eq [iff]: "(n\<Colon>nat) \<le> 0 \<longleftrightarrow> n = 0"
haftmann@26072
   385
  by (induct n) (simp_all add: less_eq_nat.simps(2))
haftmann@26072
   386
haftmann@26072
   387
lemma not_less0 [iff]: "\<not> n < (0\<Colon>nat)"
haftmann@26072
   388
  by (simp add: less_eq_Suc_le)
haftmann@26072
   389
haftmann@26072
   390
lemma less_nat_zero_code [code]: "n < (0\<Colon>nat) \<longleftrightarrow> False"
haftmann@26072
   391
  by simp
haftmann@26072
   392
haftmann@26072
   393
lemma Suc_less_eq [iff]: "Suc m < Suc n \<longleftrightarrow> m < n"
haftmann@26072
   394
  by (simp add: less_eq_Suc_le)
haftmann@26072
   395
haftmann@26072
   396
lemma less_Suc_eq_le [code]: "m < Suc n \<longleftrightarrow> m \<le> n"
haftmann@26072
   397
  by (simp add: less_eq_Suc_le)
haftmann@26072
   398
haftmann@26072
   399
lemma le_SucI: "m \<le> n \<Longrightarrow> m \<le> Suc n"
haftmann@26072
   400
  by (induct m arbitrary: n)
haftmann@26072
   401
    (simp_all add: less_eq_nat.simps(2) split: nat.splits)
haftmann@26072
   402
haftmann@26072
   403
lemma Suc_leD: "Suc m \<le> n \<Longrightarrow> m \<le> n"
haftmann@26072
   404
  by (cases n) (auto intro: le_SucI)
haftmann@26072
   405
haftmann@26072
   406
lemma less_SucI: "m < n \<Longrightarrow> m < Suc n"
haftmann@26072
   407
  by (simp add: less_eq_Suc_le) (erule Suc_leD)
haftmann@24995
   408
haftmann@26072
   409
lemma Suc_lessD: "Suc m < n \<Longrightarrow> m < n"
haftmann@26072
   410
  by (simp add: less_eq_Suc_le) (erule Suc_leD)
haftmann@25510
   411
wenzelm@26315
   412
instance
wenzelm@26315
   413
proof
haftmann@26072
   414
  fix n m :: nat
haftmann@27679
   415
  show "n < m \<longleftrightarrow> n \<le> m \<and> \<not> m \<le> n" 
haftmann@26072
   416
  proof (induct n arbitrary: m)
haftmann@27679
   417
    case 0 then show ?case by (cases m) (simp_all add: less_eq_Suc_le)
haftmann@26072
   418
  next
haftmann@27679
   419
    case (Suc n) then show ?case by (cases m) (simp_all add: less_eq_Suc_le)
haftmann@26072
   420
  qed
haftmann@26072
   421
next
haftmann@26072
   422
  fix n :: nat show "n \<le> n" by (induct n) simp_all
haftmann@26072
   423
next
haftmann@26072
   424
  fix n m :: nat assume "n \<le> m" and "m \<le> n"
haftmann@26072
   425
  then show "n = m"
haftmann@26072
   426
    by (induct n arbitrary: m)
haftmann@26072
   427
      (simp_all add: less_eq_nat.simps(2) split: nat.splits)
haftmann@26072
   428
next
haftmann@26072
   429
  fix n m q :: nat assume "n \<le> m" and "m \<le> q"
haftmann@26072
   430
  then show "n \<le> q"
haftmann@26072
   431
  proof (induct n arbitrary: m q)
haftmann@26072
   432
    case 0 show ?case by simp
haftmann@26072
   433
  next
haftmann@26072
   434
    case (Suc n) then show ?case
haftmann@26072
   435
      by (simp_all (no_asm_use) add: less_eq_nat.simps(2) split: nat.splits, clarify,
haftmann@26072
   436
        simp_all (no_asm_use) add: less_eq_nat.simps(2) split: nat.splits, clarify,
haftmann@26072
   437
        simp_all (no_asm_use) add: less_eq_nat.simps(2) split: nat.splits)
haftmann@26072
   438
  qed
haftmann@26072
   439
next
haftmann@26072
   440
  fix n m :: nat show "n \<le> m \<or> m \<le> n"
haftmann@26072
   441
    by (induct n arbitrary: m)
haftmann@26072
   442
      (simp_all add: less_eq_nat.simps(2) split: nat.splits)
haftmann@26072
   443
qed
haftmann@25510
   444
haftmann@25510
   445
end
berghofe@13449
   446
haftmann@52729
   447
instantiation nat :: order_bot
haftmann@29652
   448
begin
haftmann@29652
   449
haftmann@29652
   450
definition bot_nat :: nat where
haftmann@29652
   451
  "bot_nat = 0"
haftmann@29652
   452
haftmann@29652
   453
instance proof
haftmann@29652
   454
qed (simp add: bot_nat_def)
haftmann@29652
   455
haftmann@29652
   456
end
haftmann@29652
   457
hoelzl@51329
   458
instance nat :: no_top
haftmann@52289
   459
  by default (auto intro: less_Suc_eq_le [THEN iffD2])
haftmann@52289
   460
hoelzl@51329
   461
haftmann@26072
   462
subsubsection {* Introduction properties *}
berghofe@13449
   463
haftmann@26072
   464
lemma lessI [iff]: "n < Suc n"
haftmann@26072
   465
  by (simp add: less_Suc_eq_le)
berghofe@13449
   466
haftmann@26072
   467
lemma zero_less_Suc [iff]: "0 < Suc n"
haftmann@26072
   468
  by (simp add: less_Suc_eq_le)
berghofe@13449
   469
berghofe@13449
   470
berghofe@13449
   471
subsubsection {* Elimination properties *}
berghofe@13449
   472
berghofe@13449
   473
lemma less_not_refl: "~ n < (n::nat)"
haftmann@26072
   474
  by (rule order_less_irrefl)
berghofe@13449
   475
wenzelm@26335
   476
lemma less_not_refl2: "n < m ==> m \<noteq> (n::nat)"
wenzelm@26335
   477
  by (rule not_sym) (rule less_imp_neq) 
berghofe@13449
   478
paulson@14267
   479
lemma less_not_refl3: "(s::nat) < t ==> s \<noteq> t"
haftmann@26072
   480
  by (rule less_imp_neq)
berghofe@13449
   481
wenzelm@26335
   482
lemma less_irrefl_nat: "(n::nat) < n ==> R"
wenzelm@26335
   483
  by (rule notE, rule less_not_refl)
berghofe@13449
   484
berghofe@13449
   485
lemma less_zeroE: "(n::nat) < 0 ==> R"
haftmann@26072
   486
  by (rule notE) (rule not_less0)
berghofe@13449
   487
berghofe@13449
   488
lemma less_Suc_eq: "(m < Suc n) = (m < n | m = n)"
haftmann@26072
   489
  unfolding less_Suc_eq_le le_less ..
berghofe@13449
   490
huffman@30079
   491
lemma less_Suc0 [iff]: "(n < Suc 0) = (n = 0)"
haftmann@26072
   492
  by (simp add: less_Suc_eq)
berghofe@13449
   493
blanchet@54147
   494
lemma less_one [iff]: "(n < (1::nat)) = (n = 0)"
huffman@30079
   495
  unfolding One_nat_def by (rule less_Suc0)
berghofe@13449
   496
berghofe@13449
   497
lemma Suc_mono: "m < n ==> Suc m < Suc n"
haftmann@26072
   498
  by simp
berghofe@13449
   499
nipkow@14302
   500
text {* "Less than" is antisymmetric, sort of *}
nipkow@14302
   501
lemma less_antisym: "\<lbrakk> \<not> n < m; n < Suc m \<rbrakk> \<Longrightarrow> m = n"
haftmann@26072
   502
  unfolding not_less less_Suc_eq_le by (rule antisym)
nipkow@14302
   503
paulson@14267
   504
lemma nat_neq_iff: "((m::nat) \<noteq> n) = (m < n | n < m)"
haftmann@26072
   505
  by (rule linorder_neq_iff)
berghofe@13449
   506
berghofe@13449
   507
lemma nat_less_cases: assumes major: "(m::nat) < n ==> P n m"
berghofe@13449
   508
  and eqCase: "m = n ==> P n m" and lessCase: "n<m ==> P n m"
berghofe@13449
   509
  shows "P n m"
berghofe@13449
   510
  apply (rule less_linear [THEN disjE])
berghofe@13449
   511
  apply (erule_tac [2] disjE)
berghofe@13449
   512
  apply (erule lessCase)
berghofe@13449
   513
  apply (erule sym [THEN eqCase])
berghofe@13449
   514
  apply (erule major)
berghofe@13449
   515
  done
berghofe@13449
   516
berghofe@13449
   517
berghofe@13449
   518
subsubsection {* Inductive (?) properties *}
berghofe@13449
   519
paulson@14267
   520
lemma Suc_lessI: "m < n ==> Suc m \<noteq> n ==> Suc m < n"
haftmann@26072
   521
  unfolding less_eq_Suc_le [of m] le_less by simp 
berghofe@13449
   522
haftmann@26072
   523
lemma lessE:
haftmann@26072
   524
  assumes major: "i < k"
haftmann@26072
   525
  and p1: "k = Suc i ==> P" and p2: "!!j. i < j ==> k = Suc j ==> P"
haftmann@26072
   526
  shows P
haftmann@26072
   527
proof -
haftmann@26072
   528
  from major have "\<exists>j. i \<le> j \<and> k = Suc j"
haftmann@26072
   529
    unfolding less_eq_Suc_le by (induct k) simp_all
haftmann@26072
   530
  then have "(\<exists>j. i < j \<and> k = Suc j) \<or> k = Suc i"
haftmann@26072
   531
    by (clarsimp simp add: less_le)
haftmann@26072
   532
  with p1 p2 show P by auto
haftmann@26072
   533
qed
haftmann@26072
   534
haftmann@26072
   535
lemma less_SucE: assumes major: "m < Suc n"
haftmann@26072
   536
  and less: "m < n ==> P" and eq: "m = n ==> P" shows P
haftmann@26072
   537
  apply (rule major [THEN lessE])
haftmann@26072
   538
  apply (rule eq, blast)
haftmann@26072
   539
  apply (rule less, blast)
berghofe@13449
   540
  done
berghofe@13449
   541
berghofe@13449
   542
lemma Suc_lessE: assumes major: "Suc i < k"
berghofe@13449
   543
  and minor: "!!j. i < j ==> k = Suc j ==> P" shows P
berghofe@13449
   544
  apply (rule major [THEN lessE])
berghofe@13449
   545
  apply (erule lessI [THEN minor])
paulson@14208
   546
  apply (erule Suc_lessD [THEN minor], assumption)
berghofe@13449
   547
  done
berghofe@13449
   548
berghofe@13449
   549
lemma Suc_less_SucD: "Suc m < Suc n ==> m < n"
haftmann@26072
   550
  by simp
berghofe@13449
   551
berghofe@13449
   552
lemma less_trans_Suc:
berghofe@13449
   553
  assumes le: "i < j" shows "j < k ==> Suc i < k"
paulson@14208
   554
  apply (induct k, simp_all)
berghofe@13449
   555
  apply (insert le)
berghofe@13449
   556
  apply (simp add: less_Suc_eq)
berghofe@13449
   557
  apply (blast dest: Suc_lessD)
berghofe@13449
   558
  done
berghofe@13449
   559
berghofe@13449
   560
text {* Can be used with @{text less_Suc_eq} to get @{term "n = m | n < m"} *}
haftmann@26072
   561
lemma not_less_eq: "\<not> m < n \<longleftrightarrow> n < Suc m"
haftmann@26072
   562
  unfolding not_less less_Suc_eq_le ..
berghofe@13449
   563
haftmann@26072
   564
lemma not_less_eq_eq: "\<not> m \<le> n \<longleftrightarrow> Suc n \<le> m"
haftmann@26072
   565
  unfolding not_le Suc_le_eq ..
wenzelm@21243
   566
haftmann@24995
   567
text {* Properties of "less than or equal" *}
berghofe@13449
   568
paulson@14267
   569
lemma le_imp_less_Suc: "m \<le> n ==> m < Suc n"
haftmann@26072
   570
  unfolding less_Suc_eq_le .
berghofe@13449
   571
paulson@14267
   572
lemma Suc_n_not_le_n: "~ Suc n \<le> n"
haftmann@26072
   573
  unfolding not_le less_Suc_eq_le ..
berghofe@13449
   574
paulson@14267
   575
lemma le_Suc_eq: "(m \<le> Suc n) = (m \<le> n | m = Suc n)"
haftmann@26072
   576
  by (simp add: less_Suc_eq_le [symmetric] less_Suc_eq)
berghofe@13449
   577
paulson@14267
   578
lemma le_SucE: "m \<le> Suc n ==> (m \<le> n ==> R) ==> (m = Suc n ==> R) ==> R"
haftmann@26072
   579
  by (drule le_Suc_eq [THEN iffD1], iprover+)
berghofe@13449
   580
paulson@14267
   581
lemma Suc_leI: "m < n ==> Suc(m) \<le> n"
haftmann@26072
   582
  unfolding Suc_le_eq .
berghofe@13449
   583
berghofe@13449
   584
text {* Stronger version of @{text Suc_leD} *}
paulson@14267
   585
lemma Suc_le_lessD: "Suc m \<le> n ==> m < n"
haftmann@26072
   586
  unfolding Suc_le_eq .
berghofe@13449
   587
wenzelm@26315
   588
lemma less_imp_le_nat: "m < n ==> m \<le> (n::nat)"
haftmann@26072
   589
  unfolding less_eq_Suc_le by (rule Suc_leD)
berghofe@13449
   590
paulson@14267
   591
text {* For instance, @{text "(Suc m < Suc n) = (Suc m \<le> n) = (m < n)"} *}
wenzelm@26315
   592
lemmas le_simps = less_imp_le_nat less_Suc_eq_le Suc_le_eq
berghofe@13449
   593
berghofe@13449
   594
paulson@14267
   595
text {* Equivalence of @{term "m \<le> n"} and @{term "m < n | m = n"} *}
berghofe@13449
   596
paulson@14267
   597
lemma less_or_eq_imp_le: "m < n | m = n ==> m \<le> (n::nat)"
haftmann@26072
   598
  unfolding le_less .
berghofe@13449
   599
paulson@14267
   600
lemma le_eq_less_or_eq: "(m \<le> (n::nat)) = (m < n | m=n)"
haftmann@26072
   601
  by (rule le_less)
berghofe@13449
   602
wenzelm@22718
   603
text {* Useful with @{text blast}. *}
paulson@14267
   604
lemma eq_imp_le: "(m::nat) = n ==> m \<le> n"
haftmann@26072
   605
  by auto
berghofe@13449
   606
paulson@14267
   607
lemma le_refl: "n \<le> (n::nat)"
haftmann@26072
   608
  by simp
berghofe@13449
   609
paulson@14267
   610
lemma le_trans: "[| i \<le> j; j \<le> k |] ==> i \<le> (k::nat)"
haftmann@26072
   611
  by (rule order_trans)
berghofe@13449
   612
nipkow@33657
   613
lemma le_antisym: "[| m \<le> n; n \<le> m |] ==> m = (n::nat)"
haftmann@26072
   614
  by (rule antisym)
berghofe@13449
   615
paulson@14267
   616
lemma nat_less_le: "((m::nat) < n) = (m \<le> n & m \<noteq> n)"
haftmann@26072
   617
  by (rule less_le)
berghofe@13449
   618
paulson@14267
   619
lemma le_neq_implies_less: "(m::nat) \<le> n ==> m \<noteq> n ==> m < n"
haftmann@26072
   620
  unfolding less_le ..
berghofe@13449
   621
haftmann@26072
   622
lemma nat_le_linear: "(m::nat) \<le> n | n \<le> m"
haftmann@26072
   623
  by (rule linear)
paulson@14341
   624
wenzelm@22718
   625
lemmas linorder_neqE_nat = linorder_neqE [where 'a = nat]
nipkow@15921
   626
haftmann@26072
   627
lemma le_less_Suc_eq: "m \<le> n ==> (n < Suc m) = (n = m)"
haftmann@26072
   628
  unfolding less_Suc_eq_le by auto
berghofe@13449
   629
haftmann@26072
   630
lemma not_less_less_Suc_eq: "~ n < m ==> (n < Suc m) = (n = m)"
haftmann@26072
   631
  unfolding not_less by (rule le_less_Suc_eq)
berghofe@13449
   632
berghofe@13449
   633
lemmas not_less_simps = not_less_less_Suc_eq le_less_Suc_eq
berghofe@13449
   634
wenzelm@22718
   635
text {* These two rules ease the use of primitive recursion.
paulson@14341
   636
NOTE USE OF @{text "=="} *}
berghofe@13449
   637
lemma def_nat_rec_0: "(!!n. f n == nat_rec c h n) ==> f 0 = c"
nipkow@25162
   638
by simp
berghofe@13449
   639
berghofe@13449
   640
lemma def_nat_rec_Suc: "(!!n. f n == nat_rec c h n) ==> f (Suc n) = h n (f n)"
nipkow@25162
   641
by simp
berghofe@13449
   642
paulson@14267
   643
lemma not0_implies_Suc: "n \<noteq> 0 ==> \<exists>m. n = Suc m"
nipkow@25162
   644
by (cases n) simp_all
nipkow@25162
   645
nipkow@25162
   646
lemma gr0_implies_Suc: "n > 0 ==> \<exists>m. n = Suc m"
nipkow@25162
   647
by (cases n) simp_all
berghofe@13449
   648
wenzelm@22718
   649
lemma gr_implies_not0: fixes n :: nat shows "m<n ==> n \<noteq> 0"
nipkow@25162
   650
by (cases n) simp_all
berghofe@13449
   651
nipkow@25162
   652
lemma neq0_conv[iff]: fixes n :: nat shows "(n \<noteq> 0) = (0 < n)"
nipkow@25162
   653
by (cases n) simp_all
nipkow@25140
   654
berghofe@13449
   655
text {* This theorem is useful with @{text blast} *}
berghofe@13449
   656
lemma gr0I: "((n::nat) = 0 ==> False) ==> 0 < n"
nipkow@25162
   657
by (rule neq0_conv[THEN iffD1], iprover)
berghofe@13449
   658
paulson@14267
   659
lemma gr0_conv_Suc: "(0 < n) = (\<exists>m. n = Suc m)"
nipkow@25162
   660
by (fast intro: not0_implies_Suc)
berghofe@13449
   661
blanchet@54147
   662
lemma not_gr0 [iff]: "!!n::nat. (~ (0 < n)) = (n = 0)"
nipkow@25134
   663
using neq0_conv by blast
berghofe@13449
   664
paulson@14267
   665
lemma Suc_le_D: "(Suc n \<le> m') ==> (? m. m' = Suc m)"
nipkow@25162
   666
by (induct m') simp_all
berghofe@13449
   667
berghofe@13449
   668
text {* Useful in certain inductive arguments *}
paulson@14267
   669
lemma less_Suc_eq_0_disj: "(m < Suc n) = (m = 0 | (\<exists>j. m = Suc j & j < n))"
nipkow@25162
   670
by (cases m) simp_all
berghofe@13449
   671
berghofe@13449
   672
haftmann@26072
   673
subsubsection {* Monotonicity of Addition *}
berghofe@13449
   674
haftmann@26072
   675
lemma Suc_pred [simp]: "n>0 ==> Suc (n - Suc 0) = n"
haftmann@26072
   676
by (simp add: diff_Suc split: nat.split)
berghofe@13449
   677
huffman@30128
   678
lemma Suc_diff_1 [simp]: "0 < n ==> Suc (n - 1) = n"
huffman@30128
   679
unfolding One_nat_def by (rule Suc_pred)
huffman@30128
   680
paulson@14331
   681
lemma nat_add_left_cancel_le [simp]: "(k + m \<le> k + n) = (m\<le>(n::nat))"
nipkow@25162
   682
by (induct k) simp_all
berghofe@13449
   683
paulson@14331
   684
lemma nat_add_left_cancel_less [simp]: "(k + m < k + n) = (m<(n::nat))"
nipkow@25162
   685
by (induct k) simp_all
berghofe@13449
   686
nipkow@25162
   687
lemma add_gr_0 [iff]: "!!m::nat. (m + n > 0) = (m>0 | n>0)"
nipkow@25162
   688
by(auto dest:gr0_implies_Suc)
berghofe@13449
   689
paulson@14341
   690
text {* strict, in 1st argument *}
paulson@14341
   691
lemma add_less_mono1: "i < j ==> i + k < j + (k::nat)"
nipkow@25162
   692
by (induct k) simp_all
paulson@14341
   693
paulson@14341
   694
text {* strict, in both arguments *}
paulson@14341
   695
lemma add_less_mono: "[|i < j; k < l|] ==> i + k < j + (l::nat)"
paulson@14341
   696
  apply (rule add_less_mono1 [THEN less_trans], assumption+)
paulson@15251
   697
  apply (induct j, simp_all)
paulson@14341
   698
  done
paulson@14341
   699
paulson@14341
   700
text {* Deleted @{text less_natE}; use @{text "less_imp_Suc_add RS exE"} *}
paulson@14341
   701
lemma less_imp_Suc_add: "m < n ==> (\<exists>k. n = Suc (m + k))"
paulson@14341
   702
  apply (induct n)
paulson@14341
   703
  apply (simp_all add: order_le_less)
wenzelm@22718
   704
  apply (blast elim!: less_SucE
haftmann@35047
   705
               intro!: Nat.add_0_right [symmetric] add_Suc_right [symmetric])
paulson@14341
   706
  done
paulson@14341
   707
paulson@14341
   708
text {* strict, in 1st argument; proof is by induction on @{text "k > 0"} *}
nipkow@25134
   709
lemma mult_less_mono2: "(i::nat) < j ==> 0<k ==> k * i < k * j"
nipkow@25134
   710
apply(auto simp: gr0_conv_Suc)
nipkow@25134
   711
apply (induct_tac m)
nipkow@25134
   712
apply (simp_all add: add_less_mono)
nipkow@25134
   713
done
paulson@14341
   714
nipkow@14740
   715
text{*The naturals form an ordered @{text comm_semiring_1_cancel}*}
haftmann@35028
   716
instance nat :: linordered_semidom
paulson@14341
   717
proof
paulson@14348
   718
  show "0 < (1::nat)" by simp
haftmann@52289
   719
  show "\<And>m n q :: nat. m \<le> n \<Longrightarrow> q + m \<le> q + n" by simp
haftmann@52289
   720
  show "\<And>m n q :: nat. m < n \<Longrightarrow> 0 < q \<Longrightarrow> q * m < q * n" by (simp add: mult_less_mono2)
paulson@14267
   721
qed
paulson@14267
   722
nipkow@30056
   723
instance nat :: no_zero_divisors
nipkow@30056
   724
proof
nipkow@30056
   725
  fix a::nat and b::nat show "a ~= 0 \<Longrightarrow> b ~= 0 \<Longrightarrow> a * b ~= 0" by auto
nipkow@30056
   726
qed
nipkow@30056
   727
haftmann@44817
   728
haftmann@44817
   729
subsubsection {* @{term min} and @{term max} *}
haftmann@44817
   730
haftmann@44817
   731
lemma mono_Suc: "mono Suc"
haftmann@44817
   732
by (rule monoI) simp
haftmann@44817
   733
haftmann@44817
   734
lemma min_0L [simp]: "min 0 n = (0::nat)"
noschinl@45931
   735
by (rule min_absorb1) simp
haftmann@44817
   736
haftmann@44817
   737
lemma min_0R [simp]: "min n 0 = (0::nat)"
noschinl@45931
   738
by (rule min_absorb2) simp
haftmann@44817
   739
haftmann@44817
   740
lemma min_Suc_Suc [simp]: "min (Suc m) (Suc n) = Suc (min m n)"
haftmann@44817
   741
by (simp add: mono_Suc min_of_mono)
haftmann@44817
   742
haftmann@44817
   743
lemma min_Suc1:
haftmann@44817
   744
   "min (Suc n) m = (case m of 0 => 0 | Suc m' => Suc(min n m'))"
haftmann@44817
   745
by (simp split: nat.split)
haftmann@44817
   746
haftmann@44817
   747
lemma min_Suc2:
haftmann@44817
   748
   "min m (Suc n) = (case m of 0 => 0 | Suc m' => Suc(min m' n))"
haftmann@44817
   749
by (simp split: nat.split)
haftmann@44817
   750
haftmann@44817
   751
lemma max_0L [simp]: "max 0 n = (n::nat)"
noschinl@45931
   752
by (rule max_absorb2) simp
haftmann@44817
   753
haftmann@44817
   754
lemma max_0R [simp]: "max n 0 = (n::nat)"
noschinl@45931
   755
by (rule max_absorb1) simp
haftmann@44817
   756
haftmann@44817
   757
lemma max_Suc_Suc [simp]: "max (Suc m) (Suc n) = Suc(max m n)"
haftmann@44817
   758
by (simp add: mono_Suc max_of_mono)
haftmann@44817
   759
haftmann@44817
   760
lemma max_Suc1:
haftmann@44817
   761
   "max (Suc n) m = (case m of 0 => Suc n | Suc m' => Suc(max n m'))"
haftmann@44817
   762
by (simp split: nat.split)
haftmann@44817
   763
haftmann@44817
   764
lemma max_Suc2:
haftmann@44817
   765
   "max m (Suc n) = (case m of 0 => Suc n | Suc m' => Suc(max m' n))"
haftmann@44817
   766
by (simp split: nat.split)
paulson@14267
   767
haftmann@44817
   768
lemma nat_mult_min_left:
haftmann@44817
   769
  fixes m n q :: nat
haftmann@44817
   770
  shows "min m n * q = min (m * q) (n * q)"
haftmann@44817
   771
  by (simp add: min_def not_le) (auto dest: mult_right_le_imp_le mult_right_less_imp_less le_less_trans)
haftmann@44817
   772
haftmann@44817
   773
lemma nat_mult_min_right:
haftmann@44817
   774
  fixes m n q :: nat
haftmann@44817
   775
  shows "m * min n q = min (m * n) (m * q)"
haftmann@44817
   776
  by (simp add: min_def not_le) (auto dest: mult_left_le_imp_le mult_left_less_imp_less le_less_trans)
haftmann@44817
   777
haftmann@44817
   778
lemma nat_add_max_left:
haftmann@44817
   779
  fixes m n q :: nat
haftmann@44817
   780
  shows "max m n + q = max (m + q) (n + q)"
haftmann@44817
   781
  by (simp add: max_def)
haftmann@44817
   782
haftmann@44817
   783
lemma nat_add_max_right:
haftmann@44817
   784
  fixes m n q :: nat
haftmann@44817
   785
  shows "m + max n q = max (m + n) (m + q)"
haftmann@44817
   786
  by (simp add: max_def)
haftmann@44817
   787
haftmann@44817
   788
lemma nat_mult_max_left:
haftmann@44817
   789
  fixes m n q :: nat
haftmann@44817
   790
  shows "max m n * q = max (m * q) (n * q)"
haftmann@44817
   791
  by (simp add: max_def not_le) (auto dest: mult_right_le_imp_le mult_right_less_imp_less le_less_trans)
haftmann@44817
   792
haftmann@44817
   793
lemma nat_mult_max_right:
haftmann@44817
   794
  fixes m n q :: nat
haftmann@44817
   795
  shows "m * max n q = max (m * n) (m * q)"
haftmann@44817
   796
  by (simp add: max_def not_le) (auto dest: mult_left_le_imp_le mult_left_less_imp_less le_less_trans)
paulson@14267
   797
paulson@14267
   798
krauss@26748
   799
subsubsection {* Additional theorems about @{term "op \<le>"} *}
krauss@26748
   800
krauss@26748
   801
text {* Complete induction, aka course-of-values induction *}
krauss@26748
   802
haftmann@27823
   803
instance nat :: wellorder proof
haftmann@27823
   804
  fix P and n :: nat
haftmann@27823
   805
  assume step: "\<And>n::nat. (\<And>m. m < n \<Longrightarrow> P m) \<Longrightarrow> P n"
haftmann@27823
   806
  have "\<And>q. q \<le> n \<Longrightarrow> P q"
haftmann@27823
   807
  proof (induct n)
haftmann@27823
   808
    case (0 n)
krauss@26748
   809
    have "P 0" by (rule step) auto
krauss@26748
   810
    thus ?case using 0 by auto
krauss@26748
   811
  next
haftmann@27823
   812
    case (Suc m n)
haftmann@27823
   813
    then have "n \<le> m \<or> n = Suc m" by (simp add: le_Suc_eq)
krauss@26748
   814
    thus ?case
krauss@26748
   815
    proof
haftmann@27823
   816
      assume "n \<le> m" thus "P n" by (rule Suc(1))
krauss@26748
   817
    next
haftmann@27823
   818
      assume n: "n = Suc m"
haftmann@27823
   819
      show "P n"
haftmann@27823
   820
        by (rule step) (rule Suc(1), simp add: n le_simps)
krauss@26748
   821
    qed
krauss@26748
   822
  qed
haftmann@27823
   823
  then show "P n" by auto
krauss@26748
   824
qed
krauss@26748
   825
haftmann@27823
   826
lemma Least_Suc:
haftmann@27823
   827
     "[| P n; ~ P 0 |] ==> (LEAST n. P n) = Suc (LEAST m. P(Suc m))"
wenzelm@47988
   828
  apply (cases n, auto)
haftmann@27823
   829
  apply (frule LeastI)
haftmann@27823
   830
  apply (drule_tac P = "%x. P (Suc x) " in LeastI)
haftmann@27823
   831
  apply (subgoal_tac " (LEAST x. P x) \<le> Suc (LEAST x. P (Suc x))")
haftmann@27823
   832
  apply (erule_tac [2] Least_le)
wenzelm@47988
   833
  apply (cases "LEAST x. P x", auto)
haftmann@27823
   834
  apply (drule_tac P = "%x. P (Suc x) " in Least_le)
haftmann@27823
   835
  apply (blast intro: order_antisym)
haftmann@27823
   836
  done
haftmann@27823
   837
haftmann@27823
   838
lemma Least_Suc2:
haftmann@27823
   839
   "[|P n; Q m; ~P 0; !k. P (Suc k) = Q k|] ==> Least P = Suc (Least Q)"
haftmann@27823
   840
  apply (erule (1) Least_Suc [THEN ssubst])
haftmann@27823
   841
  apply simp
haftmann@27823
   842
  done
haftmann@27823
   843
haftmann@27823
   844
lemma ex_least_nat_le: "\<not>P(0) \<Longrightarrow> P(n::nat) \<Longrightarrow> \<exists>k\<le>n. (\<forall>i<k. \<not>P i) & P(k)"
haftmann@27823
   845
  apply (cases n)
haftmann@27823
   846
   apply blast
haftmann@27823
   847
  apply (rule_tac x="LEAST k. P(k)" in exI)
haftmann@27823
   848
  apply (blast intro: Least_le dest: not_less_Least intro: LeastI_ex)
haftmann@27823
   849
  done
haftmann@27823
   850
haftmann@27823
   851
lemma ex_least_nat_less: "\<not>P(0) \<Longrightarrow> P(n::nat) \<Longrightarrow> \<exists>k<n. (\<forall>i\<le>k. \<not>P i) & P(k+1)"
huffman@30079
   852
  unfolding One_nat_def
haftmann@27823
   853
  apply (cases n)
haftmann@27823
   854
   apply blast
haftmann@27823
   855
  apply (frule (1) ex_least_nat_le)
haftmann@27823
   856
  apply (erule exE)
haftmann@27823
   857
  apply (case_tac k)
haftmann@27823
   858
   apply simp
haftmann@27823
   859
  apply (rename_tac k1)
haftmann@27823
   860
  apply (rule_tac x=k1 in exI)
haftmann@27823
   861
  apply (auto simp add: less_eq_Suc_le)
haftmann@27823
   862
  done
haftmann@27823
   863
krauss@26748
   864
lemma nat_less_induct:
krauss@26748
   865
  assumes "!!n. \<forall>m::nat. m < n --> P m ==> P n" shows "P n"
krauss@26748
   866
  using assms less_induct by blast
krauss@26748
   867
krauss@26748
   868
lemma measure_induct_rule [case_names less]:
krauss@26748
   869
  fixes f :: "'a \<Rightarrow> nat"
krauss@26748
   870
  assumes step: "\<And>x. (\<And>y. f y < f x \<Longrightarrow> P y) \<Longrightarrow> P x"
krauss@26748
   871
  shows "P a"
krauss@26748
   872
by (induct m\<equiv>"f a" arbitrary: a rule: less_induct) (auto intro: step)
krauss@26748
   873
krauss@26748
   874
text {* old style induction rules: *}
krauss@26748
   875
lemma measure_induct:
krauss@26748
   876
  fixes f :: "'a \<Rightarrow> nat"
krauss@26748
   877
  shows "(\<And>x. \<forall>y. f y < f x \<longrightarrow> P y \<Longrightarrow> P x) \<Longrightarrow> P a"
krauss@26748
   878
  by (rule measure_induct_rule [of f P a]) iprover
krauss@26748
   879
krauss@26748
   880
lemma full_nat_induct:
krauss@26748
   881
  assumes step: "(!!n. (ALL m. Suc m <= n --> P m) ==> P n)"
krauss@26748
   882
  shows "P n"
krauss@26748
   883
  by (rule less_induct) (auto intro: step simp:le_simps)
paulson@14267
   884
paulson@19870
   885
text{*An induction rule for estabilishing binary relations*}
wenzelm@22718
   886
lemma less_Suc_induct:
paulson@19870
   887
  assumes less:  "i < j"
paulson@19870
   888
     and  step:  "!!i. P i (Suc i)"
krauss@31714
   889
     and  trans: "!!i j k. i < j ==> j < k ==>  P i j ==> P j k ==> P i k"
paulson@19870
   890
  shows "P i j"
paulson@19870
   891
proof -
krauss@31714
   892
  from less obtain k where j: "j = Suc (i + k)" by (auto dest: less_imp_Suc_add)
wenzelm@22718
   893
  have "P i (Suc (i + k))"
paulson@19870
   894
  proof (induct k)
wenzelm@22718
   895
    case 0
wenzelm@22718
   896
    show ?case by (simp add: step)
paulson@19870
   897
  next
paulson@19870
   898
    case (Suc k)
krauss@31714
   899
    have "0 + i < Suc k + i" by (rule add_less_mono1) simp
krauss@31714
   900
    hence "i < Suc (i + k)" by (simp add: add_commute)
krauss@31714
   901
    from trans[OF this lessI Suc step]
krauss@31714
   902
    show ?case by simp
paulson@19870
   903
  qed
wenzelm@22718
   904
  thus "P i j" by (simp add: j)
paulson@19870
   905
qed
paulson@19870
   906
krauss@26748
   907
text {* The method of infinite descent, frequently used in number theory.
krauss@26748
   908
Provided by Roelof Oosterhuis.
krauss@26748
   909
$P(n)$ is true for all $n\in\mathbb{N}$ if
krauss@26748
   910
\begin{itemize}
krauss@26748
   911
  \item case ``0'': given $n=0$ prove $P(n)$,
krauss@26748
   912
  \item case ``smaller'': given $n>0$ and $\neg P(n)$ prove there exists
krauss@26748
   913
        a smaller integer $m$ such that $\neg P(m)$.
krauss@26748
   914
\end{itemize} *}
krauss@26748
   915
krauss@26748
   916
text{* A compact version without explicit base case: *}
krauss@26748
   917
lemma infinite_descent:
krauss@26748
   918
  "\<lbrakk> !!n::nat. \<not> P n \<Longrightarrow>  \<exists>m<n. \<not>  P m \<rbrakk> \<Longrightarrow>  P n"
wenzelm@47988
   919
by (induct n rule: less_induct) auto
krauss@26748
   920
krauss@26748
   921
lemma infinite_descent0[case_names 0 smaller]: 
krauss@26748
   922
  "\<lbrakk> P 0; !!n. n>0 \<Longrightarrow> \<not> P n \<Longrightarrow> (\<exists>m::nat. m < n \<and> \<not>P m) \<rbrakk> \<Longrightarrow> P n"
krauss@26748
   923
by (rule infinite_descent) (case_tac "n>0", auto)
krauss@26748
   924
krauss@26748
   925
text {*
krauss@26748
   926
Infinite descent using a mapping to $\mathbb{N}$:
krauss@26748
   927
$P(x)$ is true for all $x\in D$ if there exists a $V: D \to \mathbb{N}$ and
krauss@26748
   928
\begin{itemize}
krauss@26748
   929
\item case ``0'': given $V(x)=0$ prove $P(x)$,
krauss@26748
   930
\item case ``smaller'': given $V(x)>0$ and $\neg P(x)$ prove there exists a $y \in D$ such that $V(y)<V(x)$ and $~\neg P(y)$.
krauss@26748
   931
\end{itemize}
krauss@26748
   932
NB: the proof also shows how to use the previous lemma. *}
krauss@26748
   933
krauss@26748
   934
corollary infinite_descent0_measure [case_names 0 smaller]:
krauss@26748
   935
  assumes A0: "!!x. V x = (0::nat) \<Longrightarrow> P x"
krauss@26748
   936
    and   A1: "!!x. V x > 0 \<Longrightarrow> \<not>P x \<Longrightarrow> (\<exists>y. V y < V x \<and> \<not>P y)"
krauss@26748
   937
  shows "P x"
krauss@26748
   938
proof -
krauss@26748
   939
  obtain n where "n = V x" by auto
krauss@26748
   940
  moreover have "\<And>x. V x = n \<Longrightarrow> P x"
krauss@26748
   941
  proof (induct n rule: infinite_descent0)
krauss@26748
   942
    case 0 -- "i.e. $V(x) = 0$"
krauss@26748
   943
    with A0 show "P x" by auto
krauss@26748
   944
  next -- "now $n>0$ and $P(x)$ does not hold for some $x$ with $V(x)=n$"
krauss@26748
   945
    case (smaller n)
krauss@26748
   946
    then obtain x where vxn: "V x = n " and "V x > 0 \<and> \<not> P x" by auto
krauss@26748
   947
    with A1 obtain y where "V y < V x \<and> \<not> P y" by auto
krauss@26748
   948
    with vxn obtain m where "m = V y \<and> m<n \<and> \<not> P y" by auto
krauss@26748
   949
    then show ?case by auto
krauss@26748
   950
  qed
krauss@26748
   951
  ultimately show "P x" by auto
krauss@26748
   952
qed
krauss@26748
   953
krauss@26748
   954
text{* Again, without explicit base case: *}
krauss@26748
   955
lemma infinite_descent_measure:
krauss@26748
   956
assumes "!!x. \<not> P x \<Longrightarrow> \<exists>y. (V::'a\<Rightarrow>nat) y < V x \<and> \<not> P y" shows "P x"
krauss@26748
   957
proof -
krauss@26748
   958
  from assms obtain n where "n = V x" by auto
krauss@26748
   959
  moreover have "!!x. V x = n \<Longrightarrow> P x"
krauss@26748
   960
  proof (induct n rule: infinite_descent, auto)
krauss@26748
   961
    fix x assume "\<not> P x"
krauss@26748
   962
    with assms show "\<exists>m < V x. \<exists>y. V y = m \<and> \<not> P y" by auto
krauss@26748
   963
  qed
krauss@26748
   964
  ultimately show "P x" by auto
krauss@26748
   965
qed
krauss@26748
   966
paulson@14267
   967
text {* A [clumsy] way of lifting @{text "<"}
paulson@14267
   968
  monotonicity to @{text "\<le>"} monotonicity *}
paulson@14267
   969
lemma less_mono_imp_le_mono:
nipkow@24438
   970
  "\<lbrakk> !!i j::nat. i < j \<Longrightarrow> f i < f j; i \<le> j \<rbrakk> \<Longrightarrow> f i \<le> ((f j)::nat)"
nipkow@24438
   971
by (simp add: order_le_less) (blast)
nipkow@24438
   972
paulson@14267
   973
paulson@14267
   974
text {* non-strict, in 1st argument *}
paulson@14267
   975
lemma add_le_mono1: "i \<le> j ==> i + k \<le> j + (k::nat)"
nipkow@24438
   976
by (rule add_right_mono)
paulson@14267
   977
paulson@14267
   978
text {* non-strict, in both arguments *}
paulson@14267
   979
lemma add_le_mono: "[| i \<le> j;  k \<le> l |] ==> i + k \<le> j + (l::nat)"
nipkow@24438
   980
by (rule add_mono)
paulson@14267
   981
paulson@14267
   982
lemma le_add2: "n \<le> ((m + n)::nat)"
nipkow@24438
   983
by (insert add_right_mono [of 0 m n], simp)
berghofe@13449
   984
paulson@14267
   985
lemma le_add1: "n \<le> ((n + m)::nat)"
nipkow@24438
   986
by (simp add: add_commute, rule le_add2)
berghofe@13449
   987
berghofe@13449
   988
lemma less_add_Suc1: "i < Suc (i + m)"
nipkow@24438
   989
by (rule le_less_trans, rule le_add1, rule lessI)
berghofe@13449
   990
berghofe@13449
   991
lemma less_add_Suc2: "i < Suc (m + i)"
nipkow@24438
   992
by (rule le_less_trans, rule le_add2, rule lessI)
berghofe@13449
   993
paulson@14267
   994
lemma less_iff_Suc_add: "(m < n) = (\<exists>k. n = Suc (m + k))"
nipkow@24438
   995
by (iprover intro!: less_add_Suc1 less_imp_Suc_add)
berghofe@13449
   996
paulson@14267
   997
lemma trans_le_add1: "(i::nat) \<le> j ==> i \<le> j + m"
nipkow@24438
   998
by (rule le_trans, assumption, rule le_add1)
berghofe@13449
   999
paulson@14267
  1000
lemma trans_le_add2: "(i::nat) \<le> j ==> i \<le> m + j"
nipkow@24438
  1001
by (rule le_trans, assumption, rule le_add2)
berghofe@13449
  1002
berghofe@13449
  1003
lemma trans_less_add1: "(i::nat) < j ==> i < j + m"
nipkow@24438
  1004
by (rule less_le_trans, assumption, rule le_add1)
berghofe@13449
  1005
berghofe@13449
  1006
lemma trans_less_add2: "(i::nat) < j ==> i < m + j"
nipkow@24438
  1007
by (rule less_le_trans, assumption, rule le_add2)
berghofe@13449
  1008
berghofe@13449
  1009
lemma add_lessD1: "i + j < (k::nat) ==> i < k"
nipkow@24438
  1010
apply (rule le_less_trans [of _ "i+j"])
nipkow@24438
  1011
apply (simp_all add: le_add1)
nipkow@24438
  1012
done
berghofe@13449
  1013
berghofe@13449
  1014
lemma not_add_less1 [iff]: "~ (i + j < (i::nat))"
nipkow@24438
  1015
apply (rule notI)
wenzelm@26335
  1016
apply (drule add_lessD1)
wenzelm@26335
  1017
apply (erule less_irrefl [THEN notE])
nipkow@24438
  1018
done
berghofe@13449
  1019
berghofe@13449
  1020
lemma not_add_less2 [iff]: "~ (j + i < (i::nat))"
krauss@26748
  1021
by (simp add: add_commute)
berghofe@13449
  1022
paulson@14267
  1023
lemma add_leD1: "m + k \<le> n ==> m \<le> (n::nat)"
nipkow@24438
  1024
apply (rule order_trans [of _ "m+k"])
nipkow@24438
  1025
apply (simp_all add: le_add1)
nipkow@24438
  1026
done
berghofe@13449
  1027
paulson@14267
  1028
lemma add_leD2: "m + k \<le> n ==> k \<le> (n::nat)"
nipkow@24438
  1029
apply (simp add: add_commute)
nipkow@24438
  1030
apply (erule add_leD1)
nipkow@24438
  1031
done
berghofe@13449
  1032
paulson@14267
  1033
lemma add_leE: "(m::nat) + k \<le> n ==> (m \<le> n ==> k \<le> n ==> R) ==> R"
nipkow@24438
  1034
by (blast dest: add_leD1 add_leD2)
berghofe@13449
  1035
berghofe@13449
  1036
text {* needs @{text "!!k"} for @{text add_ac} to work *}
berghofe@13449
  1037
lemma less_add_eq_less: "!!k::nat. k < l ==> m + l = k + n ==> m < n"
nipkow@24438
  1038
by (force simp del: add_Suc_right
berghofe@13449
  1039
    simp add: less_iff_Suc_add add_Suc_right [symmetric] add_ac)
berghofe@13449
  1040
berghofe@13449
  1041
haftmann@26072
  1042
subsubsection {* More results about difference *}
berghofe@13449
  1043
berghofe@13449
  1044
text {* Addition is the inverse of subtraction:
paulson@14267
  1045
  if @{term "n \<le> m"} then @{term "n + (m - n) = m"}. *}
berghofe@13449
  1046
lemma add_diff_inverse: "~  m < n ==> n + (m - n) = (m::nat)"
nipkow@24438
  1047
by (induct m n rule: diff_induct) simp_all
berghofe@13449
  1048
paulson@14267
  1049
lemma le_add_diff_inverse [simp]: "n \<le> m ==> n + (m - n) = (m::nat)"
nipkow@24438
  1050
by (simp add: add_diff_inverse linorder_not_less)
berghofe@13449
  1051
paulson@14267
  1052
lemma le_add_diff_inverse2 [simp]: "n \<le> m ==> (m - n) + n = (m::nat)"
krauss@26748
  1053
by (simp add: add_commute)
berghofe@13449
  1054
paulson@14267
  1055
lemma Suc_diff_le: "n \<le> m ==> Suc m - n = Suc (m - n)"
nipkow@24438
  1056
by (induct m n rule: diff_induct) simp_all
berghofe@13449
  1057
berghofe@13449
  1058
lemma diff_less_Suc: "m - n < Suc m"
nipkow@24438
  1059
apply (induct m n rule: diff_induct)
nipkow@24438
  1060
apply (erule_tac [3] less_SucE)
nipkow@24438
  1061
apply (simp_all add: less_Suc_eq)
nipkow@24438
  1062
done
berghofe@13449
  1063
paulson@14267
  1064
lemma diff_le_self [simp]: "m - n \<le> (m::nat)"
nipkow@24438
  1065
by (induct m n rule: diff_induct) (simp_all add: le_SucI)
berghofe@13449
  1066
haftmann@26072
  1067
lemma le_iff_add: "(m::nat) \<le> n = (\<exists>k. n = m + k)"
haftmann@26072
  1068
  by (auto simp: le_add1 dest!: le_add_diff_inverse sym [of _ n])
haftmann@26072
  1069
haftmann@52289
  1070
instance nat :: ordered_cancel_comm_monoid_diff
haftmann@52289
  1071
proof
haftmann@52289
  1072
  show "\<And>m n :: nat. m \<le> n \<longleftrightarrow> (\<exists>q. n = m + q)" by (fact le_iff_add)
haftmann@52289
  1073
qed
haftmann@52289
  1074
berghofe@13449
  1075
lemma less_imp_diff_less: "(j::nat) < k ==> j - n < k"
nipkow@24438
  1076
by (rule le_less_trans, rule diff_le_self)
berghofe@13449
  1077
berghofe@13449
  1078
lemma diff_Suc_less [simp]: "0<n ==> n - Suc i < n"
nipkow@24438
  1079
by (cases n) (auto simp add: le_simps)
berghofe@13449
  1080
paulson@14267
  1081
lemma diff_add_assoc: "k \<le> (j::nat) ==> (i + j) - k = i + (j - k)"
nipkow@24438
  1082
by (induct j k rule: diff_induct) simp_all
berghofe@13449
  1083
paulson@14267
  1084
lemma diff_add_assoc2: "k \<le> (j::nat) ==> (j + i) - k = (j - k) + i"
nipkow@24438
  1085
by (simp add: add_commute diff_add_assoc)
berghofe@13449
  1086
paulson@14267
  1087
lemma le_imp_diff_is_add: "i \<le> (j::nat) ==> (j - i = k) = (j = k + i)"
nipkow@24438
  1088
by (auto simp add: diff_add_inverse2)
berghofe@13449
  1089
paulson@14267
  1090
lemma diff_is_0_eq [simp]: "((m::nat) - n = 0) = (m \<le> n)"
nipkow@24438
  1091
by (induct m n rule: diff_induct) simp_all
berghofe@13449
  1092
paulson@14267
  1093
lemma diff_is_0_eq' [simp]: "m \<le> n ==> (m::nat) - n = 0"
nipkow@24438
  1094
by (rule iffD2, rule diff_is_0_eq)
berghofe@13449
  1095
berghofe@13449
  1096
lemma zero_less_diff [simp]: "(0 < n - (m::nat)) = (m < n)"
nipkow@24438
  1097
by (induct m n rule: diff_induct) simp_all
berghofe@13449
  1098
wenzelm@22718
  1099
lemma less_imp_add_positive:
wenzelm@22718
  1100
  assumes "i < j"
wenzelm@22718
  1101
  shows "\<exists>k::nat. 0 < k & i + k = j"
wenzelm@22718
  1102
proof
wenzelm@22718
  1103
  from assms show "0 < j - i & i + (j - i) = j"
huffman@23476
  1104
    by (simp add: order_less_imp_le)
wenzelm@22718
  1105
qed
wenzelm@9436
  1106
haftmann@26072
  1107
text {* a nice rewrite for bounded subtraction *}
haftmann@26072
  1108
lemma nat_minus_add_max:
haftmann@26072
  1109
  fixes n m :: nat
haftmann@26072
  1110
  shows "n - m + m = max n m"
haftmann@26072
  1111
    by (simp add: max_def not_le order_less_imp_le)
berghofe@13449
  1112
haftmann@26072
  1113
lemma nat_diff_split:
haftmann@26072
  1114
  "P(a - b::nat) = ((a<b --> P 0) & (ALL d. a = b + d --> P d))"
haftmann@26072
  1115
    -- {* elimination of @{text -} on @{text nat} *}
haftmann@26072
  1116
by (cases "a < b")
haftmann@26072
  1117
  (auto simp add: diff_is_0_eq [THEN iffD2] diff_add_inverse
haftmann@26072
  1118
    not_less le_less dest!: sym [of a] sym [of b] add_eq_self_zero)
berghofe@13449
  1119
haftmann@26072
  1120
lemma nat_diff_split_asm:
haftmann@26072
  1121
  "P(a - b::nat) = (~ (a < b & ~ P 0 | (EX d. a = b + d & ~ P d)))"
haftmann@26072
  1122
    -- {* elimination of @{text -} on @{text nat} in assumptions *}
haftmann@26072
  1123
by (auto split: nat_diff_split)
berghofe@13449
  1124
huffman@47255
  1125
lemma Suc_pred': "0 < n ==> n = Suc(n - 1)"
huffman@47255
  1126
  by simp
huffman@47255
  1127
huffman@47255
  1128
lemma add_eq_if: "(m::nat) + n = (if m=0 then n else Suc ((m - 1) + n))"
huffman@47255
  1129
  unfolding One_nat_def by (cases m) simp_all
huffman@47255
  1130
huffman@47255
  1131
lemma mult_eq_if: "(m::nat) * n = (if m=0 then 0 else n + ((m - 1) * n))"
huffman@47255
  1132
  unfolding One_nat_def by (cases m) simp_all
huffman@47255
  1133
huffman@47255
  1134
lemma Suc_diff_eq_diff_pred: "0 < n ==> Suc m - n = m - (n - 1)"
huffman@47255
  1135
  unfolding One_nat_def by (cases n) simp_all
huffman@47255
  1136
huffman@47255
  1137
lemma diff_Suc_eq_diff_pred: "m - Suc n = (m - 1) - n"
huffman@47255
  1138
  unfolding One_nat_def by (cases m) simp_all
huffman@47255
  1139
huffman@47255
  1140
lemma Let_Suc [simp]: "Let (Suc n) f == f (Suc n)"
huffman@47255
  1141
  by (fact Let_def)
huffman@47255
  1142
berghofe@13449
  1143
haftmann@26072
  1144
subsubsection {* Monotonicity of Multiplication *}
berghofe@13449
  1145
paulson@14267
  1146
lemma mult_le_mono1: "i \<le> (j::nat) ==> i * k \<le> j * k"
nipkow@24438
  1147
by (simp add: mult_right_mono)
berghofe@13449
  1148
paulson@14267
  1149
lemma mult_le_mono2: "i \<le> (j::nat) ==> k * i \<le> k * j"
nipkow@24438
  1150
by (simp add: mult_left_mono)
berghofe@13449
  1151
paulson@14267
  1152
text {* @{text "\<le>"} monotonicity, BOTH arguments *}
paulson@14267
  1153
lemma mult_le_mono: "i \<le> (j::nat) ==> k \<le> l ==> i * k \<le> j * l"
nipkow@24438
  1154
by (simp add: mult_mono)
berghofe@13449
  1155
berghofe@13449
  1156
lemma mult_less_mono1: "(i::nat) < j ==> 0 < k ==> i * k < j * k"
nipkow@24438
  1157
by (simp add: mult_strict_right_mono)
berghofe@13449
  1158
paulson@14266
  1159
text{*Differs from the standard @{text zero_less_mult_iff} in that
paulson@14266
  1160
      there are no negative numbers.*}
paulson@14266
  1161
lemma nat_0_less_mult_iff [simp]: "(0 < (m::nat) * n) = (0 < m & 0 < n)"
berghofe@13449
  1162
  apply (induct m)
wenzelm@22718
  1163
   apply simp
wenzelm@22718
  1164
  apply (case_tac n)
wenzelm@22718
  1165
   apply simp_all
berghofe@13449
  1166
  done
berghofe@13449
  1167
huffman@30079
  1168
lemma one_le_mult_iff [simp]: "(Suc 0 \<le> m * n) = (Suc 0 \<le> m & Suc 0 \<le> n)"
berghofe@13449
  1169
  apply (induct m)
wenzelm@22718
  1170
   apply simp
wenzelm@22718
  1171
  apply (case_tac n)
wenzelm@22718
  1172
   apply simp_all
berghofe@13449
  1173
  done
berghofe@13449
  1174
paulson@14341
  1175
lemma mult_less_cancel2 [simp]: "((m::nat) * k < n * k) = (0 < k & m < n)"
berghofe@13449
  1176
  apply (safe intro!: mult_less_mono1)
wenzelm@47988
  1177
  apply (cases k, auto)
berghofe@13449
  1178
  apply (simp del: le_0_eq add: linorder_not_le [symmetric])
berghofe@13449
  1179
  apply (blast intro: mult_le_mono1)
berghofe@13449
  1180
  done
berghofe@13449
  1181
berghofe@13449
  1182
lemma mult_less_cancel1 [simp]: "(k * (m::nat) < k * n) = (0 < k & m < n)"
nipkow@24438
  1183
by (simp add: mult_commute [of k])
berghofe@13449
  1184
paulson@14267
  1185
lemma mult_le_cancel1 [simp]: "(k * (m::nat) \<le> k * n) = (0 < k --> m \<le> n)"
nipkow@24438
  1186
by (simp add: linorder_not_less [symmetric], auto)
berghofe@13449
  1187
paulson@14267
  1188
lemma mult_le_cancel2 [simp]: "((m::nat) * k \<le> n * k) = (0 < k --> m \<le> n)"
nipkow@24438
  1189
by (simp add: linorder_not_less [symmetric], auto)
berghofe@13449
  1190
berghofe@13449
  1191
lemma Suc_mult_less_cancel1: "(Suc k * m < Suc k * n) = (m < n)"
nipkow@24438
  1192
by (subst mult_less_cancel1) simp
berghofe@13449
  1193
paulson@14267
  1194
lemma Suc_mult_le_cancel1: "(Suc k * m \<le> Suc k * n) = (m \<le> n)"
nipkow@24438
  1195
by (subst mult_le_cancel1) simp
berghofe@13449
  1196
haftmann@26072
  1197
lemma le_square: "m \<le> m * (m::nat)"
haftmann@26072
  1198
  by (cases m) (auto intro: le_add1)
haftmann@26072
  1199
haftmann@26072
  1200
lemma le_cube: "(m::nat) \<le> m * (m * m)"
haftmann@26072
  1201
  by (cases m) (auto intro: le_add1)
berghofe@13449
  1202
berghofe@13449
  1203
text {* Lemma for @{text gcd} *}
huffman@30128
  1204
lemma mult_eq_self_implies_10: "(m::nat) = m * n ==> n = 1 | m = 0"
berghofe@13449
  1205
  apply (drule sym)
berghofe@13449
  1206
  apply (rule disjCI)
berghofe@13449
  1207
  apply (rule nat_less_cases, erule_tac [2] _)
paulson@25157
  1208
   apply (drule_tac [2] mult_less_mono2)
nipkow@25162
  1209
    apply (auto)
berghofe@13449
  1210
  done
wenzelm@9436
  1211
haftmann@51263
  1212
lemma mono_times_nat:
haftmann@51263
  1213
  fixes n :: nat
haftmann@51263
  1214
  assumes "n > 0"
haftmann@51263
  1215
  shows "mono (times n)"
haftmann@51263
  1216
proof
haftmann@51263
  1217
  fix m q :: nat
haftmann@51263
  1218
  assume "m \<le> q"
haftmann@51263
  1219
  with assms show "n * m \<le> n * q" by simp
haftmann@51263
  1220
qed
haftmann@51263
  1221
haftmann@26072
  1222
text {* the lattice order on @{typ nat} *}
haftmann@24995
  1223
haftmann@26072
  1224
instantiation nat :: distrib_lattice
haftmann@26072
  1225
begin
haftmann@24995
  1226
haftmann@26072
  1227
definition
haftmann@26072
  1228
  "(inf \<Colon> nat \<Rightarrow> nat \<Rightarrow> nat) = min"
haftmann@24995
  1229
haftmann@26072
  1230
definition
haftmann@26072
  1231
  "(sup \<Colon> nat \<Rightarrow> nat \<Rightarrow> nat) = max"
haftmann@24995
  1232
haftmann@26072
  1233
instance by intro_classes
haftmann@26072
  1234
  (auto simp add: inf_nat_def sup_nat_def max_def not_le min_def
haftmann@26072
  1235
    intro: order_less_imp_le antisym elim!: order_trans order_less_trans)
haftmann@24995
  1236
haftmann@26072
  1237
end
haftmann@24995
  1238
haftmann@24995
  1239
haftmann@30954
  1240
subsection {* Natural operation of natural numbers on functions *}
haftmann@30954
  1241
haftmann@30971
  1242
text {*
haftmann@30971
  1243
  We use the same logical constant for the power operations on
haftmann@30971
  1244
  functions and relations, in order to share the same syntax.
haftmann@30971
  1245
*}
haftmann@30971
  1246
haftmann@45965
  1247
consts compow :: "nat \<Rightarrow> 'a \<Rightarrow> 'a"
haftmann@30971
  1248
haftmann@45965
  1249
abbreviation compower :: "'a \<Rightarrow> nat \<Rightarrow> 'a" (infixr "^^" 80) where
haftmann@30971
  1250
  "f ^^ n \<equiv> compow n f"
haftmann@30971
  1251
haftmann@30971
  1252
notation (latex output)
haftmann@30971
  1253
  compower ("(_\<^bsup>_\<^esup>)" [1000] 1000)
haftmann@30971
  1254
haftmann@30971
  1255
notation (HTML output)
haftmann@30971
  1256
  compower ("(_\<^bsup>_\<^esup>)" [1000] 1000)
haftmann@30971
  1257
haftmann@30971
  1258
text {* @{text "f ^^ n = f o ... o f"}, the n-fold composition of @{text f} *}
haftmann@30971
  1259
haftmann@30971
  1260
overloading
haftmann@30971
  1261
  funpow == "compow :: nat \<Rightarrow> ('a \<Rightarrow> 'a) \<Rightarrow> ('a \<Rightarrow> 'a)"
haftmann@30971
  1262
begin
haftmann@30954
  1263
haftmann@30954
  1264
primrec funpow :: "nat \<Rightarrow> ('a \<Rightarrow> 'a) \<Rightarrow> 'a \<Rightarrow> 'a" where
haftmann@44325
  1265
  "funpow 0 f = id"
haftmann@44325
  1266
| "funpow (Suc n) f = f o funpow n f"
haftmann@30954
  1267
haftmann@30971
  1268
end
haftmann@30971
  1269
haftmann@49723
  1270
lemma funpow_Suc_right:
haftmann@49723
  1271
  "f ^^ Suc n = f ^^ n \<circ> f"
haftmann@49723
  1272
proof (induct n)
haftmann@49723
  1273
  case 0 then show ?case by simp
haftmann@49723
  1274
next
haftmann@49723
  1275
  fix n
haftmann@49723
  1276
  assume "f ^^ Suc n = f ^^ n \<circ> f"
haftmann@49723
  1277
  then show "f ^^ Suc (Suc n) = f ^^ Suc n \<circ> f"
haftmann@49723
  1278
    by (simp add: o_assoc)
haftmann@49723
  1279
qed
haftmann@49723
  1280
haftmann@49723
  1281
lemmas funpow_simps_right = funpow.simps(1) funpow_Suc_right
haftmann@49723
  1282
haftmann@30971
  1283
text {* for code generation *}
haftmann@30971
  1284
haftmann@30971
  1285
definition funpow :: "nat \<Rightarrow> ('a \<Rightarrow> 'a) \<Rightarrow> 'a \<Rightarrow> 'a" where
haftmann@46028
  1286
  funpow_code_def [code_abbrev]: "funpow = compow"
haftmann@30954
  1287
haftmann@30971
  1288
lemma [code]:
haftmann@37430
  1289
  "funpow (Suc n) f = f o funpow n f"
haftmann@30971
  1290
  "funpow 0 f = id"
haftmann@37430
  1291
  by (simp_all add: funpow_code_def)
haftmann@30971
  1292
wenzelm@36176
  1293
hide_const (open) funpow
haftmann@30954
  1294
haftmann@30954
  1295
lemma funpow_add:
haftmann@30971
  1296
  "f ^^ (m + n) = f ^^ m \<circ> f ^^ n"
haftmann@30954
  1297
  by (induct m) simp_all
haftmann@30954
  1298
haftmann@37430
  1299
lemma funpow_mult:
haftmann@37430
  1300
  fixes f :: "'a \<Rightarrow> 'a"
haftmann@37430
  1301
  shows "(f ^^ m) ^^ n = f ^^ (m * n)"
haftmann@37430
  1302
  by (induct n) (simp_all add: funpow_add)
haftmann@37430
  1303
haftmann@30954
  1304
lemma funpow_swap1:
haftmann@30971
  1305
  "f ((f ^^ n) x) = (f ^^ n) (f x)"
haftmann@30954
  1306
proof -
haftmann@30971
  1307
  have "f ((f ^^ n) x) = (f ^^ (n + 1)) x" by simp
haftmann@30971
  1308
  also have "\<dots>  = (f ^^ n o f ^^ 1) x" by (simp only: funpow_add)
haftmann@30971
  1309
  also have "\<dots> = (f ^^ n) (f x)" by simp
haftmann@30954
  1310
  finally show ?thesis .
haftmann@30954
  1311
qed
haftmann@30954
  1312
haftmann@38621
  1313
lemma comp_funpow:
haftmann@38621
  1314
  fixes f :: "'a \<Rightarrow> 'a"
haftmann@38621
  1315
  shows "comp f ^^ n = comp (f ^^ n)"
haftmann@38621
  1316
  by (induct n) simp_all
haftmann@30954
  1317
haftmann@38621
  1318
nipkow@45833
  1319
subsection {* Kleene iteration *}
nipkow@45833
  1320
haftmann@52729
  1321
lemma Kleene_iter_lpfp:
haftmann@52729
  1322
assumes "mono f" and "f p \<le> p" shows "(f^^k) (bot::'a::order_bot) \<le> p"
nipkow@45833
  1323
proof(induction k)
nipkow@45833
  1324
  case 0 show ?case by simp
nipkow@45833
  1325
next
nipkow@45833
  1326
  case Suc
nipkow@45833
  1327
  from monoD[OF assms(1) Suc] assms(2)
nipkow@45833
  1328
  show ?case by simp
nipkow@45833
  1329
qed
nipkow@45833
  1330
nipkow@45833
  1331
lemma lfp_Kleene_iter: assumes "mono f" and "(f^^Suc k) bot = (f^^k) bot"
nipkow@45833
  1332
shows "lfp f = (f^^k) bot"
nipkow@45833
  1333
proof(rule antisym)
nipkow@45833
  1334
  show "lfp f \<le> (f^^k) bot"
nipkow@45833
  1335
  proof(rule lfp_lowerbound)
nipkow@45833
  1336
    show "f ((f^^k) bot) \<le> (f^^k) bot" using assms(2) by simp
nipkow@45833
  1337
  qed
nipkow@45833
  1338
next
nipkow@45833
  1339
  show "(f^^k) bot \<le> lfp f"
nipkow@45833
  1340
    using Kleene_iter_lpfp[OF assms(1)] lfp_unfold[OF assms(1)] by simp
nipkow@45833
  1341
qed
nipkow@45833
  1342
nipkow@45833
  1343
haftmann@38621
  1344
subsection {* Embedding of the Naturals into any @{text semiring_1}: @{term of_nat} *}
haftmann@24196
  1345
haftmann@24196
  1346
context semiring_1
haftmann@24196
  1347
begin
haftmann@24196
  1348
haftmann@38621
  1349
definition of_nat :: "nat \<Rightarrow> 'a" where
haftmann@38621
  1350
  "of_nat n = (plus 1 ^^ n) 0"
haftmann@38621
  1351
haftmann@38621
  1352
lemma of_nat_simps [simp]:
haftmann@38621
  1353
  shows of_nat_0: "of_nat 0 = 0"
haftmann@38621
  1354
    and of_nat_Suc: "of_nat (Suc m) = 1 + of_nat m"
haftmann@38621
  1355
  by (simp_all add: of_nat_def)
haftmann@25193
  1356
haftmann@25193
  1357
lemma of_nat_1 [simp]: "of_nat 1 = 1"
haftmann@38621
  1358
  by (simp add: of_nat_def)
haftmann@25193
  1359
haftmann@25193
  1360
lemma of_nat_add [simp]: "of_nat (m + n) = of_nat m + of_nat n"
haftmann@25193
  1361
  by (induct m) (simp_all add: add_ac)
haftmann@25193
  1362
haftmann@25193
  1363
lemma of_nat_mult: "of_nat (m * n) = of_nat m * of_nat n"
webertj@49962
  1364
  by (induct m) (simp_all add: add_ac distrib_right)
haftmann@25193
  1365
haftmann@28514
  1366
primrec of_nat_aux :: "('a \<Rightarrow> 'a) \<Rightarrow> nat \<Rightarrow> 'a \<Rightarrow> 'a" where
haftmann@28514
  1367
  "of_nat_aux inc 0 i = i"
haftmann@44325
  1368
| "of_nat_aux inc (Suc n) i = of_nat_aux inc n (inc i)" -- {* tail recursive *}
haftmann@25928
  1369
haftmann@30966
  1370
lemma of_nat_code:
haftmann@28514
  1371
  "of_nat n = of_nat_aux (\<lambda>i. i + 1) n 0"
haftmann@28514
  1372
proof (induct n)
haftmann@28514
  1373
  case 0 then show ?case by simp
haftmann@28514
  1374
next
haftmann@28514
  1375
  case (Suc n)
haftmann@28514
  1376
  have "\<And>i. of_nat_aux (\<lambda>i. i + 1) n (i + 1) = of_nat_aux (\<lambda>i. i + 1) n i + 1"
haftmann@28514
  1377
    by (induct n) simp_all
haftmann@28514
  1378
  from this [of 0] have "of_nat_aux (\<lambda>i. i + 1) n 1 = of_nat_aux (\<lambda>i. i + 1) n 0 + 1"
haftmann@28514
  1379
    by simp
haftmann@28514
  1380
  with Suc show ?case by (simp add: add_commute)
haftmann@28514
  1381
qed
haftmann@30966
  1382
haftmann@24196
  1383
end
haftmann@24196
  1384
bulwahn@45231
  1385
declare of_nat_code [code]
haftmann@30966
  1386
haftmann@26072
  1387
text{*Class for unital semirings with characteristic zero.
haftmann@26072
  1388
 Includes non-ordered rings like the complex numbers.*}
haftmann@26072
  1389
haftmann@26072
  1390
class semiring_char_0 = semiring_1 +
haftmann@38621
  1391
  assumes inj_of_nat: "inj of_nat"
haftmann@26072
  1392
begin
haftmann@26072
  1393
haftmann@38621
  1394
lemma of_nat_eq_iff [simp]: "of_nat m = of_nat n \<longleftrightarrow> m = n"
haftmann@38621
  1395
  by (auto intro: inj_of_nat injD)
haftmann@38621
  1396
haftmann@26072
  1397
text{*Special cases where either operand is zero*}
haftmann@26072
  1398
blanchet@54147
  1399
lemma of_nat_0_eq_iff [simp]: "0 = of_nat n \<longleftrightarrow> 0 = n"
haftmann@38621
  1400
  by (fact of_nat_eq_iff [of 0 n, unfolded of_nat_0])
haftmann@26072
  1401
blanchet@54147
  1402
lemma of_nat_eq_0_iff [simp]: "of_nat m = 0 \<longleftrightarrow> m = 0"
haftmann@38621
  1403
  by (fact of_nat_eq_iff [of m 0, unfolded of_nat_0])
haftmann@26072
  1404
haftmann@26072
  1405
end
haftmann@26072
  1406
haftmann@35028
  1407
context linordered_semidom
haftmann@25193
  1408
begin
haftmann@25193
  1409
huffman@47489
  1410
lemma of_nat_0_le_iff [simp]: "0 \<le> of_nat n"
huffman@47489
  1411
  by (induct n) simp_all
haftmann@25193
  1412
huffman@47489
  1413
lemma of_nat_less_0_iff [simp]: "\<not> of_nat m < 0"
huffman@47489
  1414
  by (simp add: not_less)
haftmann@25193
  1415
haftmann@25193
  1416
lemma of_nat_less_iff [simp]: "of_nat m < of_nat n \<longleftrightarrow> m < n"
huffman@47489
  1417
  by (induct m n rule: diff_induct, simp_all add: add_pos_nonneg)
haftmann@25193
  1418
haftmann@26072
  1419
lemma of_nat_le_iff [simp]: "of_nat m \<le> of_nat n \<longleftrightarrow> m \<le> n"
haftmann@26072
  1420
  by (simp add: not_less [symmetric] linorder_not_less [symmetric])
haftmann@25193
  1421
huffman@47489
  1422
lemma less_imp_of_nat_less: "m < n \<Longrightarrow> of_nat m < of_nat n"
huffman@47489
  1423
  by simp
huffman@47489
  1424
huffman@47489
  1425
lemma of_nat_less_imp_less: "of_nat m < of_nat n \<Longrightarrow> m < n"
huffman@47489
  1426
  by simp
huffman@47489
  1427
haftmann@35028
  1428
text{*Every @{text linordered_semidom} has characteristic zero.*}
haftmann@25193
  1429
haftmann@38621
  1430
subclass semiring_char_0 proof
haftmann@38621
  1431
qed (auto intro!: injI simp add: eq_iff)
haftmann@25193
  1432
haftmann@25193
  1433
text{*Special cases where either operand is zero*}
haftmann@25193
  1434
blanchet@54147
  1435
lemma of_nat_le_0_iff [simp]: "of_nat m \<le> 0 \<longleftrightarrow> m = 0"
haftmann@25193
  1436
  by (rule of_nat_le_iff [of _ 0, simplified])
haftmann@25193
  1437
haftmann@26072
  1438
lemma of_nat_0_less_iff [simp]: "0 < of_nat n \<longleftrightarrow> 0 < n"
haftmann@26072
  1439
  by (rule of_nat_less_iff [of 0, simplified])
haftmann@26072
  1440
haftmann@26072
  1441
end
haftmann@26072
  1442
haftmann@26072
  1443
context ring_1
haftmann@26072
  1444
begin
haftmann@26072
  1445
haftmann@26072
  1446
lemma of_nat_diff: "n \<le> m \<Longrightarrow> of_nat (m - n) = of_nat m - of_nat n"
nipkow@29667
  1447
by (simp add: algebra_simps of_nat_add [symmetric])
haftmann@26072
  1448
haftmann@26072
  1449
end
haftmann@26072
  1450
haftmann@35028
  1451
context linordered_idom
haftmann@26072
  1452
begin
haftmann@26072
  1453
haftmann@26072
  1454
lemma abs_of_nat [simp]: "\<bar>of_nat n\<bar> = of_nat n"
haftmann@26072
  1455
  unfolding abs_if by auto
haftmann@26072
  1456
haftmann@25193
  1457
end
haftmann@25193
  1458
haftmann@25193
  1459
lemma of_nat_id [simp]: "of_nat n = n"
huffman@35216
  1460
  by (induct n) simp_all
haftmann@25193
  1461
haftmann@25193
  1462
lemma of_nat_eq_id [simp]: "of_nat = id"
nipkow@39302
  1463
  by (auto simp add: fun_eq_iff)
haftmann@25193
  1464
haftmann@25193
  1465
haftmann@26149
  1466
subsection {* The Set of Natural Numbers *}
haftmann@25193
  1467
haftmann@26072
  1468
context semiring_1
haftmann@25193
  1469
begin
haftmann@25193
  1470
haftmann@37767
  1471
definition Nats  :: "'a set" where
haftmann@37767
  1472
  "Nats = range of_nat"
haftmann@26072
  1473
haftmann@26072
  1474
notation (xsymbols)
haftmann@26072
  1475
  Nats  ("\<nat>")
haftmann@25193
  1476
haftmann@26072
  1477
lemma of_nat_in_Nats [simp]: "of_nat n \<in> \<nat>"
haftmann@26072
  1478
  by (simp add: Nats_def)
haftmann@26072
  1479
haftmann@26072
  1480
lemma Nats_0 [simp]: "0 \<in> \<nat>"
haftmann@26072
  1481
apply (simp add: Nats_def)
haftmann@26072
  1482
apply (rule range_eqI)
haftmann@26072
  1483
apply (rule of_nat_0 [symmetric])
haftmann@26072
  1484
done
haftmann@25193
  1485
haftmann@26072
  1486
lemma Nats_1 [simp]: "1 \<in> \<nat>"
haftmann@26072
  1487
apply (simp add: Nats_def)
haftmann@26072
  1488
apply (rule range_eqI)
haftmann@26072
  1489
apply (rule of_nat_1 [symmetric])
haftmann@26072
  1490
done
haftmann@25193
  1491
haftmann@26072
  1492
lemma Nats_add [simp]: "a \<in> \<nat> \<Longrightarrow> b \<in> \<nat> \<Longrightarrow> a + b \<in> \<nat>"
haftmann@26072
  1493
apply (auto simp add: Nats_def)
haftmann@26072
  1494
apply (rule range_eqI)
haftmann@26072
  1495
apply (rule of_nat_add [symmetric])
haftmann@26072
  1496
done
haftmann@26072
  1497
haftmann@26072
  1498
lemma Nats_mult [simp]: "a \<in> \<nat> \<Longrightarrow> b \<in> \<nat> \<Longrightarrow> a * b \<in> \<nat>"
haftmann@26072
  1499
apply (auto simp add: Nats_def)
haftmann@26072
  1500
apply (rule range_eqI)
haftmann@26072
  1501
apply (rule of_nat_mult [symmetric])
haftmann@26072
  1502
done
haftmann@25193
  1503
huffman@35633
  1504
lemma Nats_cases [cases set: Nats]:
huffman@35633
  1505
  assumes "x \<in> \<nat>"
huffman@35633
  1506
  obtains (of_nat) n where "x = of_nat n"
huffman@35633
  1507
  unfolding Nats_def
huffman@35633
  1508
proof -
huffman@35633
  1509
  from `x \<in> \<nat>` have "x \<in> range of_nat" unfolding Nats_def .
huffman@35633
  1510
  then obtain n where "x = of_nat n" ..
huffman@35633
  1511
  then show thesis ..
huffman@35633
  1512
qed
huffman@35633
  1513
huffman@35633
  1514
lemma Nats_induct [case_names of_nat, induct set: Nats]:
huffman@35633
  1515
  "x \<in> \<nat> \<Longrightarrow> (\<And>n. P (of_nat n)) \<Longrightarrow> P x"
huffman@35633
  1516
  by (rule Nats_cases) auto
huffman@35633
  1517
haftmann@25193
  1518
end
haftmann@25193
  1519
haftmann@25193
  1520
wenzelm@21243
  1521
subsection {* Further Arithmetic Facts Concerning the Natural Numbers *}
wenzelm@21243
  1522
haftmann@22845
  1523
lemma subst_equals:
haftmann@22845
  1524
  assumes 1: "t = s" and 2: "u = t"
haftmann@22845
  1525
  shows "u = s"
haftmann@22845
  1526
  using 2 1 by (rule trans)
haftmann@22845
  1527
haftmann@30686
  1528
setup Arith_Data.setup
haftmann@30686
  1529
wenzelm@48891
  1530
ML_file "Tools/nat_arith.ML"
huffman@48559
  1531
huffman@48559
  1532
simproc_setup nateq_cancel_sums
huffman@48559
  1533
  ("(l::nat) + m = n" | "(l::nat) = m + n" | "Suc m = n" | "m = Suc n") =
huffman@48560
  1534
  {* fn phi => fn ss => try Nat_Arith.cancel_eq_conv *}
huffman@48559
  1535
huffman@48559
  1536
simproc_setup natless_cancel_sums
huffman@48559
  1537
  ("(l::nat) + m < n" | "(l::nat) < m + n" | "Suc m < n" | "m < Suc n") =
huffman@48560
  1538
  {* fn phi => fn ss => try Nat_Arith.cancel_less_conv *}
huffman@48559
  1539
huffman@48559
  1540
simproc_setup natle_cancel_sums
huffman@48559
  1541
  ("(l::nat) + m \<le> n" | "(l::nat) \<le> m + n" | "Suc m \<le> n" | "m \<le> Suc n") =
huffman@48560
  1542
  {* fn phi => fn ss => try Nat_Arith.cancel_le_conv *}
huffman@48559
  1543
huffman@48559
  1544
simproc_setup natdiff_cancel_sums
huffman@48559
  1545
  ("(l::nat) + m - n" | "(l::nat) - (m + n)" | "Suc m - n" | "m - Suc n") =
huffman@48560
  1546
  {* fn phi => fn ss => try Nat_Arith.cancel_diff_conv *}
wenzelm@24091
  1547
wenzelm@48891
  1548
ML_file "Tools/lin_arith.ML"
haftmann@31100
  1549
setup {* Lin_Arith.global_setup *}
haftmann@30686
  1550
declaration {* K Lin_Arith.setup *}
wenzelm@24091
  1551
wenzelm@43595
  1552
simproc_setup fast_arith_nat ("(m::nat) < n" | "(m::nat) <= n" | "(m::nat) = n") =
wenzelm@43595
  1553
  {* fn _ => fn ss => fn ct => Lin_Arith.simproc ss (term_of ct) *}
wenzelm@43595
  1554
(* Because of this simproc, the arithmetic solver is really only
wenzelm@43595
  1555
useful to detect inconsistencies among the premises for subgoals which are
wenzelm@43595
  1556
*not* themselves (in)equalities, because the latter activate
wenzelm@43595
  1557
fast_nat_arith_simproc anyway. However, it seems cheaper to activate the
wenzelm@43595
  1558
solver all the time rather than add the additional check. *)
wenzelm@43595
  1559
wenzelm@43595
  1560
wenzelm@21243
  1561
lemmas [arith_split] = nat_diff_split split_min split_max
wenzelm@21243
  1562
nipkow@27625
  1563
context order
nipkow@27625
  1564
begin
nipkow@27625
  1565
nipkow@27625
  1566
lemma lift_Suc_mono_le:
haftmann@53986
  1567
  assumes mono: "\<And>n. f n \<le> f (Suc n)" and "n \<le> n'"
krauss@27627
  1568
  shows "f n \<le> f n'"
krauss@27627
  1569
proof (cases "n < n'")
krauss@27627
  1570
  case True
haftmann@53986
  1571
  then show ?thesis
haftmann@53986
  1572
    by (induct n n' rule: less_Suc_induct [consumes 1]) (auto intro: mono)
haftmann@53986
  1573
qed (insert `n \<le> n'`, auto) -- {* trivial for @{prop "n = n'"} *}
nipkow@27625
  1574
nipkow@27625
  1575
lemma lift_Suc_mono_less:
haftmann@53986
  1576
  assumes mono: "\<And>n. f n < f (Suc n)" and "n < n'"
krauss@27627
  1577
  shows "f n < f n'"
krauss@27627
  1578
using `n < n'`
haftmann@53986
  1579
by (induct n n' rule: less_Suc_induct [consumes 1]) (auto intro: mono)
nipkow@27625
  1580
nipkow@27789
  1581
lemma lift_Suc_mono_less_iff:
haftmann@53986
  1582
  "(\<And>n. f n < f (Suc n)) \<Longrightarrow> f n < f m \<longleftrightarrow> n < m"
haftmann@53986
  1583
  by (blast intro: less_asym' lift_Suc_mono_less [of f]
haftmann@53986
  1584
    dest: linorder_not_less[THEN iffD1] le_eq_less_or_eq [THEN iffD1])
nipkow@27789
  1585
nipkow@27625
  1586
end
nipkow@27625
  1587
haftmann@53986
  1588
lemma mono_iff_le_Suc:
haftmann@53986
  1589
  "mono f \<longleftrightarrow> (\<forall>n. f n \<le> f (Suc n))"
haftmann@37387
  1590
  unfolding mono_def by (auto intro: lift_Suc_mono_le [of f])
nipkow@27625
  1591
nipkow@27789
  1592
lemma mono_nat_linear_lb:
haftmann@53986
  1593
  fixes f :: "nat \<Rightarrow> nat"
haftmann@53986
  1594
  assumes "\<And>m n. m < n \<Longrightarrow> f m < f n"
haftmann@53986
  1595
  shows "f m + k \<le> f (m + k)"
haftmann@53986
  1596
proof (induct k)
haftmann@53986
  1597
  case 0 then show ?case by simp
haftmann@53986
  1598
next
haftmann@53986
  1599
  case (Suc k)
haftmann@53986
  1600
  then have "Suc (f m + k) \<le> Suc (f (m + k))" by simp
haftmann@53986
  1601
  also from assms [of "m + k" "Suc (m + k)"] have "Suc (f (m + k)) \<le> f (Suc (m + k))"
haftmann@53986
  1602
    by (simp add: Suc_le_eq)
haftmann@53986
  1603
  finally show ?case by simp
haftmann@53986
  1604
qed
nipkow@27789
  1605
nipkow@27789
  1606
wenzelm@21243
  1607
text{*Subtraction laws, mostly by Clemens Ballarin*}
wenzelm@21243
  1608
wenzelm@21243
  1609
lemma diff_less_mono: "[| a < (b::nat); c \<le> a |] ==> a-c < b-c"
nipkow@24438
  1610
by arith
wenzelm@21243
  1611
wenzelm@21243
  1612
lemma less_diff_conv: "(i < j-k) = (i+k < (j::nat))"
nipkow@24438
  1613
by arith
wenzelm@21243
  1614
haftmann@51173
  1615
lemma less_diff_conv2:
haftmann@51173
  1616
  fixes j k i :: nat
haftmann@51173
  1617
  assumes "k \<le> j"
haftmann@51173
  1618
  shows "j - k < i \<longleftrightarrow> j < i + k"
haftmann@51173
  1619
  using assms by arith
haftmann@51173
  1620
wenzelm@21243
  1621
lemma le_diff_conv: "(j-k \<le> (i::nat)) = (j \<le> i+k)"
nipkow@24438
  1622
by arith
wenzelm@21243
  1623
wenzelm@21243
  1624
lemma le_diff_conv2: "k \<le> j ==> (i \<le> j-k) = (i+k \<le> (j::nat))"
nipkow@24438
  1625
by arith
wenzelm@21243
  1626
wenzelm@21243
  1627
lemma diff_diff_cancel [simp]: "i \<le> (n::nat) ==> n - (n - i) = i"
nipkow@24438
  1628
by arith
wenzelm@21243
  1629
wenzelm@21243
  1630
lemma le_add_diff: "k \<le> (n::nat) ==> m \<le> n + m - k"
nipkow@24438
  1631
by arith
wenzelm@21243
  1632
wenzelm@21243
  1633
(*Replaces the previous diff_less and le_diff_less, which had the stronger
wenzelm@21243
  1634
  second premise n\<le>m*)
wenzelm@21243
  1635
lemma diff_less[simp]: "!!m::nat. [| 0<n; 0<m |] ==> m - n < m"
nipkow@24438
  1636
by arith
wenzelm@21243
  1637
haftmann@26072
  1638
text {* Simplification of relational expressions involving subtraction *}
wenzelm@21243
  1639
wenzelm@21243
  1640
lemma diff_diff_eq: "[| k \<le> m;  k \<le> (n::nat) |] ==> ((m-k) - (n-k)) = (m-n)"
nipkow@24438
  1641
by (simp split add: nat_diff_split)
wenzelm@21243
  1642
wenzelm@36176
  1643
hide_fact (open) diff_diff_eq
haftmann@35064
  1644
wenzelm@21243
  1645
lemma eq_diff_iff: "[| k \<le> m;  k \<le> (n::nat) |] ==> (m-k = n-k) = (m=n)"
nipkow@24438
  1646
by (auto split add: nat_diff_split)
wenzelm@21243
  1647
wenzelm@21243
  1648
lemma less_diff_iff: "[| k \<le> m;  k \<le> (n::nat) |] ==> (m-k < n-k) = (m<n)"
nipkow@24438
  1649
by (auto split add: nat_diff_split)
wenzelm@21243
  1650
wenzelm@21243
  1651
lemma le_diff_iff: "[| k \<le> m;  k \<le> (n::nat) |] ==> (m-k \<le> n-k) = (m\<le>n)"
nipkow@24438
  1652
by (auto split add: nat_diff_split)
wenzelm@21243
  1653
wenzelm@21243
  1654
text{*(Anti)Monotonicity of subtraction -- by Stephan Merz*}
wenzelm@21243
  1655
wenzelm@21243
  1656
(* Monotonicity of subtraction in first argument *)
wenzelm@21243
  1657
lemma diff_le_mono: "m \<le> (n::nat) ==> (m-l) \<le> (n-l)"
nipkow@24438
  1658
by (simp split add: nat_diff_split)
wenzelm@21243
  1659
wenzelm@21243
  1660
lemma diff_le_mono2: "m \<le> (n::nat) ==> (l-n) \<le> (l-m)"
nipkow@24438
  1661
by (simp split add: nat_diff_split)
wenzelm@21243
  1662
wenzelm@21243
  1663
lemma diff_less_mono2: "[| m < (n::nat); m<l |] ==> (l-n) < (l-m)"
nipkow@24438
  1664
by (simp split add: nat_diff_split)
wenzelm@21243
  1665
wenzelm@21243
  1666
lemma diffs0_imp_equal: "!!m::nat. [| m-n = 0; n-m = 0 |] ==>  m=n"
nipkow@24438
  1667
by (simp split add: nat_diff_split)
wenzelm@21243
  1668
bulwahn@26143
  1669
lemma min_diff: "min (m - (i::nat)) (n - i) = min m n - i"
nipkow@32437
  1670
by auto
bulwahn@26143
  1671
bulwahn@26143
  1672
lemma inj_on_diff_nat: 
bulwahn@26143
  1673
  assumes k_le_n: "\<forall>n \<in> N. k \<le> (n::nat)"
bulwahn@26143
  1674
  shows "inj_on (\<lambda>n. n - k) N"
bulwahn@26143
  1675
proof (rule inj_onI)
bulwahn@26143
  1676
  fix x y
bulwahn@26143
  1677
  assume a: "x \<in> N" "y \<in> N" "x - k = y - k"
bulwahn@26143
  1678
  with k_le_n have "x - k + k = y - k + k" by auto
bulwahn@26143
  1679
  with a k_le_n show "x = y" by auto
bulwahn@26143
  1680
qed
bulwahn@26143
  1681
haftmann@26072
  1682
text{*Rewriting to pull differences out*}
haftmann@26072
  1683
haftmann@26072
  1684
lemma diff_diff_right [simp]: "k\<le>j --> i - (j - k) = i + (k::nat) - j"
haftmann@26072
  1685
by arith
haftmann@26072
  1686
haftmann@26072
  1687
lemma diff_Suc_diff_eq1 [simp]: "k \<le> j ==> m - Suc (j - k) = m + k - Suc j"
haftmann@26072
  1688
by arith
haftmann@26072
  1689
haftmann@26072
  1690
lemma diff_Suc_diff_eq2 [simp]: "k \<le> j ==> Suc (j - k) - m = Suc j - (k + m)"
haftmann@26072
  1691
by arith
haftmann@26072
  1692
noschinl@45933
  1693
lemma Suc_diff_Suc: "n < m \<Longrightarrow> Suc (m - Suc n) = m - n"
noschinl@45933
  1694
by simp
noschinl@45933
  1695
bulwahn@46350
  1696
(*The others are
bulwahn@46350
  1697
      i - j - k = i - (j + k),
bulwahn@46350
  1698
      k \<le> j ==> j - k + i = j + i - k,
bulwahn@46350
  1699
      k \<le> j ==> i + (j - k) = i + j - k *)
bulwahn@46350
  1700
lemmas add_diff_assoc = diff_add_assoc [symmetric]
bulwahn@46350
  1701
lemmas add_diff_assoc2 = diff_add_assoc2[symmetric]
bulwahn@46350
  1702
declare diff_diff_left [simp]  add_diff_assoc [simp] add_diff_assoc2[simp]
bulwahn@46350
  1703
bulwahn@46350
  1704
text{*At present we prove no analogue of @{text not_less_Least} or @{text
bulwahn@46350
  1705
Least_Suc}, since there appears to be no need.*}
bulwahn@46350
  1706
wenzelm@21243
  1707
text{*Lemmas for ex/Factorization*}
wenzelm@21243
  1708
wenzelm@21243
  1709
lemma one_less_mult: "[| Suc 0 < n; Suc 0 < m |] ==> Suc 0 < m*n"
nipkow@24438
  1710
by (cases m) auto
wenzelm@21243
  1711
wenzelm@21243
  1712
lemma n_less_m_mult_n: "[| Suc 0 < n; Suc 0 < m |] ==> n<m*n"
nipkow@24438
  1713
by (cases m) auto
wenzelm@21243
  1714
wenzelm@21243
  1715
lemma n_less_n_mult_m: "[| Suc 0 < n; Suc 0 < m |] ==> n<n*m"
nipkow@24438
  1716
by (cases m) auto
wenzelm@21243
  1717
krauss@23001
  1718
text {* Specialized induction principles that work "backwards": *}
krauss@23001
  1719
krauss@23001
  1720
lemma inc_induct[consumes 1, case_names base step]:
krauss@23001
  1721
  assumes less: "i <= j"
krauss@23001
  1722
  assumes base: "P j"
krauss@23001
  1723
  assumes step: "!!i. [| i < j; P (Suc i) |] ==> P i"
krauss@23001
  1724
  shows "P i"
krauss@23001
  1725
  using less
krauss@23001
  1726
proof (induct d=="j - i" arbitrary: i)
krauss@23001
  1727
  case (0 i)
krauss@23001
  1728
  hence "i = j" by simp
krauss@23001
  1729
  with base show ?case by simp
krauss@23001
  1730
next
krauss@23001
  1731
  case (Suc d i)
krauss@23001
  1732
  hence "i < j" "P (Suc i)"
krauss@23001
  1733
    by simp_all
krauss@23001
  1734
  thus "P i" by (rule step)
krauss@23001
  1735
qed
krauss@23001
  1736
krauss@23001
  1737
lemma strict_inc_induct[consumes 1, case_names base step]:
krauss@23001
  1738
  assumes less: "i < j"
krauss@23001
  1739
  assumes base: "!!i. j = Suc i ==> P i"
krauss@23001
  1740
  assumes step: "!!i. [| i < j; P (Suc i) |] ==> P i"
krauss@23001
  1741
  shows "P i"
krauss@23001
  1742
  using less
krauss@23001
  1743
proof (induct d=="j - i - 1" arbitrary: i)
krauss@23001
  1744
  case (0 i)
krauss@23001
  1745
  with `i < j` have "j = Suc i" by simp
krauss@23001
  1746
  with base show ?case by simp
krauss@23001
  1747
next
krauss@23001
  1748
  case (Suc d i)
krauss@23001
  1749
  hence "i < j" "P (Suc i)"
krauss@23001
  1750
    by simp_all
krauss@23001
  1751
  thus "P i" by (rule step)
krauss@23001
  1752
qed
krauss@23001
  1753
krauss@23001
  1754
lemma zero_induct_lemma: "P k ==> (!!n. P (Suc n) ==> P n) ==> P (k - i)"
krauss@23001
  1755
  using inc_induct[of "k - i" k P, simplified] by blast
krauss@23001
  1756
krauss@23001
  1757
lemma zero_induct: "P k ==> (!!n. P (Suc n) ==> P n) ==> P 0"
krauss@23001
  1758
  using inc_induct[of 0 k P] by blast
wenzelm@21243
  1759
bulwahn@46351
  1760
text {* Further induction rule similar to @{thm inc_induct} *}
nipkow@27625
  1761
bulwahn@46351
  1762
lemma dec_induct[consumes 1, case_names base step]:
bulwahn@46351
  1763
  "i \<le> j \<Longrightarrow> P i \<Longrightarrow> (\<And>n. i \<le> n \<Longrightarrow> P n \<Longrightarrow> P (Suc n)) \<Longrightarrow> P j"
bulwahn@46351
  1764
  by (induct j arbitrary: i) (auto simp: le_Suc_eq)
bulwahn@46351
  1765
bulwahn@46351
  1766
 
haftmann@33274
  1767
subsection {* The divides relation on @{typ nat} *}
haftmann@33274
  1768
haftmann@33274
  1769
lemma dvd_1_left [iff]: "Suc 0 dvd k"
haftmann@33274
  1770
unfolding dvd_def by simp
haftmann@33274
  1771
haftmann@33274
  1772
lemma dvd_1_iff_1 [simp]: "(m dvd Suc 0) = (m = Suc 0)"
haftmann@33274
  1773
by (simp add: dvd_def)
haftmann@33274
  1774
haftmann@33274
  1775
lemma nat_dvd_1_iff_1 [simp]: "m dvd (1::nat) \<longleftrightarrow> m = 1"
haftmann@33274
  1776
by (simp add: dvd_def)
haftmann@33274
  1777
nipkow@33657
  1778
lemma dvd_antisym: "[| m dvd n; n dvd m |] ==> m = (n::nat)"
haftmann@33274
  1779
  unfolding dvd_def
huffman@35216
  1780
  by (force dest: mult_eq_self_implies_10 simp add: mult_assoc)
haftmann@33274
  1781
haftmann@33274
  1782
text {* @{term "op dvd"} is a partial order *}
haftmann@33274
  1783
haftmann@33274
  1784
interpretation dvd: order "op dvd" "\<lambda>n m \<Colon> nat. n dvd m \<and> \<not> m dvd n"
nipkow@33657
  1785
  proof qed (auto intro: dvd_refl dvd_trans dvd_antisym)
haftmann@33274
  1786
haftmann@33274
  1787
lemma dvd_diff_nat[simp]: "[| k dvd m; k dvd n |] ==> k dvd (m-n :: nat)"
haftmann@33274
  1788
unfolding dvd_def
haftmann@33274
  1789
by (blast intro: diff_mult_distrib2 [symmetric])
haftmann@33274
  1790
haftmann@33274
  1791
lemma dvd_diffD: "[| k dvd m-n; k dvd n; n\<le>m |] ==> k dvd (m::nat)"
haftmann@33274
  1792
  apply (erule linorder_not_less [THEN iffD2, THEN add_diff_inverse, THEN subst])
haftmann@33274
  1793
  apply (blast intro: dvd_add)
haftmann@33274
  1794
  done
haftmann@33274
  1795
haftmann@33274
  1796
lemma dvd_diffD1: "[| k dvd m-n; k dvd m; n\<le>m |] ==> k dvd (n::nat)"
haftmann@33274
  1797
by (drule_tac m = m in dvd_diff_nat, auto)
haftmann@33274
  1798
haftmann@33274
  1799
lemma dvd_reduce: "(k dvd n + k) = (k dvd (n::nat))"
haftmann@33274
  1800
  apply (rule iffI)
haftmann@33274
  1801
   apply (erule_tac [2] dvd_add)
haftmann@33274
  1802
   apply (rule_tac [2] dvd_refl)
haftmann@33274
  1803
  apply (subgoal_tac "n = (n+k) -k")
haftmann@33274
  1804
   prefer 2 apply simp
haftmann@33274
  1805
  apply (erule ssubst)
haftmann@33274
  1806
  apply (erule dvd_diff_nat)
haftmann@33274
  1807
  apply (rule dvd_refl)
haftmann@33274
  1808
  done
haftmann@33274
  1809
haftmann@33274
  1810
lemma dvd_mult_cancel: "!!k::nat. [| k*m dvd k*n; 0<k |] ==> m dvd n"
haftmann@33274
  1811
  unfolding dvd_def
haftmann@33274
  1812
  apply (erule exE)
haftmann@33274
  1813
  apply (simp add: mult_ac)
haftmann@33274
  1814
  done
haftmann@33274
  1815
haftmann@33274
  1816
lemma dvd_mult_cancel1: "0<m ==> (m*n dvd m) = (n = (1::nat))"
haftmann@33274
  1817
  apply auto
haftmann@33274
  1818
   apply (subgoal_tac "m*n dvd m*1")
haftmann@33274
  1819
   apply (drule dvd_mult_cancel, auto)
haftmann@33274
  1820
  done
haftmann@33274
  1821
haftmann@33274
  1822
lemma dvd_mult_cancel2: "0<m ==> (n*m dvd m) = (n = (1::nat))"
haftmann@33274
  1823
  apply (subst mult_commute)
haftmann@33274
  1824
  apply (erule dvd_mult_cancel1)
haftmann@33274
  1825
  done
haftmann@33274
  1826
haftmann@33274
  1827
lemma dvd_imp_le: "[| k dvd n; 0 < n |] ==> k \<le> (n::nat)"
haftmann@33274
  1828
by (auto elim!: dvdE) (auto simp add: gr0_conv_Suc)
haftmann@33274
  1829
haftmann@33274
  1830
lemma nat_dvd_not_less:
haftmann@33274
  1831
  fixes m n :: nat
haftmann@33274
  1832
  shows "0 < m \<Longrightarrow> m < n \<Longrightarrow> \<not> n dvd m"
haftmann@33274
  1833
by (auto elim!: dvdE) (auto simp add: gr0_conv_Suc)
haftmann@33274
  1834
haftmann@51173
  1835
lemma dvd_plusE:
haftmann@51173
  1836
  fixes m n q :: nat
haftmann@51173
  1837
  assumes "m dvd n + q" "m dvd n"
haftmann@51173
  1838
  obtains "m dvd q"
haftmann@51173
  1839
proof (cases "m = 0")
haftmann@51173
  1840
  case True with assms that show thesis by simp
haftmann@51173
  1841
next
haftmann@51173
  1842
  case False then have "m > 0" by simp
haftmann@51173
  1843
  from assms obtain r s where "n = m * r" and "n + q = m * s" by (blast elim: dvdE)
haftmann@51173
  1844
  then have *: "m * r + q = m * s" by simp
haftmann@51173
  1845
  show thesis proof (cases "r \<le> s")
haftmann@51173
  1846
    case False then have "s < r" by (simp add: not_le)
haftmann@51173
  1847
    with * have "m * r + q - m * s = m * s - m * s" by simp
haftmann@51173
  1848
    then have "m * r + q - m * s = 0" by simp
haftmann@53986
  1849
    with `m > 0` `s < r` have "m * r - m * s + q = 0" by (unfold less_le_not_le) auto
haftmann@51173
  1850
    then have "m * (r - s) + q = 0" by auto
haftmann@51173
  1851
    then have "m * (r - s) = 0" by simp
haftmann@51173
  1852
    then have "m = 0 \<or> r - s = 0" by simp
haftmann@53986
  1853
    with `s < r` have "m = 0" by (simp add: less_le_not_le)
haftmann@51173
  1854
    with `m > 0` show thesis by auto
haftmann@51173
  1855
  next
haftmann@51173
  1856
    case True with * have "m * r + q - m * r = m * s - m * r" by simp
haftmann@51173
  1857
    with `m > 0` `r \<le> s` have "m * r - m * r + q = m * s - m * r" by simp
haftmann@51173
  1858
    then have "q = m * (s - r)" by (simp add: diff_mult_distrib2)
haftmann@51173
  1859
    with assms that show thesis by (auto intro: dvdI)
haftmann@51173
  1860
  qed
haftmann@51173
  1861
qed
haftmann@51173
  1862
haftmann@51173
  1863
lemma dvd_plus_eq_right:
haftmann@51173
  1864
  fixes m n q :: nat
haftmann@51173
  1865
  assumes "m dvd n"
haftmann@51173
  1866
  shows "m dvd n + q \<longleftrightarrow> m dvd q"
haftmann@51173
  1867
  using assms by (auto elim: dvd_plusE)
haftmann@51173
  1868
haftmann@51173
  1869
lemma dvd_plus_eq_left:
haftmann@51173
  1870
  fixes m n q :: nat
haftmann@51173
  1871
  assumes "m dvd q"
haftmann@51173
  1872
  shows "m dvd n + q \<longleftrightarrow> m dvd n"
haftmann@51173
  1873
  using assms by (simp add: dvd_plus_eq_right add_commute [of n])
haftmann@51173
  1874
haftmann@54222
  1875
lemma less_eq_dvd_minus:
haftmann@51173
  1876
  fixes m n :: nat
haftmann@54222
  1877
  assumes "m \<le> n"
haftmann@54222
  1878
  shows "m dvd n \<longleftrightarrow> m dvd n - m"
haftmann@51173
  1879
proof -
haftmann@54222
  1880
  from assms have "n = m + (n - m)" by simp
haftmann@51173
  1881
  then obtain q where "n = m + q" ..
haftmann@51173
  1882
  then show ?thesis by (simp add: dvd_reduce add_commute [of m])
haftmann@51173
  1883
qed
haftmann@51173
  1884
haftmann@51173
  1885
lemma dvd_minus_self:
haftmann@51173
  1886
  fixes m n :: nat
haftmann@51173
  1887
  shows "m dvd n - m \<longleftrightarrow> n < m \<or> m dvd n"
haftmann@51173
  1888
  by (cases "n < m") (auto elim!: dvdE simp add: not_less le_imp_diff_is_add)
haftmann@51173
  1889
haftmann@51173
  1890
lemma dvd_minus_add:
haftmann@51173
  1891
  fixes m n q r :: nat
haftmann@51173
  1892
  assumes "q \<le> n" "q \<le> r * m"
haftmann@51173
  1893
  shows "m dvd n - q \<longleftrightarrow> m dvd n + (r * m - q)"
haftmann@51173
  1894
proof -
haftmann@51173
  1895
  have "m dvd n - q \<longleftrightarrow> m dvd r * m + (n - q)"
haftmann@51173
  1896
    by (auto elim: dvd_plusE)
wenzelm@53374
  1897
  also from assms have "\<dots> \<longleftrightarrow> m dvd r * m + n - q" by simp
wenzelm@53374
  1898
  also from assms have "\<dots> \<longleftrightarrow> m dvd (r * m - q) + n" by simp
haftmann@51173
  1899
  also have "\<dots> \<longleftrightarrow> m dvd n + (r * m - q)" by (simp add: add_commute)
haftmann@51173
  1900
  finally show ?thesis .
haftmann@51173
  1901
qed
haftmann@51173
  1902
haftmann@33274
  1903
haftmann@44817
  1904
subsection {* aliasses *}
haftmann@44817
  1905
haftmann@44817
  1906
lemma nat_mult_1: "(1::nat) * n = n"
haftmann@44817
  1907
  by simp
haftmann@44817
  1908
 
haftmann@44817
  1909
lemma nat_mult_1_right: "n * (1::nat) = n"
haftmann@44817
  1910
  by simp
haftmann@44817
  1911
haftmann@44817
  1912
haftmann@26072
  1913
subsection {* size of a datatype value *}
haftmann@25193
  1914
haftmann@29608
  1915
class size =
krauss@26748
  1916
  fixes size :: "'a \<Rightarrow> nat" -- {* see further theory @{text Wellfounded} *}
haftmann@23852
  1917
haftmann@33364
  1918
haftmann@33364
  1919
subsection {* code module namespace *}
haftmann@33364
  1920
haftmann@52435
  1921
code_identifier
haftmann@52435
  1922
  code_module Nat \<rightharpoonup> (SML) Arith and (OCaml) Arith and (Haskell) Arith
haftmann@33364
  1923
huffman@47108
  1924
hide_const (open) of_nat_aux
huffman@47108
  1925
haftmann@25193
  1926
end
haftmann@49388
  1927