src/HOL/Number_Theory/Residues.thy
author eberlm <eberlm@in.tum.de>
Mon Oct 17 15:20:06 2016 +0200 (2016-10-17)
changeset 64282 261d42f0bfac
parent 64272 f76b6dda2e56
child 64593 50c715579715
permissions -rw-r--r--
Removed Old_Number_Theory; all theories ported (thanks to Jaime Mendizabal Roche)
wenzelm@41959
     1
(*  Title:      HOL/Number_Theory/Residues.thy
nipkow@31719
     2
    Author:     Jeremy Avigad
nipkow@31719
     3
wenzelm@41541
     4
An algebraic treatment of residue rings, and resulting proofs of
wenzelm@41959
     5
Euler's theorem and Wilson's theorem.
nipkow@31719
     6
*)
nipkow@31719
     7
wenzelm@60526
     8
section \<open>Residue rings\<close>
nipkow@31719
     9
nipkow@31719
    10
theory Residues
eberlm@63537
    11
imports Cong MiscAlgebra
nipkow@31719
    12
begin
nipkow@31719
    13
eberlm@64282
    14
definition QuadRes :: "int \<Rightarrow> int \<Rightarrow> bool" where
eberlm@64282
    15
  "QuadRes p a = (\<exists>y. ([y^2 = a] (mod p)))"
eberlm@64282
    16
eberlm@64282
    17
definition Legendre :: "int \<Rightarrow> int \<Rightarrow> int" where
eberlm@64282
    18
  "Legendre a p = (if ([a = 0] (mod p)) then 0
eberlm@64282
    19
    else if QuadRes p a then 1
eberlm@64282
    20
    else -1)"
eberlm@64282
    21
wenzelm@60527
    22
subsection \<open>A locale for residue rings\<close>
nipkow@31719
    23
wenzelm@60527
    24
definition residue_ring :: "int \<Rightarrow> int ring"
wenzelm@60528
    25
where
wenzelm@60527
    26
  "residue_ring m =
wenzelm@60527
    27
    \<lparr>carrier = {0..m - 1},
wenzelm@60527
    28
     mult = \<lambda>x y. (x * y) mod m,
wenzelm@60527
    29
     one = 1,
wenzelm@60527
    30
     zero = 0,
wenzelm@60527
    31
     add = \<lambda>x y. (x + y) mod m\<rparr>"
nipkow@31719
    32
nipkow@31719
    33
locale residues =
nipkow@31719
    34
  fixes m :: int and R (structure)
nipkow@31719
    35
  assumes m_gt_one: "m > 1"
wenzelm@60527
    36
  defines "R \<equiv> residue_ring m"
wenzelm@44872
    37
begin
nipkow@31719
    38
nipkow@31719
    39
lemma abelian_group: "abelian_group R"
nipkow@31719
    40
  apply (insert m_gt_one)
nipkow@31719
    41
  apply (rule abelian_groupI)
nipkow@31719
    42
  apply (unfold R_def residue_ring_def)
haftmann@57514
    43
  apply (auto simp add: mod_add_right_eq [symmetric] ac_simps)
nipkow@31719
    44
  apply (case_tac "x = 0")
nipkow@31719
    45
  apply force
nipkow@31719
    46
  apply (subgoal_tac "(x + (m - x)) mod m = 0")
nipkow@31719
    47
  apply (erule bexI)
nipkow@31719
    48
  apply auto
wenzelm@41541
    49
  done
nipkow@31719
    50
nipkow@31719
    51
lemma comm_monoid: "comm_monoid R"
nipkow@31719
    52
  apply (insert m_gt_one)
nipkow@31719
    53
  apply (unfold R_def residue_ring_def)
nipkow@31719
    54
  apply (rule comm_monoidI)
nipkow@31719
    55
  apply auto
nipkow@31719
    56
  apply (subgoal_tac "x * y mod m * z mod m = z * (x * y mod m) mod m")
nipkow@31719
    57
  apply (erule ssubst)
huffman@47163
    58
  apply (subst mod_mult_right_eq [symmetric])+
haftmann@57514
    59
  apply (simp_all only: ac_simps)
wenzelm@41541
    60
  done
nipkow@31719
    61
nipkow@31719
    62
lemma cring: "cring R"
nipkow@31719
    63
  apply (rule cringI)
nipkow@31719
    64
  apply (rule abelian_group)
nipkow@31719
    65
  apply (rule comm_monoid)
nipkow@31719
    66
  apply (unfold R_def residue_ring_def, auto)
nipkow@31719
    67
  apply (subst mod_add_eq [symmetric])
haftmann@57512
    68
  apply (subst mult.commute)
huffman@47163
    69
  apply (subst mod_mult_right_eq [symmetric])
haftmann@36350
    70
  apply (simp add: field_simps)
wenzelm@41541
    71
  done
nipkow@31719
    72
nipkow@31719
    73
end
nipkow@31719
    74
nipkow@31719
    75
sublocale residues < cring
nipkow@31719
    76
  by (rule cring)
nipkow@31719
    77
nipkow@31719
    78
wenzelm@41541
    79
context residues
wenzelm@41541
    80
begin
nipkow@31719
    81
wenzelm@60527
    82
text \<open>
wenzelm@60527
    83
  These lemmas translate back and forth between internal and
wenzelm@60527
    84
  external concepts.
wenzelm@60527
    85
\<close>
nipkow@31719
    86
nipkow@31719
    87
lemma res_carrier_eq: "carrier R = {0..m - 1}"
wenzelm@44872
    88
  unfolding R_def residue_ring_def by auto
nipkow@31719
    89
nipkow@31719
    90
lemma res_add_eq: "x \<oplus> y = (x + y) mod m"
wenzelm@44872
    91
  unfolding R_def residue_ring_def by auto
nipkow@31719
    92
nipkow@31719
    93
lemma res_mult_eq: "x \<otimes> y = (x * y) mod m"
wenzelm@44872
    94
  unfolding R_def residue_ring_def by auto
nipkow@31719
    95
nipkow@31719
    96
lemma res_zero_eq: "\<zero> = 0"
wenzelm@44872
    97
  unfolding R_def residue_ring_def by auto
nipkow@31719
    98
nipkow@31719
    99
lemma res_one_eq: "\<one> = 1"
wenzelm@44872
   100
  unfolding R_def residue_ring_def units_of_def by auto
nipkow@31719
   101
wenzelm@60527
   102
lemma res_units_eq: "Units R = {x. 0 < x \<and> x < m \<and> coprime x m}"
nipkow@31719
   103
  apply (insert m_gt_one)
nipkow@31719
   104
  apply (unfold Units_def R_def residue_ring_def)
nipkow@31719
   105
  apply auto
wenzelm@60527
   106
  apply (subgoal_tac "x \<noteq> 0")
nipkow@31719
   107
  apply auto
lp15@55352
   108
  apply (metis invertible_coprime_int)
nipkow@31952
   109
  apply (subst (asm) coprime_iff_invertible'_int)
haftmann@57512
   110
  apply (auto simp add: cong_int_def mult.commute)
wenzelm@41541
   111
  done
nipkow@31719
   112
nipkow@31719
   113
lemma res_neg_eq: "\<ominus> x = (- x) mod m"
nipkow@31719
   114
  apply (insert m_gt_one)
nipkow@31719
   115
  apply (unfold R_def a_inv_def m_inv_def residue_ring_def)
nipkow@31719
   116
  apply auto
nipkow@31719
   117
  apply (rule the_equality)
nipkow@31719
   118
  apply auto
nipkow@31719
   119
  apply (subst mod_add_right_eq [symmetric])
nipkow@31719
   120
  apply auto
nipkow@31719
   121
  apply (subst mod_add_left_eq [symmetric])
nipkow@31719
   122
  apply auto
nipkow@31719
   123
  apply (subgoal_tac "y mod m = - x mod m")
nipkow@31719
   124
  apply simp
haftmann@57512
   125
  apply (metis minus_add_cancel mod_mult_self1 mult.commute)
wenzelm@41541
   126
  done
nipkow@31719
   127
wenzelm@44872
   128
lemma finite [iff]: "finite (carrier R)"
wenzelm@60527
   129
  by (subst res_carrier_eq) auto
nipkow@31719
   130
wenzelm@44872
   131
lemma finite_Units [iff]: "finite (Units R)"
bulwahn@50027
   132
  by (subst res_units_eq) auto
nipkow@31719
   133
wenzelm@60527
   134
text \<open>
wenzelm@63167
   135
  The function \<open>a \<mapsto> a mod m\<close> maps the integers to the
wenzelm@60527
   136
  residue classes. The following lemmas show that this mapping
wenzelm@60527
   137
  respects addition and multiplication on the integers.
wenzelm@60527
   138
\<close>
nipkow@31719
   139
wenzelm@60527
   140
lemma mod_in_carrier [iff]: "a mod m \<in> carrier R"
wenzelm@60527
   141
  unfolding res_carrier_eq
wenzelm@60527
   142
  using insert m_gt_one by auto
nipkow@31719
   143
nipkow@31719
   144
lemma add_cong: "(x mod m) \<oplus> (y mod m) = (x + y) mod m"
wenzelm@44872
   145
  unfolding R_def residue_ring_def
wenzelm@44872
   146
  apply auto
wenzelm@44872
   147
  apply presburger
wenzelm@44872
   148
  done
nipkow@31719
   149
nipkow@31719
   150
lemma mult_cong: "(x mod m) \<otimes> (y mod m) = (x * y) mod m"
lp15@55352
   151
  unfolding R_def residue_ring_def
lp15@55352
   152
  by auto (metis mod_mult_eq)
nipkow@31719
   153
nipkow@31719
   154
lemma zero_cong: "\<zero> = 0"
wenzelm@44872
   155
  unfolding R_def residue_ring_def by auto
nipkow@31719
   156
nipkow@31719
   157
lemma one_cong: "\<one> = 1 mod m"
wenzelm@44872
   158
  using m_gt_one unfolding R_def residue_ring_def by auto
nipkow@31719
   159
wenzelm@60527
   160
(* FIXME revise algebra library to use 1? *)
nipkow@31719
   161
lemma pow_cong: "(x mod m) (^) n = x^n mod m"
nipkow@31719
   162
  apply (insert m_gt_one)
nipkow@31719
   163
  apply (induct n)
wenzelm@41541
   164
  apply (auto simp add: nat_pow_def one_cong)
haftmann@57512
   165
  apply (metis mult.commute mult_cong)
wenzelm@41541
   166
  done
nipkow@31719
   167
nipkow@31719
   168
lemma neg_cong: "\<ominus> (x mod m) = (- x) mod m"
lp15@55352
   169
  by (metis mod_minus_eq res_neg_eq)
nipkow@31719
   170
wenzelm@60528
   171
lemma (in residues) prod_cong: "finite A \<Longrightarrow> (\<Otimes>i\<in>A. (f i) mod m) = (\<Prod>i\<in>A. f i) mod m"
lp15@55352
   172
  by (induct set: finite) (auto simp: one_cong mult_cong)
nipkow@31719
   173
wenzelm@60528
   174
lemma (in residues) sum_cong: "finite A \<Longrightarrow> (\<Oplus>i\<in>A. (f i) mod m) = (\<Sum>i\<in>A. f i) mod m"
lp15@55352
   175
  by (induct set: finite) (auto simp: zero_cong add_cong)
nipkow@31719
   176
haftmann@60688
   177
lemma mod_in_res_units [simp]:
haftmann@60688
   178
  assumes "1 < m" and "coprime a m"
haftmann@60688
   179
  shows "a mod m \<in> Units R"
haftmann@60688
   180
proof (cases "a mod m = 0")
haftmann@60688
   181
  case True with assms show ?thesis
haftmann@60688
   182
    by (auto simp add: res_units_eq gcd_red_int [symmetric])
haftmann@60688
   183
next
haftmann@60688
   184
  case False
haftmann@60688
   185
  from assms have "0 < m" by simp
haftmann@60688
   186
  with pos_mod_sign [of m a] have "0 \<le> a mod m" .
haftmann@60688
   187
  with False have "0 < a mod m" by simp
haftmann@60688
   188
  with assms show ?thesis
haftmann@60688
   189
    by (auto simp add: res_units_eq gcd_red_int [symmetric] ac_simps)
haftmann@60688
   190
qed
nipkow@31719
   191
wenzelm@60528
   192
lemma res_eq_to_cong: "(a mod m) = (b mod m) \<longleftrightarrow> [a = b] (mod m)"
nipkow@31719
   193
  unfolding cong_int_def by auto
nipkow@31719
   194
nipkow@31719
   195
wenzelm@60528
   196
text \<open>Simplifying with these will translate a ring equation in R to a congruence.\<close>
nipkow@31719
   197
lemmas res_to_cong_simps = add_cong mult_cong pow_cong one_cong
nipkow@31719
   198
    prod_cong sum_cong neg_cong res_eq_to_cong
nipkow@31719
   199
wenzelm@60527
   200
text \<open>Other useful facts about the residue ring.\<close>
nipkow@31719
   201
lemma one_eq_neg_one: "\<one> = \<ominus> \<one> \<Longrightarrow> m = 2"
nipkow@31719
   202
  apply (simp add: res_one_eq res_neg_eq)
haftmann@57512
   203
  apply (metis add.commute add_diff_cancel mod_mod_trivial one_add_one uminus_add_conv_diff
wenzelm@60528
   204
    zero_neq_one zmod_zminus1_eq_if)
wenzelm@41541
   205
  done
nipkow@31719
   206
nipkow@31719
   207
end
nipkow@31719
   208
nipkow@31719
   209
wenzelm@60527
   210
subsection \<open>Prime residues\<close>
nipkow@31719
   211
nipkow@31719
   212
locale residues_prime =
eberlm@63534
   213
  fixes p :: nat and R (structure)
nipkow@31719
   214
  assumes p_prime [intro]: "prime p"
eberlm@63534
   215
  defines "R \<equiv> residue_ring (int p)"
nipkow@31719
   216
nipkow@31719
   217
sublocale residues_prime < residues p
nipkow@31719
   218
  apply (unfold R_def residues_def)
nipkow@31719
   219
  using p_prime apply auto
haftmann@62348
   220
  apply (metis (full_types) of_nat_1 of_nat_less_iff prime_gt_1_nat)
wenzelm@41541
   221
  done
nipkow@31719
   222
wenzelm@44872
   223
context residues_prime
wenzelm@44872
   224
begin
nipkow@31719
   225
nipkow@31719
   226
lemma is_field: "field R"
nipkow@31719
   227
  apply (rule cring.field_intro2)
nipkow@31719
   228
  apply (rule cring)
wenzelm@44872
   229
  apply (auto simp add: res_carrier_eq res_one_eq res_zero_eq res_units_eq)
nipkow@31719
   230
  apply (rule classical)
nipkow@31719
   231
  apply (erule notE)
haftmann@62348
   232
  apply (subst gcd.commute)
nipkow@31952
   233
  apply (rule prime_imp_coprime_int)
eberlm@63534
   234
  apply (simp add: p_prime)
nipkow@31719
   235
  apply (rule notI)
nipkow@31719
   236
  apply (frule zdvd_imp_le)
nipkow@31719
   237
  apply auto
wenzelm@41541
   238
  done
nipkow@31719
   239
nipkow@31719
   240
lemma res_prime_units_eq: "Units R = {1..p - 1}"
nipkow@31719
   241
  apply (subst res_units_eq)
nipkow@31719
   242
  apply auto
haftmann@62348
   243
  apply (subst gcd.commute)
lp15@55352
   244
  apply (auto simp add: p_prime prime_imp_coprime_int zdvd_not_zless)
wenzelm@41541
   245
  done
nipkow@31719
   246
nipkow@31719
   247
end
nipkow@31719
   248
nipkow@31719
   249
sublocale residues_prime < field
nipkow@31719
   250
  by (rule is_field)
nipkow@31719
   251
nipkow@31719
   252
wenzelm@60527
   253
section \<open>Test cases: Euler's theorem and Wilson's theorem\<close>
nipkow@31719
   254
wenzelm@60527
   255
subsection \<open>Euler's theorem\<close>
nipkow@31719
   256
wenzelm@60527
   257
text \<open>The definition of the phi function.\<close>
nipkow@31719
   258
wenzelm@60527
   259
definition phi :: "int \<Rightarrow> nat"
wenzelm@60527
   260
  where "phi m = card {x. 0 < x \<and> x < m \<and> gcd x m = 1}"
nipkow@31719
   261
wenzelm@60527
   262
lemma phi_def_nat: "phi m = card {x. 0 < x \<and> x < nat m \<and> gcd x (nat m) = 1}"
lp15@55261
   263
  apply (simp add: phi_def)
lp15@55261
   264
  apply (rule bij_betw_same_card [of nat])
lp15@55261
   265
  apply (auto simp add: inj_on_def bij_betw_def image_def)
lp15@55261
   266
  apply (metis dual_order.irrefl dual_order.strict_trans leI nat_1 transfer_nat_int_gcd(1))
haftmann@62348
   267
  apply (metis One_nat_def of_nat_0 of_nat_1 of_nat_less_0_iff int_nat_eq nat_int
haftmann@62348
   268
    transfer_int_nat_gcd(1) of_nat_less_iff)
lp15@55261
   269
  done
lp15@55261
   270
lp15@55261
   271
lemma prime_phi:
wenzelm@60527
   272
  assumes "2 \<le> p" "phi p = p - 1"
wenzelm@60527
   273
  shows "prime p"
lp15@55261
   274
proof -
wenzelm@60528
   275
  have *: "{x. 0 < x \<and> x < p \<and> coprime x p} = {1..p - 1}"
lp15@55261
   276
    using assms unfolding phi_def_nat
lp15@55261
   277
    by (intro card_seteq) fastforce+
wenzelm@60528
   278
  have False if **: "1 < x" "x < p" and "x dvd p" for x :: nat
wenzelm@60527
   279
  proof -
wenzelm@60528
   280
    from * have cop: "x \<in> {1..p - 1} \<Longrightarrow> coprime x p"
wenzelm@60528
   281
      by blast
lp15@59667
   282
    have "coprime x p"
lp15@55261
   283
      apply (rule cop)
wenzelm@60528
   284
      using ** apply auto
lp15@55261
   285
      done
wenzelm@60527
   286
    with \<open>x dvd p\<close> \<open>1 < x\<close> show ?thesis
wenzelm@60527
   287
      by auto
wenzelm@60527
   288
  qed
lp15@59667
   289
  then show ?thesis
wenzelm@60526
   290
    using \<open>2 \<le> p\<close>
eberlm@63633
   291
    by (simp add: prime_nat_iff)
lp15@59667
   292
       (metis One_nat_def dvd_pos_nat nat_dvd_not_less nat_neq_iff not_gr0
lp15@55352
   293
              not_numeral_le_zero one_dvd)
lp15@55261
   294
qed
lp15@55261
   295
nipkow@31719
   296
lemma phi_zero [simp]: "phi 0 = 0"
wenzelm@60527
   297
  unfolding phi_def
wenzelm@44872
   298
(* Auto hangs here. Once again, where is the simplification rule
wenzelm@60527
   299
   1 \<equiv> Suc 0 coming from? *)
nipkow@31719
   300
  apply (auto simp add: card_eq_0_iff)
nipkow@31719
   301
(* Add card_eq_0_iff as a simp rule? delete card_empty_imp? *)
wenzelm@41541
   302
  done
nipkow@31719
   303
nipkow@31719
   304
lemma phi_one [simp]: "phi 1 = 0"
wenzelm@44872
   305
  by (auto simp add: phi_def card_eq_0_iff)
nipkow@31719
   306
wenzelm@60527
   307
lemma (in residues) phi_eq: "phi m = card (Units R)"
nipkow@31719
   308
  by (simp add: phi_def res_units_eq)
nipkow@31719
   309
wenzelm@44872
   310
lemma (in residues) euler_theorem1:
nipkow@31719
   311
  assumes a: "gcd a m = 1"
nipkow@31719
   312
  shows "[a^phi m = 1] (mod m)"
nipkow@31719
   313
proof -
wenzelm@60527
   314
  from a m_gt_one have [simp]: "a mod m \<in> Units R"
nipkow@31719
   315
    by (intro mod_in_res_units)
nipkow@31719
   316
  from phi_eq have "(a mod m) (^) (phi m) = (a mod m) (^) (card (Units R))"
nipkow@31719
   317
    by simp
wenzelm@44872
   318
  also have "\<dots> = \<one>"
wenzelm@60527
   319
    by (intro units_power_order_eq_one) auto
nipkow@31719
   320
  finally show ?thesis
nipkow@31719
   321
    by (simp add: res_to_cong_simps)
nipkow@31719
   322
qed
nipkow@31719
   323
nipkow@31719
   324
(* In fact, there is a two line proof!
nipkow@31719
   325
wenzelm@44872
   326
lemma (in residues) euler_theorem1:
nipkow@31719
   327
  assumes a: "gcd a m = 1"
nipkow@31719
   328
  shows "[a^phi m = 1] (mod m)"
nipkow@31719
   329
proof -
nipkow@31719
   330
  have "(a mod m) (^) (phi m) = \<one>"
nipkow@31719
   331
    by (simp add: phi_eq units_power_order_eq_one a m_gt_one)
wenzelm@44872
   332
  then show ?thesis
nipkow@31719
   333
    by (simp add: res_to_cong_simps)
nipkow@31719
   334
qed
nipkow@31719
   335
nipkow@31719
   336
*)
nipkow@31719
   337
wenzelm@63167
   338
text \<open>Outside the locale, we can relax the restriction \<open>m > 1\<close>.\<close>
nipkow@31719
   339
lemma euler_theorem:
wenzelm@60527
   340
  assumes "m \<ge> 0"
wenzelm@60527
   341
    and "gcd a m = 1"
nipkow@31719
   342
  shows "[a^phi m = 1] (mod m)"
wenzelm@60527
   343
proof (cases "m = 0 | m = 1")
wenzelm@60527
   344
  case True
wenzelm@44872
   345
  then show ?thesis by auto
nipkow@31719
   346
next
wenzelm@60527
   347
  case False
wenzelm@41541
   348
  with assms show ?thesis
nipkow@31719
   349
    by (intro residues.euler_theorem1, unfold residues_def, auto)
nipkow@31719
   350
qed
nipkow@31719
   351
wenzelm@60527
   352
lemma (in residues_prime) phi_prime: "phi p = nat p - 1"
nipkow@31719
   353
  apply (subst phi_eq)
nipkow@31719
   354
  apply (subst res_prime_units_eq)
nipkow@31719
   355
  apply auto
wenzelm@41541
   356
  done
nipkow@31719
   357
eberlm@63534
   358
lemma phi_prime: "prime (int p) \<Longrightarrow> phi p = nat p - 1"
nipkow@31719
   359
  apply (rule residues_prime.phi_prime)
eberlm@63534
   360
  apply simp
nipkow@31719
   361
  apply (erule residues_prime.intro)
wenzelm@41541
   362
  done
nipkow@31719
   363
nipkow@31719
   364
lemma fermat_theorem:
wenzelm@60527
   365
  fixes a :: int
eberlm@63534
   366
  assumes "prime (int p)"
wenzelm@60527
   367
    and "\<not> p dvd a"
lp15@55242
   368
  shows "[a^(p - 1) = 1] (mod p)"
nipkow@31719
   369
proof -
wenzelm@60527
   370
  from assms have "[a ^ phi p = 1] (mod p)"
eberlm@63534
   371
    by (auto intro!: euler_theorem intro!: prime_imp_coprime_int[of p]
eberlm@63534
   372
             simp: gcd.commute[of _ "int p"])
nipkow@31719
   373
  also have "phi p = nat p - 1"
wenzelm@60527
   374
    by (rule phi_prime) (rule assms)
lp15@55242
   375
  finally show ?thesis
lp15@59667
   376
    by (metis nat_int)
nipkow@31719
   377
qed
nipkow@31719
   378
lp15@55227
   379
lemma fermat_theorem_nat:
eberlm@63534
   380
  assumes "prime (int p)" and "\<not> p dvd a"
wenzelm@60527
   381
  shows "[a ^ (p - 1) = 1] (mod p)"
wenzelm@60527
   382
  using fermat_theorem [of p a] assms
haftmann@62348
   383
  by (metis of_nat_1 of_nat_power transfer_int_nat_cong zdvd_int)
lp15@55227
   384
nipkow@31719
   385
wenzelm@60526
   386
subsection \<open>Wilson's theorem\<close>
nipkow@31719
   387
wenzelm@60527
   388
lemma (in field) inv_pair_lemma: "x \<in> Units R \<Longrightarrow> y \<in> Units R \<Longrightarrow>
wenzelm@60527
   389
    {x, inv x} \<noteq> {y, inv y} \<Longrightarrow> {x, inv x} \<inter> {y, inv y} = {}"
nipkow@31719
   390
  apply auto
lp15@55352
   391
  apply (metis Units_inv_inv)+
wenzelm@41541
   392
  done
nipkow@31719
   393
nipkow@31719
   394
lemma (in residues_prime) wilson_theorem1:
nipkow@31719
   395
  assumes a: "p > 2"
lp15@59730
   396
  shows "[fact (p - 1) = (-1::int)] (mod p)"
nipkow@31719
   397
proof -
wenzelm@60527
   398
  let ?Inverse_Pairs = "{{x, inv x}| x. x \<in> Units R - {\<one>, \<ominus> \<one>}}"
wenzelm@60527
   399
  have UR: "Units R = {\<one>, \<ominus> \<one>} \<union> \<Union>?Inverse_Pairs"
nipkow@31719
   400
    by auto
wenzelm@60527
   401
  have "(\<Otimes>i\<in>Units R. i) = (\<Otimes>i\<in>{\<one>, \<ominus> \<one>}. i) \<otimes> (\<Otimes>i\<in>\<Union>?Inverse_Pairs. i)"
nipkow@31732
   402
    apply (subst UR)
nipkow@31719
   403
    apply (subst finprod_Un_disjoint)
lp15@55352
   404
    apply (auto intro: funcsetI)
wenzelm@60527
   405
    using inv_one apply auto[1]
wenzelm@60527
   406
    using inv_eq_neg_one_eq apply auto
nipkow@31719
   407
    done
wenzelm@60527
   408
  also have "(\<Otimes>i\<in>{\<one>, \<ominus> \<one>}. i) = \<ominus> \<one>"
nipkow@31719
   409
    apply (subst finprod_insert)
nipkow@31719
   410
    apply auto
nipkow@31719
   411
    apply (frule one_eq_neg_one)
wenzelm@60527
   412
    using a apply force
nipkow@31719
   413
    done
wenzelm@60527
   414
  also have "(\<Otimes>i\<in>(\<Union>?Inverse_Pairs). i) = (\<Otimes>A\<in>?Inverse_Pairs. (\<Otimes>y\<in>A. y))"
wenzelm@60527
   415
    apply (subst finprod_Union_disjoint)
wenzelm@60527
   416
    apply auto
lp15@55352
   417
    apply (metis Units_inv_inv)+
nipkow@31719
   418
    done
nipkow@31719
   419
  also have "\<dots> = \<one>"
wenzelm@60527
   420
    apply (rule finprod_one)
wenzelm@60527
   421
    apply auto
wenzelm@60527
   422
    apply (subst finprod_insert)
wenzelm@60527
   423
    apply auto
lp15@55352
   424
    apply (metis inv_eq_self)
nipkow@31719
   425
    done
wenzelm@60527
   426
  finally have "(\<Otimes>i\<in>Units R. i) = \<ominus> \<one>"
nipkow@31719
   427
    by simp
wenzelm@60527
   428
  also have "(\<Otimes>i\<in>Units R. i) = (\<Otimes>i\<in>Units R. i mod p)"
nipkow@31719
   429
    apply (rule finprod_cong')
wenzelm@60527
   430
    apply auto
nipkow@31719
   431
    apply (subst (asm) res_prime_units_eq)
nipkow@31719
   432
    apply auto
nipkow@31719
   433
    done
wenzelm@60527
   434
  also have "\<dots> = (\<Prod>i\<in>Units R. i) mod p"
nipkow@31719
   435
    apply (rule prod_cong)
nipkow@31719
   436
    apply auto
nipkow@31719
   437
    done
nipkow@31719
   438
  also have "\<dots> = fact (p - 1) mod p"
nipkow@64272
   439
    apply (simp add: fact_prod)
lp15@55242
   440
    apply (insert assms)
lp15@55242
   441
    apply (subst res_prime_units_eq)
nipkow@64272
   442
    apply (simp add: int_prod zmod_int prod_int_eq)
nipkow@31719
   443
    done
wenzelm@60527
   444
  finally have "fact (p - 1) mod p = \<ominus> \<one>" .
wenzelm@60527
   445
  then show ?thesis
wenzelm@60528
   446
    by (metis of_nat_fact Divides.transfer_int_nat_functions(2)
wenzelm@60528
   447
      cong_int_def res_neg_eq res_one_eq)
nipkow@31719
   448
qed
nipkow@31719
   449
lp15@55352
   450
lemma wilson_theorem:
wenzelm@60527
   451
  assumes "prime p"
wenzelm@60527
   452
  shows "[fact (p - 1) = - 1] (mod p)"
lp15@55352
   453
proof (cases "p = 2")
lp15@59667
   454
  case True
lp15@55352
   455
  then show ?thesis
nipkow@64272
   456
    by (simp add: cong_int_def fact_prod)
lp15@55352
   457
next
lp15@55352
   458
  case False
lp15@55352
   459
  then show ?thesis
lp15@55352
   460
    using assms prime_ge_2_nat
lp15@55352
   461
    by (metis residues_prime.wilson_theorem1 residues_prime.intro le_eq_less_or_eq)
lp15@55352
   462
qed
nipkow@31719
   463
nipkow@31719
   464
end